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1 Introduction

Recently there has been great interest in studying perturbative scattering amplitudes in

N = 4 super-Yang-Mills theory, both for their own sake and as prototypes for the kinds

of mathematical functions that will be encountered at the multi-loop level in QCD and

other theories. In the planar limit of a large number of colors, N = 4 super-Yang-Mills

amplitudes are dual to Wilson loops for closed polygons with light-like edges, and possess

a dual conformal symmetry [1–6]. This symmetry is anomalous [7, 8], but the anomaly, as

well as various infrared divergences, can be removed by factoring out the BDS ansatz [9].

For the case of the maximally-helicity-violating (MHV) configuration of external gluon

helicities, the finite remainder function [10, 11] that is left behind is a function only of the

dual conformally invariant cross ratios. The first scattering amplitude to have nontrivial
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cross ratios and a nonvanishing remainder function is the six-point case, corresponding to

a hexagonal Wilson loop, for which there are three such cross ratios.

The remainder function is expected to be a pure transcendental function with a tran-

scendental weight 2L at loop order L. Examples of transcendental functions include the

logarithm (weight 1), the classical polylogarithms Lik (weight k), and products thereof. A

more general class of transcendental functions is provided by iterated integrals [12], or mul-

tiple polylogarithms [13, 14]. Other types of functions, such as elliptic integrals, can appear

in scattering amplitudes. The two-loop equal-mass sunrise integral is elliptic [15–17], as is

an integral entering a particular 10-point scattering amplitude in planarN = 4 super-Yang-

Mills theory [18]. However, based on a novel form of the planar loop integrand [19], and

also a recent twistor-space formulation [20, 21], it is expected that all six-point amplitudes

are non-elliptic and can be described in terms of multiple polylogarithms.

The purpose of this paper is to use the six-point amplitude to demonstrate the power

of a bootstrap [22–24] for scattering amplitudes in planar N = 4 super-Yang-Mills theory.

This bootstrap operates at the level of integrated scattering amplitudes, not loop inte-

grands. It imposes physical constraints at this level, in terms of the external kinematics

alone, in order to uniquely determine the final answer. The critical assumption is that

the amplitude belongs to a certain space of functions that can be identified at low loop

order. In the present case it will be a particular class of iterated integrals. Suppose one can

enumerate all such functions and characterize their properties in the kinematic limits that

are needed to impose the physical constraints. Then one can write an ansatz for the am-

plitude as a linear combination of the functions with unknown coefficients (which should

all be rational numbers). Physical constraints provide simple linear equations relating

the coefficients.

If the basic ansatz is correct, then the only other question of principle is whether

there is enough “boundary data”; that is, whether one has enough physical constraints

to fix all the coefficients.1 Fortunately, there is a great deal of data indeed. Much of it

comes from the operator product expansion (OPE) for Wilson loops, which corresponds to

the near-collinear limit of scattering amplitudes. The OPE was first analyzed by Alday,

Gaiotto, Maldacena, Sever and Vieira [25–28]. More recently, even more powerful OPE

information has become available via integrability [29–32]. The application of integrability

to the relevant system of flux tube excitations has been pioneered by Basso, Sever and

Vieira (BSV) [33–36]. We will show that when this data is combined with that from the

multi-Regge limit [22, 37–44], it is exceedingly powerful, uniquely determining the six-point

remainder function through at least four loops.

The need for a remainder function beginning at six points and two loops was first iden-

tified in the study of the multi-Regge limit [37], and also from direct numerical evaluation

of the amplitude and hexagonal Wilson loop at finite values of the cross ratios [10, 11].

(There were also previous indications at strong coupling that a remainder function would

be required, at least in the limit of a large number of external legs [45].) The two-loop

1There is also a nontrivial computational question, namely how to most efficiently generate and impose

a large number of constraints on expressions that can be rather bulky.
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hexagon Wilson loop integrals were performed analytically in terms of multiple polylog-

arithms [46, 47], and then simplified dramatically to classical polylogarithms using the

notion of the symbol of a transcendental function [48].

Based on the form of the two-loop symbol, it was conjectured [22, 23] that for six-

point amplitudes to all loop orders the transcendental functions entering the remainder

function (and also the next-to-MHV ratio function [23]) should be polylogarithmic func-

tions whose symbols are made from an alphabet of nine letters, corresponding to nine

projectively-inequivalent differences zij of projective variables zi [48]. These letters can

also be represented in terms of momentum twistors [49]. For any weight, there are a finite

number of such functions. Using the symbol, one can enumerate them all, and then impose

physical constraints on a generic linear combination of them. In this way, the symbol for

the three-loop six-point remainder function was obtained, up to two undetermined param-

eters [22] which were fixed [50] using a dual supersymmetry “anomaly” equation [50, 51].

However, the symbol does not determine the full function. Lower-weight functions

multiplied by constant Riemann ζ values give rise to pure functions but vanish at the level

of the symbol. In ref. [24] it was shown how to identify and fix these parameters at the level

of the full three-loop remainder function. In this paper, we will follow the same general

strategy at four loops.

In fact, two separate strategies were pursued in ref. [24]. One strategy was to pick

a particular region in the space of cross ratios, and promote the symbol to an explicit

linear combination of multiple polylogarithms. The additional beyond-the-symbol param-

eters multiply products of Riemann ζ values with multiple polylogarithms of lower weight.

Knowledge of the limiting behavior of the multiple polylogarithms on certain boundaries

of this region can then be used to impose the physical constraints. A second strategy is to

characterize the remainder function by its coproduct. The coproduct is part of the Hopf

algebra conjecturally satisfied by multiple polylogarithms [52–55]. It has been applied to

a number of different physical problems recently [56–61]. In particular, the “{k − 1, 1}”
element of the coproduct of a weight k function specifies all of its first derivatives in terms

of weight k − 1 transcendental functions. One can iterate in the weight, and define a can-

didate remainder function in terms of a set of coupled first-order differential equations.

In the limits relevant for the physical constraints, the coupled equations can be solved in

terms of a simpler set of transcendental functions, involving harmonic polylogarithms in a

single variable [62]. In the present work, we use the multiple-polylogarithm approach to

constrain all of the parameters, and both strategies to examine the limiting behavior of

the uniquely-determined function.

Besides certain standard symmetry and parity constraints, and the physical constraints

to be described shortly, we also impose a constraint on the final entry of the symbol. The

final entry should be expressible in terms of only six letters rather than all nine. This

constraint comes from a supersymmetric formulation of the polygonal Wilson loop [63] and

also from examining the differential equations obeyed by one-loop [64–66] and multi-loop

integrals [22, 23] related to N = 4 super-Yang-Mills scattering amplitudes. The final-entry

constraint on the symbol corresponds to a differential constraint we shall impose at function

level, which also has a simple description in terms of the coproduct of the function.
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The two limiting regions in which we impose physical constraints on the remainder

function are the near-collinear limit and the multi-Regge limit. In the near-collinear limit,

one of the cross ratios vanishes and the sum of the other two ratios approaches one. Because

the remainder function has a total S3 permutation symmetry under exchange of the three

cross ratios, it does not matter which cross ratio we take to vanish. Let’s call this variable

v for definiteness, and let v = T 2 +O(T 4) as v and T → 0. Because there is no remainder

function at the five-point level, the six-point remainder function must vanish as v → 0.

The precise way in which it vanishes is controlled by the OPE. The first OPE information

to be determined [25–28] concerned the leading-discontinuity terms, which correspond to

just the maximum allowed power of lnT (lnL−1 T at L loops). Terms with arbitrary power

suppression in T can be determined, as long as they have L − 1 powers of lnT . These

terms are dictated by the one-loop anomalous dimensions of the operators corresponding

to excitations of the Wilson line, or flux tube. Higher-loop corrections to anomalous di-

mensions and OPE coefficients only generate terms with fewer logarithms of T . At two

loops, the leading discontinuity is the only discontinuity, and it suffices to completely de-

termine the remainder function [26]. At three loops [22], and particularly at four loops,

more information is required.

Recently, Basso, Sever and Vieira [34–36] were able to exploit integrability in order to

provide much more OPE information. They partition a generic polygonal Wilson loop into

a number of “pentagon transitions” between flux tube excitations. They find that certain

bootstrap consistency conditions for the pentagon transitions can be solved in terms of

factorizable S matrices for two-dimensional scattering of the flux tube excitations. These S

matrices are known for finite coupling, and they can be expanded out in perturbation theory

to any desired order. The powers of T in the OPE expansion correspond to the number

of flux tube excitations. In their initial papers [34, 35], the leading nonvanishing OPE

terms, O(T 1), were described, corresponding to single excitations. The O(T 1) information,

combined with the multi-Regge limits and an assumption about the final entry of the

symbol, was enough to completely fix the three-loop remainder function [24]. However,

it is not enough at four loops. Fortunately, Basso, Sever and Vieira [36] have also been

able to determine the contributions to the OPE of two flux-excitation states, and thereby

obtain the O(T 2) terms.2

The O(T 2) terms from the OPE were found to agree perfectly with those extracted

from the three-loop remainder function [24]. Because there were no free parameters in

this comparison — all parameters had been fixed at O(T 1) — the agreement is a powerful

check on the assumptions underlying both approaches. At four loops, we will need to use

some of the O(T 2) information, supplied to us by BSV, to fix a small number of remaining

parameters in the four-loop remainder function — four parameters in the symbol, and then

one more at the level of the full function. However, there is considerably more information

in the O(T 2) OPE expansion, and so the fact that it agrees between our approach and

BSV’s at four loops is certainly a strong indication that both approaches are correct.

The other physical limit which can be used to constrain the remainder function is the

multi-Regge limit. In this limit, two incoming gluons scatter into four gluons that are well

2We thank them for making these results available to us prior to publication [67].
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separated in rapidity. Whereas the near-collinear OPE limit can be approached in the

Euclidean region, this kinematical configuration is in Minkowski space. Coming from the

Euclidean region, one first needs to analytically continue to Minkowski space by rotating

the phase of one of the cross ratios, let’s call it u, by 2π. Then u should be taken to unity at

the same rate that the other two cross ratios, v and w, vanish. The analytic continuation in

u generates an imaginary part, as well as a real part from a double discontinuity. Both the

imaginary and real parts diverge as powers of ln(1− u) as u→ 1. The leading logarithmic

approximation (LLA) has a behavior proportional to lnL−1(1−u) at L loops, and it is pure

imaginary [37–40].

It has been proposed that factorization in the multi-Regge limit can be extended

to subleading logarithmic accuracy [41, 43, 68]. In ref. [43] the functions that should

control the factorization were computed directly through the next-to-leading-logarithmic

approximation (NLLA). In ref. [68] a closely-related form of multi-Regge factorization

was proposed, based on the hypotheses of rapidity factorization and the completeness of

a description in terms of undecorated, null, infinite Wilson lines. In principle, if these

hypotheses are true, then the factorization could hold to arbitrary subleading logarithmic

order, up to terms that are power-suppressed like O(1− u). In this paper, we will assume

that the factorization holds through arbitrary subleading logarithmic accuracy. In practice,

our four-loop results are sensitive to at most N3LLA. The fact that we find a consistent

solution provides evidence in favor of factorization beyond NLLA.

The assumption of factorization makes it possible to bootstrap multi-Regge information

from one loop order to the next. That is, the leading-logarithmic behavior of the remainder

function is present already at two loops [37, 38] and can be used to predict the LLA

lnL−1(1−u) behavior at three [41] and higher loops [44]. Similarly, the NLLA behavior [41,

43] first appears fully at three loops, and can be used to predict the lnL−2(1− u) behavior

at four and higher loops [44].

The factorization takes place in variables which are related to the original variables by

a Fourier-Mellin transform [43]. Two functions control the expansion: the BFKL eigenvalue

and the impact factor. Each function has an expansion in the coupling; successive orders

in the expansion are needed for higher accuracy in the logarithmic expansion. The NkLLA

term in the impact factor makes its first appearance in the remainder function in the

ln0(1− u) term at k + 1 loops; whereas the NkLLA term in the BFKL eigenvalue appears

one loop order later, at k + 2 loops, accompanied by one power of ln(1− u).

In ref. [44] it was observed that in the multi-Regge limit the coefficients in the expan-

sion of remainder function in powers of ln(1−u) are single-valued harmonic polylogarithms

(SVHPLs), first introduced by Brown [69]. Based on this observation, techniques for per-

forming the inverse Fourier-Mellin transform were developed, in order to efficiently find

the consequences of the NkLLA approximation for the remainder function at a given loop

order. Furthermore, part of the program of this paper to determine the four-loop remain-

der function was carried out there [44]: several constraints were applied to the relevant

space of symbols: S3 symmetry, parity, the OPE leading discontinuity and the final-entry

condition were applied. These constraints left 113 symbol-level parameters undetermined.

However, in the multi-Regge limit only one symbol-level parameter, called a0, survived.
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This allowed the NNLLA BFKL eigenvalue and N3LLA impact factor to be almost com-

pletely constrained at symbol level. At function level, however, there were an additional

26 undetermined rational numbers in the multi-Regge limit.

In the continuation of this program in the present paper, we apply additional multi-

Regge constraints from NLLA [43] that we did not impose earlier, in order to fix 33 of

the 113 remaining symbol-level parameters. Then we match the O(T 1) and O(T 2) be-

havior to the OPE [34–36], to fix the final 80 symbol-level parameters. We then account

for 68 additional beyond-the-symbol parameters, and fix them all using the same OPE

information, which we now implement at the level of full functions using the multiple-

polylogarithmic representation. With the remainder function uniquely determined, we

return to the Minkowski multi-Regge limit and determine the values of the 27 parameters

we had previously introduced. This completes the determination of the NNLLA BFKL

eigenvalue and N3LLA impact factor begun in ref. [44]. We find that the NNLLA BFKL

eigenvalue has a very suggestive form that is closely related to the spectrum of anomalous

dimensions for flux tube excitations [33].

We then study the quantitative behavior of the four-loop remainder function in various

regions, including special lines in the space of cross ratios where it collapses to linear

combinations of harmonic polylogarithms of a single variable. We will explore various

numerical observations made at three loops in ref. [24] about the sign and constancy of

ratios of successive loop orders. We will find that these observations remain true, and are

even reinforced at four loops. We will also discuss how close the remainder function at four

loops might be, in a certain region, to its expected behavior at large perturbative orders.

The remainder of this paper is organized as follows. In section 2 we describe the

construction of the four-loop remainder function. In section 3 we describe its behavior

in the multi-Regge limit and extract the NNLLA BFKL eigenvalue and N3LLA impact

factor. In section 4 we explore the sign of the four-loop remainder function in a certain

“positive” region. We plot the ratio of successive loop orders on a two-dimensional surface,

and on various lines where its functional form simplifies considerably, as well as discussing

expectations for large perturbative orders. Finally, in section 5 we conclude and discuss

avenues for future research. We include one appendix on the coproduct representation,

and a second one characterizing logarithmic divergences of the remainder function on two

particular boundaries of the Euclidean region.

Many of the analytic results in this paper are too lengthy to present in the manuscript.

Instead we provide a set of ancillary files in computer readable format.

2 The construction

2.1 Hexagon functions

The six-point remainder function R6 is defined by factoring off the BDS ansatz from the

MHV planar amplitude,

AMHV
6 = ABDS

6 × exp(R6) . (2.1)
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The BDS ansatz accounts for all of the amplitude’s infrared divergences, or ultraviolet

divergences in the case of the Wilson loop interpretation. It also absorbs the (related)

anomaly in dual conformal transformations. Because R6 is invariant under such transfor-

mations, it can only depend on the dual conformal cross ratios,

u =
x213 x

2
46

x214 x
2
36

, v =
x224 x

2
51

x225 x
2
41

, w =
x235 x

2
62

x236 x
2
52

, (2.2)

where xi, 1 ≤ i ≤ 6, denote dual coordinates, related to the external momenta by pi =

xi − xi+1. The six-point remainder function admits the perturbative expansion, starting

at two loops,3

R6(u, v, w) =
∞∑
L=2

aLR
(L)
6 (u, v, w) , (2.3)

where a = g2YMNc/(8π
2) is the ’t Hooft coupling constant, gYM is the Yang-Mills coupling

constant and Nc is the number of colors.

The coefficients R
(L)
6 (u, v, w) are expected to be pure functions of transcendental weight

2L, i.e., they should be Q-linear combinations of polylogarithmic functions of weight 2L.

