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Full multiple spawning offers an in principle exact framework for excited-state dynamics, where
nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory
basis functions that follow classical trajectories. The couplings between trajectory basis functions
can be approximated to treat molecular systems, leading to the ab initio multiple spawning method
which has been successfully employed to study the photochemistry and photophysics of several
molecules. However, a detailed investigation of its approximations and their consequences is currently
missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-
state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple
spawning approximations on different observables and (ii) the convergence of the ab initio multiple
spawning results towards numerically exact quantum dynamics upon a progressive relaxation of
these approximations. We show that, despite the crude character of the approximations underlying
ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics
is adequately captured, and affordable corrections can further be applied to ameliorate the coupling
between trajectory basis functions. Published by AIP Publishing. https://doi.org/10.1063/1.5022877

I. INTRODUCTION

Describing the dynamics of a molecule in its excited
electronic states, when the Born-Oppenheimer approxima-
tion breaks down, is of great importance to understanding
light-triggered phenomena. Besides the evident electronic
structure problem, such nonadiabatic dynamics constitute a
stringent challenge for theoretical chemistry due to the pres-
ence of important nuclear quantum effects in the excited-
state dynamics.1–3 A full quantum propagation of the nuclear
degrees of freedom is computationally affordable only for
small molecules or molecular systems whose excited-state
dynamics can be described by a reduced number of nuclear
degrees of freedom.4,5 Hence, a plethora of methodolo-
gies have been proposed over the last decades to approxi-
mate the quantum nonadiabatic molecular dynamics of larger
molecules in their full configuration space: trajectory surface
hopping,6,7 semiclassical approaches,8,9 quantum-classical
Liouville approaches,10–13 symmetrical quasi-classical win-
dowing,14–18 linearized nonadiabatic dynamics,19 Bohmian
dynamics,20–25 or exact-factorization based mixed quan-
tum/classical algorithms.26–30 In the following, we focus on
a particular subset of nonadiabatic techniques that proposes
to describe nuclear wavefunctions as a linear combination
of travelling Gaussian basis functions, called trajectory basis
functions (TBFs). The swarm of TBFs can be seen as a moving
grid that will follow the nuclear wavepackets in the nonadia-
batic dynamics, ensuring a proper description of amplitude
transfer in regions of strong nonadiabatic coupling. The idea
of using Gaussian functions for quantum dynamics emerged

a)Authors to whom correspondence should be addressed: bmignolet@
uliege.be and basile.f.curchod@durham.ac.uk

with the seminal work by Heller,31–33 and different methods
have since then been proposed for nonadiabatic dynamics,
differing in the way they propagate the TBFs.34–40 In Full
Multiple Spawning (FMS), the TBFs follow classical trajec-
tories and their number can increase during the dynamics
thanks to a spawning algorithm, ensuring an adequate descrip-
tion of nonadiabatic processes.39–43 The FMS framework is in
principle exact in the limit where a large number of TBFs
is employed. By applying approximations to the coupling
between TBFs, FMS becomes the Ab Initio Multiple Spawn-
ing (AIMS), which is compatible with on-the-fly nonadiabatic
dynamics, i.e., the electronic structure quantities required for
the nuclear propagation do not need to be precomputed but
can be calculated at each integration time step.44,45 AIMS
has become a method of choice for nonadiabatic molecular
dynamics and has been successfully applied to a large number
of molecular systems.43,45–58 Surprisingly though, only a few
studies have touched on the implication of some of the approx-
imations in AIMS,39,42,59–63 and a general assessment of these
approximations and their potential breakdown is unfortunately
lacking.

In this work, we aim at filling this gap by offering a com-
prehensible test of all the approximations connecting AIMS
to FMS, as well as the basis set convergence of FMS, using a
numerically exact solution of the time-dependent Schrödinger
equation as reference. Testing the different approximations of
AIMS in the context of nonadiabatic dynamics might appear
challenging at first glance, as their effects are likely to strongly
differ depending on the type of nonadiabatic transitions (sin-
gle vs multiple nonadiabatic passage, for example, Refs. 7 and
64). In the following, we instead capitalize on the recently
developed external field full multiple spawning (XFFMS)
framework, which explicitly incorporates the coupling with
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an external electromagnetic field in FMS (and AIMS). In this
way, one can selectively produce a superposition of nuclear
wavepackets, observe their decoherence, and probe their inter-
action at a later time, both from an interference perspective but
also by applying a second pulse and measuring variations in
electronic populations. Hence, this formalism will allow us to
strongly challenge the different approximations of (XF)AIMS
and (XF)FMS.

II. THEORY
A. Nonadiabatic molecular quantum dynamics

The central goal of any nonadiabatic methods is to pro-
pose the most efficient and accurate approximation to the
time-dependent molecular Schrödinger equation

i
∂Ψ(r, R, t)

∂t
= Ĥ(r, R)Ψ(r, R, t), (1)

where r and R denote collective variables for the electronic
and nuclear coordinates, respectively (we use atomic units
throughout this article). The molecular Hamiltonian is given
by

Ĥ(r, R) = T̂nuc + T̂e + V̂e−e(r) + V̂e−n(r, R) + V̂n−n(R)

+ V̂ext(r, R, t)

= T̂nuc + Ĥel(r, R) + V̂ext(r, R, t) (2)

and contains the kinetic energy and interaction potential oper-
ators for both electrons and nuclei as well as an interaction
potential between the molecule and an external electromag-
netic field E

−
(t), defined as V̂ext(r, R, t) = −µ̂

−
(r, R) ·E

−
(t) with

µ̂
−

(r, R) = µ̂
−

e (r)+ µ̂
−

n (R) (underlined bold symbols highlights

3D vectors).
Solving the time-independent Schrödinger equation

with the electronic Hamiltonian Ĥel(r, R) at a fixed
nuclear configuration provides electronic eigenstatesΦJ (r;R),
Ĥel(r, R)ΦJ (r; R) = Eel

J (R)ΦJ (r; R). The solutions of this
electronic Schrödinger equation can be used as a basis to
express the electronic degrees of freedom, here in the adi-
abatic representation, leading to the so-called Born-Huang
representation of the total molecular wavefunction,65,66

Ψ (r, R, t) =
∞∑
J

ΩJ (R, t)ΦJ (r; R). (3)

In Eq. (3),ΩJ (R, t) represents a nuclear amplitude in electronic
state J. We note at this stage that the Born-Huang represen-
tation is not the only possible one and recent studies have
showed that an exact factorization of the total time-dependent
molecular wavefunction is also possible.67–69

Upon insertion of Eq. (3) into the time-dependent molec-
ular Schrödinger equation [Eq. (1)] and after some algebra,
one can obtain a set of coupled equations of motion for the
nuclear amplitudes,

i
∂ΩI (R, t)

∂t
=

(
T̂N + Eel

I (R) + V ext
II (R)

)
ΩI (R, t)

−
∑

J



3N∑
ρ=1

*
,

1
Mρ

〈
ΦI

���
∂

∂Rρ
���ΦJ

〉
r

∂

∂Rρ
+

1
2Mρ

〈
ΦI

���
∂2

∂R2
ρ

���ΦJ

〉
r
+
-
− V ext

IJ (R)


