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Abstract. Landslides constitute a hazard to life and infras-
tructure and their risk is mitigated primarily by reducing ex-
posure. This requires information on landslide hazard on a
scale that can enable informed decisions. Such information is
often unavailable to, or not easily interpreted by, those who
might need it most (e.g. householders, local governments and
non-governmental organisations). To address this shortcom-
ing, we develop simple rules to minimise exposure to co-
seismic landslide hazard that are understandable, communi-
cable and memorable, and that require no prior knowledge,
skills or equipment to apply. We examine rules based on two
common metrics of landslide hazard, (1) local slope and (2)
upslope contributing area as a proxy for hillslope location
relative to rivers or ridge crests. In addition, we introduce
and test two new metrics: the maximum angle to the skyline
and the hazard area, defined as the upslope area with slope
> 40◦ from which landslide debris can reach a location with-
out passing over a slope of < 10◦. We then test the skill with
which each metric can identify landslide hazard – defined as
the probability of being hit by a landslide – using invento-
ries of landslides triggered by six earthquakes that occurred
between 1993 and 2015. We find that the maximum skyline
angle and hazard area provide the most skilful predictions,
and these results form the basis for two simple rules: “min-
imise your maximum angle to the skyline” and “avoid steep
(> 10◦) channels with many steep (> 40◦) areas that are up-
slope”. Because local slope alone is also a skilful predictor
of landslide hazard, we can formulate a third rule as “min-
imise the angle of the slope under your feet, especially on
steep hillsides, but not at the expense of increasing skyline
angle or hazard area”. In contrast, the upslope contributing
area has a weaker and more complex relationship to hazard

than the other predictors. Our simple rules complement but
do not replace detailed site-specific investigation: they can
be used for initial estimations of landslide hazard or to guide
decision-making in the absence of any other information.

1 Introduction

Landslides involve the downward movement of soil or rock
under gravity, sometimes mixing with water or air to run out
rapidly over long distances. Landslides have considerable de-
structive potential and constitute a major hazard to life and
infrastructure (e.g. Froude and Petley, 2018).

Landslide risk can be mitigated by either reducing expo-
sure – the likelihood that a particular person or structure is
hit by a landslide – or by reducing the consequences of land-
slide impact. The latter is expensive for a building (Fell et
al., 2005; Volkwein et al., 2011; Guillard-Gonçalves et al.,
2016) and extremely difficult for a person (Kennedy et al.,
2015). As a result, efforts in reducing landslide risk tend to
focus on reducing exposure, primarily by siting infrastructure
and assets (or by choosing to spend time) in places of lower
landslide hazard. These choices, however, require informa-
tion on landslide hazard on a scale that can enable informed
decisions about how to mitigate the risk. In other words, a
decision to reduce landslide exposure requires knowledge of
how landslide hazard varies in space.

Quantitative landslide hazard information is commonly
expressed as a relative weighting or probability of landslide
occurrence in a given location and over a specified period
of time. This is often communicated as a hazard map (Dran-
sch et al., 2010). These maps can provide useful informa-
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tion to inform decisions such as siting infrastructure, allocat-
ing resources, designing countermeasures or planning miti-
gation measures such as evacuation routes. There are, how-
ever, at least five limitations to reliance on hazard maps as the
sole source of landslide hazard information. First, landslide
hazard maps do not exist for all hazardous locations, since
their generation requires technical expertise and site-specific
information (such as geological maps or landslide invento-
ries) that may not be available. Second, where maps do exist
they may not be available to those that need them. Whether
in physical or digital form, hazard maps are rarely held by
the communities that live within their boundaries (Alexan-
der, 2005; Mills and Curtis, 2008; Twigg et al., 2017). Third,
where landslide hazard maps are available, their resolution
may not be fine enough to address the questions that po-
tential users will have. In everyday decisions, from where
to build a house to which way to walk, distances of even a
few metres can matter greatly for determining landslide ex-
posure, because landslide hazard can vary substantially even
over such short distances. National- and even regional-scale
hazard maps do not resolve hazard on those scales, how-
ever, and hazard maps on the appropriate scale would be
extremely costly and time consuming to produce over large
areas. Fourth, landslide hazard maps are designed for tech-
nical users (such as engineers and planners) and thus can
be difficult for non-technical users to interpret (Dransch et
al., 2010). Hazard is often expressed in probabilistic terms
which are inherently difficult to communicate and under-
stand (Thompson et al., 2015). The maps may also require
particular equipment, such as a computer with appropriate
software, or additional contextual information to enable clear
visualisation or orient the user (Mills and Curtis, 2008). Fi-
nally, landslide hazard maps may lack the appropriate infor-
mation for decision-making. For example, landslide hazard is
commonly equated simply with the probability of landslide
initiation at a given location, rather than the probability that
the location will be impacted by a landslide occurring there
or somewhere upslope.

In the absence of detailed hazard maps, how should we
make decisions about siting infrastructure or spending time
in landslide-prone areas? An alternative and complementary
form of hazard information might be a set of general rules
that can be memorised by anyone who might be exposed to
landslide hazard, or by those charged with managing land-
slide risk, to be applied where no other information exists. A
good general rule should (1) be understandable, communica-
ble and memorable; (2) require no prior knowledge, skills or
equipment to evaluate; (3) be a skilful discriminant of hazard;
and (4) be cast so that it does not increase exposure to another
hazard. A good example of such a rule would be the instruc-
tion to minimise exposure to tsunami: “in case of earthquake,
go to high ground or inland” (Atwater et al., 1999, p. 20). Re-
search has shown that these types of simple rules are already
to some extent implicitly coded into the decisions that peo-
ple make (e.g. Gigerenzer, 2008), reflecting tacit knowledge

of hazard (e.g. Shaw et al., 2008; Twigg et al., 2017). Im-
portantly, however, there are limits to this tacit knowledge
(Briggs, 2005); in particular, the body of experience required
to generate these rules is limited by both the infrequency of
triggering events, such as earthquakes or large storms, and
a focus on normal, rather than unusual, but not improba-
ble events, which can introduce biases (McCammon, 2004;
Kahneman and Klein, 2009). For example, while perennial
rainfall-triggered landslides and the risks that they pose may
be familiar to people in landslide-prone communities, land-
slides triggered by large earthquakes may fall outside resi-
dents’ lived experiences and so will be more challenging to
comprehend and account for in decision-making. If simple,
memorable rules (fulfilling criteria one and two above) could
be derived from a large inventory of hazardous events, these
biases might be reduced while maintaining the other bene-
fits of a rule-based approach (criteria three and four). Such
a set of data-based rules could be used in the absence of, or
in conjunction with, existing tools such as hazard maps and
local knowledge, both to inform decisions and to inspire dis-
cussion amongst householders, local government and non-
governmental organisations. Such knowledge is commonly
in demand, not only from technical users but also from lay
people (Twigg et al., 2017; Datta et al., 2018), especially be-
cause self-recovery after disasters (for example, via recon-
struction programmes in which householders rebuild their
own homes) is increasingly recognised as a critical mecha-
nism of recovery (Twigg et al., 2017).

Here we focus on rules that can be derived from the to-
pography surrounding a given location and that differentiate
exposure to coseismic landslide hazard over distances of tens
to hundreds of metres. Such rules are likely to be most use-
ful for decisions made before an earthquake about where to
site infrastructure or spend time, and may be less useful for
decisions about where to go during an earthquake when time
is limited. We focus on earthquakes because landsliding is an
important but poorly understood aspect of hazard in many re-
cent continental earthquakes (Huang and Fan, 2013; Roback
et al., 2018). We consider the extent to which our results may
be transferrable to landslides caused by more frequent trig-
gers, such as storms, in the discussion.

We examine candidate rules based on our existing under-
standing of landslide mechanics to identify those that meet
criteria one and two above. We then test the skill with which
each candidate rule can identify landslide hazard, using in-
ventories of coseismic landslides from the recent Finisterre
(Papua New Guinea), Northridge (USA), Chi-Chi (Taiwan),
Wenchuan (China), Haiti and Gorkha (Nepal) earthquakes.
Our goal is to determine the rule or rules that best fulfil the
four criteria listed above and that therefore provide the best
combination of simplicity and skill in anticipating coseismic
landslide impacts. We ask two key questions. (1) To what ex-
tent could observed landslide locations in past earthquakes
have been predicted by these simple rules alone, without re-
course to more complex models? (2) Is there a single rule
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or set of rules that performs well across all earthquakes and
could form the basis for anticipating landslide-affected lo-
cations in a future earthquake? The first question relates to
the absolute performance of the rule set, while the second re-
lates to the relative performance of rules within the set. While
spatial patterns of landsliding in these earthquakes have been
previously established, this is to our knowledge the first at-
tempt to extract a more general set of rules from landslide
data sets across multiple earthquakes.