For this reason, it is convenient to consider the symbol of R
(L)
6 (u, v, w). The symbol of a

transcendental function f (k) of weight k can most conveniently be defined as follows: if the

total differential of f (k) can be written as a finite sum of the form

df (k) =
∑
r

f (k−1)r d lnφr , (2.4)

where the φr are rational functions and the f
(k−1)
r are transcendental functions of weight

k − 1, then the symbol of f (k) can be defined recursively by,

S(f (k)) =
∑
r

S(f (k−1)r )⊗ φr . (2.5)

The six-point remainder function for arbitrary values of the cross ratios is currently known

at two [46–48] and three loops [22, 24]. One of the main results of this paper is to present the

fully analytic answer for the four-loop remainder function R
(4)
6 (u, v, w). The construction

of the result will be performed following closely the ideas of ref. [24], which allow us to

bootstrap the four-loop answer without ever inspecting the multi-loop integrand. This

bootstrap will be described in the remainder of this section.

In ref. [24], a set of polylogarithmic functions called hexagon functions were introduced.

Their symbols are built out of the nine letters,

Su = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} , (2.6)

where

yu =
u− z+
u− z−

, yv =
v − z+
v − z−

, yw =
w − z+
w − z−

, (2.7)

3Beginning at four loops, it is important to specify whether or not R6 is exponentiated in the defini-

tion (2.1), because the two alternative definitions would differ by 1
2
[R

(2)
6 ]2 at this order.
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and

z± =
1

2

[
−1 + u+ v + w ±

√
∆
]
, ∆ = (1− u− v − w)2 − 4uvw . (2.8)

(We sometimes also use the labeling u1 = u, u2 = v, u3 = w, y1 = yu, y2 = yv, y3 = yw.)

The branch cut locations for hexagon functions are restricted to the points where the cross

ratios ui either vanish or approach infinity. In terms of the symbol, this implies [27] that

the first entry must be one of the cross ratios u, v, w.

In ref. [24], a method based on the coproduct on multiple polylogarithms (or, equiva-

lently, a corresponding set of first-order partial differential equations) was developed that

allows for the construction of hexagon functions at arbitrary weight. Using this method,

the three-loop remainder function was determined as a particular weight-six hexagon func-

tion. In this article, we extend the analysis and construct the four-loop remainder function,

which is a hexagon function of weight eight.

2.2 Constraints at symbol level

As in the three-loop case, we begin by constructing the symbol. Referring to the discussion

in ref. [44], the symbol may be written as

S(R
(4)
6 ) =

113∑
i=1

αi Si , (2.9)

where αi are undetermined rational numbers. The Si are drawn from the complete set of

eight-fold tensor products (i.e. symbols of weight eight) that satisfy the first-entry condition.

They also are required to obey the following properties:

0. All entries in the symbol are drawn from the set {ui, 1− ui, yi}i=1,2,3.

1. The symbol is integrable (i.e. it is the symbol of some function).

2. The symbol is totally symmetric under S3 permutations of the three cross ratios ui.

3. The symbol is invariant under the parity transformation yi → 1/yi.

4. The symbol vanishes in the collinear limit u2 → 0, u1 + u3 → 1. (The other two

collinear limits follow from the S3 symmetry.)

5. In the near-collinear limit, the symbol agrees with the predictions of the leading

discontinuity terms in the OPE [25]. We implement this condition exactly as was

done at three loops [22].

6. The final entry of the symbol is drawn from the set {ui/(1− ui), yi}i=1,2,3.

Imposing the above constraints on the most general ansatz of all 98 possible words will yield

eq. (2.9); however, performing the linear algebra on such a large system is challenging.

Therefore, it is useful to employ the shortcuts described in refs. [24, 44]: the first- and

second-entry conditions4 reduce somewhat the size of the initial ansatz, and applying the

4The second entry must be drawn from the set {ui, 1− ui}. This restriction follows from the first-entry

condition and the requirement that the symbol be integrable, when the integrability condition on pairs of

adjacent entries is applied to the first two entries [22, 24, 27].
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integrability condition iteratively softens the exponential growth of the ansatz with the

weight. Even still, the computation requires a dedicated method, since out-of-the-box

linear algebra packages cannot handle such large systems. We implemented a batched

Gaussian elimination algorithm, performing the back substitution with FORM [70], similar

to the method described in ref. [71].

As discussed in ref. [44], the factorization formula of Fadin and Lipatov [43] in the

multi-Regge limit (see section 3.2) provides additional constraints on the 113 parameters

entering eq. (2.9),

7. The symbol agrees with the prediction from BFKL factorization at NLL [43].

We may also apply constraints in the near-collinear limit by matching onto the recent

predictions by BSV based on the OPE for flux tube excitations [34],

8. The symbol is in agreement to order T 1 with the OPE prediction of the near-collinear

expansion [34, 35].

9. The symbol is in agreement to order T 2 with the OPE prediction of the near-collinear

expansion [36, 67].

The dimension of the ansatz for the symbol after applying each of these constraints succes-

sively is summarized in table 1. In this table, we also provide the corresponding numbers

at two and three loops, so that one can appreciate the increased computational complexity

of the four-loop problem. It is worth noting that some constraints become even stronger

when promoted to function-level properties, not only fixing beyond-the symbol terms, but

also implying additional relations on the symbol-level parameters. An example of this was

already seen at three loops [22] where, ultimately, only a single free parameter remained

to be determined by the O(T ) near-collinear limit [24].

In ref. [24], the last two constraints were applied at function level to fully determine

the three-loop remainder function. In fact, we will soon apply them at function level in the

four-loop case as well, but first we will apply them at symbol level in order to determine

the constants not fixed by the first seven constraints. For this purpose, it is necessary to

expand the symbol S(R
(4)
6 ) in the near-collinear limit v → 0, u + w → 1. Because we are

comparing to OPE information from ref. [34], it is convenient to adopt the parametrization

used there in terms of variables F , S, and T , which are related to the ui and yi variables by,

u =
FS2

(1 + T 2)(F + FS2 + ST + F 2ST + FT 2)
,

v =
T 2

1 + T 2
,

w =
F

F + FS2 + ST + F 2ST + FT 2
,

yu =
FS + T

F (S + FT )
,

yv =
(S + FT )(1 + FST + T 2)

(FS + T )(F + ST + FT 2)
,
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Constraint L = 2 Dim. L = 3 Dim. L = 4 Dim.

1. Integrability 75 643 5897

2. Total S3 symmetry 20 151 1224

3. Parity invariance 18 120 874

4. Collinear vanishing (T 0) 4 59 622

5. OPE leading discontinuity 0 26 482

6. Final entry 0 2 113

7. Multi-Regge limit 0 2 80

8. Near-collinear OPE (T 1) 0 0 4

9. Near-collinear OPE (T 2) 0 0 0

Table 1. For loop order L = 2, 3, 4, we tabulate the dimensions of the space of symbols with

weight 2L and first entry belonging to {u, v, w}, after applying the various constraints successively.

The final four-loop symbol is uniquely determined, including normalization, after applying the final

constraint, so the vector space of possible solutions has dimension zero.

yw =
F + ST + FT 2

F (1 + FST + T 2)
. (2.10)

The near-collinear limit is the limit T → 0 for fixed F and S.

2.3 Expanding the symbol in a limit

We wish to expand symbols and functions in a particular kinematic limit, which in the

present case is T → 0. To this end, we formulate the expansion of an arbitrary pure

function F (T ) in a manner that can easily be extended to the symbol. The function may

contain arbitrary dependence on S and F , which is not shown explicitly. The expansion

is not entirely trivial because it will in general contain powers of lnT , as well as powers

of T , and some care must be taken to keep track of them. Let us explicitly separate the

power-law behavior from the logarithmic behavior by writing,

F (T ) =
[
F (T )

]
0

+
[
F (T )

]
1

+
[
F (T )

]
2

+ . . . , (2.11)

where [·]i indicates the T i power-law term of the expansion of F (T ) around T = 0. For

example, if

F (T ) = ln2 T + lnT lnS + TF
(

lnT + lnS
)

+ T 2 lnS + . . . , (2.12)

then we have [
F (T )

]
0

= ln2 T + lnT lnS ,[
F (T )

]
1

= TF
(

lnT + lnS
)
,

(2.13)

and so forth.
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Now consider a pure function F (T ) for which F (0) = [F (T )]0 = 0. The function can

contain powers of lnT in the expansion around T = 0, as long as they are accompanied

by positive powers of T so that the limit as T → 0 vanishes. Because symbols provide

information about the derivatives of functions in a convenient way, we write F as the

integral of its derivative, to leading order in the expansion around T = 0,[
F (T )

]
1

=

∫ T

0
dT1

[
F ′(T1)

]
0
. (2.14)

Owing to the presence of logarithms, it is possible that in evaluating [F ′(T )]0 we might

generate a pole in T . We let

F ′(T ) =
f−1(T )

T
+ f0(T ) +O(T 1) , (2.15)

where the first term comes from differentiating explicit lnT factors in F (T ). Then we can

write the expansion of the integrand in eq. (2.14) as[
F ′(T )

]
0

=
1

T

[
f−1(T )

]
1

+
[
f0(T )

]
0
. (2.16)

Notice that f−1(0) = 0 (since otherwise F (0) 6= 0), so we can calculate [f−1(T )]1 by again

applying eq. (2.14), this time with F → f−1. Therefore eq. (2.14) defines a recursive

procedure for extracting the first term in the expansion around T = 0. The recursion will

terminate after a finite number of steps for a pure function.

The only data necessary to execute this procedure are the ability to evaluate the

function when T = 0, and the ability to take derivatives. Since both of these operations

carry over to the symbol, we can apply this method directly to S(R
(4)
6 ). To give a flavor

of how the recursion works, we expand the symbol in the following way,

S(R
(4)
6 ) = [Â0⊗R0]+[Â1⊗R1]⊗T+[Â2⊗R2]⊗T⊗T+[Â3⊗R3]⊗T⊗T⊗T+ . . . , (2.17)

where we write schematically [Âi ⊗ Ri] for a sum of terms of the form Âi ⊗ Ri in which

Ri 6= T is defined to have length one and the Âi have length 7 − i. There are terms with

up to six consecutive T entries in the final slots. Although we have made explicit the T

entries at the back end of the symbol, there may be other T entries hidden inside the Âi.

Applying eq. (2.14), we obtain,[
S(R

(4)
6 )
]
1

=

∫ T

0
dT0

[R′0(T0)
R0(T0)

A0(T0)
]
0

+

∫ T

0

dT0
T0

∫ T0

0
dT1

[R′1(T1)
R1(T1)

A1(T1)
]
0

+

∫ T

0

dT0
T0

∫ T0

0

dT1
T1

∫ T1

0
dT2

[R′2(T2)
R2(T2)

A2(T2)
]
0

+

∫ T

0

dT0
T0

∫ T0

0

dT1
T1

∫ T1

0

dT2
T2

∫ T2

0
dT3

[R′3(T3)
R3(T3)

A3(T3)
]
0

+ . . . ,

(2.18)

where the Ai schematically denote functions whose symbols are the Âi. As indicated by

the brackets [.]0, the integrands should be expanded around T = 0 to order T 0.
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The coefficients [Ai(Ti)]0 in eq. (2.18) are functions of S and Ti, which are obtained

from the symbols Âi in eq. (2.17) as follows: one first separates out all the explicit T entries

in Âi, which all originate from v entries after making the substitution (2.10). Then one

sets T to zero everywhere in Âi except for the explicit T entries. The explicit factors of

T in the symbol give rise to logarithms of Ti in the function [Ai(Ti)]0. They appear in

the symbol shuffled (summed over appropriate permutations) together with functions of S.

(The variable F disappears from the symbol when T is set to zero.) For example,

S(12 lnT ln2 S) = S ⊗ S ⊗ T + S ⊗ T ⊗ S + T ⊗ S ⊗ S . (2.19)

It is straightforward to extract the powers of lnT by reversing such relations, i.e. unshuf-

fling the factors of T from [Âi]0. Performing this extraction, and setting T → Ti, we obtain

the functions [Ai(Ti)]0. At this point the integrations over Ti can be performed. It should

be clear how to extend eq. (2.18) to the terms in S(R
(4)
6 ) that have more factors of T on

the back end. Notice that the innermost integrals have no 1/Ti in the measure, and as such

they will generate terms of mixed transcendentality. The mixed transcendentality is not

surprising; indeed it is typical whenever one expands a function of uniform transcenden-

tality to subleading order in a given limit. For example, lnx+ ln(1−x) = lnx−x+O(x2)

as x→ 0.

The extension of eq. (2.18) gives the expansion of S(R
(4)
6 ) to order T 1. One can easily

generalize this method to extract more terms in the T expansion. To obtain the Tn term,

we first subtract off the expansion through order Tn−1 and divide by Tn−1, yielding a

function that vanishes when T = 0. Then we can proceed as above and calculate the T 1

term, which will correspond to the Tn term of the original function.

Proceeding in this manner, we obtain the expansion of the symbol of R
(4)
6 through

order T 2. To compare this expansion with the data from the OPE, we must first disregard

all terms containing factors of π or ζn, since these constants are not captured by the symbol.

We must also convert from the remainder function to the logarithm of the specific Wilson

loop ratio considered by BSV. Both expressions are finite and dual conformal invariant,

but they differ by a simple additive function:5

lnWhex(a/2) = R6(a) +
γK(a)

8
X(u, v, w) , (2.20)

where the cusp anomalous dimension is

γK(a) =

∞∑
L=1

aL γ
(L)
K = 4a− 4ζ2 a

2 + 22ζ4 a
3 − 4

(
219

8
ζ6 + (ζ3)

2

)
a4 +O(a5) , (2.21)

and the function X(u, v, w) is given by

X(u, v, w) = −Hu
2 −Hv

2 −Hw
2 − ln

(
uv

w(1− v)

)
ln(1− v)− lnu lnw + 2ζ2 , (2.22)

where Hu
2 = H0,1(1− u) = Li2(1− u) denotes a harmonic polylogarithm (HPL) [62]. The

conventional loop expansion parameter for the Wilson loop, g2, is related to our expansion

parameter by g2 = a/2.

5A version of this equation in ref. [24] contained a spurious “1”, which is corrected here.

– 12 –



J
H
E
P
0
6
(
2
0
1
4
)
1
1
6

Performing the comparison in eq. (2.20) at four loops, we find that the information

at order T 1 is sufficient to fix all but four of the remaining parameters. At order T 2, all

four of these constants are determined and many additional cross-checks are satisfied. The

final expression for the symbol of R
(4)
6 has 1,544,205 terms and can be downloaded in a

computer-readable file from [72].

2.4 Constraints at function level

We now turn to the problem of promoting the symbol to a function. In principle, the

procedure is identical to that described in ref. [24]; indeed, with enough computational

power we could construct the full basis of hexagon functions at weight seven (or even

eight), and replicate the analysis of ref. [24]. In practice, it is difficult to build the full basis

of hexagon functions beyond weight five or six, and so we briefly describe a more efficient

procedure that requires only a subset of the full basis.

To begin, we wish to construct a function-level ansatz for the {5, 1, 1, 1} components

of the coproduct of R
(4)
6 , denoted by ∆5,1,1,1(R

(4)
6 ). In general, the {n − k, 1, 1, . . . , 1}

components of the coproduct of a pure transcendental function f of weight n (where there

are k 1’s in the list) are defined iteratively by differentiation. Given that the differential of

f can be written as

df =
∑
sk∈Su

fsk d ln sk , (2.23)

where fsi are pure functions of weight n− 1, the {n− 1, 1} element of the coproduct of f

is defined by

∆n−1,1(f) =
∑
sk∈Su

fsk ⊗ ln sk . (2.24)

(In contrast to the symbol, it is conventional in the coproduct to keep the explicit “ln”

present in eq. (2.24), because other components of the coproduct, such as {n−m,m} for

m > 1, require different transcendental functions in all entries.) To obtain the {n− 2, 1, 1}
coproduct components f sj ,sk , we differentiate each of the functions fsk , and expand their

differentials in terms of d ln sj ,

df sk =
∑
sj∈Su

fsj ,sk d ln sj , (2.25)

thereby defining

∆n−2,1,1(f) =
∑

sj ,sk∈Su

fsj ,sk ⊗ ln sj ⊗ ln sk . (2.26)

If we were to iterate this procedure n times, we would arrive at the symbol. However, here

we wish to stop after the third iteration, because the {n− 3, 1, 1, 1} coproduct components

for n = 8 are weight-five functions, and a full basis of hexagon functions already exists [24]

at this weight. We can match these functions to functions derived from the symbol for R
(4)
6 .

