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Summary

Infants born prematurely are particularly susceptible to respiratory illness due to
underdeveloped lungs, which can often result in fatality. Preterm infants in acute
stages of respiratory illness typically require mechanical ventilation assistance, and
the efficacy of the type of mechanical ventilation and its delivery has been the subject
of a number clinical studies. With recent advances in machine learning approaches,
particularly deep learning, it may be possible to estimate future responses to mechan-
ical ventilation in real-time, based on ventilation monitoring up to the point of
analysis. In this work, recurrent neural networks are proposed for predicting future
ventilation parameters due to the highly nonlinear behavior of the ventilation mea-
sures of interest and the ability of recurrent neural networks to model complex
nonlinear functions. The resulting application of this particular class of neural net-
works shows promise in its ability to predict future responses for different ventilation
modes. Towards improving care and treatment of preterm newborns, further devel-
opment of this prediction process for ventilation could potentially aid in important
clinical decisions or studies to improve preterm infant health.
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1 INTRODUCTION

Mechanical ventilation, among other simultaneous therapies, is often necessary for preterm newborns with respiratory mal-
adaptation, including respiratory distress syndrome and of course respiratory failure. Moreover, respiratory distress syndrome
is a leading cause of morbidity and mortality in infants born prematurely with underdeveloped lungs [1]. As such, it is of
paramount importance to understand and monitor the efficacy of ongoing mechanical ventilation of preterm newborns. Com-
plicating this challenge further is that there are also questions as to how best to deliver mechanical ventilation, such as whether
volume-controlled or more traditional time-cycled, pressure-limited ventilation is utilized. Towards improving care and treat-
ment of preterm newborns, the fundamental hypothesis of the present work is that a method to predict the progression of ongoing
mechanical ventilation could substantially aid in the clinical decision making and lead to increased likelihood of positive out-
comes. In particular, the present study proposes the use of machine learning tools to estimate future ventilation parameters in
real-time based on ventilation monitoring up to the point of analysis.
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Machine learning continues to increase in prevalence in a wide range of healthcare applications, from cancer prediction [2], to
tumor volume determination using medical imaging [3], to building automated discovery and clinical decision support systems
for optimising patient treatment [4]. There have also been several efforts to utilize machine learning for improving neonatal care
[5], [6] . Shirwaikar et al. [7] used machine learning classification methods, such as SVMs, decision trees, and random forest
to predict apnea episodes in 229 neonates during their first week of life. In this study they were able to achieve an accuracy of
88% to detect the presence of apnea using 22 input features, including heart rate at different times, gestation age, birth mode,
birth weight, and others. Mikhno et al. [8] used machine learning to classify whether or not there will be extubation failure
during ventilation using 6 features (e.g., heart rate) to predict the outcome. Precup et al. [9] employed SVMs to determine the
combination of measures of cardiorespiratory variability, computed automatically, that best predicts extubation readiness. Their
results suggest that the addition of their classification approach to current clinical measures may potentially reduce the extubation
failure rate by more than 80%, where about 25% of extubated infants will fail and require re-intubation. Ganzert et al. [10]
proposed the use of inductive machine learning to model pressure-volume curves in artificially ventilated patients suffering from
the adult respiratory distress syndrome, in that the authors sought to predict the volume given the pressure, the measurement
method and the patient data. The features used included measures such as gender, age, ventilation tube type, duration, etc., for
input into the CUBIST tool [11], which is an extension of a tree-based regression model with additional rules. The authors also
noted that the inclusion of background information on the patient improved the accuracy of the models by almost one order of
magnitude.
The aim of this study is to investigate the usage of the machine learning tools presented herein to ideally minimize future

needs to test different devices on the patient in order to achieve optimal results. It is further envisioned that these tools will
also provide the capability to characterize the response of a preterm infant to different types of mechanical ventilation and thus
give additional insight into the basis of ventilation responses. This work is considered to be a starting point to these end goals
by investigating whether or not such predictions may even be feasible. To accomplish this, there are a number of time series
prediction methods that can be used, including Kalman filters, autoregressive models, linear prediction, regression analysis, and
machine learning approaches. Given the highly nonlinear nature of the ventilation data, it was deemed that machine learning
methods may be the most applicable for prediction as other methods tend to rely on assumptions (e.g., approximate linearity,
gaussian noise) that may be inappropriate for this type of data.
Of themanymachine learningmethods available, ANNs in particular have gained significant popularity in the recent years due