ΩJ (R, t) , (4)

with V ext
IJ (R) = 〈ΦI | V̂ext |ΦJ〉r. This equation is expressed in

the adiabatic representation, for which nonadiabatic coupling
vectors (NACVs)—dIJ (R) = 〈ΦI |

∂
∂R |ΦJ〉r—and second-

order nonadiabatic couplings—DIJ (R) = 〈ΦI |
∂2

∂R2 |ΦJ〉r—are
non-zero. In the diabatic representation, all nonadiabatic cou-
plings are strictly zero, but the electronic Hamiltonian will no
more be diagonal. A way to solve Eq. (4) would consist in
expressing it on a grid, a method that we will denote as numer-
ically exact quantum dynamics (QD) in the following.70,71 In
such a representation, the nuclear wavefunction in electronic
state J would read

ΩJ

(
R1, . . . , Rf , t

)
=

N1,...,Nf∑
j1,...,jf =1

C(J)
j1,...,jf

(t)
f∏
κ=1

χ(κ)
jκ

(Rκ) (5)

using a common notation from the literature. Here, f labels a
selected nuclear degree of freedom with corresponding num-
ber of grid basis functions (points) N f each labeled by jκ .
Different types of basis functions were proposed for χ(κ)

jκ
(Rκ)

and the interested reader is referred to the literature for more

details.4,70,72 While QD offers an accurate description of
nuclear quantum effects, its cost obviously grows exponen-
tially with the number of nuclear degrees of freedom. Meth-
ods like the Multi-Configuration Time-Dependent Hartree
(MCTDH) have been developed to alleviate these limita-
tions and push quantum dynamics towards larger molecular
systems.4,5,70,73

B. Full multiple spawning

As discussed in Sec. II A, the nuclear wavefunction ampli-
tudes can be expressed on a grid. One may also choose
to represent these nuclear wavefunctions by a linear com-
bination of multidimensional frozen Gaussians, for exam-
ple. In this case, we can write each nuclear wavefunc-

tion as ΩJ (R, t) =
NJ∑
i

C(J)
i (t)χ(J)

i

(
R; R̄(J)

i , γ̄(J)
i (t), α

)
, where

χ(J)
i

(
R; R̄(J)

i , γ̄(J)
i (t), α

)
represents the ith multidimensional

Gaussian in electronic state J (note that the electronic state is
a label and therefore put in brackets) centered at position R̄(J)

i

with corresponding (complex) amplitude C(J)
i (t), phase γ̄(J)

i (t),
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and frozen width α. In the limit where NJ tends towards a
large number, i.e., we cover the nuclear configuration space
with Gaussian functions, we expect to approach a numerically
exact solution of the time-dependent Schrödinger equation,
in a formalism that we coin here frozen-Gaussian quantum
dynamics (FGQD). However, the scaling problem remains the
same as for QD.

One interesting idea was to consider that Gaussian func-
tions may not be fixed but can instead travel over time. In
particular, if one finds an adequate dynamics for the Gaus-
sians such that they would follow the dynamics of the nuclear
wavefunctions, we can substantially truncate the number of
Gaussian functions required for their description. Ideally,
we would have a moving grid that always ensures a good
support for the nuclear wavefunctions, i.e., Gaussian func-
tions would be found only in regions where the nuclear
amplitudes are non-zero. Hence, we would move from static
frozen Gaussians χ(J)

i

(
R; R̄(J)

i , γ̄(J)
i (t), α

)
to trajectory basis

functions χ(J)
i

(
R; R̄(J)

i (t), P̄(J)
i (t), γ̄(J)

i (t), α
)
, whose position

R̄(J)
i (t) and momentum P̄(J)

i (t) centers can change over time
according to some given equations of motion. Different recipes
for the propagation of the TBFs in excited-state dynamics
were proposed (multiconfigurational Ehrenfest,36–38,74,75 vari-
ational multiconfiguration Gaussian,34,35,76–78 ab initio multi-
ple cloning,79,80 and other more recent schemes81,82) and we
will focus here on the Full Multiple Spawning (FMS)39–42

technique.
In FMS, each nuclear wavefunction component in the

Born-Huang representation is expanded as a linear combi-
nation of frozen Gaussian functions, which follow classi-
cal trajectories. The position and momentum of each frozen
Gaussian are propagated forward in time according to Hamil-
ton’s equations of motion while the time-dependent phase
is propagated semiclassically by integrating the classical
Lagrangian

∂R̄(J)
iρ (t)

∂t
=

P̄(J)
iρ (t)

Mρ
,

∂P̄(J)
iρ (t)

∂t
= −

∂Eel
J (R)

∂Riρ

������Riρ=R̄(J)
iρ (t)

,

∂γ̄(J)
i (t)

∂t
=

3N∑
ρ

(
P̄(J)

iρ (t)
)2

2Mρ
− Eel

J

(
R̄(J)

i (t)
)

,

where ρ runs over the 3N nuclear coordinates of the molecule.
The FMS version of the Born-Huang representation therefore
reads

Ψ (r, R, t) =
∞∑
J

NJ∑
i

C(J)
i (t)χ(J)

i

(
R; R̄(J)

i (t), P̄(J)
i (t), γ̄(J)

i (t), α
)

×ΦJ (r; R) . (6)

If the TBFs are properly distributed initially and a suf-
ficiently large number of them are used, FMS could in
principle reach the accuracy of FGQD, while needing a
smaller number of Gaussian functions thanks to their time
dependence.

An equation of motion for the complex amplitudes
C(I)

j (t) can be obtained by inserting Eq. (6) into the molecu-
lar time-dependent Schrödinger equation, left-multiplicating

by
(
C(I)

k (t)χ(I)
k

(
R; R̄(I)

k (t), P̄(I)
k (t), γ̄(I)

k (t), α
)
ΦI (r; R)

)∗
, and

integrating over both nuclear and electronic
coordinates,

dCI

dt
= −i

(
S−1

II

) 

[
HII − iṠII

]
CI +

∑
J,I

HIJCJ


, (7)

where (SII )ki =
〈
χ(I)

k
��� χ

(I)
i

〉
R

and
(
ṠII

)
ki
=

〈
χ(I)

k
���
∂
∂t χ

(I)
i

〉
R

are overlap matrices and (HIJ )ki =
〈
χ(I)

k ΦI
��� Ĥ ���χ

(J)
i ΦJ

〉
R,r

is an

Hamiltonian matrix element in the Gaussian basis. The Hamil-
tonian matrix couples TBFs together, and an element has the
typical form

H IJ
ki =

〈
χ(I)

k
��� T̂nuc

���χ
(J)
i

〉
R
δIJ +

〈
χ(I)

k
��� Eel

I
���χ

(J)
i

〉
R
δIJ

−
〈
χ(I)

k
���

3N∑
ρ=1

1
Mρ
〈ΦI |

∂

∂Rρ
|ΦJ〉r

∂

∂Rρ
���χ

(J)
i

〉
R

−
〈
χ(I)

k
���

3N∑
ρ=1

1
2Mρ

〈ΦI |
∂2

∂R2
ρ

|ΦJ〉r
���χ

(J)
i

〉
R

−
〈
χ(I)

k ΦI
��� µ̂−

���χ
(J)
i ΦJ

〉
R,r
· E
−

(t) . (8)

Let us describe the different terms in the right-hand side of
this equation. The first two terms, related to the nuclear kinetic
energy operator and the electronic energy, couple TBFs evolv-
ing in the same electronic state. The third term contains the
NACVs and couples exclusively TBFs in different electronic
states. The fourth term contains the second-order nonadiabatic
couplings, which will both contribute an intra- and an inter-
state coupling between TBFs. We note that these terms are
quite often neglected in practical applications (see Refs. 66 and
83–85 for discussions on diagonal and off-diagonal second-
order nonadiabatic couplings). These four contributions to the
Hamiltonian matrix elements are the original coupling terms
in FMS. The last term in Eq. (8) is due to the coupling with
an external electromagnetic field E

−
(t) and provides a new

coupling between TBFs with both an intra- and an interstate
contribution. FMS with this extra term is called eXternal Field
Full Multiple Spawning (XFFMS).