This paper is necessarily technical, addressing the ques-
tion of whether it is possible to formulate such rules, iden-
tifying which rules work best and assessing their perfor-
mance. We therefore expect the paper’s primary audience
to be technical experts with an interest in landslide risk re-
duction. We have begun to explore ways of expressing these
rules in a format that is more accessible to a general audience
(e.g. Milledge et al., 2018).

2 Potential predictors for coseismic landslide hazard:
slope and upslope contributing area

Local slope, the gradient of the ground surface measured
over some short distance (usually∼ 1–100 m), has been iden-
tified as an important driver of landslide occurrence in almost
all prior landslide studies (e.g. Harp et al., 1981; Tibaldi et
al., 1995; Keefer, 2000; Wang et al., 2003; Xu et al., 2012,
2014a; Parker et al., 2017). This is consistent with mechanis-
tic expectations based on the balance of driving and resist-
ing forces on an inclined failure plane (Taylor, 1937). Local
slope is an intuitive parameter that is familiar to most peo-
ple and can be easily estimated in relative terms (i.e. hillside
A is steeper than hillside B) without specialised equipment.
Seismic acceleration or shaking is commonly identified as
the other dominant control on coseismic landslide occurrence
(Khazai and Sitar, 2004; Meunier et al., 2007). However,
shaking for any future earthquake cannot be predicted due
to a lack of certainty on source location, magnitude, rupture
style and local site effects (Geller, 1997). It is therefore dif-
ficult to incorporate it into a general rule for future landslide
hazard.

Ridges are often considered to be areas of high coseismic
landslide probability due to topographic amplification (Dens-
more and Hovius, 2000; Meunier et al., 2008; Rault et al.,
2018), while rivers are by definition areas of flow concentra-
tion into which landslides from multiple potential initiation
zones may run out. Here we use the upslope contributing area
as a continuous estimator of the proximity to a ridgeline (de-
fined here as an area with little or no upslope cells) or a valley
in order to assess how hazard may vary with position in the
landscape.

Other predictors have been identified in coseismic land-
slide studies, but these generally have a secondary effect and
are not consistently identified as important controls on land-
slide occurrence (Parker et al., 2017). Elevation and aspect

in particular lack a consistent explanation or pattern as a con-
trol on coseismic landslide hazard (Parker et al., 2017). Other
common predictors are difficult to evaluate on the ground
without specialised equipment or knowledge. Soil type (e.g.
Lee and Pradhan, 2007), rock type (e.g. Parise and Jibson,
2000) or land cover (e.g. Pradhan, 2013) may be relevant to
slope stability but are difficult to identify without specialised
training. Curvature (e.g. Xu et al., 2014a) is strongly depen-
dent on the length scale over which it is measured and is
extremely difficult to estimate by eye, particularly in rough
natural topography. Proximity to roads (e.g. Xu et al., 2012)
is often possible to estimate in the field, but inclusion of this
factor assumes that all roads are similar in their design, age
and construction and thus have similar impacts on slope sta-
bility.

3 Accounting for run-out in landslide hazard: reach
angle and run-out routing

The potential predictors described above are primarily cho-
sen in hazard models for their perceived link to the proba-
bility of coseismic landslide initiation. Once triggered, how-
ever, landslide material may run out for long distances and
over large areas. Thus, there are substantial portions of any
landscape where landslide initiation is unlikely but where
contact with a landslide is still possible – for example, at the
foot of a steep hillslope. Mechanistic modelling of landslide
run-out is computationally intensive and strongly sensitive to
initial conditions, taking it beyond the capacity of exposed
communities (e.g. George and Iverson, 2014). In contrast,
simple empirical approaches that have shown some predic-
tive power fall into two categories: reach angles and run-out
routing.

The Fahrboeschung or reach angle from the crown of a
landslide to the toe of its deposit has been shown to follow
an exponential decrease with landslide volume (Heim, 1832;
Corominas, 1996; Hunter and Fell, 2003). The reach angle
concept has been incorporated into a small number of hazard
maps as a way to represent the probability that a landslide
will reach a given location, which can then be coupled with
predictions of the probability of landslide initiation (e.g. Kri-
tikos et al., 2015). However, these complex combinations of
probability are difficult to distil into a single simple rule and,
to our knowledge, this has not yet been done.

If initiation probability is unknown and we make the con-
servative assumption that any cell can initiate a landslide,
then the hazard at a given location becomes proportional to
the area that protrudes above a cone with its apex at the loca-
tion of interest and its sides inclined at a critical reach angle
from the horizontal. This approach has similarities with lo-
cal sloping base level (Jaboyedoff et al., 2004) and excess
topography metrics (Blöthe et al., 2015), which both project
surfaces through the landscape to identify less stable zones,
though neither of these approaches is framed in terms of
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reach angles. Even this simple approach, which neglects ini-
tiation probability, is hard to distil: (1) its conceptual com-
plexity makes it difficult to communicate, (2) its predictions
depend on a reach angle parameter that is poorly constrained,
and (3) the area protruding from an imaginary surface pro-
jected beneath the land surface is very difficult to estimate by
eye, particularly in high-relief areas where significant parts
of the landscape may be occluded from the viewpoint. An
alternative metric would simply be the maximum angle from
the horizontal to the skyline, which can be interpreted as the
maximum (or worst-case) reach angle for that location. This
metric is much simpler and thus easier to communicate and
remember, can be estimated by eye and avoids the problem
of choosing a critical reach angle. We choose this as our third
potential hazard predictor.

Run-out routing approaches assess the probability that
landslide debris will reach a given location by assuming that
it flows downslope and that its probability of stopping is
dependent on some local property of the path along which
it flows. This approach ranges in complexity from detailed
physics-based treatments (George and Iverson, 2014; von
Ruette et al., 2016) to simple empirical rules such as the lo-
cal slope or junction angle of flow paths (Benda and Cundy,
1990; Montgomery and Dietrich, 1994; Densmore et al.,
1998; Fannin and Wise, 2001). Hazard estimates are then
a function of the initiation probability integrated over the
upslope area and the stopping probability for each potential
event. To incorporate these considerations as simply as pos-
sible into a hazard predictor, we introduce a new approach
(described below) that accounts for local slope both at the lo-
cations of landslide initiation and along the flow path. While
this approach does not capture the dynamic behaviour of
landslide initiation or run-out, we include it so that we can
test the skill of such non-local approaches and the need to
account for them in our simple rules.

4 Earthquake inventories

In this section, we describe the landslide inventories against
which we test our four potential predictors. A Mw 6.9 earth-
quake occurred on 13 October 1993 in the Finisterre Moun-
tains of Papua New Guinea with a hypocentre at 25 km depth,
rupturing the north-dipping Ramu–Markham thrust fault to
within a few hundred metres of the surface (Stevens et al.,
1998). The event was followed by multiple aftershocks of
>Mw 6, including a Mw 6.7 event on 25 October 1993 with
a hypocentre at a depth of 30 km. About 4700 landslides trig-
gered by these earthquakes were mapped from 30 m resolu-
tion SPOT images (Meunier et al., 2007). Location accuracy
for the landslides is thought to be similar to the pixel size of
the satellite images used, ∼ 30 m.

The Mw 6.7 Northridge earthquake occurred in southern
California, USA, on 17 January 1994 and ruptured 14 km
of a south-dipping blind thrust fault, with a hypocentre at

19 km depth (Wald and Heaton, 1994; Hauksson et al., 1995).
The earthquake triggered more than 11 000 landslides (Harp
and Jibson, 1996). Landslides were mapped immediately af-
ter the earthquake using field studies and aerial reconnais-
sance and were manually digitised on 1 : 24 000 scale base
maps. Landslides > 10 m across could be confidently identi-
fied and location errors were estimated to be < 30 m (Harp
and Jibson, 1996).