The {5, 1, 1, 1} coproduct of the ansatz for R
(4)
6 is a four-fold tensor product whose

first slot is a weight-five function and whose last three slots are logarithms. The symbols

of the weight-five functions can be read off of the symbol of R
(4)
6 , by clipping off the last
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three entries. They can then be identified with functions in the weight-five hexagon basis.

Therefore we can immediately write down,

∆5,1,1,1(R
(4)
6 ) =

∑
si,sj ,sk∈Su

[R
(4)
6 ]si,sj ,sk ⊗ ln si ⊗ ln sj ⊗ ln sk , (2.27)

where [R
(4)
6 ]si,sj ,sk are the most general linear combinations of weight-five hexagon functions

with the correct symbol and correct parity. There will be many arbitrary parameters, all

of which are associated with ζ values multiplying lower-weight functions.

Many of these parameters can be fixed by demanding that
∑

si∈Su [R
(4)
6 ]si,sj ,sk ⊗ ln si

be the {5, 1} component of the coproduct for some weight-six function for every choice of j

and k. This is simply the integrability constraint, discussed extensively in ref. [24], applied

to the first two slots of the four-fold tensor product in eq. (2.27). We also require that

each weight-six function has the proper branch cut structure; again, this constraint may

be applied using the techniques discussed in ref. [24]. Finally, we must guarantee that the

weight-six functions have all of the symmetries exhibited by their symbols. For example, if

a particular coproduct entry vanishes at symbol level, we require that it vanish at function

level as well. We also demand that the function have definite parity since the symbol-level

expressions have this property.

After imposing these mathematical consistency conditions, we will have constructed the

{5, 1} component of the coproduct for each of the weight-six functions entering ∆6,1,1(R
(4)
6 ),

as well as all the integration constants necessary to define corresponding integral represen-

tations (see section 4 of ref. [24]). There are many undetermined parameters, but they all

correspond to ζ values multiplying lower-weight hexagon functions, so they cannot be fixed

at this stage.

It is also also straightforward to represent ∆6,1,1(R
(4)
6 ) directly in terms of multiple

polylogarithms in a particular subspace of the Euclidean region, called Region I in ref. [24]:

Region I :

{
∆ > 0 , 0 < ui < 1 , and u1 + u2 + u3 < 1,

0 < yi < 1 .
(2.28)

The fact that the yi are all real and between 0 and 1 facilitates a representation in terms

of multiple polylogarithms, as discussed in ref. [24]. This region is also of interest because

it corresponds to positive external kinematical data in (2, 2) signature.

To this end, we now describe how to integrate directly the {n−1, 1} component of the

coproduct of a weight-n function in terms of multiple polylogarithms. The method [12,

13, 73] is very similar to the integral given in eq. (3.8) of ref. [24], which maps symbols

directly into multiple polylogarithms. Instead of starting from the symbol, we start from

the {n−1, 1} coproduct component, and therefore we only have to perform one integration,

corresponding to the final iteration of the n-fold iterated integration in eq. (3.8) of ref. [24].

As discussed in ref. [24], we are free to integrate along a contour that goes from the origin

ti = 0 to the point ti = yi sequentially along the directions tu, tv and tw. The integration

is over ω = d lnφ with φ ∈ Sy, where Sy is the set of 10 letters in the yi variables [24]. The

integrand is a combination of weight-(n−1) multiple polylogarithms in Region I. Together,
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k MZVs of weight k Functions of weight 8− k Total parameters

2 ζ2 38 38

3 ζ3 14 14

4 ζ4 6 6

5 ζ2ζ3, ζ5 2 4

6 (ζ3)
2, ζ6 1 2

7 ζ2ζ5, ζ3ζ4, ζ7 0 0

8 ζ2(ζ3)
2, ζ3ζ5, ζ8, ζ5,3 1 4

Total 68

Table 2. Characterization of the beyond-the-symbol ambiguities in R
(4)
6 after imposing all mathe-

matical consistency conditions.

these two facts imply that the integral may always be evaluated trivially by invoking the

recursive definition of multiple polylogarithms, G(z) = 1, and

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) , G(0, . . . , 0︸ ︷︷ ︸

p

; z) =
lnp z

p!
. (2.29)

(Many of the properties of multiple polylogarithms are reviewed in appendix A of ref. [24].)

Applying this method to the case at hand, we obtain an expression for ∆6,1,1(R
(4)
6 ) in

terms of multiple polylogarithms in Region I. Again, we enforce mathematical consistency

by requiring integrability in the first two slots, proper branch cut locations, and well-defined

parity. We then integrate the expression using the same method, yielding an expression

for ∆7,1(R
(4)
6 ). Finally, we iterate the procedure once more and obtain a representation

for R
(4)
6 itself. At each stage we keep track of all the undetermined parameters. Any

parameter that survives all the way to the weight-eight ansatz for R
(4)
6 must be associated

with a ζ value multiplying a lower-weight hexagon function with the proper symmetries,

branch-cut locations, and the function-level analog of the final-entry condition. There are

68 such functions. The counting of parameters is presented in table 2.

It is straightforward to expand our 68-parameter ansatz for R
(4)
6 in the near-collinear

limit. Indeed, the methods discussed in ref. [24] can be applied directly to this case.

We carried out this expansion through order T 3, though even at order T 1 the result is

too lengthy to present here. The expansion (after fixing all parameters) is available in a

computer-readable format from [72].

Demanding that our ansatz vanish in the strict collinear limit fixes all but ten of

the beyond-the-symbol constants. Consistency with the OPE at order T 1, corresponding

to contributions of single (gluonic) flux-tube excitation, fixes nine of the ten remaining

constants. The final constant is fixed at order T 2, corresponding to double flux-tube

excitations, as well as twist-two bound-state contributions [36]. The rest of the data at

order T 2 provides many nontrivial consistency checks of the result.
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In slightly more detail, we can characterize the contributions at a given order in the T

expansion by their dependence on F , or equivalently on an azimuthal angle φ, introduced

by letting F = eiφ. As discussed in ref. [36], the F dependence is correlated with the

helicity of the excitations. The order T 1 term in the near-collinear expansion of the L-loop

remainder function always has the form,[
R

(L)
6

]
1

= T (F + F−1)
L−1∑
k=0

lnk T ck(S) , (2.30)

where ck(S) is a linear combination of HPLs [62] of the form H~m(−S2), mi ∈ {0, 1},
multiplied by simple rational functions of S. The weight of the HPLs is at most 2L − k,

but can be lower, in accordance with the mixed transcendentality of the T expansion

mentioned earlier. The single powers of F and F−1 correspond to the helicity ±1 gluonic

excitations, which have equal contributions due to parity. The expansion of the three-loop

remainder function at this order was given explicitly in ref. [24].

At order T 2, the expansion has the form,[
R

(L)
6

]
2

= T 2
[
(F 2 + F−2)

L−1∑
k=0

lnk T dk(S) +

L−1∑
k=0

lnk T fk(S)
]
, (2.31)

where dk(S) and fk(S), like ck(S), are linear combinations of HPLs multiplied by rational

functions of S (more complicated ones than appear in ck(S)). The terms in eq. (2.31) that

have the F±2 prefactors come entirely from gluonic excitations — either pairs of single

excitations, or the contribution of a twist-two gluonic bound-state, either of which can

have helicity ±2; whereas the T 2F 0 terms can come from excitations of pairs of gluons,

fermions or scalars [36]. All of the constraints at order T 2 that were needed to fix the five

parameters at that stage (four parameters at symbol level and one beyond-the-symbol)

came from matching the T 2F 2 contributions. Hence the comparison of the T 2F 0 terms,

which tests the scalar and fermion contributions as well as gluonic ones, was completely

rigid, with no free parameters.

In practice the comparison to the OPE predictions was done after expanding the

functions of S in an expansion around S = 0. For the T 2F 2 comparison we matched the

terms through S20; for the T 2F 0 comparison, through S10. Certainly higher orders could

be matched if desired; on the OPE side this just amounts to evaluating more residues in

the complex rapidity plane [34–36]. In some cases one can also perform the residue sums

to all orders, see e.g. ref. [74].

The final expression for R
(4)
6 in terms of multiple polylogarithms in Region I is available

from [72] in a computer-readable format. We also provide a coproduct-based description

of it; see appendix A.

3 Multi-Regge limit

3.1 Fixing constants at four loops

In the limit of multi-Regge kinematics (MRK), the cross ratios u1, u2 and u3 approach the

values

u1 → 1 , u2, u3 → 0 , (3.1)
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with the ratios
u2

1− u1
≡ ww∗ and

u3
1− u1

≡ (1 + w) (1 + w∗) (3.2)

held fixed.6 While the remainder function vanishes in Euclidean MRK, this is no longer

the case once it is analytically continued to a different Riemann sheet, according to u1 →
e−2πi |u1| [37]. On this Riemann sheet we can write,

R6

∣∣
MRK

= 2πi

∞∑
L=2

L−1∑
n=0

aL lnn(1− u1)
[
g(L)n (w,w∗) + 2πi h(L)n (w,w∗)

]
. (3.3)

The LLA series of coefficients has n = L− 1. The coefficients h
(L)
L−1(w,w

∗) vanish trivially,

while the coefficients g
(L)
L−1(w,w

∗) are known to all orders in perturbation theory [44, 75].

At NLLA (n = L− 2), results for the coefficients g
(L)
L−2(w,w

∗) and h
(L)
L−2(w,w

∗) have been

given up to nine loops [22, 41, 43, 44].

At NNLLA (n = L − 3), only the three-loop coefficients are known [22, 24, 41]. In

ref. [44], the four-loop coefficients at NNLLA and N3LLA, g
(4)
1 (w,w∗) and g

(4)
0 (w,w∗), re-

spectively, were heavily constrained and their functional form was completely determined,

up to 27 rational numbers ai, bj , i ∈ {0, . . . , 8}, j ∈ {1, . . . , 18}. As mentioned in the

introduction, a0 is a parameter that enters at the level of the symbol. The remaining 26

parameters are beyond-the-symbol; they appear with ζ values multiplying them. Since we

have now a complete and unique analytic expression for the four-loop remainder function

in general kinematics, the coefficients g
(4)
1 and g

(4)
0 can be extracted by using the tech-

niques described in ref. [24]. Appendix A gives a brief description of how the coproduct

representation of R
(4)
6 may be used for this purpose.

In this way, we find expressions for the two previously-undetermined MRK coefficients

at four loops,

g
(4)
1 (w,w∗) =

19

8
L+
1 L

+
5 +

1

4
L−0 L

−
4,1 +

5

4
L+
1 L

+
3,1,1 +

1

2
L+
1 L

+
2,2,1 −

3

4
L−0 L

−
2,1,1,1

−
(

29

64
[L−0 ]2 +

17

48
[L+

1 ]2
)
L+
1 L

+
3 +

1

96
[L−0 ]3 L−2,1 +

5

32
[L+

3 ]2 − 1

8
[L−2,1]

2

− 1

4

(
L−4 − L

−
2,1,1

)
L−2 +

3

128

(
[L−0 ]2 − 4 [L+

1 ]2
)

[L−2 ]2

− 11

30720
[L−0 ]6 +

73

1536
[L−0 ]4 [L+

1 ]2 +
19

384
[L−0 ]2 [L+

1 ]4 +
11

480
[L+

1 ]6

+ ζ2

(
3

2
L+
1 L

+
3 +

1

2
L−0 L

−
2,1−

3

8
[L−2 ]2− 11

768
[L−0 ]4− 1

4
[L−0 ]2[L+

1 ]2− 7

16
[L+

1 ]4
)

− 1

8
ζ3

(
L+
3 −

15

4
[L−0 ]2L+

1 − [L+
1 ]3
)
− 27

32
ζ4
(
[L−0 ]2 − 4 [L+

1 ]2
)

−
(

3

2
ζ5 − ζ2ζ3

)
L+
1 +

1

8
(ζ3)

2 , (3.4)

6The (complex) variable w defined in eq. (3.2) should not be confused with the cross ratio w = u3.
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and

g
(4)
0 (w,w∗) = −125

8
L+
7 + 5L+

5,1,1 +
11

4
L+
4,2,1 +

1

2
L+
4,1,2 +

3

4
L+
3,3,1 − 4L+

3,1,1,1,1 −
3

2
L+
2,2,1,1,1

− 1

2
L+
2,1,2,1,1 +

(
129

64
[L−0 ]2 +

25

16
[L+

1 ]2
)
L+
5 +

1

4
L−0 L

+
1

(
L−4,1 − L

−
2,1,1,1

)
+

(
3

32
[L−0 ]2 +

7

8
[L+

1 ]2
)
L+
3,1,1 −

1

16

(
[L−0 ]2 − 4 [L+

1 ]2
)
L+
2,2,1 −

1

8
L−0 L

+
3 L
−
2,1

−
(

5

24
[L−0 ]4 +

21

64
[L−0 ]2 [L+

1 ]2 +
7

48
[L+

1 ]4
)
L+
3

−
(

7

192
[L−0 ]2 +

1

16
[L+

1 ]2
)
L−0 L

+
1 L
−
2,1

+
1007

46080
[L−0 ]6 L+

1 +
7

144
[L−0 ]4 [L+

1 ]3 +
9

320
[L−0 ]2 [L+

1 ]5 +
1

210
[L+

1 ]7

− 1

4

(
L+
1

(
L−4 − L

−
2,1,1

)
+

5

4
L−0 L

+
3,1

)
L−2 +

(
5

64
[L−0 ]2 − 1

16
[L+

1 ]2
)
L+
1 [L−2 ]2

− ζ2
(

21

4
L+
5 + 3L+

3,1,1 +
3

2
L+
2,2,1 −

(
25

32
[L−0 ]2 +

15

8
[L+

1 ]2
)
L+
3 − L

−
0 L

+
1 L
−
2,1

+
19

192
[L−0 ]4 L+

1 +
19

48
[L−0 ]2 [L+

1 ]3 +
1

5
[L+

1 ]5
)

+ ζ3

(
−3

4
L+
1 L

+
3 +

1

4
[L−2 ]2 +

7

256
[L−0 ]4 +

1

2
[L−0 ]2 [L+

1 ]2 +
7

48
[L+

1 ]4
)

+ ζ4

(
−15

2
L+
3 +

11

16
[L−0 ]2 L+

1 +
9

4
[L+

1 ]3
)

+ ζ5

(
17

16
[L−0 ]2 − 5

2
[L+

1 ]2
)

+ ζ2ζ3

(
− 9

16
[L−0 ]2 +

5

4
[L+

1 ]2
)

+
3

2
(ζ3)

2 L+
1 +

25

4
ζ7 +

3

4
ζ2 ζ5 . (3.5)

The functions L±~m appearing in these expressions are single-valued harmonic polylogarithms

(SVHPLs) [69]. They appear in a basis defined in ref. [44], which diagonalizes the Z2×Z2

action of inversion and conjugation of the variables (w,w∗).

The expressions above match with those of eqs. (7.14) and (7.15) of ref. [44], provided

that the constants defined in that reference take the values,

a0 = 0, a1 = −1

6
, a2 = −5, a3 = 1, a4 =

4

3
,

a5 = −4

3
, a6 =

17

180
, a7 =

15

4
, a8 = −29 ,

(3.6)

and

b1 =
97

1220
, b2 =

127

3660
, b3 =

1720

183
, b4 =

622

183
, b5 =

644

305
, b6 =

2328

305
,

b7 = −1, b8 = −554

305
, b9 = −10416

305
, b10 =

248

3
, b11 = −11

6
, b12 = 49,

b13 = −112, b14 =
83

12
, b15 = −1126

61
, b16 =

849

122
, b17 =

83

6
, b18 = −10 .

(3.7)

The coefficient functions h
(L)
n entering the real part in eq. (3.3) are completely deter-

mined by the functions g
(L)
n entering the imaginary part. The LLA and NLLA functions
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were given in eq. (2.19) of ref. [44], but we provide them here for completeness,

h
(4)
3 (w,w∗) = 0 ,

h
(4)
2 (w,w∗) =

3

2
g
(4)
3 (w,w∗)− 1

2

[
g
(2)
1 (w,w∗)

]2
− 1

8
γ
(1)
K L+

1 g
(3)
2 (w,w∗) ,

(3.8)

where γ
(L)
K are the L-loop coefficients of the cusp anomalous dimension defined in eq. (2.21),

and the lower loop g coefficients are given in ref. [44].