to advances in training approaches, yielding state-of-the-art performance levels in a variety of applications. One of the desirable
properties of ANNs is that they are universal function approximators, so they can be used to model any arbitrary continuous
function only providing that a sufficient number of ANN parameters are available [12]. ANNs are also particularly appealing
conceptually as they are designed to mimic the way we perceive the human brain to function: as a network of neurons that can
process information to learn patterns and concepts over time, which is an activity that the human brain is considered to excel at.
There are many different variants of ANNs based on their network topology and operations and can be used for classification,
regression, and prediction. In this work, we are naturally interested in the class of neural networks that can be used for time series
prediction as applied to ventilation data, as their ability to model complex nonlinear functions is very desirable for this effort.
The remaining sections are organized as follows. Section 2 provides a description of the ventilation parameter dataset used in

this work, and Section 3 details the type of ANN selected to predict the data. The predictions with the data are shown in Section
4, followed by a discussion of these results. Finally, concluding remarks on the findings and future work are given in Section 5.

2 DATA COLLECTION

Ventilation data was collected and examined under two types of ventilation: 1) Time-cycled, pressure-limited ventilation
(TCPLV); and 2) volume-controlled ventilation (VCV). TCPLV is designed to deliver a volume of gas with a preset peak inspi-
ratory pressure during a defined cycle time. Contrastively, VCV is designed to deliver a targeted tidal volume, and inspiratory
pressure is automatically adjusted breath-to-breath in response to changes in pulmonary compliance. This data was collected in
order to compare the minute ventilation between VCV and TCPLV using both assist/control (A/C) and synchronized intermittent
mandatory ventilation (SIMV) modes. Pulmonary mechanics data was collected for 30 minute epochs with a washout period
of 15 minutes between the epochs during the four modes of ventilation: VCV-AC, TCPLV-AC, VCV-SIMV and TCPLV-SIMV
using a standardized protocol and randomized crossover design. More specifically, the ventilation protocol was randomized to
start with either Volume A/C or TCPL A/C mode, and subsequent modes following the start are shown in Figure 1.
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FIGURE 1 Ventilation protocol.

Breath-to-breath data for tidal volume, peak pressure and minute ventilation were collected from 10 ventilated babies of <30
weeks’ gestation during their acute stages of respiratory illness. This included inspired and expired tidal volume, spontaneous
minute ventilation and total respiratory rate, FiO2, pressure, and dynamic lung compliance. During each epoch, the volume (in
VCV) or pressure (in TCPLV) was adjusted to provide an expired tidal volume (VTe) of 4-6 mL/kg. The control ventilator rate
was maintained at 40 breaths per minute, with the inspiratory time targeted between 0.25 and 0.35 seconds. A 10 minute period
of artefact-free data was used for analysis from each epoch. Measurements were taken every 1.5 seconds.

3 ARTIFICIAL NEURAL NETWORKS

For ventilation parameter predictions, a variant of the Artificial Neural Network (ANN) will be used. The most basic type of
ANN is a feedforward neural network. The architecture of a three-layer feedforward neural network is shown in Figure 2 and
consists of an input layer, a hidden layer, and an output layer, interconnected byweights (to be determined), which are represented
by arrows between the layers. There is also a bias unit that is connected to each node in addition to the input nodes, and at
each hidden node a1, ..., aL there is an activation function applied to the hidden node inputs, which is typically a nondecreasing,
bounded function such as the sigmoid.

3.1 Recurrent Neural Networks
The recurrrent neural network (RNN) differs from the conventional feedforward neural network in that it has a feedback mech-
anism where outputs are subsequently used as inputs in the following time step. It can be thought of as an extension of the basic
feedforward neural network to a deep (i.e., multi-layered) feedforward neural network. An excellent illustration of the RNN
architecture is given in [13] and is shown here for convenience in Figure 3, where xt is the input at time t, ℎ is the hidden layer
(note that the weights are shared across time), and ŷt is the RNN output at time t. Note that in this deep feedforward neural net-
work, each layer is a time step. The RNN is generally considered to be more powerful than conventional neural networks due
to its ability to theoretically represent richer, more complex models and sequences. However, in practice, the RNN had gained
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FIGURE 2 Basic feedforward ANN architecture with time-lagged inputs.
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FIGURE 3 Conceptualization of the recurrent neural network architecture (from [13]).
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FIGURE 4 Architecture for a single memory cell in an LSTM network (in the hidden layer(s)).