The Mw 7.6 Chi-Chi earthquake occurred on 21 Septem-
ber 1999 with a hypocentre at 8–10 km depth, rupturing
∼ 100 km of the east-dipping Chelungpu thrust fault in west-
ern Taiwan (Shin and Teng, 2001). The earthquake trig-
gered more than 20 000 landslides with the majority occur-
ring across a 3000 km2 region (Dadson et al., 2003). Land-
slides in this region were mapped by the Taiwan National
Science and Technology Center for Disaster Prevention from
SPOT satellite images with a resolution of 20 m. Landslides
with areas > 3600 m2 were resolved, resulting in an inven-
tory of 9272 landslides with location errors estimated to be
∼ 20 m (Dadson et al., 2004).

The Mw 7.9 Wenchuan earthquake occurred on
12 May 2008 with a hypocentre at 14–19 km depth,
rupturing ∼ 320 km of the steeply northwest-dipping
Yingxiu–Beichuan and Pengguan faults in Sichuan, China
(Xu et al., 2009). The earthquake triggered more than 60 000
landslides across a total area of 35 000 km2 (Gorum et al.,
2011; Li et al., 2014). We used a subset of the landslide in-
ventory compiled by Li et al. (2014), who mapped landslides
from high-resolution (< 15 m) satellite images and air pho-
tos. The subset of 18 700 landslides comprises all mapped
landslides east of 104◦ E (Fig. S6 in the Supplement) and
was chosen to avoid gaps in the available 30 m resolution
SRTM topographic data. The subset covers a similar range
of topographic and lithologic conditions and experienced
a similar range of peak ground accelerations (0.16–1.3 g)
to the full inventory (0.12–1.3 g). Location accuracy for
landslides is thought to be similar to the pixel size of the
satellite images used, ∼ 15 m (Li et al., 2014).

The Mw 7.0 Haiti earthquake occurred on 12 Jan-
uary 2010, with a hypocentre at 13 km depth (Mercier de
Lépinay et al., 2011). The complex rupture involved both
a blind thrust fault and deep lateral slip on the Enriquillo–
Plantain Garden fault (Hayes et al., 2010; Mercier de
Lépinay et al., 2011). The earthquake triggered more than
30 000 landslides across a 3000 km2 region (Xu et al.,
2014a). We used an inventory of 23 679 landslides mapped
by Harp et al. (2016) from publicly available satellite im-
agery with a resolution of 0.6 m before and after the earth-
quake; landslides with areas > 10 m2 were resolved (Harp et
al., 2017).

The Mw 7.8 Gorkha earthquake occurred on
25 April 2015, rupturing ∼ 140 km of the north-dipping
Main Himalayan Thrust in central Nepal (Hayes et al., 2015;
Elliott et al., 2016). It had a hypocentre at 8.2 km depth but
did not rupture to the surface (Hayes et al., 2015). The event
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was followed by a series of large aftershocks, including
a Mw 7.2 event on 12 May, which ruptured a portion of
the Main Himalayan Thrust directly east of the 25 April
rupture (Avouac et al., 2015). The earthquake triggered
approximately 25 000 landslides with a total surface area of
about 87 km2 (Roback et al., 2018). We used an inventory
of 24 915 landslides mapped by Roback et al. (2018) from
Worldview-2, Worldview-3 and Pleiades imagery, with a
resolution of 0.25–0.5 m, before and after the earthquake.

These epicentral areas encompass a large range of
millennial-scale erosion rates (0.1 to> 7 mm yr−1), litholog-
ical properties (metamorphic, igneous and sedimentary), cli-
matic conditions (Mediterranean to tropical) and vegetation
covers (chapral, savannah, tundra, tropical and subtropical
forest); see Table S2 and Figs. S3–S8 in the Supplement. We
choose this range of settings in order to test the general ap-
plicability of any rules that we can extract.

5 Methods

5.1 Conditional probability and landslide hazard

Landslide hazard can be defined as the probability of being
hit by a landslide in a given location and within a given time
interval (Lee and Jones, 2004). Here we make no distinction
between the consequences of being hit by landslides of dif-
ferent sizes or velocities, assuming that all are equally dan-
gerous. This probability can be expressed mathematically as
P(L|x,y, t), where L is the outcome of being hit by a land-
slide, x,y are the coordinates for a particular location, and t
is the time interval of interest. We do not address the timing
of landsliding, assuming that this is driven by the timing of an
earthquake and is thus unpredictable (Geller, 1997). Instead
we focus on landslide susceptibility given an earthquake that
produces shaking of unknown intensity at a location (x,y),
hence the notation P(L|x,y). We assume that the hazard at
that location can be approximated by some location-specific
characteristic (a). Thus, the landslide hazard at (x,y) is the
conditional probability of being touched by a landslide given
the value of the characteristic at that location, P(L|a), and
can be calculated using Bayes’ theorem:

P (L|a)=
P (L) P (a|L)

P (a)
, (1)

where a is a specific characteristic of the location, such as
the topographic slope. If we assume that the relationships
between past landslides and local characteristics are good
predictors of their future relationships then we can construct
empirical conditional probability calculations from landslide
inventories. This approach has proved successful for a range
of applications, including identifying topographic controls
on vegetation patterns (Milledge et al., 2012) and the rain-
fall conditions that trigger landslides (Berti et al., 2012). If
we grid the topography, then the Bayes equation can be eas-
ily rewritten in terms of numbers of grid cells, and in this

form the direct equivalence of landslide conditional proba-
bility and landslide area density (e.g. Meunier et al., 2007;
Dai et al., 2011; Gorum et al., 2014) is clear:

P (L|a)=
N (a ∩L)

N(a)
, (2)

where N(a ∩L) is the number of cells with a given value
of characteristic a that are touched by a mapped landslide,
N(a) is the number of cells with the characteristic of a in the
entire study area, and the study area is defined by the smallest
convex hull that contains all of the observed landslides. To
account for variability in the magnitude of shaking between
the six study areas, we normalise the conditional probability
of being hit by a landslide P(L|a) by the study area average
probability of landsliding P(L) to generate a relative hazard.
This can be shown to be directly equivalent to the frequency
ratio (e.g. Lee and Pradhan, 2007; Lee and Sambath, 2006;
Yilmaz, 2009; Kritikos et al., 2015):

P(L|a)

P (L)
=
N(a ∩L)/N(a)

N(L)/N(S)
=
N(a ∩L)

N(a)

N(S)

N(L)
, (3)

where N(S) is the total number of cells in the study area
and N(L) is the number of cells touched by landslides. Our
normalised conditional probability is also directly equivalent
to the probability ratio used by Lin et al. (2008) and Meunier
et al. (2008) since, from Bayes’ theorem:

P(L|a)

P (L)
=
P(L)P (a|L)

P (a)P (L)
=
P(a|L)

P (a)
. (4)

We display the normalised conditional probability on a loga-
rithmic scale for readability, resulting in a probability metric
that is strongly similar to the information value metric used
in some landslide susceptibility analyses (e.g. Yin and Yan,
1988). We evaluate both one-dimensional conditional proba-
bility in terms of one predictor variable and two-dimensional
conditional probability in terms of two predictors considered
jointly.

Conditional probability analysis is advantageous for its
direct link to hazard and does not require us to impose a
functional form to the data. However, the results are partly
dependent on bin size and location for the predictor vari-
able, and bins with few observations (i.e. those for which
N(a)�N(S)) can result in noisy data that are difficult to
interpret. We use the approach by Rault et al. (2018) to iden-
tify the parts of the conditional probability data where our
observations are sparse, leading to lower confidence in the
results. We compute the confidence interval Ip associated
with the random drawing of the N(L) landslide cells from
the landscape distribution of the predictor variable. If the
normalised conditional probability P(L|a)/P (L) is within
the interval Ip then we cannot exclude the possibility that
the difference between the conditional and study area av-
erage probabilities is simply the result of random fluctua-
tions. Given that landslides are rare events, even in these
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large earthquakes, we assume that landslides are independent
and can be modelled with Bernoulli sampling. Since the bi-
nomial distribution is well approximated by a normal distri-
bution when samples sizes are large (i.e. N(L) > 30) and in
the absence of extreme skew (i.e. N(L)× (P (a|L) > 5 and
N(L)× (1− (P (a|L)) > 5), then the 90 % confidence inter-
val can be estimated as follows:

Ip =

[
1− 1.96

√
1−P (a|L)
N (L) P (a|L)

; (5)

1+ 1.96

√
1−P (a|L)
N (L) P (a|L)

;

]
.

We distinguish conditional probability values that exceed this
confidence interval Ip in the analysis below.