The four-loop NNLLA and N3LLA real-part coefficients are given by,

h
(4)
1 (w,w∗) = g

(4)
2 (w,w∗)− g(2)0 (w,w∗) g

(2)
1 (w,w∗)

− 1

8
L+
1

(
γ
(1)
K g

(3)
1 (w,w∗) + γ

(2)
K g

(2)
1 (w,w∗)

)
,

(3.9)

and

h
(4)
0 (w,w∗) =

1

2
g
(4)
1 (w,w∗)− 1

2

[
g
(2)
0 (w,w∗)

]2
+ π2 g

(4)
3 (w,w∗)

− 1

8
L+
1

(
γ
(1)
K g

(3)
0 (w,w∗) + γ

(2)
K g

(2)
0 (w,w∗) + 2π2 γ

(1)
K g

(3)
2 (w,w∗)

)
− π2

393216

[
γ
(1)
K

]4 (
[L−0 ]4 − 24 [L−0 ]2 [L+

1 ]2 + 80 [L+
1 ]4
)

+
1

512

([
γ
(2)
K

]2
+ 2 γ

(1)
K γ

(3)
K

)(
[L−0 ]2 − 4 [L+

1 ]2
)

+
π2

32

[
γ
(1)
K

]2
[L+

1 ]2 g
(2)
1 (w,w∗) .

(3.10)

We checked explicitly that our result for R
(4)
6 correctly reproduces all the real-part coeffi-

cient functions in the multi-Regge limit, from h
(4)
3 (w,w∗) through h

(4)
0 (w,w∗).

3.2 The NNLL BFKL eigenvalue and N3LL impact factor

The functions g
(4)
1 (w,w∗) and g

(4)
0 (w,w∗), in turn, determine the NNLLA BFKL eigenvalue

and N3LLA impact factor, through a master equation [43],

eR+iπδ|MRK = cosπωab + i
a

2

∞∑
n=−∞

(−1)n
( w
w∗

)n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n)

× exp
[
−ω(ν, n)

(
ln(1− u1) + iπ + L+

1

)]
, (3.11)

where

ωab =
1

8
γK(a)L−0 , (3.12)

δ =
1

4
γK(a)L+

1 , (3.13)

recalling that L−0 = ln |w|2 and L+
1 = 1

2 ln(|w|2/|1 + w|4). The BFKL eigenvalue ω(ν, n)

and the impact factor ΦReg(ν, n) can be expanded perturbatively,

ω(ν, n) = −a
(
Eν,n + aE(1)

ν,n + a2E(2)
ν,n +O(a3)

)
,

ΦReg(ν, n) = 1 + aΦ
(1)
Reg(ν, n) + a2 Φ

(2)
Reg(ν, n) + a3 Φ

(3)
Reg(ν, n) +O(a4) .

(3.14)
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We remark that an alternate version of the master equation has recently been found in

ref. [68]. In contrast to eq. (3.11), the denominator ν2 + n2/4 contains an additional term

proportional to the square of the cusp anomalous dimension. It also lacks the explicit

Regge pole contribution (the cosπωab term), although this contribution can be recovered

by evaluating the n = 0 term and ν = 0 residue in the integral at finite coupling. Then

the two factorization forms become equivalent, up to a different definition of the impact

factor. In this paper, we will continue to use the form (3.11).

The first two nontrivial orders in the expansion of the BFKL eigenvalue and the impact

factor were known previously [24, 38, 40, 43, 44],

Eν,n = −1

2

|n|
ν2 + n2

4

+ ψ

(
1 + iν +

|n|
2

)
+ ψ

(
1− iν +

|n|
2

)
− 2ψ(1) , (3.15)

E(1)
ν,n = −1

4
D2
νEν,n +

1

2
V DνEν,n − ζ2Eν,n − 3 ζ3 , (3.16)

Φ
(1)
Reg(ν, n) = −1

2
E2
ν,n −

3

8
N2 − ζ2 , (3.17)

Φ
(2)
Reg(ν, n) =

1

2

[
Φ
(1)
Reg(ν, n)

]2
− E(1)

ν,nEν,n +
1

8
[DνEν,n]2 +

5

64
N2 (N2 + 4V 2)

−ζ2
4

(
2E2

ν,n +N2 + 6V 2
)

+
17

4
ζ4 , (3.18)

where ψ(z) = d
dz ln Γ(z) is the digamma function, ψ(1) = −γE is the Euler-Mascheroni

constant, and V and N are given by,

V ≡ −1

2

[
1

iν + |n|
2

− 1

−iν + |n|
2

]
=

iν

ν2 + |n|2
4

,

N ≡ sgn(n)

[
1

iν + |n|
2

+
1

−iν + |n|
2

]
=

n

ν2 + |n|2
4

,

(3.19)

with Dν ≡ −i∂ν ≡ −i ∂/∂ν.

After expanding the master equation (3.11) to the relevant order in a and ln(1 − u),

one has to match the resulting combinations of SVHPLs in (w,w∗) against the inverse

Fourier-Mellin transforms of suitable functions of ν and n. This was carried out in ref. [44],

in terms of the then-undetermined ai and bi constants. Inserting the values (3.6) and (3.7)

into the respective expressions, we obtain,

E(2)
ν,n =

1

8

{
1

6
D4
νEν,n − V D3

νEν,n + (V 2 + 2ζ2)D
2
νEν,n − V (N2 + 8ζ2)DνEν,n

+ζ3(4V
2 +N2) + 44ζ4Eν,n + 16ζ2ζ3 + 80ζ5

}
, (3.20)

– 20 –



J
H
E
P
0
6
(
2
0
1
4
)
1
1
6

and

Φ
(3)
Reg = − 1

48

{
E6
ν,n +

9

4
E4
ν,nN

2 +
57

16
E2
ν,nN

4 +
189

64
N6 +

15

2
E2
ν,nN

2V 2 +
123

8
N4V 2

+ 9N2V 4 − 3
(

4E3
ν,nV + 5Eν,nN

2V
)
DνEν,n

+ 3
(
E2
ν,n +

3

4
N2 + 2V 2

)
[DνEν,n]2 + 6Eν,n

(
E2
ν,n +

3

4
N2 + V 2

)
D2
νEν,n

− 12V [DνEν,n][D2
νEν,n]− 6Eν,nV D

3
νEν,n + 2 [DνEν,n][D3

νEν,n]

+ 2 [D2
νEν,n]2 + Eν,nD

4
νEν,n

}
− 1

8
ζ2

[
3E4

ν,n + 2E2
ν,nN

2 − 1

16
N4 − 6E2

ν,nV
2 − 16N2V 2 − 12Eν,nV DνEν,n

+ [DνEν,n]2 + 4Eν,nD
2
νEν,n

]
− 1

2
ζ3

[
3E3

ν,n +
5

2
Eν,nN

2 + Eν,nV
2 − 3V DνEν,n +

13

6
D2
νEν,n

]
− 1

4
ζ4

[
27E2

ν,n +N2 − 45V 2
]
− 5
(
2ζ5 + ζ2ζ3)Eν,n −

219

8
ζ6 −

14

3
(ζ3)

2 . (3.21)

Eqs (3.18) and (3.20) allow the master equation (3.11) to be evaluated at NNLL accuracy.

Eq. (3.21), together with the N3LL BFKL eigenvalue E
(3)
ν,n (when the latter becomes avail-

able), will permit an evaluation at N3LLA — assuming that the factorization continues to

hold at this order.

In ref. [44] it was observed that E
(2)
ν,n in eq. (3.20) has a nonvanishing limit ν → 0 (after

setting n = 0),

lim
ν→0

E
(2)
ν,0 = −1

2
π2 ζ3 , (3.22)

even though Eν,n and E
(1)
ν,n vanish in this limit [43]. This limit of E

(2)
ν,n held independently

of all the constants in eqs. (3.6) and (3.7), which were unknown at that time. The reason it

was independent of the constants was that the four-loop remainder function was required

to vanish in the collinear corner of the MRK limit, |w|2 → 0. This limit in the (w,w∗) plane

in turn controls the n = 0, ν → 0 limit of the BFKL eigenvalue ω(ν, n). In ref. [68], the

general constraints imposed by collinear triviality of the remainder function were derived

at finite coupling, and eq. (3.22) was obtained as a byproduct.

3.3 NNLL coefficient functions at five loops

The MRK factorization implicit in the master equation lets us bootstrap higher-loop co-

efficients in the MRK limit. We simply insert the results for the BFKL eigenvalue and

the impact factor through NNLLA into the master equation (3.11). We then use the tech-

niques of ref. [44] to perform the inverse Fourier-Mellin transform from (ν, n) space back to

(w,w∗) space. This transform is facilitated by having a complete basis of SVHPLs at the

appropriate transcendental weight. The inverse Fourier-Mellin transform leads to double

sums, which can either be summed explicitly, or truncated and then matched to a Taylor

expansion of the SVHPL basis. In this way we can obtain explicit expressions for R6 in
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MRK at NNLLA, just as was done at LLA and NLLA in ref. [44]. These data will be im-

portant in order to help constrain the functional form of the remainder function at higher

loop orders.

As an example, we present here the result for the five-loop six-point remainder function

at NNLLA. For the imaginary part, we find,

g
(5)
2 (w,w∗) = −4L+

7 −
105

32
L+
5,1,1 −

17

8
L+
4,2,1 −

13

16
L+
4,1,2 −

15

16
L+
3,3,1 −

1

2
L+
3,2,2

+
19

8
L+
3,1,1,1,1+

3

4
L+
2,2,1,1,1+

1

4
L+
2,1,2,1,1+

(
147

256
[L−0 ]2 +

5

4
[L+

1 ]2
)
L+
5

+L−0 L
+
1

(
29

64
L−4,1+

3

16
L−3,2+

5

16
L−2,1,1,1

)
+

(
5

16
[L−0 ]2 − 3

16
[L+

1 ]2
)
L+
3,1,1

+
5

32
[L−0 ]2 L+

2,2,1+
5

32
L+
1 [L+

3 ]2+
5

32
L−0 L

+
3 L
−
2,1+

1

8
L+
1 [L−2,1]

2

−
(

23

384
[L−0 ]4+

35

128
[L−0 ]2 [L+

1 ]2+
25

192
[L+

1 ]4
)
L+
3

−
(

11

96
[L−0 ]2+

7

64
[L+

1 ]2
)
L−0 L

+
1 L
−
2,1+

23

3840
[L−0 ]6 L+

1 +
167

4608
[L−0 ]4 [L+

1 ]3

+
31

960
[L−0 ]2 [L+

1 ]5+
29

3360
[L+

1 ]7 −
(

7

32
L+
1 L
−
4 +

1

32
L−0 L

+
3,1+

3

8
L+
1 L
−
2,1,1

)
L−2

+
1

16
L+
3 [L−2 ]2+

(
1

64
[L−0 ]2+

1

12
[L+

1 ]2
)
L+
1 [L−2 ]2

+ζ2

(
−173

32
L+
5 −

9

2
L+
3,1,1 − 3L+

2,2,1+

(
13

16
[L−0 ]2+

1

4
[L+

1 ]2
)
L+
3

+
3

8
L−0 L

+
1 L
−
2,1+

1

4
L+
1 [L−2 ]2 − 55

768
[L−0 ]4 L+

1 +
11

96
[L−0 ]2 [L+

1 ]3 − 17

40
[L+

1 ]5
)

+ ζ3

(
− 5

32
L+
1 L

+
3 −

3

8
L−0 L

−
2,1+

1

16
[L−2 ]2

+
15

256
[L−0 ]4+

1

16
[L−0 ]2 [L+

1 ]2 − 7

96
[L+

1 ]4
)

+ ζ4
(
−3L+

3 +2 [L+
1 ]3
)
+ζ5

(
− 3

16
[L−0 ]2+

35

32
[L+

1 ]2
)

− 3

4
ζ2 ζ3

(
2 [L−0 ]2 − [L+

1 ]2
)
− 3

16
(ζ3)

2 L+
1 +

1

4
ζ7 . (3.23)

The corresponding results at LLA and NLLA were given in ref. [44].

The NNLL real-part coefficient is related to the imaginary parts at NLLA and at lower

loop orders; it is given by

h
(5)
2 (w,w∗) =

3

2
g
(5)
3 (w,w∗)− g(2)1 (w,w∗) g

(3)
1 (w,w∗)− g(2)0 (w,w∗) g

(3)
2 (w,w∗)

− 1

8
L+
1

[
γ
(1)
K g

(4)
2 (w,w∗) + γ

(2)
K g

(3)
2 (w,w∗)

]
.

(3.24)

Finally, we give the N3LL real-part coefficient, which is related to eq. (3.23) and to imagi-
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nary parts at lower logarithmic or lower loop orders,

h
(5)
1 (w,w∗) = g

(5)
2 (w,w∗)− g(2)1 (w,w∗) g

(3)
0 (w,w∗)− g(2)0 (w,w∗) g

(3)
1 (w,w∗)

+ 4π2
(
g
(5)
4 (w,w∗)− g(2)1 (w,w∗) g

(3)
2 (w,w∗)

)
− 1

8
L+
1

[
γ
(1)
K g

(4)
1 (w,w∗) + γ

(2)
K g

(3)
1 (w,w∗) + γ

(3)
K g

(2)
1 (w,w∗)

]
− π2

4

{
L+
1 γ

(1)
K

(
3 g

(4)
3 (w,w∗)− 2

[
g
(2)
1 (w,w∗)

]2)
− 1

4
[L+

1 ]2
[
γ
(1)
K

]2
g
(3)
2 (w,w∗)+

1

96
[L+

1 ]3
[
γ
(1)
K

]3
g
(2)
1 (w,w∗)

}
.

(3.25)

Although the real parts are related by analyticity to the imaginary parts, they still provide

useful additional constraints on ansätze for the remainder function.

3.4 Connection between BFKL and the flux tube spectrum?

We conclude this section by noting that the result for the BFKL eigenvalue at NNLLA

suggests an intriguing connection between the BFKL eigenvalues Eν,n, E
(1)
ν,n, and E

(2)
ν,n and

the weak-coupling expansion of the energy E(u) of a gluonic excitation of the GKP string

as a function of its rapidity u, given in ref. [33]. First we rewrite the expressions for Eν,n,

E
(1)
ν,n, and E

(2)
ν,n explicitly in terms of ψ functions and their derivatives,

Eν,n = ψ(ξ+) + ψ(ξ−)− 2ψ(1)− 1

2
sgn(n)N,

E(1)
ν,n = −1

4

[
ψ(2)(ξ+) + ψ(2)(ξ−)− sgn(n)N

(1

4
N2 + V 2

)]
+

1

2
V
[
ψ(1)(ξ+)− ψ(1)(ξ−)

]
− ζ2Eν,n − 3ζ3 ,

E(2)
ν,n =

1

8

{
1

6

[
ψ(4)(ξ+) + ψ(4)(ξ−)− 60 sgn(n)N

(
V 4 +

1

2
V 2N2 +

1

80
N4
)]

− V
[
ψ(3)(ξ+)− ψ(3)(ξ−)− 3 sgn(n)V N(4V 2 +N2)

]
+ (V 2 + 2ζ2)

[
ψ(2)(ξ+) + ψ(2)(ξ−)− sgn(n)N

(
3V 2 +

1

4
N2
)]

− V (N2 + 8ζ2)
[
ψ(1)(ξ+)− ψ(1)(ξ−)− sgn(n)V N

]
+ ζ3 (4V 2 +N2)

+ 44 ζ4Eν,n + 16 ζ2ζ3 + 80 ζ5

}
,

(3.26)

where ξ± ≡ 1± iν + |n|
2 .

Next, we keep only the pure ψ (and ζ) terms, dropping anything with a V or an N ,

Eν,n

∣∣∣
ψ only

= ψ(ξ+) + ψ(ξ−)− 2ψ(1) ,

E(1)
ν,n

∣∣∣
ψ only

= −1

4

[
ψ(2)(ξ+) + ψ(2)(ξ−)

]
− ζ2

[
ψ(ξ+) + ψ(ξ−)− 2ψ(1)

]
− 3ζ3 ,

E(2)
ν,n

∣∣∣
ψ only

=
1

8

{
1

6

[
ψ(4)(ξ+) + ψ(4)(ξ−)

]
+ 2 ζ2

[
ψ(2)(ξ+) + ψ(2)(ξ−)

]
+ 44 ζ4

[
ψ(ξ+) + ψ(ξ−)− 2ψ(1)

]
+ 16 ζ2ζ3 + 80 ζ5

}
.