a notorious reputation of being difficult to train properly. As backpropagation is the most common approach to training neu-
ral networks (i.e., learning the appropriate ANN parameters), prominent methods used for training the RNN were historically
either Back-Propagation Through Time [14] or Real-Time Recurrent Learning [15], which are both gradient-based approaches.
These methods would often fail to train an RNN even for relatively simplistic sequences, especially as the temporal span of the
inputs increased [16]. In [17], Hochreiter found that in fact, these gradient-based training methods suffer from either exploding
or vanishing gradients in an RNN, thus leading to either oscillating weights or extremely long or even failed training.
The Long Short-Term Memory (LSTM) recurrent architecture was introduced in [18] as an alternative formulation of the tra-

ditional recurrent neural network. Because the error compounds within the RNN due to feedback loops, if the gradient becomes
either very small or relatively large, the learning will either slow down significantly or stall entirely (i.e., the gradient ‘vanishes’),
or the learning completely diverges (i.e., the gradient ‘explodes’). Hochreiter and Schmidhuber [18] devised an architecture to
allow for a ‘constant error flow’ through the RNN by introducing special, self-connected units called a memory cell. Each of
these memory cells has four components: a self-connected neuron, an input gate, an output gate, and a forget gate. These gates
control the information flow within the RNN and enable the network to bridge long time lags in the input. A schematic of a sin-
gle memory cell is shown in Figure 4. The single memory cells are placed into the hidden layer. The equations to compute the
memory cell output are as follows [18], starting with computations performed on a vector input, y(t−1), in the memory cell, cj :

netcj (t) = wT
cj
y(t − 1) (1)

netinj (t) = wT
inj
y(t − 1) (2)

netfj (t) = wT
fj
y(t − 1) (3)

netoutj (t) = wT
outj

y(t − 1) (4)

where wcj , winj , wfj , and woutj are vectors of weights that are determined during LSTM ANN training, and T denotes the
transpose. These intermediate computations are then each passed through a ‘squashing function‘ such as a sigmoid to obtain the
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activation at time t for the “input gate":
yinj (t) = finj (netinj (t)), (5)

the activation at time t for the “forget gate":

yforgetj (t) = fforgetj (netfj (t)), (6)

which are then used to calculate the internal state of the memory cell, scj (t):

scj (t) = yforgetj (t)scj (t − 1) + yinj (t)g(netcj (t)), for t > 0, (7)

and scj (0) = 0. The final memory cell output, ycj (t) is then computed by multiplying (i.e., gating) it by the output gate activation,
youtj (t):

ycj (t) = youtj (t)ℎ(scj (t)) (8)
where youtj (t) is computed similarly to the other gate outputs: youtj (t) = foutj (netoutj (t)).
The authors who developed the LSTM architecture note from their experiments that the LSTM appears to work well over

a wide range of parameters, thus reducing the need for fine parameter tuning. Since its inception, the LSTM has been widely
adopted amongst the machine learning community in state-of-the-art pattern recognition tools. It is for these reasons that the
LSTM will be employed in this work to investigate the predictability of the ventilation data.

3.2 Applying LSTM RNNs to Ventilation Parameter Prediction
The general LSTM network used in this work can be conceptualized as shown in Figure 2, but with the memory cells depicted
in Figure 4 with feedback replacing each node in the hidden layer. Two experiments were conducted using a single hidden layer
to predict a ventilation metric at time t + 1 and time t + 10, and an additional experiment was conducted where another hidden
layer was added (i.e., stacked) to again try and predict at time t+10, where t is the current time. Within the collected ventilation
data, the Minute Ventilation measure is of particular interest since it is indicative of how well the mechanical ventilation is
performing. For each of the four different ventilation modes, an LSTM network was trained to predict one time step ahead
(1.5 seconds), using the measurements collected from the previous 5 time steps. The inputs consisted of multiple ventilation
parameters, namely the spontaneous minute ventilation, expired tidal volume, and dynamic lung compliance.