To aid interpretation in the two-dimensional case, we also
perform a two-variable logistic regression with both local
slope and upslope contributing area as predictors. While
other statistical approaches could be used here (e.g. Pradhan,
2013), our intention is not to find the statistical approach that
provides the most powerful synthesis of the different vari-
ables but to test the effectiveness of the variables themselves
at distinguishing hazard when applied in the form of simple
rules.

5.2 Receiver operating characteristic curves

Any simple rule for identifying more or less hazardous lo-
cations in the landscape will produce a relative measure of
landslide probability. To evaluate this measure against a bi-
nary landslide map or inventory (where every cell is classi-
fied as landslide or non-landslide), it must be converted into a
binary classification. A common approach to this problem is
to construct a receiver operating characteristic (ROC) curve
(e.g. Frattini et al., 2010). This curve quantifies both the ben-
efit of a given classification in terms of successfully classified
outcomes (landslide and non-landslide locations correctly
identified, representing true positive and true negative out-
comes respectively) and also the cost (non-landslides identi-
fied as landslides, known as false positives, and the opposite,
known as false negatives). The ROC curve is constructed by
thresholding a continuous variable (e.g. slope) and calculat-
ing the true positive rate as the number of true positives nor-
malised by all positive observations and the false positive rate
as the number of false positives normalised by all negative
observations. Evaluation of these rates at different threshold
values results in a curve, where the 1 : 1 line reflects the naïve
random case. The area under the curve (AUC) tends to 1 as
the skill of the classifier improves towards perfect classifi-
cation and to 0.5 as the classifier worsens towards the naïve
case. We calculate ROC curves for all of our chosen predic-
tive approaches for each inventory.

5.3 Topographic analysis

All of the metrics tested here are defined using topographic
data in the form of digital elevation models (DEMs). We
use 30 m resolution DEM data drawn from the most widely
used, freely available source for each site: for Northridge
they are derived from downsampled 10 m NED elevation data
(https://ned.usgs.gov/, last access: 29 March 2019), while for
all other sites we use 1 arcsec Shuttle Radar Topography Mis-
sion (SRTM) elevation data (http://srtm.csi.cgiar.org/, last ac-
cess: 29 March 2019).

5.3.1 Slope and upslope contributing area

We calculate local slope as the steepest path to a downs-
lope neighbour from each cell (Travis et al., 1975) because
calculating slope over larger (e.g. 3× 3 cell) windows for
a 30 m resolution DEM results in considerable underesti-
mation (Claessens et al., 2005). We calculate the upslope
contributing area using a multiple flow direction algorithm
(Quinn et al., 1991) having filled pits using a flood fill al-
gorithm (Schwanghart and Kuhn, 2010) and normalising by
the grid cell width to minimise grid resolution biases. These
topographic analyses are performed in Matlab using Topo-
Toolbox v1.06 (Schwanghart and Kuhn, 2010).

5.3.2 Skyline angle analysis

To capture the effects of both landslide initiation and run-
out, we define the skyline angle as the maximum angle from
horizontal to the skyline for a given location (Fig. 1b and c).
This metric is easily estimated by eye in the field and gives
a worst-case reach angle for the location of interest but is
run-out-dominated in that it does not take into account the
probability of initiation.

For each cell in a study area, we estimate the skyline an-
gle by calculating vertical angles between the target cell and
every other cell within a 4.5 km radius. This search radius
is chosen to greatly exceed the average hillslope lengths in
all study areas and thus to fully capture the local skyline.
The longest average hillslope length out of our study areas
is ∼ 500 m for Wenchuan, estimated following the method
of Roering et al. (2007). We choose a search radius 9 times
larger than this hillslope length to ensure redundancy in cap-
turing the local skyline and because the only disadvantage
of a larger radius is increased computational cost. This ap-
proach is physically limited in at least two ways (Fig. 1a).
First, it does not account for the dependence of run-out on
the size of the initial failure or on increases or decreases of
failure volume during run-out (e.g. Corominas, 1996). Sec-
ond, it does not honour potential material flow paths. That is,
the skyline cell that generates the steepest slope to the target
cell may not be connected to the target cell by a flow path
with monotonically decreasing elevation. However, this met-
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Figure 1. Schematic view of the different topographic metrics tested here. (a) Perspective view of a landscape with each cell shaded according
to its local slope from light (steep) to dark (gentle). The upslope contributing area for point P is coloured blue, and the cells steeper than 40◦

that have a flow path to P that is never less than 10◦ are coloured red. (b) The same perspective view with a cone projected from point P at
an angle of 34◦ so that the surface of the cone is in places tangent to but never intersects the ground surface, indicating a maximum skyline
angle of 34◦ for point P. (c) Cross section A–A’ through the landscape (highlighted in yellow on a and b) with dashed lines showing skyline
angles at four example locations.

ric provides a measure of the gravitational potential energy
available to drive run-out in the vicinity of the target cell.

5.3.3 Run-out routing analysis

To assess the importance of non-local run-out paths on land-
slide probability, we follow the approach by Dietrich and
Sitar (1997), who proposed the simplest possible debris flow
run-out model, requiring only thresholds to define the ini-
tial instability and for downslope motion to continue. This
simple model, referred to as SHALRUN, has been integrated
with the coupled hydrologic-slope stability model SHAL-
STAB in an efficient parallel framework to predict landslide
hazard potential in California (Bellugi et al, 2011). SHAL-
RUN requires only two field-calibrated parameters: a crit-
ical rainfall threshold to define instability and a minimum
slope threshold for downslope motion to continue. To apply
this model in the context of coseismic landslides, we modify
the condition for landslide initiation by replacing the criti-
cal rainfall threshold with a slope threshold to create a new

model that we refer to as SHALRUN-EQ. We thus assume
that landslide initiation and deposition are entirely depen-
dent on the local slope of the ground surface – that is, land-
slides are more likely to initiate on steeper slopes and deposit
on flatter slopes. More formally, SHALRUN-EQ predicts the
upslope hazard area Ah as the upslope area weighted by the
joint probability of landslide initiation and run-out (Figs. 1a
and 2). Locations with higher Ah should have higher expo-
sure to coseismic landslide hazard than those with low (or
no) Ah. Formulation of the model requires (1) determina-
tion of the mobilisation probability Pmi

at each cell i in the
study area, (2) determination of the connection probability
Pcij for mobilised material from each cell i to the target cell
j , (3) convolution of (1) and (2) to get the locational hazard
Pmcij and (4) accumulation of the locational hazard to deter-
mine a hazard area Ahj above each target cell j .

In order to generate a simple rule, our model assumes that
landslide initiation and deposition are entirely dependent on
the local slope of the ground surface θ . For landslide initia-
tion, we assume that locations steeper than a threshold slope

www.nat-hazards-earth-syst-sci.net/19/837/2019/ Nat. Hazards Earth Syst. Sci., 19, 837–856, 2019



844 D. G. Milledge et al.: Simple rules for landslide hazard

Figure 2. SHALRUN-EQ hazard area calculations for a simplified (steepest flow path) example with an initiation angle of 40◦ and a
stopping angle of 10◦: (a) elevations from a 30 m resolution digital elevation model for an area of topographic convergence, where lines show
flow paths from cell to cell; (b) local slope with thick outlines showing cells steeper than 40◦; (c) upslope contributing area; (d) upslope
contributing area steeper than 40◦; and (e) hazard area, i.e. the upslope area steeper than 40◦ with flow paths that do not fall below 10◦.

θm are all equally capable of initiating a landslide with prob-
ability Pmi

:

Pmi
=

{
1 : θi ≥ θm
0 : θi < θm

, (6)

where θi is the observed local slope in a downslope direction
at cell i and θm is the threshold slope required for landslide
initiation.

In order to represent a landslide hazard, mobilised material
must be able to run out from the initiation point i to the tar-
get cell j . This relationship is binary: either these points are
connected by a viable run-out path or they are not. We define
flow paths using multiple flow routing to all downslope cells
weighted by the slope of the flow path (Quinn et al., 1991).
This path must enable continued run-out for its entire length;
if at any point on the flow path the material is fully deposited,
then that initiation zone will be disconnected from the target
cell j . Surface slope has previously been used to describe the
probability that landslide material entering a cell will be de-
posited rather than continuing into the next downslope cell
(e.g. Benda and Cundy, 1990; Fannin and Wise, 2001). For
landslide deposition, we apply the simplest possible stopping
condition and assume that landslide run-out ceases on slopes
gentler than a critical angle (θs). The probability that a land-
slide initiated at cell i reaches the target cell j (Pcij ) can thus
be expressed as follows:

Pcij =

{
1 : θminij ≥ θs
0 : θminij < θs

, (7)

where θminij is the minimum slope along the flow path from
cell i to cell j , and θs is the critical slope required for stop-
ping. We recognise that this simple stopping condition would
be violated for landslides large enough to continue beyond
the first cell with angle below the deposition threshold and
discuss the implications of this simplification in Sect. 7.1.