(3.27)
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Finally we write,

− ω(ν, n)
∣∣∣
ψ only

= a
(
Eν,n

∣∣∣
ψ only

+ aE(1)
ν,n

∣∣∣
ψ only

+ a2E(2)
ν,n

∣∣∣
ψ only

+ · · ·
)
. (3.28)

Now we compare this formula to equation (4.21) of ref. [33] for the energy E(u) of a gauge

field (` = 1) and its bound state (` > 1),

E(u) = `+
1

2
γK(2g2)

[
ψ
(+)
0 (s, u)− ψ(1)

]
− 2g4

[
ψ
(+)
2 (s, u) + 6ζ3

]
+
g6

3

[
ψ
(+)
4 (s, u) + 2π2ψ

(+)
2 (s, u) + 24ζ3ψ

(+)
1 (s− 1, u) + 8

(
π2ζ3 + 30ζ5

)]
+O(g8) ,

(3.29)

where g2 = a/2 is the loop expansion parameter, s = 1 + `/2, and

ψ(±)
n (s, u) ≡ 1

2

[
ψ(n)(s+ iu)± ψ(n)(s− iu)

]
. (3.30)

Neglecting the constant offset at order a0 (the classical operator scaling dimension),

eq. (3.29) matches perfectly with eq. (3.28) at order a1 and a2, provided that we identify,

` = |n|, u = ν. (3.31)

The correspondence continues to order a3 if we also drop the term 24 ζ3 ψ
(+)
1 (s − 1, u). It

would be very interesting to understand the origin of this correspondence, and whether

there is a physical meaning to the operation of dropping all terms with a N or a V . We

leave this question to future work and return our attention to the quantitative behavior of

the four-loop remainder function.

4 Quantitative behavior

In this section we investigate the quantitative behavior of the four-loop remainder function

in the Euclidean region where all three cross ratios are positive. It will prove particularly

instructive to plot the ratios of successive loop orders, R
(3)
6 /R

(2)
6 and R

(4)
6 /R

(3)
6 . It was

observed in ref. [24] that the former ratio was quite stable along large portions of a line

and a two-dimensional surface where it was examined. We will find that the stability of

such ratios extends to four loops, i.e. to the latter ratio, and to a number of different lines

and one two-dimensional surface, as long as the cross ratios are not too large or too small.

We will also examine certain limiting behavior analytically, where it can sometimes shed

light on the remarkable stability of the ratios. Finally, we will discuss how perturbation

theory is doing with respect to the approach to large orders.

4.1 Region I

While the full function R
(4)
6 is too lengthy to be shown here, its representation in terms

of multiple polylogarithms can easily be evaluated numerically in Region I, defined in

eq. (2.28), using GiNaC [76, 77]. In table 3, we show the value of the four-loop remainder
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(u, v, w) R
(4)
6

(0.214, 0.214, 0.184) 97.251

(0.333, 0.039, 0.286) 103.975

(0.206, 0.008, 0.652) 53.664

(0.617, 0.090, 0.043) 85.383

(0.743, 0.002, 0.216) 19.752

Table 3. Numerical evaluation of the four-loop remainder function at a selection of points in

Region I.

function for five reference points. In addition, in figure 1 we plot the ratio R
(L)
6 /R

(L−1)
6

for L = 3 and L = 4 in Region I, restricted to the two-dimensional surface u = v. It is

remarkable that the ratio of R
(4)
6 /R

(3)
6 is essentially flat throughout Region I. The value of

the ratio is close to −7. The ratio R
(3)
6 /R

(2)
6 has a very similar behavior, offset by about

0.5 from the former ratio throughout most of the plot.

For u = v, the boundary of Region I in the interior of the Euclidean region is defined

by ∆(u, u, w) = 0, where ∆ is given in eq. (2.8); this parabola w = (1 − 2u)2 is shown

as the red line in the plot. We restrict the plot to stay slightly away from the boundaries

of the Euclidean region, taking u,w > 0.06. At these boundaries, R6(u, u, w) diverges

logarithmically, order by order in perturbation theory, whenever one of the cross ratios

becomes very small and the other one is kept finite. At a given loop order, the degree of

the logarithmic divergence is one power lower when w → 0 with u fixed, than it is for the

opposite case when u→ 0 with w fixed:

R
(L)
6 (u, u, w) ∼

L−1∑
k=0

U (L)
k (yu) lnk w , w → 0 , u finite ,

R
(L)
6 (u, u, w) ∼

L∑
k=0

W(L)
k (w) lnk u , u→ 0 , w finite .

(4.1)

The coefficientsW(L)
k (w) can be expressed in terms of HPLs whose weight vectors are built

entirely out of 0 and 1, with argument w. The coefficients U (L)
k (yu), in contrast, require

HPLs with argument yu rather than u, and the weight vectors require −1 as well as 0

and 1.

The analytic expressions for the coefficients U (L)
k and W(L)

k are quite lengthy, so we do

not show them here. We list the results for the coefficients of just the leading logarithmic

divergence up to four loops in appendix B. Because the leading logarithm increases by one

with each additional loop, the ratios plotted in figure 1 diverge like a single logarithm as

either boundary is approached. However, the leading logarithms in the numerator and

denominator of the ratio are far from dominant at the boundaries of the plot where u or

w = 0.06. If one keeps all subleading logarithms, and neglects the power-suppressed terms,

one gets quite close to the exact numerical value of the ratio at either boundary of the plot.
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Figure 1. The ratio R
(L)
6 (u, u, w)/R

(L−1)
6 (u, u, w) for L = 3 (blue) and L = 4 (green) in Region I.

The solid red line represents the curve ∆(u, u, w) = 0. At small values of (u,w), the plot is cut off

at u = 0.06 or w = 0.06.

It was recently conjectured [78] that the remainder function should have a uniform

sign in Region I, which corresponds to the kinematic regime of positive external momen-

tum twistor kinematics. Recent formulations of the planar scattering amplitude loop inte-

grand [19, 79–81] lead to manifestly positive integrands in this region. On the other hand,

an infinite subtraction is required to pass to the remainder function. Nevertheless, it was

observed that this conjecture indeed holds at two loops [78] and also at three loops [24].

Given that R
(3)
6 is negative in Region I [24], it is obvious from figure 1 that R

(4)
6 has a

uniform (positive) sign in Region I, at least on the surface u = v. In total we checked more

than 1000 points in Region I, both on and off the u = v surface; for all points checked, the

value of R
(4)
6 is positive, in agreement with the conjecture.

In the rest of this section we focus on the remainder function restricted to certain one-

dimensional subspaces where the functional form simplifies drastically. These lines may

prove useful in trying to find a form for the remainder function that is valid to all loop

orders, i.e. at finite coupling, beyond what is presently known in the OPE limit [34–36].

The first line we discuss has one endpoint which intersects the OPE limit. Perhaps this

proximity could allow the knowledge of the OPE limit to anchor such a finite-coupling

construction. The other two lines never approach the OPE limit, although they have other

interesting properties.
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4.2 The line (u, u, 1)

As noted in ref. [24], the two- and three-loop remainder functions can be expressed solely in

terms of harmonic polylogarithms (HPLs) of a single argument, 1−u, on the line (u, u, 1),

and we use the notation Hu
~m ≡ H~m(1 − u). The same is true at four loops, although the

resulting expression is rather lengthy. It can be obtained by taking the limit of the general

coproduct representation described in appendix A onto the line (u, u, 1). The quantity ∆

defined in eq. (2.8) vanishes on this line. As a consequence, all parity-odd functions vanish

on the line too. The derivatives of weight n parity-even functions can be expressed using

eq. (A.2) in terms of parity-even and parity-odd coproduct components of weight n − 1.

The vanishing of the parity-odd functions as one approaches the line is fast enough that

they can be neglected in computing the derivative along the line. Then one obtains from

eq. (A.2),

dF (u, u, 1)

du
=
F u(u, u, 1) + F v(u, u, 1)

u
− F 1−u(u, u, 1) + F 1−v(u, u, 1)

1− u
, (4.2)

which is easily integrated in terms of the functions Hu
~m, given that the coproduct compo-

nents F u, F v, F 1−u and F 1−v are also expressible in this form.

Because the four-loop expression is still rather lengthy, in order to save space we

first expand all products of HPLs using the shuffle algebra. The resulting “linearized”

representation will have HPL weight vectors ~m consisting entirely of 0’s and 1’s, which we

can interpret as binary numbers. Finally, we can write these binary numbers in decimal,

making sure to keep track of the length of the original weight vector, which we write as a

superscript. For example,

Hu
1H

u
2,1 = Hu

1H
u
0,1,1 = 3Hu

0,1,1,1 +Hu
1,0,1,1 → 3h

[4]
7 + h

[4]
11 . (4.3)

In this notation, R
(2)
6 (u, u, 1) and R

(3)
6 (u, u, 1) read,

R
(2)
6 (u, u, 1) = h

[4]
1 − h

[4]
3 + h

[4]
9 − h

[4]
11 −

5

2
ζ4 , (4.4)

R
(3)
6 (u, u, 1) = −3h

[6]
1 + 5h

[6]
3 +

3

2
h
[6]
5 −

9

2
h
[6]
7 −

1

2
h
[6]
9 −

3

2
h
[6]
11 − h

[6]
13 −

3

2
h
[6]
17

+
3

2
h
[6]
19 −

1

2
h
[6]
21 −

3

2
h
[6]
23 − 3h

[6]
33 + 5h

[6]
35 +

3

2
h
[6]
37 −

9

2
h
[6]
39

−1

2
h
[6]
41 −

3

2
h
[6]
43 − h

[6]
45 −

3

2
h
[6]
49 +

3

2
h
[6]
51 −

1

2
h
[6]
53 −

3

2
h
[6]
55 (4.5)

+ζ2

[
−h[4]1 + 3h

[4]
3 + 2h

[4]
5 − h

[4]
9 + 3h

[4]
11 + 2h

[4]
13

]
+ζ4

[
−2h

[2]
1 − 2h

[2]
3

]
+ (ζ3)

2 +
413

24
ζ6 ,

and the four-loop remainder function on the line (u, u, 1) is,

R
(4)
6 (u, u, 1) = 15h

[8]
1 − 41h

[8]
3 −

31

2
h
[8]
5 +

105

2
h
[8]
7 −

7

2
h
[8]
9 +

53

2
h
[8]
11 + 12h

[8]
13 − 42h

[8]
15

+
5

2
h
[8]
17 +

11

2
h
[8]
19 +

9

2
h
[8]
21 −

41

2
h
[8]
23 + h

[8]
25 − 13h

[8]
27 − 7h

[8]
29 − 5h

[8]
31
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+ 6h
[8]
33 − 11h

[8]
35 − 3h

[8]
37 + 3h

[8]
39 − 4h

[8]
43 − 4h

[8]
45 − 11h

[8]
47 +

3

2
h
[8]
49 −

3

2
h
[8]
51

− 3h
[8]
53 − 5h

[8]
55 +

3

2
h
[8]
57 −

3

2
h
[8]
59 + 9h

[8]
65 − 25h

[8]
67 − 9h

[8]
69 + 27h

[8]
71 − 2h

[8]
73

+ 9h
[8]
75 + 2h

[8]
77 − 23h

[8]
79 + 2h

[8]
81 − h

[8]
85 − 8h

[8]
87 + 2h

[8]
89 − 3h

[8]
91 +

5

2
h
[8]
97

− 7

2
h
[8]
99 −

1

2
h
[8]
101 +

5

2
h
[8]
103 +

1

2
h
[8]
105 +

1

2
h
[8]
107 +

1

2
h
[8]
109 −

5

2
h
[8]
111 + 15h

[8]
129

− 41h
[8]
131 −

31

2
h
[8]
133 +

105

2
h
[8]
135 −

7

2
h
[8]
137 +

53

2
h
[8]
139 + 12h

[8]
141 − 42h

[8]
143

+
5

2
h
[8]
145 +

11

2
h
[8]
147 +

9

2
h
[8]
149 −

41

2
h
[8]
151 + h

[8]
153 − 13h

[8]
155 − 7h

[8]
157

− 5h
[8]
159 + 6h

[8]
161 − 11h

[8]
163 − 3h

[8]
165 + 3h

[8]
167 − 4h

[8]
171 − 4h

[8]
173

− 11h
[8]
175 +

3

2
h
[8]
177 −

3

2
h
[8]
179 − 3h

[8]
181 − 5h

[8]
183 +

3

2
h
[8]
185 −

3

2
h
[8]
187

+ 9h
[8]
193 − 25h

[8]
195 − 9h

[8]
197 + 27h

[8]
199 − 2h

[8]
201 + 9h

[8]
203 + 2h

[8]
205 − 23h

[8]
207

+ 2h
[8]
209 − h

[8]
213 − 8h

[8]
215 + 2h

[8]
217 − 3h

[8]
219 +

5

2
h
[8]
225 −

7

2
h
[8]
227 −

1

2
h
[8]
229

+
5

2
h
[8]
231 +

1

2
h
[8]
233 +

1

2
h
[8]
235 +

1

2
h
[8]
237 −

5

2
h
[8]
239

+ ζ2

[
2h

[6]
1 − 14h

[6]
3 −

15

2
h
[6]
5 +

37

2
h
[6]
7 −

5

2
h
[6]
9 +

25

2
h
[6]
11 + 7h

[6]
13 −

1

2
h
[6]
17

+
5

2
h
[6]
19 +

7

2
h
[6]
21 +

9

2
h
[6]
23 − 3h

[6]
25 + 3h

[6]
27 + 2h

[6]
33 − 14h

[6]
35 −

15

2
h
[6]
37

+
37

2
h
[6]
39 −

5

2
h
[6]
41 +

25

2
h
[6]
43 + 7h

[6]
45 −

1

2
h
[6]
49 +

5

2
h
[6]
51 +

7

2
h
[6]
53

+
9

2
h
[6]
55 − 3h

[6]
57 + 3h

[6]
59

]
+ ζ4

[15

2
h
[4]
1 −

55

2
h
[4]
3 −

41

2
h
[4]
5 +

15

2
h
[4]
9 −

55

2
h
[4]
11 −

41

2
h
[4]
13

]
+
(
ζ2ζ3 −

5

2
ζ5

)[
h
[3]
3 + h

[3]
7

]
−
(

(ζ3)
2 − 73

4
ζ6

)[
h
[2]
1 + h

[2]
3

]
− 3

2
ζ2(ζ3)

2 − 5

2
ζ3ζ5 −

471

4
ζ8 +

3

2
ζ5,3 . (4.6)

The remainder function R
(4)
6 (u, v, w), as a function of three variables, satisfies a dif-

ferential constraint, corresponding to the final-entry condition imposed on the symbol. As

discussed in appendix A, this means that the {7, 1} components of the coproduct obey

R
(4) 1−ui
6 = −R(4)ui

6 . This property of the partial derivatives does not necessarily extend

to the ordinary derivatives along a generic line. However, from eq. (4.2) it is easy to see

that it must hold along the line (u, u, 1), where it implies that

dR
(L)
6 (u, u, 1)

du
=

(
1

u
+

1

1− u

)
× pure function. (4.7)

It is easy to check that the property (4.7) holds for the expressions for R
(L)
6 (u, u, 1) in

eqs. (4.4), (4.5) and (4.6), by verifying their symmetry under the operation,

h[n]m → h
[n]
m+2n−1 , (4.8)
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where the lower index is taken mod 2n. This operation exchanges 0↔ 1 in the initial term

of the weight vectors, which, according to the definition of the HPLs, pairs the 1/u and

1/(1− u) terms in eq. (4.7).

Setting u = 1 in the above formulas leads to

R
(2)
6 (1, 1, 1) = −(ζ2)

2 = −5

2
ζ4 = −2.7058080842778 . . . ,

R
(3)
6 (1, 1, 1) =

413

24
ζ6 + (ζ3)

2 = 18.951719323416 . . .

R
(4)
6 (1, 1, 1) = −3

2
ζ2(ζ3)

2 − 5

2
ζ3ζ5 −

471

4
ζ8 +

3

2
ζ5,3 = −124.85491111408 . . . .