4 RESULTS AND DISCUSSION

Figures 5 and 6 show the resulting prediction as compared to the actual ventilation parameter, as tested on a separate, held-out
ventilation session (i.e., the test data was not included in training the LTSM). The legend of each plot also displays the root-
mean-squared (rms) error between the prediction and the actual data. For each of the four modes, the LSTM network is able to
predict the next time step with reasonable accuracy, thus showing promise for the LSTM in ventilation response prediction.
However, the utility of being able to predict 1.5 seconds is minimal; it is really not enough time for any sort of meaningful

action to take place should one be required. Furthermore, the broader vision for this work necessitates a farther view into the
future. The range of prediction was therefore expanded to 15 seconds (i.e., 10 time steps), using data collected from the previous
15 seconds of ventilation. The results for each of the modes are shown in the top plots of Figures 7 to 10, but as one may expect,
yielded worse results than predicting 1.5 seconds ahead. The rms error increased by almost as much as 6 times that of the one-
time-step prediction, and the predicted paths also appear shifted in time, indicating an inability to predict a much later time step
given previous samples. Therefore, it is likely that some intermediate step is required. One more hidden layer was added to the
LSTM network for each mode, where the first hidden layer was initially trained (i.e., pre-trained) to predict the data 5 time steps
ahead by providing the actual data (from 5 time steps ahead) as the targeted outputs of the first layer, and then combined with the
remaining layers to predict the data an additional 5 time steps ahead for a total of 10 time steps in the entire network. The idea
behind the pre-training is to guide the intermediate layers towards the final desired result due to the increased model complexity
introduced with additional hidden layers.
The results from using two hidden layers in this fashion is shown in the bottom plot of Figures 7 to 10. The addition of

another hidden layer to facilitate intermediate predictions was successful in reducing the overall error in the network for a 15
second prediction into the future. It is noted, however, that the reduction in error for the SIMV modes are not as significant as
the AC modes, but the AC modes exhibit nearly two to three times the amount of error than the SIMV modes when attempting
to predict further in the future.
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FIGURE 5 Prediction at time t + 1 using the previous 5 samples in VCV mode.
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FIGURE 6 Prediction at time t + 1 using the previous 5 samples in TCPLV mode.
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FIGURE 7 Prediction at time t + 10 using samples from time t − 9 to the current time, t, comparing one hidden layer to two
hidden layers for the VCV-SIMV mode.

It is also noted that there is relatively large variation in the measurements over time, which the LSTM cannot always precisely
predict. Prior work has shown the LSTM network to perform well applications such as speech recognition, handwriting recogni-
tion, and music onset detection, which generally do not require specific value predictions, and the efficacy of such a network on
accurately tracking and predicting variable values has largely been unexplored. The predictions using the LSTM network appear
to have difficulty in keeping up with frequent changes, but it may be that the trend of the ventilation response could be more
important than maintaining a very close prediction to the exact value. Future work in this area will include consulting clinicians
and doing further data analysis to determine the potential conditions under which a trend prediction would be acceptable or
useful. Other methods can also be employed in increase the accuracy of the predictions, such as creating patient-specific mod-
els or characterization for prediction due to differing biologies (e.g., their breath patterns could differ, thus resulting in possible
increased randomness in the response).

5 CONCLUSIONS AND FUTUREWORK

It was shown in this work that applying machine learning approaches to ventilation data collected from preterm infants suffering
from acute respiratory illness shows promise in its ability to predict future responses (i.e., the efficacy) of different mechanical
ventilation modes. Towards improving care and treatment of preterm newborns, further development of this prediction process
for ventilation could potentially aid in important clinical decisions or studies to improve preterm infant health. . In particular,
the most logical outcome of the analysis used for this work is to aid in the development of real-time ventilation control systems
that would be able to adjust parameters, or even change modes in extreme cases, to improve ventilation response. It is also
expected that incorporating additional information regarding individual infants (e.g., birth weight, age, gender) may lead to better
predictive models, since each infant is likely to respond differently to different modes of ventilation based on their biology. Future
work in this area will involve additional data collection with this in mind, and a general framework for building infant-specific
models will be developed, likely utilizing deeper networks and additional training techniques (e.g., dropout).
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FIGURE 8 Prediction at time t + 10 using samples from time t − 9 to the current time, t, comparing one hidden layer to two
hidden layers for the VCV-AC mode.
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FIGURE 9 Prediction at time t + 10 using samples from time t − 9 to the current time, t, comparing one hidden layer to two
hidden layers for the TCPLV-SIMV mode.
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FIGURE 10 Prediction at time t + 10 using samples from time t − 9 to the current time, t, comparing one hidden layer to two
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