We combine the initiation and run-out probabilities to cal-
culate the locational hazard Pmcij as the area ai of cell i

weighted by the probability that a landslide is both mobilised
in cell i and is connected to cell j :

Pmcij = ai Pmi
Pcij . (8)

Assuming that θs > 0, we calculate the hazard area Ahj for
each target cell j by summing locational hazard in the n cells
upslope of j , normalised by grid cell width to minimise grid
resolution bias:

Ahj =

n∑
i=1

(
ai

lj
Pmi

Pcij

)
, (9)

where lj , is the grid cell width (30 m). Equation (9) is eval-
uated for every cell in the study area to generate a spatial
grid of hazard area Ah (Fig. 2). Our choice of step functions
for the mobilisation (Pmi

) and connection (Pcj ) probabilities
allows us to interpret Ah as the upslope area with a slope
steeper than θm from which landslide debris can reach the
target cell without passing over a slope gentler than θs. Alter-
native formulations could be used for Pmi

and Pcj but these
would result in a less intuitive index that would be difficult
to implement as a simple rule.

There is implicit resolution dependence to the stopping
condition θs because it assumes that the low-gradient area
is long enough (in terms of flow path length) that the land-
slide will stop. Similarly, there is resolution dependence to
the initiating condition θm, as topographic surfaces will be
more or less smooth, depending on the resolution of the DEM
(Claessens et al., 2005). Also, the initiation probability is
based on local slope alone and so does not account for any
of the other possible drivers of coseismic landslide initiation,
such as topographic amplification (Meunier et al., 2008) or
pore water pressure (e.g. Xu et al., 2012). While many more
complex models exist that account for initiation volumes and
flow dynamics (e.g. George and Iverson, 2014; von Ruette
et al., 2016), we seek the simplest possible model that cap-
tures the effects of drainage networks in accumulating haz-
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Figure 3. Landslide hazard defined as conditional probability P(L|x) normalised by study area average landslide probability P(L), where x
is (a) local slope; (b) local slope normalised by the study area average slope; (c) upslope contributing area per unit cell width; and (d) upslope
contributing area normalised by the upslope contributing area of the inflection in average slope. Solid black lines show normalised probability
of 1, the study area average; thus, points above this line have above-average landslide hazard compared to the study area as a whole. Asterisks
indicate values for which conditional probability differs from the study area average probability at 90 % confidence. Red bars in (a) and
(c) show histograms of local slope and upslope contributing area over the six inventories. Numbers in brackets show study area average
slopes in (a) and upslope contributing area at the hillslope–channel transition in (c).

ard, of steep slopes in landslide initiation and of gentle slopes
in landslide deposition.

The model has two parameters (θm and θs), both of which
are effective rather than measurable. We first optimise the
model for each inventory to establish its performance under
the best possible scenario, finding the values of θm and θs
that provide the best fit to the inventory data. We then test the
model using the average of the optimised parameters from
the six inventories in order to represent a more realistic ap-
plication wherein these parameters must be estimated from
previous earthquakes. Thus, the values of θm and θs should
not be interpreted as mechanistic thresholds but rather as the
result of an optimisation that also depends on the DEM reso-
lution.

6 Results

6.1 Local slope

For all inventories, landslide hazard increases as an approx-
imately exponential function of local slope (Fig. 3a). This
behaviour is consistent up to slopes of 70◦, beyond which
small sample sizes limit our confidence. Conditional prob-
ability exceeds the study area average landslide probability
for slopes > 30–35◦ in four of the inventories and for slopes
> 20–25◦ for the remaining two (Northridge and Haiti). This
suggests that slopes < 30◦ are generally safer than average,
while those > 45◦ have a landslide hazard > 200 % of the
average, and those > 50◦ are generally > 300 % of the av-
erage. The conditional probability curves for Finisterre, Chi-
Chi and Gorkha largely collapse on each other when nor-
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Figure 4. Two-dimensional plots of landslide hazard defined as con-
ditional landslide probability P(L|s,a) normalised by study area
average landslide probability P(L), where s is local slope and a is
upslope contributing area per unit cell width. Dashed lines show the
mean slope per upslope contributing area bin, using 100 logarith-
mically spaced bins. Solid lines are landslide probability contours
derived from logistic regression in the same units as the conditional
landslide probability surface. Grey cells indicate slope–area pairs
with data but with no cells touching a landslide. Note that upslope
contributing area is shown on a logarithmic axis, so that maintain-
ing a constant landslide probability for a given increase in slope re-
quires a larger reduction in upslope contributing area at low slopes
than at high slopes. Fainter colours indicate landslide hazard esti-
mates that do not differ significantly from the study area average at
90 % confidence.

malised by study area average probability (Fig. 3a). How-
ever, landslide hazard is less sensitive to slope for Wenchuan
and more sensitive for Northridge and Haiti. This variability
between inventories may be a result of weaker rock strength
in the Northridge and Haiti study areas. When local slope is
normalised by study area average slope (Fig. 3b), the curves
collapse onto those from the other study areas. Comparing
the combined PDF of study area slopes (Fig. 3a) with the
hazard curves indicates that most landslide hazard is concen-
trated in a small subset of each study area (that is, on slopes
> 35◦). This implies that (1) many of the modest (< 15◦)

slopes on which people in these areas generally choose to
live are exposed to relatively low hazard (less than half the
study area average for all but Wenchuan), and (2) any de-
cision to spend time or build infrastructure on steeper slopes
should take into account the considerable associated increase
in exposure to coseismic landslide hazard.

6.2 Upslope contributing area

For all inventories, the landslide hazard increases from less
than the study area average at the lowest upslope contributing
areas – that is, at the ridge tops – to a peak or plateau at inter-
mediate upslope contributing areas (Fig. 3c). Locations with
the lowest upslope contributing area also have the lowest haz-
ard for four of the six inventories, with Northridge and Finis-
terre as exceptions. For Northridge, the zone of lower-than-
average hazard extends only to upslope contributing areas of
∼ 40 m2 m−1; for Finisterre it extends to ∼ 100 m2 m−1, for
Chi-Chi and Haiti to ∼ 150 m2 m−1, and for Wenchuan and
Nepal to ∼ 200 m2 m−1. The location of peak landslide haz-
ard broadly coincides with the inflection in average slope for
a given upslope contributing area (Fig. 4). This inflection is
commonly used as an indicator of the transition from hill-
slopes to rivers (Montgomery and Foufoula-Georgiou, 1993;
Stock and Dietrich, 2003; Hancock and Evans, 2006), sug-
gesting that maximum (or near-maximum) landslide hazard
occurs at the transition from hillslopes to channels (Fig. 3c).
We use this inflection to identify a reference upslope con-
tributing area associated with channel initiation for each
landscape. Normalising upslope contributing area by this ref-
erence area shifts the conditional probability curves laterally,
aligning the Northridge curve with those from the other sites
(Fig. 3d). This normalised analysis shows that landslide haz-
ard is highest within low-order channels, where upslope con-
tributing areas are less than 10 times the upslope contribut-
ing area associated with channel initiation in the study sites
(Fig. 3d). Further downstream, landslide hazard generally de-
creases with increasing upslope contributing area, although
limited sample sizes mean that we cannot confidently inter-
pret the curves beyond ∼ 1000 m2 m−1.

6.3 Local slope and upslope contributing area
combined

When slope and upslope contributing area are examined
in combination, the highest landslide hazard is consistently
found at either the highest upslope contributing area for a
given slope or the highest slope for a given upslope contribut-
ing area (Fig. 4). In this case normalisation adds little to our
understanding of the relationship between landslide hazard
and the two metrics under consideration, with normalised re-
sults shown in Fig. S9 for reference.