(4.9)

Note that R
(4)
6 (1, 1, 1) contains the multiple ζ value (MZV) ζ5,3. It follows from standard

conjectures on MZVs [82] that ζ5,3 cannot be expressed in terms of ordinary ζ values. While

it is known that MZVs can appear in the results for individual master integrals, this is one

of the first examples where an MZV enters the final result for a field theoretic quantity.

We remark that the point (1, 1, 1) is the unique six-point kinematics which can be

considered as a two-dimensional scattering configuration [83, 84]. At strong coupling [4],

using the AdS/CFT correspondence, the string world-sheet configuration lies in three-

dimensional anti-de Sitter space, AdS3. From eq. (4.26) below, the strong-coupling value

of the remainder function at this point is

R
(∞)
6 (1, 1, 1) =

π

6
− π2

12
= −0.2988682578258 . . . . (4.10)

We will explore the relation between weak-coupling and strong-coupling behavior more

thoroughly in section 4.4.

The numerical values of the L-loop to the (L− 1)-loop ratios at the point (1, 1, 1) are

remarkably close,

R
(3)
6 (1, 1, 1)

R
(2)
6 (1, 1, 1)

= −7.004088513718 . . . ,

R
(4)
6 (1, 1, 1)

R
(3)
6 (1, 1, 1)

= −6.588051932566 . . . .

(4.11)

In fact, the ratios are also similar away from this point, as can be seen in figure 2. The

logarithmic scale for u highlights how little the ratios vary over a broad range in u, as well

as how the u-dependence differs minimally between the successive ratios.

We also give the leading term in the expansion of R
(4)
6 (u, u, 1) around u = 0,

R
(4)
6 (u, u, 1) = u

[
− 5

48
ln4 u+

(
3

4
ζ2 +

5

3

)
ln3 u−

(
27

4
ζ4 −

1

2
ζ3 + 5ζ2 +

25

2

)
ln2 u

+ (15ζ4 − 3ζ3 + 13ζ2 + 50) lnu

+
219

8
ζ6 + (ζ3)

2 + 5ζ5 + ζ2ζ3 −
71

8
ζ4 + 6ζ3 − 10ζ2 −

175

2

]
+O(u2) .

(4.12)
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Figure 2. The successive ratios R
(L)
6 /R

(L−1)
6 on the line (u, u, 1).

We note the intriguing observation that the maximum-transcendentality piece of the

u1 ln0 u term is proportional to the four-loop cusp anomalous dimension, 219
8 ζ6 + (ζ3)

2 =

−1
4γ

(4)
K . In fact, the corresponding pieces of the two- and three-loop results, given in

ref. [24], can be checked to similarly correspond to −1
4γ

(2)
K and −1

4γ
(3)
K .

In the limit u→ 0, the line (u, u, 1) touches the end of the collinear line v = 0, u+w = 1.

So one could ask where the cusp anomalous dimension seen in eq. (4.12) originates in the

near-collinear limit from the OPE perspective. Actually, it is not there at all in the limiting

behavior S → 0, T → 0 of the Wilson loop ratio Whex employed in refs. [34–36]. To see

this, first recall from eq. (2.10) that to leading order in T , u = S2/(1 + S2), v = T 2,

and w = 1/(1 + S2). Hence the line (u, u, 1) for u → 0 matches the S → 0, T → 0

limit, after making the identification u = S2 = T 2, to leading order. Now let’s inspect

the additive term 1
8 γK(a)X(u, v, w) in eq. (2.20) relating R6 to lnWhex. The function

X(u, v, w) defined in eq. (2.22) is suppressed by a power of u in this limit,

X(u, u, 1) = 2u+O(u2), (4.13)

as u→ 0. This limiting behavior has the precise form and value to cancel the −1
4γK(a) · u

in R6(u, u, 1) in passing to lnWhex(a/2) via eq. (2.20).

Suppose, however, that we look at the other end of the collinear line v = 0, u+w = 1;

namely the line (1, u, u) as u → 0. This line matches the S → ∞, T → 0 limit, with

the identification u = 1/S2 = T 2 to leading order. The S3 permutation symmetry of the

remainder function implies that R6(1, u, u) = R6(u, u, 1). However, the function X has a
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different behavior in this limit,

X(1, u, u) = 2u(1− lnu) +O(u2). (4.14)

The logarithmic term implies that in the S → ∞, T → 0 limit the cusp anomalous

dimension is visible in the OPE. The difference between the two limits (or more generally,

the lack of symmetry of the Wilson loop ratio) is related to changing the “framing” of

the hexagonal Wilson loop, by making the other possible choice of pentagons and box

to remove the ultraviolet divergences. This change of frame always involves the cusp

anomalous dimension [36]. It may be useful to study the limiting behavior of the (u, u, 1)

and (1, u, u) lines in more detail, as an avenue along which the OPE might potentially be

resummable at finite coupling.

Comparing eq. (4.12) with the corresponding results for R
(2)
6 and R

(3)
6 [24], we see that

the ratios R
(L)
6 /R

(L−1)
6 both diverge logarithmically as u→ 0 along this line:

R
(3)
6 (u, u, 1)

R
(2)
6 (u, u, 1)

∼ 1

2
lnu, as u→ 0 ,

R
(4)
6 (u, u, 1)

R
(3)
6 (u, u, 1)

∼ 5

12
lnu, as u→ 0.

(4.15)

The slight difference in these coefficients is reflected in the slight difference in slopes in the

region of small u in figure 2.

As u→∞, the leading behavior at four loops is,

R
(4)
6 (u, u, 1) = −88345

144
ζ8 −

19

4
ζ2(ζ3)

2 − 63

4
ζ3ζ5 +

5

4
ζ5,3

+
1

u

[
1

42
ln7 u+

1

6
ln6 u+

(
1 +

4

5
ζ2

)
ln5 u−

(11

12
ζ3 − 4ζ2 − 5

)
ln4 u

+
(605

24
ζ4 −

11

3
ζ3 + 16ζ2 + 20

)
ln3 u

−
(

7ζ5 + 9ζ2ζ3 −
605

8
ζ4 + 11ζ3 − 48ζ2 − 60

)
ln2 u

+
(6257

32
ζ6 +

13

4
(ζ3)

2 − 14ζ5 − 18ζ2ζ3 +
605

4
ζ4 − 22ζ3

+ 96ζ2 + 120
)

lnu

− 13

2
ζ7 − 25ζ2ζ5 −

173

4
ζ3ζ4 +

6257

32
ζ6 +

13

4
(ζ3)

2 − 14ζ5

− 18ζ2ζ3 +
605

4
ζ4 − 22ζ3 + 96ζ2 + 120

]
+O

(
1

u2

)
. (4.16)

Just like at two and three loops, R
(4)
6 (u, u, 1) approaches a constant as u→∞. Comparing
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with eq. (7.17) of ref. [24], we find

R
(3)
6 (u, u, 1)

R
(2)
6 (u, u, 1)

∼ −9.09128803107 . . . , as u→∞.

R
(4)
6 (u, u, 1)

R
(3)
6 (u, u, 1)

∼ −9.73956178163 . . . , as u→∞.

(4.17)

These values are not very different from the ratios at (1, 1, 1) presented in eq. (4.11).

4.3 The line (u, 1, 1)

Next we consider the line (u, 1, 1), which, due to the total S3 symmetry of R6(u, v, w), is

equivalent to the line (1, 1, w) discussed in ref. [24]. As was the case at two and three loops,

we can express R
(4)
6 (u, 1, 1) solely in terms of HPLs of a single argument. In contrast to

the line (u, u, 1), here ∆(u, 1, 1) = (1− u)2 is non-vanishing. The parity-odd functions are

non-vanishing on this line, and contribute to the derivatives of the parity-even functions in

the coproduct representation.

Using the notation of section 4.2, the two-loop result is,

R
(2)
6 (u, 1, 1) =

1

2
h
[4]
1 +

1

4
h
[4]
5 +

1

2
h
[4]
9 +

1

2
h
[4]
13 −

1

2
ζ2 h

[2]
3 −

5

2
ζ4 , (4.18)

the three-loop result is,

R
(3)
6 (u, 1, 1) = −3

2
h
[6]
1 +

1

2
h
[6]
3 −

1

4
h
[6]
5 −

3

4
h
[6]
9 +

1

4
h
[6]
11 −

1

4
h
[6]
13 − h

[6]
17

+
1

2
h
[6]
19 −

1

2
h
[6]
21 −

1

2
h
[6]
25 +

1

2
h
[6]
27 −

3

2
h
[6]
33 +

1

2
h
[6]
35 −

1

4
h
[6]
37

− 3

4
h
[6]
41 +

1

2
h
[6]
43 −

5

4
h
[6]
49 +

3

4
h
[6]
51 −

1

4
h
[6]
53 −

3

4
h
[6]
57 +

3

4
h
[6]
59

+ ζ2

[
−1

2
h
[4]
1 +

1

2
h
[4]
3 +

1

2
h
[4]
5 −

1

2
h
[4]
9 −

1

2
h
[4]
13

]
− ζ4

[
h
[2]
1 −

17

4
h
[2]
3

]
+ (ζ3)

2 +
413

24
ζ6 ,

(4.19)

and the four-loop result is,

R
(4)
6 (u, 1, 1) =

15

2
h
[8]
1 −

13

2
h
[8]
3 −

3

4
h
[8]
5 +

3

4
h
[8]
7 +

9

4
h
[8]
9 −

3

4
h
[8]
11 +

1

2
h
[8]
13 +

15

4
h
[8]
17

− 5

2
h
[8]
19 +

1

2
h
[8]
21 +

5

8
h
[8]
23 +

5

4
h
[8]
25 −

1

2
h
[8]
27 −

1

8
h
[8]
29 +

9

2
h
[8]
33 −

17

4
h
[8]
35

− 3

8
h
[8]
37 +

3

4
h
[8]
39 +

11

8
h
[8]
41 −

11

8
h
[8]
43 −

5

8
h
[8]
45 +

9

4
h
[8]
49 −

9

4
h
[8]
51 −

3

4
h
[8]
53

+
3

4
h
[8]
55 +

3

4
h
[8]
57 +

21

4
h
[8]
65 −

23

4
h
[8]
67 −

7

8
h
[8]
69 +

3

4
h
[8]
71 +

11

8
h
[8]
73 −

13

8
h
[8]
75

− 5

8
h
[8]
77 +

23

8
h
[8]
81 −

25

8
h
[8]
83 −

5

8
h
[8]
85 +

7

8
h
[8]
87 +

9

8
h
[8]
89 −

3

8
h
[8]
91 +

1

8
h
[8]
93

+
11

4
h
[8]
97 − 5h

[8]
99 −

11

8
h
[8]
101 +

7

8
h
[8]
103 +

3

4
h
[8]
105 −

5

4
h
[8]
107 −

5

8
h
[8]
109 +

7

8
h
[8]
113

− 23

8
h
[8]
115 −

9

8
h
[8]
117 +

7

8
h
[8]
119 +

15

2
h
[8]
129 −

13

2
h
[8]
131 −

3

4
h
[8]
133 +

3

4
h
[8]
135
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+
9

4
h
[8]
137 − h

[8]
139 +

1

4
h
[8]
141 +

15

4
h
[8]
145 − 3h

[8]
147 +

1

4
h
[8]
149 + h

[8]
151 +

5

4
h
[8]
153

+
1

4
h
[8]
157 +

9

2
h
[8]
161 −

21

4
h
[8]
163 −

7

8
h
[8]
165 +

9

8
h
[8]
167 +

9

8
h
[8]
169 −

9

8
h
[8]
171 −

1

2
h
[8]
173

+ 2h
[8]
177 −

11

4
h
[8]
179 −

7

8
h
[8]
181 +

9

8
h
[8]
183 +

3

8
h
[8]
185 +

3

8
h
[8]
187 + 6h

[8]
193 − 7h

[8]
195

− 5

4
h
[8]
197 +

9

8
h
[8]
199 +

3

2
h
[8]
201 −

3

2
h
[8]
203 −

3

8
h
[8]
205 +

25

8
h
[8]
209 −

31

8
h
[8]
211 −

1

4
h
[8]
213

+
11

8
h
[8]
215 + h

[8]
217 +

1

4
h
[8]
221 +

7

2
h
[8]
225 − 7h

[8]
227 −

17

8
h
[8]
229 +

5

4
h
[8]
231 +

5

8
h
[8]
233

− 13

8
h
[8]
235 −

7

8
h
[8]
237 +

5

4
h
[8]
241 −

19

4
h
[8]
243 −

7

4
h
[8]
245 +

5

4
h
[8]
247

+ ζ2

[
h
[6]
1 − 3h

[6]
3 −

7

4
h
[6]
5 +

1

4
h
[6]
7 −

1

4
h
[6]
9 +

1

4
h
[6]
11 +

1

2
h
[6]
13 +

1

4
h
[6]
17 −

3

4
h
[6]
19

+
1

2
h
[6]
21 −

1

4
h
[6]
23 −

3

4
h
[6]
27 −

1

2
h
[6]
29 + h

[6]
33 −

5

2
h
[6]
35 −

3

2
h
[6]
37 −

1

2
h
[6]
39

− h[6]43 −
1

2
h
[6]
45 +

3

4
h
[6]
49 −

9

4
h
[6]
51 −

5

4
h
[6]
53 −

1

2
h
[6]
55 +

3

4
h
[6]
57 −

5

4
h
[6]
59

]
+ ζ4

[15

4
h
[4]
1 − 5h

[4]
3 −

47

8
h
[4]
5 +

3

2
h
[4]
7 +

15

4
h
[4]
9 +

3

2
h
[4]
11 +

9

2
h
[4]
13

]
+
(
ζ2ζ3 −

5

2
ζ5

)[3

2
h
[3]
3 + h

[3]
7

]
+ ζ6

[73

8
h
[2]
1 −

461

16
h
[2]
3

]
− 1

2
(ζ3)

2
[
h
[2]
1 + h

[2]
3

]
− 3

2
ζ2(ζ3)

2 − 5

2
ζ3ζ5 −

471

4
ζ8 +

3

2
ζ5,3 . (4.20)

Using eq. (4.8), it is easy to check that none of these functions satisfies a property like

eq. (4.7), where the derivative is expressed in terms of a single pure function multiplied

by a rational prefactor. The reason is related to the nonvanishing contributions of the

parity-odd functions in the coproduct representation.

At both large and small u, these functions all diverge logarithmically. At two and

three loops, this was observed in ref. [24]. At four loops, we find at small u,

R
(4)
6 (u, 1, 1) =

1

24

(
7

2
ζ5 − ζ2ζ3

)
ln3 u− 639

256
ζ6 ln2 u+

(
829

64
ζ7 +

69

16
ζ3ζ4 +

39

8
ζ2ζ5

)
lnu

− 3

16
ζ2(ζ3)

2 − 57

16
ζ3ζ5 −

123523

2880
ζ8 +

19

80
ζ5,3 +O(u) ,

(4.21)

and at large u,

R
(4)
6 (u, 1, 1) = − 37

322560
ln8 u− 1

80
ζ2 ln6 u+

7

320
ζ3 ln5 u− 533

384
ζ4 ln4 u

+

(
47

48
ζ5 +

53

48
ζ2ζ3

)
ln3 u−

(
6019

128
ζ6 +

11

16
(ζ3)

2

)
ln2 u

+

(
195

8
ζ7 +

923

32
ζ3ζ4 +

33

2
ζ2ζ5

)
lnu

− 3ζ2(ζ3)
2 − 25

2
ζ3ζ5 −

1488641

4608
ζ8 +

1

4
ζ5,3 +O

(
1

u

)
.

(4.22)
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Figure 3. The successive ratios R
(L)
6 /R

(L−1)
6 on the line (u, 1, 1).

The ratios R
(L)
6 (u, 1, 1)/R

(L−1)
6 (u, 1, 1) also diverge in both limits,

R
(3)
6 (u, 1, 1)

R
(2)
6 (u, 1, 1)

∼
(

7π4

1440ζ3

)
lnu = (0.393921796467 . . .) lnu, as u→ 0 ,

R
(4)
6 (u, 1, 1)

R
(3)
6 (u, 1, 1)

∼
(

60ζ5
π4
− 20ζ3

7π2

)
lnu = (0.290722549640 . . .) lnu, as u→ 0 ,

(4.23)

and,

R
(3)
6 (u, 1, 1)

R
(2)
6 (u, 1, 1)

∼ − 1

10
ln2 u, as u→∞ ,

R
(4)
6 (u, 1, 1)

R
(3)
6 (u, 1, 1)

∼ − 37

336
ln2 u, as u→∞ .