As mentioned before, FMS would tend to an exact solu-
tion of the time-dependent Schrödinger equation in the limit of
a large number of TBFs in each electronic state, i.e., large NJ .
FMS, however, proposes to replace the large number of TBFs
by an algorithm, the spawning algorithm, that will dynami-
cally adapt the number of TBFs during the entire simulation,
increasing the number of basis functions available to describe
adequately quantum events such as nonadiabatic or photoex-
citation processes. In other words, the spawning algorithm
requires that NJ → NJ (t), and it ensures that the dynamics is
carried out with the optimal number of TBFs at any time of the
simulation. The spawning algorithm is therefore at the heart of
the FMS (and XFFMS) method and suggests a robust way of
extending the number of TBFs in the dynamics when needed.44

Briefly, if a TBF enters a region of strong coupling—due to
nonadiabatic effects or an external electromagnetic field—a
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new TBF will be spawned onto the coupled electronic state(s).
After a spawning event, the size of the matrices in Eq. (7)
is extended by the corresponding number of newly created
TBFs, ensuring therefore a proper coupling pattern between
them and a physical transfer of nuclear amplitude between
the coupled electronic states. For more details on the differ-
ent spawning algorithms, the reader is referred to previous
studies.44,86,87

C. Ab initio multiple spawning

In the following, we will discuss the two main approxi-
mations applied to the FMS framework to obtain the so-called
Ab Initio Multiple Spawning (AIMS) or eXternal Field AIMS
(XFAIMS) techniques.45,88

The Hamiltonian matrix elements in FMS [Eq. (8)] require
an integration over the entire nuclear configuration space.
Clearly, such integration is prohibitively expensive to treat
molecules, and one is forced to approximate the Hamiltonian
matrix elements. Owing to the localized nature of Gaussian
functions, the Hamiltonian matrix elements can be approxi-
mated by a Taylor expansion centered at the centroid position

between two TBFs R̄(IJ)
ki =

R̄(I)
k +R̄(J)

i
2 (the same applies for TBFs

in the same electronic state). Hence, any electronic structure
quantity ϑ(R) can be expressed as

ϑ (R) = ϑ
(
R̄(IJ)

ki

)
+

3N∑
ρ

(
Rρ − R̄(IJ)

ρ,ki

) ∂ϑ (R)
∂Rρ

�����Rρ=R̄(IJ)
ρ,ki

+
1
2

3N∑
ρ,ρ′

(
Rρ − R̄(IJ)

ρ,ki

) ∂2ϑ (R)
∂Rρ∂Rρ′

�����Rρ=R̄(IJ)
ρ,ki ,Rρ′=R̄(IJ)

ρ′,ki

×
(
Rρ′ − R̄(IJ)

ρ′,ki

)
+ · · · . (9)

This Taylor expansion can be truncated at different orders.
In AIMS, a saddle-point approximation (SPA) of order
zero is applied, meaning that any electronic structure
quantity—electronic energy, NACVs, or (transition) dipole
moments—in the integrals forming the Hamiltonian matrix
elements is approximated by ϑ (R) ≈ ϑ

(
R̄(IJ)

ki

)
.39,40 Within

the SPA-0, the integrals in Eq. (8) take the simple form〈
χ(I)

k
��� ϑ

���χ
(J)
i

〉
R
≈ ϑ

(
R̄(IJ)

ki

) 〈
χ(I)

k
��� χ

(J)
i

〉
R

.
The second approximation is linked to the coupling

between TBFs at the beginning of the FMS dynamics. In
FMS, the initial nuclear wavefunction at time t0 in electronic
state J, ΩJ (R, t0), is represented by a linear combination
of NJ (t0) frozen Gaussians—sometimes called the parent
TBFs,

ΩJ (R, t0) =
NJ (t0)∑

i

C(J)
i (t0)χ(J)

i

(
R; R̄(J)

i (t0), P̄(J)
i (t0), γ̄(J)

i (t0), α
)
.

(10)

The set of initial complex coefficients
{
C(J)

i (t0)
}NJ (t0)

i=1
and the

position of the Gaussian functions are chosen such that they
provide an accurate description of the initial nuclear wave-
function. Hence, the FMS dynamics starts with a group of
NJ (t0) coupled parent TBFs. As AIMS is concerned with the
dynamics of molecules, i.e., systems with a large number of

FIG. 1. Schematic representation of the different approximations applied to
QD to reach (XF)FMS and (XF)AIMS.

nuclear degrees of freedom, one would expect that the ini-
tial nuclear wavefunction rapidly spreads and, therefore, that
the initial parent TBFs rapidly move away from each other,
meaning that their mutual coupling rapidly drops to zero. In
other words, it would not be a bad approximation to prop-
agate the parent TBFs independently already from time t0.
In this independent first generation approximation (IFGA),
the initial conditions—positions and momenta—for one par-
ent TBF are simply sampled from a given distribution (often
a Wigner distribution) and the complex amplitude for this
TBF is set to C(J)

1 (t0) = 1.0. The parent TBF is propagated
and can spawn new children TBFs—all the TBFs descending
from a given parent TBF will be fully coupled. The pro-
cess is repeated for a large number of parent TBFs, all run
independently. The process is continued until convergence
and the result of interest is obtained by averaging over all
initial conditions incoherently.44,60 Hence, for a representa-
tion of the total molecular wavefunction given by Ψ (r, R, t)

=
Nini∑
β
Ψ̃β (r, R, t), where β labels an initial parent TBF

and all its descendants and Ψ̃β (r, R, t) =
∞∑
J

NJ ,β∑
i

C(J)
i,β (t)

× χ(J)
i,β

(
R; R̄(J)

i,β(t), P̄(J)
i,β(t), γ̄(J)

i,β (t), α
)
ΦJ (r; R), the IFGA

implies that there is no coupling between the different β

branches of the simulation, e.g., C(J)
i,β (t) is not coupled to

C(J)
i,β′(t), while FMS would couple all TBFs from any β-

branches at any time.60 (It is important to keep in mind that
the spawning algorithm implies that NJ ,β → NJ ,β(t).)

To summarize, AIMS emerges from FMS by applying
both the SPA-0 and the IFGA. Figure 1 presents the layers of
approximation that separate QD from AIMS. In this article,
we propose to study the effect of these approximations for the
dynamics of a photoexcited molecule, LiH.