Two-dimensional conditional probability analysis is sen-
sitive to the sample size within each bin, limiting our con-
fidence in the results for large parts of the slope–upslope-
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Figure 5. Landslide hazard defined as conditional landslide probability normalised by study area average landslide probability for (a) skyline
angle and (b) skyline angle normalised by the study area average. Asterisks indicate values for which conditional probability differs from
the study area average probability at 90 % confidence. Red bars in (a) show histograms of skyline angle over the six inventories. Numbers in
brackets show study area average skyline angles.

contributing-area space. The logistic regression contours do
not suffer the same limitation, however, and provide im-
portant additional information on the form of the relation-
ship between landslide hazard, slope and upslope contribut-
ing area. Taken together, the logistic regression contours and
conditional probability surfaces show that the lowest hazard
is consistently found at locations with both low slope and
low upslope contributing area. Importantly, landslide haz-
ard increases more steeply with increasing slope than with
increasing upslope contributing area, indicating the domi-
nance of local slope in setting landslide hazard. There is
some variability in the orientation of the hazard contours be-
tween inventories, with Finisterre and Northridge showing
the strongest slope dependence and Wenchuan showing the
strongest upslope contributing area dependence (Fig. 4).

The shape of the two-dimensional probability surface de-
termines the best course of action in terms of choosing al-
ternative locations for a particular asset or activity, but such
action is also constrained by what is possible. The aver-
age slopes for each upslope contributing area (shown by
the dashed lines in Fig. 4) indicate that for Northridge,
Finisterre, Chi-Chi and Haiti, there are rarely situations in
which a reduction in upslope contributing area will not
involve (on average) an increase in slope that will actu-
ally increase landslide hazard. However, for locations in
Wenchuan and Gorkha with upslope contributing areas of
300 to 10 000 m2 m−1, the hazard reduction due to reduc-
ing upslope contributing area is not offset by the asso-
ciated increase in slope. This suggests that, for the for-
mer inventories, it is always beneficial to decrease slope,
even at the expense of upslope contributing area, while for
the latter inventories the benefit is more dependent on ini-
tial location. In general, the average slope contour appears

to separate higher- and lower-than-average landslide haz-
ard in slope–upslope-contributing-area space, suggesting that
higher-than-average landslide hazard is consistently found
on higher-than-average slopes for a given upslope contribut-
ing area.

6.4 Skyline angle

Landslide hazard increases as an approximately exponen-
tial function of maximum skyline angle (Fig. 5a), similarly
to the relationship with local slope (Fig. 3a). We are confi-
dent in this behaviour for skyline angles in the range 5 to
70◦, outside of which small sample sizes limit our confi-
dence. Landslide hazard exceeds the study area average at
skyline angles > 27–28◦ for Northridge and Haiti, 34◦ for
Wenchuan, and 38–40◦ for Finisterre, Chi-Chi and Gorkha.
Locations with skyline angles of< 20◦ have less than half the
study area average landslide hazard for all inventories, while
those with skyline angles of > 50◦ have more than double
the study area average (Fig. 5a). The lowest landslide haz-
ard values, at skyline angles of less than 10◦, are lower than
those for local slope or upslope contributing area. As with
local slope, the curves for several of the inventories (Finis-
terre, Chi-Chi and Wenchuan) collapse to a similar relation-
ship when normalised by study area average hazard, suggest-
ing similar behaviour across a range of different landscapes.
However, Northridge and Haiti show stronger sensitivity to
skyline angle, and Gorkha shows considerably reduced land-
slide hazard at low skyline angles, relative to the other inven-
tories. Some of this variability between inventories is likely
related to differences in rock strength, because normalising
skyline angle by the study area average considerably reduces
the separation between individual curves, particularly those
for Gorkha, Northridge and Haiti (Fig. 5b).
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Figure 6. Landslide hazard defined as the conditional landslide
probability P(L|x) normalised by study area average landslide
probability P(L) for the hazard area. Hazard area is calculated with
global average parameters θm and θs – that is, the areas with slope
greater than 40◦ that have a flow path to the cell of interest and do
not travel across a cell with a slope less than 10◦. Coloured circles
on the y axis indicate landslide hazard for cells with a hazard area
of 0 m2 m−1. Asterisks indicate values for which probability dif-
fers from the study area average at 90 % confidence. Red bars show
histograms of hazard area over the six inventories.

6.5 Hazard area

The ability of hazard area Ah to distinguish landslide cells
from non-landslide cells is sensitive to two tuneable parame-
ters (θm and θs in Eqs. 6 and 7) that have a unique optimum
for each inventory (Fig. S1). The optimum parameter values
vary between inventories, with optimum initiation slopes θm
ranging from 36 to 40◦ and stopping slopes θs from 6 to 31◦

(Table S1). Since these optimum parameters vary between
inventories and can only be identified after an earthquake,
they are problematic in terms of incorporation into a rule.
Instead, we use the global averages of the optimised param-
eter values from the six inventories, θm = 40◦ and θs = 10◦,
rounded to one significant figure to simplify the rule (and
because it involves changing only θm from 39 to 40◦). The
stopping angle of 10◦ is steeper than many, though not all, of
the observed slopes on which debris flows stop. For example,
Stock and Dietrich (2003) reported that debris flows gener-
ally exhibit stopping angles of 2–6◦ but may halt at much
larger angles (13–22◦) on open slopes. The steeper angles
reported here may reflect differences in the method and reso-
lution of slope calculation but may result from the coseismic
trigger, which does not necessitate high levels of saturation
in the initial failure. Landslide hazard is very low for cells
withAh = 0 (i.e. where no cells steeper than the initiation an-
gle run-out over flow paths steeper than the stopping angle),
ranging from 2 % to 15 % of the study area average (Fig. 6).

Hazard increases with increasing Ah for all inventories but
only slowly for Ah < 20 m2 m−1; the trend then steepens to
a peak (Northridge, Haiti, Nepal) or plateau (Finisterre, Chi-
Chi, Wenchuan) at Ah values of ∼ 100 to 1000 m2 m−1 with
conditional probabilities that are 200 %–800 % of the study
area average (Fig. 6). For Finisterre and Wenchuan, a com-
bination of limited observations and a weaker dependence of
landslide probability on hazard area results in large parts of
the curve (atAh > 1 m2 m−1) where conditional probabilities
cannot be distinguished from the study area average. For all
sites, confidence becomes weak for hazard areas greater than
1000 m2 m−1.

6.6 ROC analysis

To supplement conditional probability analysis, we examine
the performance of slope, upslope contributing area, skyline
angle and hazard area as continuous hazard indices (with
high index values reflecting high hazard and vice versa) us-
ing ROC curves (Fig. 7). Successful hazard indices will cap-
ture landslide cells within high index zones (true positives)
without capturing non-landslide cells in the same zones (false
positives). Hazard area performs best for all six inventories
with an AUC always above 0.78 and an average AUC of 0.83
(Table 1). Skyline angle performs joint best for Haiti and sec-
ond best for a further three of the six inventories, with AUC
always above 0.65 and an average AUC of 0.77. The excep-
tions, where slope, upslope contributing area or their combi-
nation performs second best, are Northridge and Wenchuan.
For Northridge, slope alone and slope plus upslope contribut-
ing area both outperform skyline angle by a single percentage
point, while upslope contributing area alone performs con-
siderably worse (Fig. 7b). For Wenchuan, upslope contribut-
ing area considerably outperforms the other indices, while
slope performs particularly poorly, perhaps reflecting longer-
run-out landslides that extend to lower slopes and larger ar-
eas (Fig. 7d). Although slope, upslope contributing area and
their combination all perform better than skyline angle in one
of the inventories, none of these metrics does so consistently
across multiple inventories. This is reflected in their averaged
AUC values over all inventories of 0.69, 0.72 and 0.74 for up-
slope contributing area, slope and their combination respec-
tively.

7 Discussion

We structure the discussion around three simple rules that are
drawn from the results above. In each case we explain the
evidence on which the message is based, why it works, our
degree of confidence and implications for applying the rule.
Finally, we examine the spatial implications of these rules
using an example landscape.
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Table 1. Area under the ROC curve for the five hazard metrics over the six coseismic landslide inventories. The best-performing metric for
each inventory is in bold, the second best is in italics and the worst-performing metric is underlined.