(4.24)

In figure 3, we plot the ratios R
(L)
6 (u, 1, 1)/R

(L−1)
6 (u, 1, 1) for a large range of u. The ratios

are strikingly similar throughout the entire region.

4.4 The line (u, u, u)

At strong coupling, using the AdS/CFT correspondence, gluon scattering amplitudes can

be computed in the semi-classical approximation by minimizing the area of a string world-

sheet propagating in AdS5×S5 [4]. The world-sheet boundary conditions depend on the
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scattering kinematics. The amplitude has the generic form,7

A6 ∝ exp

(
−
√
λ

2π
×Area

)
∝ exp

(√
λ

2π
×R(∞)

6

)
, (4.25)

where λ = g2YMNc = 8π2 a. As discussed in refs. [24, 85], on the symmetrical diagonal line

(u, u, u), the remainder function at strong coupling can be written analytically,

R
(∞)
6 (u, u, u) = −π

6
+
φ2

3π
+

3

8

[
ln2 u+ 2 Li2(1− u)

]
− π2

12
, (4.26)

where φ = 3 cos−1(1/
√

4u). The simplicity of this formula motivates us to evaluate the

four-loop remainder function on the line (u, u, u), as we did earlier at two and three

loops [24].

In perturbation theory, the function R
(L)
6 (u, u, u) cannot be written solely in terms of

HPLs with argument (1 − u). However, it is possible to use the coproduct structure to

derive differential equations which may be solved by using series expansions around the

three points u = 0, u = 1, and u = ∞. This method was applied in ref. [24] at two and

three loops, and here we extend it to the four-loop case.

The expansion around u = 0 takes the form,

R
(4)
6 (u, u, u) =

(1791

32
ζ6 −

3

4
(ζ3)

2
)

ln2 u+
32605

512
ζ8 −

5

2
ζ3ζ5 −

9

8
ζ2(ζ3)

2

+ u

[
5

192
ln7 u+

5

192
ln6 u−

(19

16
ζ2 +

5

32

)
ln5 u

+
5

16

(
ζ3 − 3ζ2 −

3

2

)
ln4 u+

(1129

64
ζ4 +

5

8
ζ3 + 3ζ2 +

15

8

)
ln3 u

−
(21

8
ζ5 +

3

2
ζ2ζ3 −

669

64
ζ4 +

3

2
ζ3 − 6ζ2 −

75

8

)
ln2 u

+
(32073

128
ζ6 − 3(ζ3)

2 − 27

4
ζ5 −

3

2
ζ2ζ3 −

165

32
ζ4 −

15

4
ζ3

− 15

2
ζ2 −

75

4

)
lnu+

3

4
ζ2ζ5 −

21

16
ζ3ζ4 +

7119

128
ζ6

+
3

4
(ζ3)

2 +
27

4
ζ5 +

3

2
ζ2ζ3 +

45

32
ζ4 +

21

2
ζ3 −

15

2
ζ2 −

525

4

]
+O(u2). (4.27)

The leading term at four loops diverges logarithmically, but, just like at two and three

loops, the divergence appears only as ln2 u. This is another piece of evidence in support

of the claim by Alday, Gaiotto and Maldacena [85] that this property should hold to all

orders in perturbation theory. Because of this fact, the ratios R
(3)
6 (u, u, u)/R

(2)
6 (u, u, u) and

7It has recently been shown that another contribution has the same dependence on λ at strong coupling

as the area term, leading to a shift by an additive constant [36]. We do not take this extra shift into

account here.
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R
(4)
6 (u, u, u)/R

(3)
6 (u, u, u) approach constants in the limit u→ 0,

R
(3)
6 (u, u, u)

R
(2)
6 (u, u, u)

∼ −7π2

10
= −6.90872308076 . . . , as u→ 0 ,

R
(4)
6 (u, u, u)

R
(3)
6 (u, u, u)

∼ −199π2

294
+

60(ζ3)
2

7π4
= −6.55330020271 . . . , as u→ 0 .

(4.28)

At large u, the expansion behaves as,

R
(4)
6 (u, u, u) =

3

2
ζ2(ζ3)

2 − 10ζ3ζ5 +
1713

64
ζ8 −

3

4
ζ5,3 −

4π7

5u1/2

+
1

32u

[
1

56
ln7 u+

5

16
ln6 u+

(51

20
ζ2 +

33

8

)
ln5 u

−
(11

2
ζ3 −

249

8
ζ2 −

345

8

)
ln4 u

+
(1237

4
ζ4 − 50ζ3 +

547

2
ζ2 +

705

2

)
ln3 u

−
(

168ζ5 + 222ζ2ζ3 −
17607

8
ζ4 + 330ζ3 −

3441

2
ζ2 −

4275

2

)
ln2 u

+
(52347

8
ζ6 + 144(ζ3)

2 − 744ζ5 − 1032ζ2ζ3 +
38397

4
ζ4

− 1416ζ3 + 7041ζ2 + 8595
)

lnu− 360ζ7 − 2499ζ3ζ4

− 1200ζ2ζ5 +
134553

16
ζ6 + 426(ζ3)

2 − 1596ζ5 − 2292ζ2ζ3

+
80289

4
ζ4 − 2976ζ3 + 14193ζ2 + 17235

]
+

π3

32u3/2

[
3 ln3 u+

45

2
ln2 u+

(
306ζ2 + 99

)
lnu− 96ζ4 + 36ζ3

+ 671ζ2 +
469

2

]
+O

(
1

u2

)
. (4.29)

The ratios R
(3)
6 (u, u, u)/R

(2)
6 (u, u, u) and R

(4)
6 (u, u, u)/R

(3)
6 (u, u, u) approach constants in

the limit u→∞,

R
(3)
6 (u, u, u)

R
(2)
6 (u, u, u)

∼ −1.22742782334 . . . , as u→∞ ,

R
(4)
6 (u, u, u)

R
(3)
6 (u, u, u)

∼ 21.6155002540 . . . , as u→∞ .

(4.30)

In contrast to the expansions around u = 0 and u = ∞, the expansion around u = 1

is regular,

R
(4)
6 (u, u, u) = −3

2
ζ2(ζ3)

2 − 5

2
ζ3ζ5 −

471

4
ζ8 +

3

2
ζ5,3

+
(219

8
ζ6 −

3

2
(ζ3)

2 +
45

4
ζ4 + 3ζ2 +

45

2

)
(1− u) +O

(
(1− u)2

)
.

(4.31)
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Figure 4. The successive ratios R
(L)
6 /R

(L−1)
6 on the line (u, u, u).

We take 100 terms in each expansion, around 0, 1 and ∞ and piece them together

to obtain a numerical representation for the function R
(4)
6 (u, u, u) that is valid along the

entire line. In the regions of overlap, we find agreement to at least 15 digits. In figure 4,

we plot the ratios R
(L)
6 (u, u, u)/R

(L−1)
6 (u, u, u) for a large range of u. The spike in the plot

is not a numerical instability; it occurs because the denominators in the respective ratios

go through zero at a slightly different point from the numerators, around u = 1/3.

As noted in ref. [24], the two- and three-loop remainder functions vanish along the line

(u, u, u), very close to the point u = 1/3. More precisely, it was found that the vanishing

relation R
(L)
6 (u

(L)
0 , u

(L)
0 , u

(L)
0 ) = 0 holds for

u
(2)
0 = 0.33245163 . . . , u

(3)
0 = 0.3342763 . . . , (4.32)

for two and three loops, respectively.

The point (u, v, w) = (1/3, 1/3, 1/3) is special because it is where the line (u, u, u)

pierces the plane u + v + w = 1. This plane passes through all three of the lines marking

the collinear limits (v = 0, u+w = 1; and cyclic permutations thereof). Because R6(u, v, w)

vanishes on all three lines, one might expect it to vanish close to the equilateral triangle

that is bounded by them, which lies in the plane u+v+w = 1. Indeed, that is what is seen

at three loops [24]. In this paper, we will not evaluate the four-loop remainder function on

this triangle, but we can verify that the zero-crossing point remains close to u = 1/3. The

precise zero-crossing value at four loops is

u
(4)
0 = 0.33575561 . . . . (4.33)
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Figure 5. The remainder function on the line (u, u, u) plotted at two, three, and four loops and

at strong coupling. The functions have been rescaled by their values at the point (1, 1, 1).

With respect to the three-loop value in eq. (4.32), the zero-crossing point has shifted slightly

further away from u = 1/3.

As can be seen from figure 4, R
(4)
6 (u, u, u) actually crosses zero in a second place, at a

very large value of u,

ũ
(4)
0 = 5529.65453 . . . . (4.34)

This phenomenon does not happen at two or three loops: R
(2)
6 (u, u, u) and R

(3)
6 (u, u, u)

have unique zero crossings, at the values given in eq. (4.32). Aside from the zero-crossing

neighborhood, figure 4 shows excellent agreement between the two successive ratios for

relatively small u, say u < 1000. For large u, the ratios approach constant values that

differ by a factor of about −17.6 (see eq. (4.30)).

In figure 5, we plot the two-, three-, and four-loop and strong-coupling remainder

functions on the line (u, u, u). In order to compare their relative shapes, we rescale each

function by its value at (1, 1, 1). The remarkable similarity in shape that was noticed at

two loops [86]8 and at three loops [24] clearly persists at four loops, particularly for the

region 0 < u < 1.

As discussed in ref. [24], a necessary condition for the shapes to be so similar is that

the limiting behavior of the ratios as u → 0 is almost the same as the ratios’ values at

8See refs. [87–90] for similar observations for other kinematical configurations.
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u = 1. Comparing eq. (4.28) to eq. (4.11), we find,

R
(3)
6 (u, u, u)

R
(2)
6 (u, u, u)

∣∣∣∣∣
u→0

/R(3)
6 (1, 1, 1)

R
(2)
6 (1, 1, 1)

=

[
59

63
+

8

147

(ζ3)
2

ζ6

]−1
∼ 0.986 . . . , (4.35)

R
(4)
6 (u, u, u)

R
(3)
6 (u, u, u)

∣∣∣∣∣
u→0

/R(4)
6 (1, 1, 1)

R
(3)
6 (1, 1, 1)

=

(
597ζ6 − 8(ζ3)

2
)(

413
24 ζ6+(ζ3)

2
)

21 ζ4

(
−6 ζ5,3+10 ζ3 ζ5+6 ζ2 (ζ3)2+471 ζ8

) ∼ 0.995 . . . .

(4.36)

These ratios are indeed quite close to 1, despite their complicated representations in terms

of ζ values. The agreement is slightly better for the double ratio between four and three

loops, than it is for the one between three and two loops.

We can also compute similar double ratios involving the perturbative and strong cou-

pling coefficients,

R
(∞)
6 (u, u, u)

R
(2)
6 (u, u, u)

∣∣∣∣∣
u→0

/R(∞)
6 (1, 1, 1)

R
(2)
6 (1, 1, 1)

∼ 1 ,

R
(∞)
6 (u, u, u)

R
(3)
6 (u, u, u)

∣∣∣∣∣
u→0

/R(∞)
6 (1, 1, 1)

R
(3)
6 (1, 1, 1)

∼ 1.014 ,

R
(∞)
6 (u, u, u)

R
(4)
6 (u, u, u)

∣∣∣∣∣
u→0

/R(∞)
6 (1, 1, 1)

R
(4)
6 (1, 1, 1)

∼ 1.019 .

(4.37)

The ratio between the two-loop and strong-coupling points is exactly 1, while the corre-

sponding ratios for three and four loops deviate slightly from one. The deviations increase

as L increases, suggesting that the shapes of the weak-coupling curves on the line (u, u, u)

are getting slightly further from the shape of the strong coupling curve, at least for small

L. This observation is also evident in figure 5 at large u.

Let us conclude this section by making a comment on hexagon functions on the line

(u, u, u). It is easy to check that on this line we have

u =
y

(1 + y)2
, y ≡ yu , (4.38)

and the symbol of R
(4)
6 (u, u, u) has all its entries drawn from the set {y,Φ2(y),Φ3(y)},

where

Φ2(y) = 1 + y and Φ3(y) = 1 + y + y2 (4.39)

denote the second and third cyclotomic polynomials. It follows then that R
(4)
6 (u, u, u) can

be entirely expressed through iterated integrals over d ln forms with cyclotomic polynomials

as arguments. This class of iterated integrals is a generalization of HPLs, called cyclotomic

HPLs, and was studied in detail in ref. [91]. Note that this observation only follows from

the entries in the symbol, and is by no means restricted to four loops. As a consequence,

we conclude that on the line (u, u, u) hexagon functions, and thus the six-point remainder

function, can always be expressed in terms of cyclotomic HPLs.
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4.5 Approach to large orders

In the previous subsections, we have found that the portion of the line (u, u, u) with 0 <

u < 1 leads to quite constant ratios of successive loop orders L. We can also ask what

this ratio should become as L → ∞. Most quantum field theories have a zero radius of

convergence for their perturbative expansions; that is, the series are asymptotic. There are

two generic reasons for this: renormalons and instantons, each of which leads to factorial

growth of perturbative coefficients. However, planar N = 4 super-Yang-Mills theory is

free from both of these phenomena. Because it is conformally invariant, the beta function

vanishes and there are no renormalons. Because the number of colors Nc is very large, at

fixed ’t Hooft coupling λ instantons are exponentially suppressed as Nc →∞ by a factor of

exp(−8π2/g2YM) = exp(−8π2Nc/λ). Hence we should expect the perturbative expansion

to have a finite radius of convergence r. The radius r corresponds to a growth rate of

successive perturbative coefficients c(L), which approaches a constant as L becomes large,

lim
L→∞

c(L)

c(L−1)
= −1

r
. (4.40)

In eq. (4.40) we have assumed an alternating series, which holds for R
(L)
6 for L = 2, 3, 4

throughout Region I and on the lines (u, u, 1) and (u, 1, 1), and for L = 2, 3 throughout

almost all of the unit cube.9

There is another quantity, closely related to the scattering amplitude, which we can

use as a simple benchmark for assessing large order behavior. That quantity is the cusp

anomalous dimension. Its perturbative expansion can be computed to all orders using the

exact formula of Beisert, Eden and Staudacher (BES) [31]. Using this formula, we give the

ratio of successive loop orders in table 4. At very large loop orders, the ratio approaches −8,

corresponding to a radius of convergence of 1/8 when using the loop expansion parameter

a. (In terms of the parameter used by BES, g2 = a/2, the radius of convergence is 1/16;

or 1/4 in terms of g.) However, the approach to this asymptotic value is quite slow.

Table 4 also shows the two nontrivial ratios currently available for the remainder

function at (u, v, w) = (1, 1, 1), as representative of the fairly constant region (u, v, w) =

(u, u, u) with 0 < u . 1. We also give values for the three available ratios for the Wilson

loop ratio evaluated at two interior points, u = 1
4 and u = 3

4 . (The Wilson loop ratio

diverges at (u, v, w) = (1, 1, 1).) There is an extra ratio available for the Wilson loop

because its one-loop value is nonzero, due to the function X(u, v, w) appearing in eq. (2.20).

Suppose that eq. (4.40) holds for all observables in the theory; i.e., that the radius of

convergence is the same for all observables. An optimist would say that the remainder-

function ratios exhibit a precocious approach to the expected asymptotic value of −8: the

cusp anomalous dimension ratio does not reach −6.5 until eight loops. A pessimist would

say that the trend is the wrong way: the ratio for L = 4 is further from −8 than is the

ratio for L = 3. On the other hand, the Wilson loop ratios are actually approaching −8

monotonically. For both u = 1
4 and u = 3

4 , they appear to be converging more quickly to

−8 than is the cusp anomalous dimension.

9As noted in ref. [24], there is a small region surrounding the plane u + v + w = 1 in which R
(2)
6 and

R
(3)
6 have the same sign.
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L γ
(L)
K /γ

(L−1)
K R̄

(L)
6 (1, 1, 1) lnW(L)

hex

(
3
4 ,

3
4 ,

3
4

)
lnW(L)

hex

(
1
4 ,

1
4 ,

1
4

)
2 -1.6449340 ∞ -2.7697175 -2.8015275

3 -3.6188549 -7.0040885 -5.0036164 -5.1380714

4 -4.9211827 -6.5880519 -5.8860842 -6.0359857

5 -5.6547494 – – –

6 -6.0801089 – – –

7 -6.3589220 – – –

8 -6.5608621 – – –

9 -6.7164600 – – –

10 -6.8410049 – – –

11 -6.9432839 – – –

12 -7.0288902 – – –

13 -7.1016320 – – –

14 -7.1642208 – – –

15 -7.2186492 – – –

Table 4. We list the ratio of loop order L to the previous order through L = 15 for the cusp

anomalous dimension, and through L = 4 for the remainder function and the Wilson loop. We

introduced a bit of notation to save space: R̄
(L)
6 ≡ R(L)

6 /R
(L−1)
6 and lnW(L)

hex ≡ lnW(L)
hex/lnW

(L−1)
hex .

