Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On colouring $(2P_2, H)$ -free and (P_5, H) -free graphs

Konrad K. Dabrowski, Daniël Paulusma*

Department of Computer Science, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom

ARTICLE INFO

Article history: Received 22 December 2017 Received in revised form 2 February 2018 Accepted 2 February 2018 Available online 5 February 2018 Communicated by Marcin Pilipczuk

Keywords: Colouring Hereditary graph class Computational complexity (H₁, H₂)-free Paths

ABSTRACT

The COLOURING problem asks whether the vertices of a graph can be coloured with at most k colours for a given integer k in such a way that no two adjacent vertices receive the same colour. A graph is (H_1, H_2) -free if it has no induced subgraph isomorphic to H_1 or H_2 . A connected graph H_1 is almost classified if COLOURING on (H_1, H_2) -free graphs is known to be polynomial-time solvable or NP-complete for all but finitely many connected graphs H_2 . We show that every connected graph H_1 apart from the claw $K_{1,3}$ and the 5-vertex path P_5 is almost classified. We also prove a number of new hardness results for COLOURING on $(2P_2, H)$ -free graphs. This enables us to list all graphs H for which the complexity of COLOURING is open on $(2P_2, H)$ -free graphs and all graphs H for which the stwo lists coincide. Moreover, we show that the complexities of COLOURING for $(2P_2, H)$ -free graphs are the same for all known cases.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Graph colouring is an extensively studied concept in both Computer Science and Mathematics due to its many application areas. A *k*-colouring of a graph G = (V, E) is a mapping $c : V \rightarrow \{1, ..., k\}$ such that $c(u) \neq c(v)$ whenever $uv \in E$. The COLOURING problem that of deciding whether a given graph *G* has a *k*-colouring for a given integer *k*. If *k* is fixed, then we write *k*-COLOURING instead. It is well known that even 3-COLOURING is NP-complete [22].

Due to the computational hardness of COLOURING, it is natural to restrict the input to special graph classes. A class is hereditary if it is closed under vertex deletion. Hereditary graph classes form a large collection of well-known graph classes for which the COLOURING problem has been extensively studied. A classical result in the area is due

* Corresponding author.

to Grötschel, Lovász, and Schrijver [14], who showed that COLOURING is polynomial-time solvable for perfect graphs.

Graphs with no induced subgraph isomorphic to a graph in a set \mathcal{H} are said to be \mathcal{H} -free. It is readily seen that a graph class \mathcal{G} is hereditary if and only if it there exists a set \mathcal{H} such that every graph in \mathcal{G} is \mathcal{H} -free. If the graphs of \mathcal{H} are required to be minimal under taking induced subgraphs, then \mathcal{H} is unique. For example, the set \mathcal{H} of minimal forbidden induced subgraphs for the class of perfect graphs consists of all odd holes and odd antiholes [6].

Král', Kratochvíl, Tuza, and Woeginger [21] classified the complexity of COLOURING for the case where \mathcal{H} consists of a single graph H. They proved that COLOURING on H-free graphs is polynomial-time solvable if H is an induced subgraph of P_4 or $P_1 + P_3$ and NP-complete otherwise.¹

Král' et al. [21] also initiated a complexity study of COLOURING for graph classes defined by two forbidden induced subgraphs H_1 and H_2 . Such graph classes are said to be *bigenic*. For bigenic graph classes, no di-

https://doi.org/10.1016/j.ipl.2018.02.003

FI SEVIED

 $^{^{\}star}$ This paper was supported by EPSRC (EP/K025090/1) and the Leverhulme Trust (RPG-2016-258).

E-mail addresses: konrad.dabrowski@durham.ac.uk (K.K. Dabrowski), daniel.paulusma@durham.ac.uk (D. Paulusma).

¹ We refer to Section 2 for notation used throughout Section 1.

^{0020-0190/© 2018} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Fig. 1. The graphs from the three pairs $(H_1, H_2) \in \{(K_{1,3}, 4P_1), (K_{1,3}, 2P_1 + P_2), (C_4, 4P_1)\}$ of graphs on at most four vertices, for which the complexity of COLOURING on (H_1, H_2) -free graphs is still open.