Hazard Skyline Slope and upslope Local Upslope
area angle contributing area slope contributing area

Finisterre 0.79 0.72 0.69 0.69 0.66
Northridge 0.89 0.83 0.84 0.84 0.62
Chi-Chi 0.80 0.73 0.68 0.67 0.69
Wenchuan 0.78 0.65 0.62 0.58 0.74
Haiti 0.86 0.85 0.83 0.79 0.69
Gorkha 0.88 0.85 0.77 0.73 0.76

Average 0.83 0.77 0.74 0.72 0.69
1σ 0.05 0.08 0.09 0.09 0.05

Figure 7. Receiver operating characteristic (ROC) curves for
the six inventories: (a) Finisterre, (b) Northridge, (c) Chi-Chi,
(d) Wenchuan, (e) Haiti and (f) Gorkha. False positive rate is given
by the number of false positives divided by the sum of false pos-
itives and true negatives. True positive rate is given by the num-
ber of true positives divided by the sum of true positives and false
negatives. The 1 : 1 line represents the naïve random case. Curves
plotting closer to the top-left corner of each panel represent better
model performance.

7.1 Rule 1: Avoid steep ( > 10◦) channels with many
steep (> 40◦) areas that are upslope

The hazard area is the best or joint-best predictor of land-
slide hazard for all six inventories. The hazard area defined
by the average initiation angle (40◦) and stopping angle (10◦)
across all six inventories performs nearly as well as the op-
timised area for each inventory, enabling us to define a gen-
eral rule independent of any specific inventory. This is for-
tunate, as site-specific optimisation requires a pre-existing
landslide inventory for any individual area and so may not
be generally feasible. In all six inventories, locations with
Ah > 60 m2 m−1 have landslide hazard that is greater than
the study area average. While landslide hazard generally in-
creases with increasing hazard area, the relationship is com-
plex (Fig. 6). Landslide hazard can be most effectively de-
creased by decreasing Ah in the range 20–100 m2 m−1. Out-
side this range Ah is less related to hazard. An exception to
this pattern is seen in areas with a hazard area of zero, which
generally have landslide hazard 5–10 times lower than that
for even very small values of Ah (ca. 0.1 m2 m−1). On this
basis, the qualitative statement to avoid areas with “many”
steep slopes could also be phrased as “any” steep slopes.

7.2 Rule 2: Minimise your maximum angle to the
skyline

The maximum skyline angle is the second-best predictor of
landslide hazard in four of the six cases. Locations with sky-
line angles less than 30◦ generally have a landslide hazard
below the study area average. Importantly, landslide hazard
increases non-linearly with skyline angle, so that a slight re-
duction to a high skyline angle results in a much larger re-
duction in hazard than a similar reduction to a lower skyline
angle.

The distinction between local slope and skyline angle re-
flects the importance of run-out as well as initiation in defin-
ing landslide hazard. Landslide hazard is an inherently non-
local problem, defined by both conditions at the point of in-
terest and those upslope of that point. The skyline angle is
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a simple way to represent this. It has the additional advan-
tage of being easy to measure, needing only a protractor or
clinometer for precise measurement in the field and being
easily approximated by eye. Local slope (rule 3), in contrast,
is scale dependent, while hazard area Ah (rule 1) is consider-
ably more difficult to estimate in the field.

Landslides do not always obey flow path routing rules, and
it is possible for landslides to travel up reverse slopes or along
contours. This is particularly true for large deep-seated land-
slides or rockfalls. The hazard area metric cannot account for
such behaviour and thus is more likely to reflect hazard from
smaller shallow landslides, while skyline angle, which does
allow for run-out over reverse slopes, may be a better pre-
dictor of larger deep-seated landslides. The two indices have
some overlap but could be used in combination to find safer
locations in the landscape.

7.3 Rule 3: Minimise the angle of the slope under your
feet, especially on steep hillsides, but not at the
expense of increasing skyline angle or hazard area

Local slope generally performs less well than skyline angle
or hazard area but is still a consistently skilful predictor of
coseismic landslide hazard and could be a useful additional
discriminant for situations where both skyline angle and haz-
ard area are comparable between two locations. In this situa-
tion, our results suggest choosing the location with the lower
local slope. This is particularly true at steeper slopes, since
landslide hazard increases exponentially with slope, approx-
imately doubling for every 10◦ increase in slope.

Given the observation from a number of landslide invento-
ries that coseismic landslides initiate near ridge crests (Dens-
more and Hovius, 2000; Meunier et al., 2008; Rault et al.,
2018), it is perhaps surprising that landslide hazard gener-
ally increases with increasing upslope contributing area (i.e.
when moving downslope from ridge crests). In fact, while co-
seismic landslides may initiate preferentially near the ridges,
they run out downslope; thus, areas near ridges are less likely
to be touched by any part of a landslide, even though they are
more likely than other parts of the landscape to contain the
top of a landslide scar. Landslide hazard is consistently low at
small values of upslope contributing area, corresponding to
ridges; for some inventories, it is also low at very large values
of upslope contributing area, corresponding to valley floors
in the downstream reaches of the river network. This may
be partly a function of the covariance between local slope
and upslope contributing area, because locations with large
upslope contributing areas generally have lower slopes (see
dashed lines in Fig. 4). The addition of upslope contributing
area as a predictor in logistic regression improves landslide
hazard prediction relative to slope alone (Table 1), but the
orientation of the logistic regression contours (Fig. 4) indi-
cates that its influence is weak. Moving to a location with
lower slope angle almost always reduces landslide hazard in-
dependently of the upslope contributing area of the new loca-

tion, although the specific reduction of landslide probability
depends on the shape of the two-dimensional probability sur-
face (Fig. 4). These results suggest that decisions on how to
reduce landslide hazard most effectively need to be made on
a case by case basis, and they are best made using hazard
area, skyline angle and local slope in conjunction with each
other. Steep areas that are upslope of a given location result
in an elevated hazard but gentle areas do not, explaining the
improved performance of hazard area relative to upslope con-
tributing area (Fig. 6 and Table 1). Ridges, with very low up-
slope contributing area, are generally low-hazard locations if
they have gentle local slope but can still be hazardous if they
are steep (Fig. 4). To minimise landslide hazard, it is thus
preferable to seek broad ridges over sharp ridges where such
a choice is possible.

7.4 Movement rules in a landscape with variable
hazard

Our analysis is focused on cell-by-cell hazard assessment and
is thus most appropriate for decision-making before the next
large earthquake. However, it is also possible to use our re-
sults to inform movement or relocation during or immedi-
ately after an earthquake, when it is likely that movement
will be limited to small distances. Our analysis shows that,
even during a large earthquake in mountainous terrain, land-
slide hazard is not ubiquitously high. A significant fraction of
the landscape has low landslide hazard (< 5 % of the study
area average) – as much as 30 % in Northridge and 33 %
in Nepal. Landslide hazard is extremely granular in spatial
terms, so that small changes in location can make a big dif-
ference to exposure. This means that it is often possible to
find nearby locations with lower landslide hazard, irrespec-
tive of the starting point. The vast majority of locations (75 %
in Nepal, 95 % in Northridge) are within 1 km of areas of
low landslide hazard (< 5 % of the study area average). Even
smaller movements of 100 m or less, as might be possible
during or immediately after a large earthquake, can result in
very large reductions in hazard.

Detailed analysis in the Northridge (Fig. 8) and Nepal in-
ventories shows that landslide hazard can often be effectively
reduced by moving from a slope to a ridge (e.g. from A to B
in Fig. 8, a 190 % reduction in landslide hazard), out of a
gully (e.g. from C to D, a 100 % reduction) or downstream
of a flatter area (e.g. from C to E, a 100 % reduction). How-
ever, there is no single answer to the question of where to
move to reduce coseismic landslide hazard, since this differs
depending on the setting, the distance that can be travelled
due to time or location constraints and on the chosen rule
(e.g. skyline angle vs. hazard area). Given a 1 km radius of
potential movement, minimising the skyline angle involves
moving upslope for ∼ 75 % of locations in Nepal but only
∼ 66 % in Northridge. In some cases, knowing how far one
can travel can be critical: if one may only travel a short dis-
tance, moving upslope may be preferable (e.g. from C to D in
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Figure 8. Example landslide hazard estimates derived from (a) sky-
line angle and (b) hazard area for a small section of the Northridge
study area. Colours reflect landslide hazard estimated from the
two methods, expressed as a fraction of the study area av-
erage hazard. Points labelled A–G in white are example lo-
cations discussed in Sect. 7.4. Hazard estimates are overlain
on a shaded-relief image derived from a 0.5 m resolution lidar
DEM for context (source: NCALM, 2015, http://opentopo.sdsc.edu/
datasetMetadata?otCollectionID=OT.072016.32611.1, last access:
29 March 2019).