It is worth remarking that in Region I for u = v, the region shown in figure 1, the

ratio R
(4)
6 /R

(3)
6 lies between −6.6 and −7 over the entire region shown. More generally,

sampling 1352 points in Region I, including ones with u 6= v, the ratio is always between

−6.60 and −8.67. Clearly a computation of the remainder-function ratio at the next loop

order, R
(5)
6 /R

(4)
6 , would be very illuminating in this regard.

5 Conclusions

In this article, we presented the four-loop remainder function, which is a dual-conformally

invariant function that describes six-point MHV scattering amplitudes in planar N = 4

super Yang-Mills theory. The result was bootstrapped from a limited set of assumptions

about the analytic properties of the relevant function space. Following the strategy of

ref. [22], we constructed an ansatz for the symbol and constrained this ansatz using various

physical and mathematical consistency conditions. A unique expression for the symbol was

obtained by applying information from the near-collinear expansion, as generated by the

OPE for flux tube excitations [34]. The symbol, in turn, was lifted to a full function, using

the methods described in ref. [24]. In particular, a mathematically-consistent ansatz for

the function was obtained by applying the coproduct bootstrap described in ref. [24]. All

of the function-level parameters of this ansatz were fixed by again applying information

from the near-collinear expansion.
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The final expression for the four-loop remainder function is quite lengthy, but its func-

tional form simplifies dramatically on various one-dimensional lines in the three-dimensional

space of cross ratios. While the analytic form for the function on these lines is rather differ-

ent at two, three, and four loops, a numerical evaluation shows that they are in fact quite

similar for large portions of the parameter space, at least up to an overall rescaling. On the

line where all three cross ratios are equal, an analytical result at strong coupling is avail-

able. The perturbative coefficients are very similar in shape to the strong-coupling one,

particularly in the region where the common cross ratio is less than one. This agreement

suggests that an interpolation from weak to strong coupling may depend rather weakly on

the kinematic variables, at least on this one-dimensional line.

Given the full functional form of the four-loop remainder function, it is straightforward

to extract its limit in multi-Regge kinematics. This information allowed us to fix all of the

previously undetermined constants in the NNLLA BFKL eigenvalue and the N3LLA impact

factor. Although we used some multi-Regge factorization information as input, the fact

that we found a solution consistent with all the OPE data suggests that factorization does

hold beyond NLLA. We also observed an intriguing correspondence between the BFKL

eigenvalue and the energy of a gluonic excitation of the GKP string. It would be very

interesting to better understand this correspondence.

There are many avenues for future research. For example, it would be interesting to

try to understand the correspondence between the integrated results found here (and at

three loops) and the types of multi-loop integrals that appear in recent formulations of the

planar multi-loop integrand [19, 79–81].

In implementing the kind of bootstrap used here beyond the six-point case, it is im-

portant to have a good understanding of the relevant space of functions from results at

low loop order. Progress is being made on this front [63, 92], most recently through the

introduction of cluster coordinates [93] and cluster polylogarithms [94].

In principle, the methods used in this work could be extended to five loops and beyond.

The primary limitation is computational power and the availability of boundary data, such

as the near-collinear limit, to fix the proliferation of constants. It is remarkable that a

fully nonperturbative formulation of the near-collinear limit now exists. Ultimately, the

hope is that the full analytic structure of perturbative scattering amplitudes, as exposed

here through four loops for the six-point case, might in some way pave the way for a

nonperturbative formulation for generic kinematics.
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A Sample coproducts

As mentioned in section 2.4, the construction of a complete set of hexagon functions at

weight five [24] facilitated the construction of R
(4)
6 at function level in the present paper.

We could identify the symbols of all the coefficients [R
(4)
6 ]si,sj ,sk of the {5, 1, 1, 1} coprod-

uct, ∆5,1,1,1(R
(4)
6 ) in eq. (2.27), with linear combinations of the functions constituting the

weight-five basis, modulo the ζ value ambiguities listed in table 2. Besides facilitating the

construction, writing the {5, 1, 1, 1} coproduct elements in terms of weight-five hexagon

functions also provides a compact way to define the final answer for R
(4)
6 . Essentially we

are specifying the function via its derivatives.

In this appendix, we will list a few of the coproduct elements of R
(4)
6 to give a flavor

for this description, although they are still too lengthy to list all of them here. We will

provide the complete set as a computer-readable file [72].

First, though, we briefly review the connection between the coproduct and derivatives

of hexagon functions [24]. A hexagon function F of weight n has a {n − 1, 1} coproduct

component of the form,

∆n−1,1(F ) ≡
3∑
i=1

F ui ⊗ lnui + F 1−ui ⊗ ln(1− ui) + F yi ⊗ ln yi , (A.1)

where the nine functions {F ui , F 1−ui , F yi} are of weight n − 1. The first derivatives of

F , in either the ui variables or the yi variables, are simple linear combinations of these

coproduct elements:

∂F

∂u

∣∣∣∣
v,w

=
F u

u
−F

1−u

1−u
+

1−u−v−w
u
√

∆
F yu +

1−u−v+w

(1−u)
√

∆
F yv +

1−u+v−w
(1−u)

√
∆
F yw ,

√
∆ yu

∂F

∂yu

∣∣∣∣
yv ,yw

= (1−u)(1−v−w)F u−u(1−v)F v−u(1−w)Fw−u(1−v−w)F 1−u

+ uv F 1−v+uw F 1−w+
√

∆F yu . (A.2)

Derivatives with respect to v, w, yv and yw can be obtained from the cyclic images of

eq. (A.2).

As discussed extensively in ref. [24], the derivatives can be used to define various

integral representations for F , which can be evaluated numerically. It is also possible to

integrate the differential equations analytically in various kinematical limits. For example,

in the MRK limit, the appropriate variables are (ξ, w,w∗), where ξ≡1−u1 is vanishing and

(w,w∗) are defined via eq. (3.2). The differential equations in the MRK variables are [24],

∂F

∂ξ
= − ∂F

∂u1
+ x

∂F

∂u2
+ y

∂F

∂u3
,

∂F

∂w
=

ξ

w(1 + w)

[
−wx ∂F

∂u2
+ y

∂F

∂u3

]
,

∂F

∂w∗
=

ξ

w∗(1 + w∗)

[
−w∗x ∂F

∂u2
+ y

∂F

∂u3

]
.

(A.3)
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Using eq. (A.2) and its cyclic images, we find that the w derivative can be rewritten directly

in terms of the coproduct elements as,

∂F

∂w
=

1

w

(
F u3 − F y3

)
− 1

1 + w

(
F u2 + F u3 + F y2 − F y3

)
. (A.4)

This differential equation can be integrated up systematically in terms of SVHPLs.

The MRK limiting behavior of all the weight-five hexagon functions was given in

ref. [24]. These results give directly the MRK limits of all the independent elements

∆5,1,1,1(R
(4)
6 ). Then we can integrate up eq. (A.4) in order to get the MRK behavior of all

the ∆6,1,1(R
(4)
6 ) elements, integrate once more to get the limiting behavior of the ∆7,1(R

(4)
6 )

elements, and integrate a final time to get the desired MRK behavior of R
(4)
6 itself.

How many coproduct components have to be specified? Thanks to the S3 permutation

symmetry of R
(4)
6 (u, v, w) and the differential constraint corresponding to the final-entry

condition, the number is manageable. First of all, there are only two independent {7, 1}
coproduct elements,

Ru and Ryu , (A.5)

where we have suppressed the subscript 6 and superscript (4) to avoid clutter in subsequent

equations. The final-entry constraint becomes

R1−u = −Ru, R1−v = −Rv, R1−w = −Rw, (A.6)

for the coproduct. The S3 symmetry implies that the other elements can be obtained by

permuting the two elements given in eq. (A.5),

Rv(u, v, w) = Ru(v, w, u), Rw(u, v, w) = Ru(w, u, v),

Ryv(u, v, w) = Ryu(v, w, u), Ryw(u, v, w) = Ryu(w, u, v).
(A.7)

There are 11 independent {6, 1, 1} coproduct elements:

Ru,u, R1−u,u, Ryu,u = Ru,yu , R1−u,yu , Ryu,yu ,

Rv,u, R1−v,u, Ryv ,u, Rv,yu , R1−v,yu , Ryv ,yu .
(A.8)

The counting is as follows: using the cyclic symmetry, the last entry can be rotated to be

u, 1−u or yu. However, the final-entry condition at function level eq. (A.6) says that a last

entry of 1 − u can be exchanged for a last entry of u, at the price of a minus sign. There

is still a residual flip symmetry, exchanging v ↔ w, which allows the next-to-last entry to

be forbidden from being w, 1−w or yw. That counting leaves 12 possibilities; however, we

also find that Ryu,u = Ru,yu , which presumably follows from integrability.

Here we will give the {5, 1, 1, 1} coproduct elements that allow the construction of

Ru,u. In fact, the {5, 1, 1, 1} coproduct entries allow us to construct the total derivative of

Ru,u, so we need to supplement them with a constant of integration, which we specify at

the point (u, v, w) = (1, 1, 1):

Ru,u(1, 1, 1) =
73

8
ζ6 −

1

2
(ζ3)

2. (A.9)
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Now, using the residual v ↔ w flip symmetry for Ru,u, the six independent elements

required to specify Ru,u are: Ru,u,u, R1−u,u,u, Rv,u,u, R1−v,u,u, Ryu,u,u and Ryv ,u,u. The

parity-odd elements Ryu,u,u and Ryv ,u,u are much simpler to represent, because the basis

of weight-five parity-odd functions is much smaller than the parity-even basis. They are

given by,

Ryu,u,u =
1

128

[
−3
(
H1(u, v, w)+H1(v, w, u)+H1(w, u, v)

)
+

1

4

(
11 [J1(u, v, w)+J1(v, w, u)]

+ 7 J1(w, u, v)
)

+ 2Hu
1

(
2F1(u, v, w)− F1(v, w, u)− F1(w, u, v)

)
+
(

2Hu
2 − 14 (Hv

2 +Hw
2 )− 7 (Hu

1 )2 − 3 [(Hv
1 )2 + (Hw

1 )2]− 8Hv
1 H

w
1

− 2Hu
1 (Hv

1 +Hw
1 ) + 74 ζ2

)
Φ̃6(u, v, w)

]
, (A.10)

Ryv ,u,u =
1

256

[
−5 [H1(u, v, w)+H1(v, w, u)]−13H1(w, u, v)+

1

4

(
5 J1(u, v, w)+25 J1(v, w, u)

+ 9 J1(w, u, v)
)

+ 4Hu
1

(
3F1(u, v, w)− F1(v, w, u)− 2F1(w, u, v)

)
+
(

6Hu
2 −26 (Hv

2 +Hw
2 )−9 (Hu

1 )2 − 5 [(Hv
1 )2 + (Hw

1 )2]− 4Hu
1 H

v
1 − 8Hu

1 H
w
1

− 16Hv
1 H

w
1 + 110 ζ2

)
Φ̃6(u, v, w)

]
. (A.11)

The four parity-even elements are given by,

Ru,u,u =
11

384

[
M1(u, v, w) +M1(u,w, v)−M1(v, u, w)−M1(w, u, v)

]
− 1

12

[
Qep(u, v, w) +Qep(u,w, v)

]
− 17

18

[
Qep(v, u, w) +Qep(w, u, v)

]
+

19

36

[
Qep(v, w, u) +Qep(w, v, u)

]
+

1

96
N(u, v, w) +

1

96
O(u, v, w)

+ lnu

[
1

6
Ω(2)(u, v, w) +

5

192
Ω(2)(v, w, u) +

1

6
Ω(2)(w, u, v)

]
+

1

384
ln v

[
15 Ω(2)(v, w, u) + Ω(2)(w, u, v)− Ω(2)(u, v, w)

]
+

1

384
lnw

[
15 Ω(2)(v, w, u) + Ω(2)(u, v, w)− Ω(2)(w, u, v)

]
− 47

1152
Hu

2,1H
v
2 +

121

2304
Hu

2 H
v
2,1 −

47

1152
Hu

2,1H
w
2 +

121

2304
Hu

2 H
w
2,1 −

191

192
Hu

2 H
u
2,1

+
47

256
Hv

2 H
w
2,1 +

47

256
Hv

2,1H
w
2 +

1

192
Hv

2 H
v
2,1 +

1

192
Hw

2 H
w
2,1 −

47

2304
Hu

2 H
v
3

− 53

1152
Hu

3 H
v
2 −

47

2304
Hu

2 H
w
3 −

53

1152
Hu

3 H
w
2 −

89

24
Hu

5 +
61

96
Hu

2 H
u
3 +

11

256
Hv

2 H
w
3

+
11

256
Hv

3 H
w
2 −

35

96
Hv

5 −
1

48
Hv

2 H
v
3 −

35

96
Hw

5 −
1

48
Hw

2 H
w
3 +

13

64
Hu

3,2 +
79

24
Hu

4,1

+
5

32
Hv

3,2 +
23

48
Hv

4,1 +
5

32
Hw

3,2 +
23

48
Hw

4,1 −
53

32
Hu

3,1,1 +
71

192
Hu

2,2,1 +
15

64
Hv

3,1,1

+
17

192
Hv

2,2,1 +
15

64
Hw

3,1,1 +
17

192
Hw

2,2,1 +
15

4
Hu

2,1,1,1 −
9

16
Hv

2,1,1,1 −
9

16
Hw

2,1,1,1
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+
1

6
ln v Hw

4 +
1

6
lnwHv

4 −
1

16
ln v Hv

3,1 −
1

16
lnwHw

3,1 +
1

128
ln3 v Hv

2

+
1

128
ln3wHw

2 −
1

768
ln v (Hv

2 )2 − 1

768
lnw (Hw

2 )2 +
3

16
ln v Hw

2,1,1

+
3

16
lnwHv

2,1,1 −
3

64
lnuHv

2,1,1 −
3

64
lnuHw

2,1,1 −
3

64
ln2 v Hv

2,1

− 3

64
ln2wHw

2,1 −
5

16
lnu (Hv

2 )2 − 5

16
lnu (Hw

2 )2 +
7

192
ln v Hu

3,1 +
7

192
lnwHu

3,1

+
7

384
ln3 uHu

2 −
7

768
ln v (Hu

2 )2 − 7

768
lnw (Hu

2 )2 − 9

8
lnuHu

3,1 −
11

64
lnuHv

3,1

− 11

64
lnuHw

3,1 +
11

1536
ln3 v Hu

2 +
11

1536
ln3wHu

2 −
11

2304
ln2 v Hu

2,1

− 11

2304
ln2wHu

2,1 −
13

192
ln v Hw

3,1 −
13

192
lnwHv

3,1 −
21

64
ln v Hv

2,1,1 −
21

64
lnwHw

2,1,1

− 23

1536
ln3 v Hw

2 −
23

1536
ln3wHv

2 +
25

12
lnuHu

4 −
29

384
ln2 v Hv

3 −
29

384
ln2wHw

3

− 31

48
ln2 uHu

3 +
49

192
ln v Hv

4 +
49

192
lnwHw

4 +
53

64
lnuHu

2,1,1 −
67

768
ln3 uHv

2

− 67

768
ln3 uHw

2 +
67

2304
ln2 v Hu

3 +
67

2304
ln2wHu

3 −
83

768
ln v (Hw

2 )2

− 83

768
lnw (Hv

2 )2 − 83

1536
ln2 v Hw

2,1 −
83

1536
ln2wHv

2,1 +
89

1536
ln2 v Hw

3

+
89

1536
ln2wHv

3 +
103

192
lnuHv

4 +
103

192
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B Logarithmic divergences on the surface u = v

In this appendix we show the coefficients of the leading logarithmic divergence up to four
loops on the surface u = v defined in eq. (4.1). The results are given in terms of HPLs
Hz
~m ≡ H~m(1− z).
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