III. PHOTOEXCITATION DYNAMICS STUDIED
AND COMPUTATIONAL DETAILS
A. Photoexcitation dynamics

In order to assess and stress the approximations made
in (XF)AIMS, we modeled the photoexcitation of the ground
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FIG. 2. Schematic representation of a pump-probe experiment in LiH in
which the system in S0 is photoexcited by a resonant laser pulse to its first
excited state S1 (A). The nuclear wavepacket on S1, being on a repulsive part
of the PEC, will undergo a dynamics towards longer LiH bond distances until
it reflects and comes back into the FC region (B) after 75 fs. This return of the
nuclear wavepacket is then probed (C) by a second pulse inducing a transfer
of population S1 → S0 or S0 → S1. (The nuclear-wavepacket filling reflects
the population in the corresponding electronic state.)

state (S0) of the LiH molecule to its lowest excited state (S1).
The nuclear dynamics in each state following photoexcitation
will strongly differ, owing to the different potential energy
curves (PECs) (see Fig. 2). The S0 state exhibits a Morse-
like shaped PEC leading to a confined nuclear wavepacket,
while the S1 state displays a weakly bound potential with a
larger equilibrium bond length than S0, leading to a S1 nuclear
wavepacket that can quickly move towards larger bond dis-
tances after photogeneration. Since the S1 PEC is bound, the S1

nuclear wavepacket will eventually come back into the Franck-
Condon (FC) region, after a period of approximately 75 fs.89,90

Playing with the different dynamics of the nuclear wavepack-
ets in S0 or S1 and the possibility to couple the dynamics
with an external laser pulse, we can model specific excitation
conditions that will help us test the approximations made in
(XF)FMS and (XF)AIMS. In particular, we will concentrate
our analysis on the three steps depicted in Fig. 2. First, we
will investigate the photoexcitation step [panel (A) in Fig. 2],
focusing on the evolution of the amplitude transfer between
the two electronic states during the pulse. Then, the photogen-
erated nuclear wavepacket on S1 relaxes and quickly leaves the
FC region [panel (B) in Fig. 2]—an event that can be followed
by monitoring the time-dependent dipole moment thanks to its
interference terms (see below). Finally, the nuclear wavepacket
on S1 returns into the FC region and the spatial localization
as well as the phase relation between the nuclear wavepackets
on S1 and S0 can be probed using a second pulse [panel (C) in
Fig. 2].

B. Computational details

In all the simulations presented in this work, the time-
dependent electric field of the pulse, E

−
(t), is defined from the

derivative of the (Gaussian-shaped) vector potential,

E (t) = −
1
c

dA (t)

dt
(11)

with

A (t) = ε
−

cf0
ω

[
exp

[
−(t − t0)2

2σ2

]
sin (ωt + CEP)

+ exp

[
−((t − tPP) − t0)2

2σ2

]
sin (ω (t − tPP) + CEP)

]
,

(12)

where ε
−

is the polarization vector, c is the speed of light, f 0

is the field strength, and σ is related to the pulse duration (the
FWHM of the pulse is 2.35σ). ω corresponds to the carrier
frequency and is set to 0.127 a.u. (359 nm) in our simulations,
close to resonance with the S0-S1 transition at the S0 equilib-
rium geometry. The carrier envelope phase (CEP) is the phase
difference between the pulse envelope and the oscillation of
the electric field. For few cycle pulses, the CEP controls the
waveform (sub-femtosecond evolution) of the pulse and can
affect the dynamics91,92 as well as the branching ratio.93 The
first pulse is centered at the time t0 while the probe pulse is a
replica of the pump and is centered at the pump-probe delay
time tPP.

The exact quantum dynamics grid simulations (QD) are
carried out on the first two lowest PECs of LiH, computed
at the SA2-CASSCF(4/6)/6-31G level of theory. The S0 PEC
has a minimum at 1.66 Å, while the one of the S1 PEC is
found at 2.44 Å (Fig. 3). In all simulations, we neglected
the weak nonadiabatic coupling between S0 and S1 as well
as the photoexcitation to higher excited states (which can be
significant with short pulses due to their broad bandwidth).
The PECs are discretized on a spatial grid with a spacing
of 0.02 bohr from 0.5 to 15.0 bohrs, and the time step for
the integration is 0.2 a.u. (0.0048 fs). The initial wavefunc-
tion on the ground electronic state has a Gaussian shape
and was selected to closely mimic the ground vibrational
eigenstate.

The XFFMS and XFAIMS simulations are carried in
internal coordinates with a modified version of the AIMS pro-
gram94 available in MOLPRO 2012,95 using the very same
level of theory as for the QD simulations. XFAIMS and
XFFMS mainly differ in the set of initial conditions on S0.
For XFFMS, the initial nuclear wavefunction at time t0 is
depicted by a set of 9 coupled TBFs with positions varying
in steps of 0.1 bohr from 2.73 bohrs (1.44 Å) to 3.53 bohrs
(1.87 Å) (see Fig. 3). For XFAIMS, which employs the IFGA,
each run is initiated with a single TBF in S0 whose position
and momentum are sampled from a Wigner distribution. (We
note that, while the sampling of initial conditions might not
affect strongly properties like electronic-state populations,62

its effect on other quantities like the time-dependent dipole
moment can be important, meaning that the sampling can
influence the overall result.38 Also, the sampling of the ini-
tial condition is not formally an issue for LiH, but for larger
molecules it can become in itself an approximation.38) Then,
for both XFFMS and XFAIMS, the wavefunction evolves on
S0 under the influence of the external electric field described
before, until the number of TBFs has to be expanded to
properly describe the transfer of amplitude to the S1 state.
One or several empty TBFs are spawned on S1 using the
spawning algorithm described in Ref. 88. Only one spawn-
ing event occurs at the maximum of the pulse envelope in our



134110-6 B. Mignolet and B. F. E. Curchod J. Chem. Phys. 148, 134110 (2018)

FIG. 3. Upper panel: Probability density of the S0 and
S1 nuclear wavepackets computed at different times
for XFFMS (blue = S0, light blue = S1) and QD
(red = S0, light red = S1) dynamics. The S0 and S1
PECs are represented in light gray and computed at the
SA2-CASSCF(4/6)/6-31G level of theory. The nuclear
wavepackets have been rescaled for visibility. Lower
panel: Schematic representation of the TBFs (thin lines)
in the XFFMS simulation for the same time snapshots as
in the upper panel. The height of the TBFs is proportional
to the squared norm of their amplitude.

simulations. In total, 100 independent XFAIMS runs are per-
formed and incoherently averaged to produce the final result. If
there is only one TBF on S0 before the pulse, as it is the case for
each individual initial condition with XFAIMS, only one TBF
is spawned on S1 (with an nuclear overlap of 1 when the pulse
is maximum, i.e., when the transfer of amplitude is expected
to be the largest). The situation differs for XFFMS as a result
of the larger number of coupled TBFs on S0, which can lead
to the spawning of several TBFs on S1. We finally note that
the widths employed to form the TBFs [diagonal matrix α in
Eq. (6)] are expected to have only a minor effect on population
transfer or the time-dependent dipole moment, as discussed in
the literature.96 We tested this fact for the system studied by
doubling α from 5 bohrs�2 to 10 bohrs�2 and did not observe
a significant change.