Fig. 8, a 100 % reduction), while if one could travel farther,
moving downslope may offer greater hazard reduction (e.g.
from C to F or G, a 120 % or 190 % reduction respectively).

Landslide hazard estimates for high-hazard locations are
broadly comparable between skyline angle and hazard area
metrics (e.g. Fig. 8). However, different metrics emphasise
different parts of the landscape. Ridges consistently min-
imise skyline angle but may still have intermediate values
of hazard area if the ridge is sharp so that the local slope of
the ridge itself is steep. Broad valley floors consistently min-

imise hazard area but may still have intermediate values of
skyline angle if the neighbouring slopes have sufficient re-
lief. There are trade-offs between these metrics, and further
work is needed into how they might be combined to further
reduce hazard.

7.5 Caveats

These rules should be combined with existing guidance, such
as local knowledge and formal hazard and risk information
when that is available. The rules provide an evidence base
that could be used, for example, in infrastructure and land-
use planning for identifying evacuation routes and design-
ing contingency plans from individual to community level,
where more detailed or formal technical advice is not avail-
able. It is also important to note some caveats.

This analysis is purely focused on coseismic landslide haz-
ard, and thus it does not take into account the distribution of
vulnerability: that is, the locations of people and infrastruc-
ture in these landscapes or how they might be differentially
impacted by landslides. While one area may be more haz-
ardous than another, the distribution of people and infrastruc-
ture may be such that risk is not actually increased. Further,
our analysis is probabilistic, defining hazard as the proba-
bility of intersecting a landslide; thus, our rules identify lo-
cations where the landslide probability is lower, not where
probability is zero. This means that it is possible for an alter-
nate location chosen based on its lower landslide probabil-
ity to be impacted by a landslide, while the original higher-
probability location is not. The choice of inventory will in-
fluence the specific results and, although we adjust for bulk
shaking intensity by normalising conditional probability by
bulk probability, differences between inventories are likely
to remain (e.g. in spatial patterns of shaking intensity and
their relation to topography). Rock type is a critical influ-
ence on landslide occurrence (Chen et al., 2012; Harp et al.,
2016; Roback et al., 2018), but we have excluded it from
our analysis because it is extremely difficult for an untrained
observer to identify and to translate it into meaningful esti-
mates of material strength and thus landslide probability. We
also expect that the length scales over which lithology varies
will often be long (on the order of kilometres) relative to the
other factors examined here.

Because the analysis is focused on coseismic landslide
hazard, it does not account for other sources of hazard, ei-
ther associated with an earthquake (e.g. amplification of seis-
mic accelerations on ridges) or with other processes or events
such as flooding or rainfall-induced landsliding. In some
cases, following our rules in isolation might increase expo-
sure to other hazards. For example, moving to ridge tops to
minimise skyline angle might increase exposure to intense
shaking due to seismic amplification in subsequent earth-
quakes; moving to valley floors that are occupied by large
rivers, where hazard area is minimal, might increase expo-
sure to fluvial flooding. We have also not considered the ef-
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fects of landslide size or failure type, choosing instead to
treat all landslides as representing an equivalent hazard. If
landslide size or type shows a strong spatial dependence,
then parts of the landscape may be preferentially impacted
in ways that are not reflected by our rules. It is not yet clear
how transferrable our conditional probability results are to
rainfall-triggered landslides. For instance, stopping angles
are likely to be lower for rainfall-triggered landslides if the
failing mass is more highly saturated (e.g. Stock and Diet-
rich, 2003), meaning that the hazard area in rule 1 under-
estimates potential landslide impacts. Similarly, in the case
of rainfall-triggered landslides, initiation is likely to depend
not only on slope angle but also on a topographic control on
saturation (e.g. Montgomery and Dietrich, 1994). Extending
the analysis to other triggering mechanisms is thus a future
research need.

We have evaluated these rules using gridded topographic
data and landslide inventories. Topographic derivatives, par-
ticularly slope and upslope contributing area, are known to be
sensitive to the resolution of the DEM from which they are
derived. We use the Northridge study site to begin to explore
this issue by repeating our analysis with DEMs at both the
original 10 m resolution and at resampled resolutions of 20,
30, 60 and 90 m. We find that the performance of slope, sky-
line angle and upslope contributing area all improve slightly
at finer resolutions (Table S3). Hazard area performance de-
grades at both finer and coarser resolutions than 30 m, which
is likely the result of parameter optimisation being performed
at 30 m resolution. We still find, however, that the hazard area
metric remains the most skillful predictor of landslide hazard
across all DEM resolutions.

The accuracy of landslide inventories depends on the qual-
ity of the imagery from which they are mapped and on sub-
jective judgements by the mappers (Williams et al., 2018).
For example, there are uncertainties associated with land-
slide distinction and amalgamation (Marc and Hovius, 2015;
Tanyas et al., 2017) and the definition of the downslope
boundary of each landslide. Amalgamation is particularly
problematic for landslide volume estimates but less so in our
analysis, which requires identification of landslide-affected
areas rather than distinguishing individual landslides. How-
ever, recent studies have identified substantial areal mis-
matches (up to 67 %) between inventories of the same event
mapped by different authors (Fan et al., 2019). To investigate
the impact of mapping error on our results, we test two inde-
pendent inventories for the Wenchuan earthquake, from Li et
al. (2014) and Xu et al. (2014b), with an estimated areal mis-
match for our study area of 21 %. We find that the change of
inventory has no impact on the rank order of performance of
the metrics (Table S3) and a minor impact on both the AUC
values and the hazard curves (Figs. S10 and S11). Thus, we
suggest that our findings are relatively robust to mapping un-
certainties in the landslide inventories that we have used.

8 Conclusions

We have defined a set of simple rules that can be used to an-
ticipate, and thus potentially reduce, exposure to earthquake-
triggered landslides. We test a set of candidate predictors
for their ability to reproduce mapped landslide distributions
from six recent earthquakes. Landslide hazard, defined as the
conditional probability of intersecting a landslide in one of
the six earthquakes, increases exponentially with local slope.
Landslide hazard on hillslopes also increases with upslope
contributing area, suggesting that, while ridges may be ar-
eas of preferential coseismic landslide initiation, they are not
the locations of highest coseismic landslide hazard due to
downslope movement of landslide material during run-out.
When accounting for both slope and upslope contributing
area, landslide hazard is highest for the largest upslope con-
tributing area at a given slope or the highest slope at a given
upslope contributing area. Landslide hazard can be reduced
by decreasing local slope, even at the cost of increased up-
slope contributing area and especially at high slopes. Land-
slide hazard also increases exponentially with the skyline an-
gle, and this simple, easily measured metric performs better
than slope or upslope contributing area for four of the six
inventories. Hazard area, which accounts for both landslide
initiation and run-out, offers the best predictive skill for all
six inventories but is more difficult to estimate in the field
and requires estimation of two empirical parameters. Fortu-
nately, hazard area calculated with parameters that are aver-
aged across all six study sites (initiation angle of 40◦ and
stopping angle of 10◦) performs almost as well as hazard
area calculated with optimised site-specific parameters, sug-
gesting that the average parameters can be applied to other
inventories. These findings can be distilled into three simple
rules:

– avoid steep (> 10◦) channels with many steep (> 40◦)
areas that are upslope;

– minimise your maximum angle to the skyline;

– minimise the angle of the slope under your feet, espe-
cially on steep hillsides, but not at the expense of in-
creasing skyline angle or hazard area.

Data availability. Landslide inventories for Northridge (Harp and
Jibson, 1996), Haiti (Harp et al., 2017), Wenchuan (Li et al., 2014;
Xu et al., 2014b) and Gorkha (Roback et al., 2018) were re-
trieved from the online USGS ScienceBase-Catalog: (https://www.
sciencebase.gov/catalog/item/586d824ce4b0f5ce109fc9a6, last ac-
cess: 29 March 2019). Landslide inventories for Finisterre (Meunier
et al., 2007) and Chi-Chi (Dadson et al., 2004) were obtained from
the authors.

The SRTM-30 m DEM data (NASA JPL, 2013) are available
from the online Global Data Explorer (https://gdex.cr.usgs.gov/
gdex/, last access: 29 March 2019). The lidar DEM data (NCALM,
2015) are available from OpenTopography (http://opentopo.sdsc.
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edu/datasetMetadata?otCollectionID=OT.072016.32611.1, last ac-
cess: 29 March 2019).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/nhess-19-837-2019-supplement.
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