IV. RESULTS AND DISCUSSION

In the following, we will study how the approximations
of XFAIMS affect the description of LiH photoexcitation and
its subsequent dynamics. Our discussion will be based on the
different steps presented in Fig. 2.

A. Step A: Photoexcitation by a UV femtosecond pulse

We first investigate the photoexcitation of LiH, origi-
nally on S0, by a 0.8 fs laser pulse. At the beginning of
the exact QD simulation, the nuclear wavepacket is entirely
on S0 (Fig. 3, upper panel, t = 0 fs). Then, the laser pulse
induces an amplitude transfer between S0 and S1, lead-
ing to the creation of a nuclear wavepacket on S1 (Fig. 3,
upper panel, 1.2 fs). The S1 wavepacket immediately relaxes
and evolves towards longer LiH distances (Fig. 3, upper
panel, 9.7-19.4 fs). The time trace of the population on S1,
defined as nS1 (t) =

〈
ΩS1 (t) �� ΩS1 (t)

〉
R, is depicted in Fig. 4

(red line) and shows how the laser pulse transfers popula-
tion from the ground to the excited electronic state, with
a maximum efficiency when the electric field reaches its
maximum.

Let us compare the QD dynamics to XFFMS, which
would be exact in the limit of a large number of TBFs. At
the early stage of the photoexcitation dynamics, we observe
a perfect agreement between the position, shape, and width
of the XFFMS nuclear wavepacket with the one obtained
using exact QD (Fig. 3, upper panel, 1.2 fs). At later time,
the nuclear wavepacket is reasonably well described, even if
some discrepancies can be observed at 9.7 and 19.4 fs for the
S1 wavepacket due to the limited number of TBFs on S1. The
XFFMS dynamics indeed uses a maximum of four TBFs to
describe the nuclear dynamics in S1, which is not sufficient to
accurately describe the nuclear wavepacket at these later times.
The lower panel of Fig. 3 shows schematically the positions
of the TBFs that generate the XFFMS nuclear wavepackets.
Despite the differences in the shape of the nuclear wavepack-
ets, the time-dependent population of the S1 electronic state,

FIG. 4. Time-dependent population of the S1 state as obtained with
XFFMS, XFAIMS, and with the numerically exact QD method. The pulse
(f 0 = 0.025 a.u., FWHM = 35.25 a.u., ω = 0.127 a.u., CEP = π, polarization
along the molecular axis) is depicted in gray.
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computed as nS1 (t) =
NS1 (t)∑

i

NS1 (t)∑
i′

C(S1)∗

i (t)C(S1)
i′ (t)SS1S1

ii′ (t), is in

excellent agreement with the exact QD simulation (Fig. 4,
black line). What happens now if one applies the IFGA and
approximates the matrix elements with a SPA of order 0, i.e., if
one employs XFAIMS for this photoexcitation process? Inter-
estingly, XFAIMS also leads to a perfect agreement with both
the XFAIMS and the QD dynamics for the population transfer
to S1 (Fig. 4, blue line). This agreement is, however, not sur-
prising, considering that we apply a very short laser pulse to
the molecule, as observed in the context of trajectory surface
hopping.97

Comparing XFFMS and XFAIMS (or any other nonadi-
abatic methods) with QD results using only the population as
a metric is, however, not sufficient to evaluate the quality of
a method’s approximations. The (adiabatic) population only
requires a scalar product of the nuclear wavefunction on the
considered electronic state with itself, making it a rather forgiv-
ing observable with respect to different approximations. In the
following, we will make use of a different observable, the time-
dependent molecular dipole moment, to monitor the effect
of the approximations in XFAIMS. This quantity is defined
by

〈
Ψ

���µ̂−
���Ψ

〉
r,R
=

∞∑
I

∞∑
J

[〈
ΩI

���
〈
ΦI

���µ̂−
e���ΦJ

〉
r
���ΩJ

〉
R

+
〈
ΩI

���µ̂−
n���ΩJ

〉
R
δIJ

]
, (13)

based on the definition of the dipole moment operator given
above. Within the representation of the nuclear wavefunctions
proposed by XFFMS, the same quantity becomes

〈
Ψ

���µ̂−
���Ψ

〉
r,R
=

∞∑
I

∞∑
J



NI (t)∑
k

NJ (t)∑
i

(
C(I)

k (t)
)∗

C(J)
i (t)

×

[〈
χ(I)

k
���
〈
ΦI

���µ̂−
e���ΦJ

〉
r
���χ

(J)
i

〉
R

+
〈
χ(I)

k
���µ̂−

n���χ
(J)
i

〉
R
δIJ

] ]
. (14)

The time-dependent dipole moment can be decomposed into
three contributions: (i) an electronic contribution leading to
couplings between TBFs in the same state and mediated by
the electronic dipole moment; (ii) interference terms trig-
gered by transition dipole moments and coming from the
coupling between TBFs in different electronic states [impor-
tantly, this term is modulated by the strength of the transition
dipole moments and the overlap between the TBFs on the two
PECs; see Eq. (14)]; (iii) the nuclear contribution to the dipole
moment, which is diagonal in the adiabatic representation.
Hence, the time-dependent dipole moment is composed of
rather complex matrix elements between nuclear TBFs evolv-
ing on the same and on different electronic states, meaning that
such an observable will be sensitive to variations in both phases
and spatial localization of the two different nuclear wavepack-
ets. Therefore, this quantity constitutes a challenge for any
approximated nuclear dynamics methods aiming at describ-
ing processes like interferences or decoherences adequately

and will be the central quantity of interest for our analysis of
XFFMS and XFAIMS approximations.

The time-dependent dipole moment obtained from the
QD simulation rapidly oscillates, with a decrease of its over-
all amplitude as the nuclear wavepacket on S1 leaves the
FC region (Fig. 5, red line). These oscillations originate
from the interference between the electronic states S0 and S1,
and the beating is inversely proportional to the S0-S1 exci-
tation energy. The time-dependent dipole moment computed
with XFFMS agrees very well with the QD simulation, but
we note a slight dephasing between 10 and 15 fs (Fig. 5,
black line). Based on our previous discussion on the deriva-
tion of (XF)FMS, this slight dephasing of the dipole moment in
XFFMS—and therefore the slight deviation from the numer-
ically exact results—should find its root in the use of a small
number of TBFs (“truncated basis” in Fig. 1). To demon-
strate this, we carried out an additional XFFMS simulation in
which we artificially increased the number of basis functions
on S1 by spreading 73 fixed Gaussian functions that cover the
whole region visited by the nuclear wavepacket on S1 (rang-
ing from 2.83 to 10.03 bohrs). The fixed Gaussians have the
very same definition as the TBFs, except that their momen-
tum is always zero, their position do not move over time (we
still use 9 moving TBFs on S0), and no spawning events are
required. This Fixed Gaussian (FG) dynamics constitutes an
intermediate level between the numerically exact QD (com-
plete fixed grid) and XFFMS (truncated travelling basis). As
expected, the time-dependent dipole moment obtained with the
FG method is in excellent agreement with the exact QD simu-
lation, even when the nuclear wavepacket on S1 leaves the FC
region (Fig. 5, orange line). Nevertheless, it should be stressed

FIG. 5. Time-dependent dipole moment in the first 16 fs following photoexci-
tation as computed with XFFMS, XFAIMS, FG, and exact QD. The gray area
represents the time window in which the laser pulse is applied to the molecule.
The effect of the SPA on XFFMS is shown in the inset for the dipole moment
between 5 and 16 fs, when the nuclear wavepacket on S1 is leaving the FC
region.
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that the almost quantitative result obtained with XFFMS only
uses a total of 13 TBFs, with just four of them evolving on
S1, leading to a drastic reduction of the computational cost as
compared to the FG simulation where 82 TBFs in total are
used.

Now that we showed that XFFMS can be converged
towards the exact QD dynamics in the limit of a large basis
set, let us focus on the other approximation that can be applied
to XFFMS: the SPA on Hamiltonian matrix elements. As
described above, XFFMS would correspond to an infinite num-
ber of terms in the Taylor expansion or the knowledge of the
electronic quantities over the entire configuration space vis-
ited by the nuclear wavepackets (Fig. 1). As expected, the
time-dependent dipole moment is sensitive to the approxi-
mations applied to XFFMS as it reflects the interferences
between the electronic states via the motion of the nuclear
wavepackets and the overlap between the two wavepackets.
The XFFMS-SPA0 dipole moment starts to dephase after
7 fs, when the S1 wavepacket leaves the FC region (see the
inset in Fig. 5). It is at that particular time that the overlap
between the S0 and S1 wavepackets—and therefore between
the corresponding TBFs—decreases. As the TBFs are spatially
separated, approximating the electronic structure quantities
in the Hamiltonian matrix elements by single (constant) val-
ues evaluated at the centroid position of their product does
not approximate well the integral over the full span of the
two TBFs. Employing the SPA-1, which requires the addi-
tional calculation of the first derivative of the electronic energy
and the (transition) dipole moments [see Eq. (9)], in the
dynamics already leads to a dramatic improvement in the
description of the time-dependent dipole moment (see the
inset in Fig. 5). The time-dependent dipole moment now
beats in phase but the amplitude is still off. This result can
be improved by moving to the 2nd or higher-order SPA that
rapidly leads to a perfect agreement with XFFMS (i.e., with full
numerical integration for computing the Hamiltonian matrix
elements).

We now move to the second approximation used in
XFAIMS: the independent first generation. We first note
that the IFGA is justified for multidimensional systems, but
applying it to our one-dimensional system constitutes its
worst-case scenario. Comparing the exact QD simulation with
XFAIMS, in which the IFGA is applied and the Hamiltonian

matrix elements are computed using the 0th order SPA, shows
an excellent agreement for the S1 population (Fig. 4). The
situation is slightly worse in the case of the time-dependent
dipole moment, where the coupling between all the TBFs
becomes essential. A typical XFAIMS run consists in one TBF
in S0 (whose initial conditions were sampled from a Wigner
distribution) that will eventually spawn another TBF in S1.
100 XFAIMS runs are then sampled and incoherently aver-
aged to produce the result presented here. Hence, the IFGA
dramatically reduces the number of coupled TBFs: in our
simulations, we move from 13 coupled TBFs in XFFMS to
2 per run in XFAIMS. While the time evolution of the dipole
moment is still qualitatively well described by XFAIMS, the
amplitude of its oscillations decreases faster than for the QD
simulation, and a dephasing is observed at a later time (Fig. 5).
This difference can be explained by the fact that the (uncou-
pled) TBFs rapidly leave the FC region and therefore do not
offer a proper support to describe the slower dynamics com-
ponent observed for the S1 nuclear wavepacket in the QD
simulation. Employing only two coupled TBFs in XFAIMS
is enough to describe the population transfer with a short
laser pulse, but such a reduced number of uncoupled TBFs
might become problematic if one wants to describe the over-
all nuclear dynamics at later times. This situation could be
improved by using a different set of initial conditions with
zero initial momentum, for example, such that the S1 TBFs
remain for a longer period in the FC region—hence increas-
ing the oscillation amplitude of the time-dependent dipole
moment.

B. Step B: Return of the S1 nuclear wavepacket
in the Franck-Condon region

Section IV A was dedicated to the early dynamics fol-
lowing photoexcitation, when the nuclear wavepacket on S1

starts to leave the FC region, but what happens at later times?
The nuclear wavepacket moves towards longer LiH distances
until it reflects (after 35 fs) and comes back into the FC region
(Fig. 6, left). The time-dependent dipole moment mirrors this
dynamics as it slowly increases from ∼1.5 a.u. to 2.0 a.u. dur-
ing the first 40 fs of dynamics before decreasing again—the S1

electronic dipole moment indeed increases with the LiH bond
length. When the S1 nuclear wavepacket comes back into the
FC region, between 60 and 80 fs, we observe oscillations in

FIG. 6. Time-dependent dipole moment induced by the
UV pulse of Fig. 4 computed with XFAIMS and with
the QD method. The dipole moment is showed in a time
window from 0 to 80 fs (left) and zoomed from 60 to 80 fs
(right). For the right panel, the dipole moment computed
with XFFMS is also shown.
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FIG. 7. Evolution of the S1 population after the probe
by the second pulse as a function of the pump-probe
delay between 60 and 85 fs (left) and 70 and 75 fs (right)
computed in XFAIMS and with the QD method. In the
right panel, the population computed with XFFMS is also
shown.

the time-dependent dipole moment caused by interferences
between the nuclear wavepackets in electronic states S0 and
S1 (Fig. 6). XFAIMS qualitatively reproduces this trend in
the time-dependent dipole moment (XFFMS does it almost
quantitatively), attesting from the proper description of the
nuclear wavepacket dynamics in each electronic state.

C. Step C: Pump-probe experiment

An interesting way to probe the return of the S1 nuclear
wavepacket into the FC region consists in applying a second
laser pulse, a probe, at a variable time delay after the original
pump pulse [Fig. 2(c)]. Depending on the phase relationship
between the two nuclear wavepackets and their overlap at the
time of the second pulse, the population will either be excited
from S0 to S1 or de-excited from S1 to S0. We therefore expect
an oscillation of the resulting S1 population at the end of the
second pulse as a function of the pump-probe delay (Fig. 7).
Such a pump-probe experiment is rather challenging to model
for methods outside quantum dynamics because it requires
to accurately describe the photoexcitation and the nuclear
wavepackets propagation during more than 60 fs. Due to the
coupling between TBFs and the proper treatment of coherence
and decoherence effects, XFFMS and XFAIMS are expected
to be suitable to model such experiments, unlike trajectory sur-
face hopping that might suffer from its inherent independent
trajectory approximation.25,97,98 XFAIMS recovers the proper
population beating (Fig. 7), even if the oscillations of the S1

population are weaker than those obtained with the exact QD
simulation. As previously noted, this effect is due to the width

of the approximate nuclear wavepackets within the IFGA: the
S0-S1 overlap is underestimated by a factor of two when the
S1 nuclear wavepacket returns into the FC region, explaining
why the population transfer is smaller. This problem can be
circumvented by releasing the IFGA, as demonstrated by the
result produced with XFFMS (using this time 9 TBFs on S0

and 9 on S1). The S1 population after the second pulse is now
in very good agreement with the grid simulation.

D. Discussion on AIMS and possible improvements

Sections IV A–IV C proposed an analysis of the dif-
ferent approximations bridging the (XF)FMS framework to
(XF)AIMS. We generalize here our findings to AIMS and dis-
cuss potential improvements of the method. AIMS employs
a SPA-0 which, as described above, appears to capture the
qualitative features of the time-dependent dipole moment ade-
quately. This approximation nevertheless rapidly runs out of
steam for matrix elements between TBFs that are moving apart
(inset of Fig. 5), and we observed that moving to the SPA-1
leads to a substantial improvement of the result. However, the
SPA-1 implies the additional calculation of derivatives of elec-
tronic structure quantities with respect to nuclear coordinates
at the centroid position. Such quantities are naturally com-
puted at the center of each TBF—nuclear gradients are indeed
required for the classical propagation of each TBF. Based on
this observation, Makhov, Shalashilin, and Martı́nez proposed
to replace the SPA-1 by a first-order bra-ket averaged Tay-
lor (BAT-1) expansion,79 where matrix elements are given
by
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The BAT-1 does not require any additional electronic-structure
calculation, neither at the centroid nor at the TBF posi-
tion.38,79 Armed with our exact model, we tested the BAT-1

approximation and compared it with the SPA-1, as this strat-
egy was only tested empirically on molecular systems. The
BAT-1 reproduces accurately the SPA-1 dynamics (Fig. 8),
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FIG. 8. Time-dependent dipole moment in the first 16 fs computed with
XFFMS using the SPA-1 (gray line) or the BAT-1 (palatinate line), and QD
(red line). Inset: resulting time-dependent dipole moment when the SPA-1 is
only applied to intrastate coupling terms (SPA-1-intra, dashed palatinate line),
as compared to the full SPA-1 (gray line).

hence providing a clear improvement over the SPA-0 at no
extra cost, and its use should be strongly advised for any
methods based on travelling Gaussians.

A question that could also arise at this point is: Shall
we strictly employ the same order of the SPA for intra- and
interstate couplings? Let us make two observations: (i) the
spawning algorithm ensures that TBFs are strongly overlap-
ping in regions where the coupling between states is max-
imum and (ii) our present laser pulse—as well as NACVs
more generally—is believed to behave ideally as localized
couplings. Based on these two observations, one could sug-
gest that a lower order SPA could be employed for interstate
coupling matrix elements, while a higher one should be used
for the intrastate ones. We performed this test for our model
system and observed an almost perfect agreement between
the time-dependent dipole moment simulated with the SPA-1
for all matrix elements and the one obtained by employing
a SPA-0 for interstate couplings and a SPA-1 for intrastate
couplings (inset of Fig. 8). This result is particularly inter-
esting for AIMS, as employing a SPA-1 (or even a BAT-1)
for its matrix elements would imply the calculation of higher-
order order terms related to the NACVs that are currently not
implemented in electronic structure codes. One could therefore
suggest that, if higher accuracy is needed in an AIMS simula-
tion, the IFGA can be released and the SPA-1 (or BAT-1) can be
applied to intrastate couplings (keeping a SPA-0 for interstates
ones).

V. CONCLUSION

In this work, we showed numerically how the (XF)FMS
framework can be converged towards numerically exact QD.
More importantly, we analyzed the approximations applied to

the (XF)FMS equations to generate the (XF)AIMS method,
which is commonly employed to simulate the excited-state
dynamics of molecules in their full nuclear configuration
space. Comparing the time evolution of the dipole moment
of LiH after photoexcitation for the different methods offers a
rather stringent metric to test the quality of the (XF)AIMS
approximations—more challenging than simply monitoring
the electronic state populations over time, for example. Fur-
thermore, we focused on three different steps following pho-
toexcitation: (i) the early stage dynamics, when the S1 nuclear
wavepacket leaves the FC region; (ii) the long-time dynamics,
when the S1 wavepacket returns into the FC region; and (iii)
the resulting population after a second pulse is applied to the
system after a given delay. Despite being used in its worst-case
scenario, i.e., for a one-dimensional system, the IFGA does not
prevent (XF)AIMS from capturing the proper physics of the
nuclear wavepacket dynamics in all three steps. As expected,
the SPA offers a decent approximation to the Hamiltonian
matrix elements, but its lower-order version, SPA-0, starts to
break down when the TBFs separate while still experienc-
ing a non-zero overlap. For the system studied, the SPA-1
already corrects this deficiency substantially and can easily
be approximated, as proposed in earlier work and validated
here.

This work highlights that (XF)AIMS, despite its approxi-
mations, adequately describes the physics of rather challenging
excited-state processes such as interferences or pump-probe
pulse sequences and therefore constitutes a robust technique
to treat the excited-state dynamics of molecular systems.
Despite the fact that the IFGA and the SPA-0 were used here
in their worst-case scenario—a one-dimensional model with
important intrastate couplings between TBFs—the properties
computed in this work were either in quantitative (electronic
population) or qualitative (time-dependent dipole moment)
agreement with the results from quantum dynamics, even for
longer excited-state dynamics. Our findings validate the use of
(XF)AIMS for the nonadiabatic dynamics of molecular sys-
tems as (i) the IFGA is expected to be better for systems with
a large number of nuclear degrees of freedom and (ii) we
observed that the SPA-0 appears to be a better approxima-
tion for the interstate couplings than for the intrastate ones
(also helped by the spawning algorithm, which ensures that at
the maximum of the interstate coupling, the two TBFs should
have the largest overlap, i.e., where the SPA-0 should be more
robust). Furthermore, releasing the IFGA and employing a
SPA-1 or a BAT-1 (only on intrastate couplings or on all
couplings) allows for a simple test of (XF)AIMS accuracy.
Finally, this work paves the way for the development of inter-
mediate schemes between (XF)FMS and (XF)AIMS that will
allow us to selectively tune the accuracy of Hamiltonian matrix
elements when required.
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D. R. Yarkony, and H. Köppel (World Scientific Publishing Co. Pte. Ltd.,
2004), p. 583.

6J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).
7J. C. Tully, J. Chem. Phys. 93, 1061 (1990).
8M. F. Herman, J. Chem. Phys. 81, 754 (1984).
9X. Sun and W. H. Miller, J. Chem. Phys. 106, 6346 (1997).

10R. Kapral and G. Ciccotti, J. Chem. Phys. 110, 8919 (1999).
11S. Nielsen, R. Kapral, and G. Ciccotti, J. Stat. Phys. 101, 225 (2000).
12S. Nielsen, R. Kapral, and G. Ciccotti, J. Chem. Phys. 112, 6543 (2000).
13R. Kapral, Annu. Rev. Phys. Chem. 57, 129 (2006).
14S. J. Cotton and W. H. Miller, J. Chem. Phys. 139, 234112 (2013).
15S. J. Cotton and W. H. Miller, J. Phys. Chem. A 117, 7190 (2013).
16S. J. Cotton and W. H. Miller, J. Phys. Chem. A 119, 12138 (2015).
17S. J. Cotton and W. H. Miller, J. Chem. Phys. 145, 144108 (2016).
18S. J. Cotton and W. H. Miller, J. Chem. Theory Comput. 12, 983 (2016).
19S. Bonella and D. F. Coker, J. Chem. Phys. 122, 194102 (2005).
20R. E. Wyatt, C. L. Lopreore, and G. Parlant, J. Chem. Phys. 114, 5113

(2001).
21C. L. Lopreore and R. E. Wyatt, J. Chem. Phys. 116, 1228 (2002).
22V. A. Rassolov and S. Garashchuk, Phys. Rev. A 71, 032511 (2005).
23B. Poirier and G. Parlant, J. Phys. Chem. A 111, 10400 (2007).
24B. F. E. Curchod, I. Tavernelli, and U. Rothlisberger, Phys. Chem. Chem.

Phys. 13, 3231 (2011).
25B. F. E. Curchod and I. Tavernelli, J. Chem. Phys. 138, 184112 (2013).
26F. Agostini, A. Abedi, Y. Suzuki, and E. K. U. Gross, Mol. Phys. 111, 3625

(2013).
27A. Abedi, F. Agostini, and E. K. U. Gross, Europhys. Lett. 106, 33001

(2014).
28S. K. Min, F. Agostini, and E. K. U. Gross, Phys. Rev. Lett. 115, 073001

(2015).
29F. Agostini, S. K. Min, A. Abedi, and E. K. U. Gross, J. Chem. Theory

Comput. 12, 2127 (2016).
30S. K. Min, F. Agostini, I. Tavernelli, and E. K. U. Gross, J. Phys. Chem.

Lett. 8, 3048 (2017).
31E. J. Heller, J. Chem. Phys. 62, 1544 (1975).
32E. J. Heller, Acc. Chem. Res. 14, 368 (1981).
33E. J. Heller, J. Chem. Phys. 75, 2923 (1981).
34G. Worth, M. Robb, and I. Burghardt, Faraday Discuss. 127, 307 (2004).
35G. W. Richings, I. Polyak, K. E. Spinlove, G. A. Worth, I. Burghardt, and

B. Lasorne, Int. Rev. Phys. Chem. 34, 269 (2015).
36D. V. Shalashilin, J. Chem. Phys. 130, 244101 (2009).
37D. V. Shalashilin, J. Chem. Phys. 132, 244111 (2010).
38D. V. Makhov, C. Symonds, S. Fernandez-Alberti, and D. V. Shalashilin,

Chem. Phys. 493, 200 (2017).
39T. J. Martı́nez, M. Ben-Nun, and R. D. Levine, J. Phys. Chem. 100, 7884

(1996).
40T. J. Martı́nez and R. D. Levine, J. Chem. Soc., Faraday Trans. 93, 941

(1997).
41T. J. Martı́nez and R. D. Levine, J. Chem. Phys. 105, 6334 (1996).
42M. Ben-Nun and T. J. Martı́nez, J. Chem. Phys. 108, 7244 (1998).
43B. F. E. Curchod and T. J. Martinez, “Ab initio nonadiabatic quantum

molecular dynamics,” Chem. Rev. (to be published).
44M. Ben-Nun and T. J. Martı́nez, Adv. Chem. Phys. 121, 439 (2002).
45M. Ben-Nun, J. Quenneville, and T. J. Martı́nez, J. Phys. Chem. A 104, 5161

(2000).
46D. M. Leitner, J. Quenneville, B. Levine, T. J. Martı́nez, and P. G. Wolynes,

J. Phys. Chem. 107, 10706 (2003).
47B. Levine, and T. J. Martı́nez, in Quantum Dynamics and Conical Intersec-

tions, edited by G. A. Worth and S. C. Allthorpe (CCP6, Daresbury, 2004),
p. 65.

48J. D. Coe and T. J. Martı́nez, J. Phys. Chem. A 110, 618 (2006).

49H. R. Hudock, B. G. Levine, A. L. Thompson, H. Satzger, D. Townsend,
N. Gador, S. Ullrich, A. Stolow, and T. J. Martı́nez, J. Phys. Chem. A 111,
8500 (2007).

50B. G. Levine and T. J. Martinez, Annu. Rev. Phys. Chem. 58, 613 (2007).
51H. Tao, T. K. Allison, T. W. Wright, A. M. Stooke, C. Khurmi, J. van Tilborg,

Y. Liu, R. W. Falcone, A. Belkacem, and T. J. Martı́nez, J. Chem. Phys. 134,
244306 (2011).

52T. K. Allison, H. Tao, W. J. Glover, T. W. Wright, A. M. Stooke, C. Khurmi,
J. van Tilborg, Y. Liu, R. W. Falcone, T. J. Martı́nez, and A. Belkacem,
J. Chem. Phys. 136, 124317 (2012).

53C. Punwong, J. Owens, and T. J. Martinez, J. Phys. Chem. B 119, 704 (2015).
54B. Mignolet, B. F. E. Curchod, and T. J. Martinez, Angew. Chem., Int. Ed.

55, 14993 (2016).
55J. W. Snyder, B. F. E. Curchod, and T. J. Martinez, J. Phys. Chem. Lett. 7,

2444 (2016).
56B. F. E. Curchod, A. Sisto, and T. J. Martinez, J. Phys. Chem. A 121, 265

(2017).
57S. Pijeau, D. Foster, and E. G. Hohenstein, J. Phys. Chem. A 121, 6377

(2017).
58S. Pijeau, D. Foster, and E. G. Hohenstein, J. Phys. Chem. A 121, 4595

(2017).
59M. Sulc, H. Hernandez, T. J. Martı́nez, and J. Vanicek, J. Chem. Phys. 139,

034112 (2013).
60M. D. Hack, A. M. Wensmann, D. G. Truhlar, M. Ben-Nun, and T. J.

Martı́nez, J. Chem. Phys. 115, 1172 (2001).
61J. P. Alborzpour, D. P. Tew, and S. Habershon, J. Chem. Phys. 145, 174112

(2016).
62M. Ben-Nun and T. J. Martinez, Isr. J. Chem. 47, 75 (2007).
63M. Ben-Nun and T. J. Martı́nez, J. Chem. Phys. 112, 6113 (2000).
64J. E. Subotnik and N. Shenvi, J. Chem. Phys. 134, 024105 (2011).
65M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon,

Oxford, 1954).
66W. Domcke, D. Yarkony, and H. Köppel, Conical Intersections: Electronic

Structure, Dynamics & Spectroscopy (World Scientific Publishing Co., Inc.,
2004), Vol. 15.

67A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002
(2010).

68A. Abedi, N. T. Maitra, and E. K. U. Gross, J. Chem. Phys. 137, 22A530
(2012).

69A. Abedi, F. Agostini, Y. Suzuki, and E. K. U. Gross, Phys. Rev. Lett. 110,
263001 (2013).

70H.-D. Meyer, F. Gatti, and G. A. Worth, Multidimensional Quantum Dynam-
ics: MCTDH Theory and Applications (Wiley-VCH Verlag GmbH & Co.
KGaA, 2009).

71F. Gatti and B. Lasorne, Molecular Quantum Dynamics From Theory to
Applications (Springer-Verlag, Berlin, Heidelberg, 2014), p. 271.

72D. J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent
Perspective (University Science Books, Sausalito, California, 2007).
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