Fig. 2. The graphs from the four pairs $(H_1, H_2) \in \{(K_{1,3}, \overline{C_4 + P_1}), (P_5, \overline{C_3 + 2P_1}), (P_5, \overline{C_3 + P_2}), (P_5, \overline{P_1 + 2P_2})\}$ of connected graphs on at most five vertices, for which the complexity of COLOURING on (H_1, H_2) -free graphs is still open.

chotomy is known or even conjectured, despite many results [1,2,4,5,7,8,10,15,16,18,20,21,23,26–28,31]. For instance, if we forbid two graphs H_1 and H_2 with $|V(H_1)| \le$ 4 and $|V(H_2)| \le 4$, then there are three open cases left, namely when $(H_1, H_2) \in \{(K_{1,3}, 4P_1), (K_{1,3}, 2P_1 + P_2), (C_4, 4P_1)\}$ (see [23] and Fig. 1). If H_1 and H_2 are connected with $|V(H_1)| \le 5$ and $|V(H_2)| \le 5$, then there are four open cases left, namely when $H_1 = P_5$ and $H_2 \in \{\overline{C_3 + 2P_1}, \overline{C_3 + P_2}, \overline{P_1 + 2P_2}\}$ (see [20] and Fig. 2) and when $H_1 = K_{1,3}$ and $H_2 = \overline{C_4 + P_1}$ (see [28] and Fig. 2). To give another example, Blanché et al. [1] determined the complexity of COLOURING for (H, \overline{H}) -free graphs for every graph H except when $H = P_3 + sP_1$ for $s \ge 3$ or $H = P_4 + sP_1$ for $s \ge 2$.

The related problems PRECOLOURING EXTENSION and LIST COLOURING have also been studied for bigenic graph classes. For the first problem, we are given a graph *G*, an integer *k* and a *k*-colouring *c'* defined on an induced subgraph of *G*. The question is whether *G* has a *k*-colouring *c* extending *c'*. For the second problem, each vertex *u* of the input graph *G* has a list L(u) of colours. Here the question is whether *G* has a colouring *c* that respects *L*, that is, with $c(u) \in L(u)$ for all $u \in V(G)$. For the PRECOLOURING EXTENSION problem no classification is known and we refer to the survey [12] for an overview on what is known. In contrast to the incomplete classifications for COLOURING and PRECOLOURING EXTENSION, Golovach and Paulusma [13] showed a dichotomy for the complexity of LIST COLOURING on bigenic graph classes.

Our Approach. To get a handle on the computational complexity classification of COLOURING for bigenic graph classes, we continue the line of research in [2,16,20,26–28] by considering pairs (H_1 , H_2), where H_1 and H_2 are both connected. We introduce the following notion. We say that a connected graph H_1 is *almost classified* if COLOURING on (H_1 , H_2)-free graphs is known to be either polynomial-time solvable or NP-complete for all but finitely many connected graphs H_2 . This leads to the following research question:

Which connected graphs are almost classified?

Our Results. In Section 3 we show, by combining known results from the literature, that every connected graph H_1

apart from the claw $K_{1,3}$ and the 5-vertex path P_5 is almost classified. In fact we show that the number of pairs (H_1, H_2) of connected graphs for which the complexity of COLOURING is unknown is finite if neither H_1 nor H_2 is isomorphic to $K_{1,3}$ or P_5 . In Section 4 we prove a number of new hardness results for COLOURING restricted to $(2P_2, H_2)$ -free graphs (which form a subclass of (P_5, H_2) -free graphs). We do the latter by adapting the NP-hardness construction from [11] for LIST COLOURING restricted to complete bipartite graphs. In Section 5, we first summarize our knowledge on the complexity of COLOURING restricted to $(2P_2, H)$ -free graphs and (P_5, H) -free graphs. Afterwards, we list all graphs H for which the complexity of COLOURING on $(2P_2, H)$ -free graphs is still open, and all graphs H for which the complexity of COLOURING on (P_5, H) -free graphs is still open. As it turns out, these two lists coincide. Moreover, the complexities of COLOURING for $(2P_2, H)$ -free graphs and for (P_5, H) -free graphs turn out to be the same for all cases that are known.

2. Preliminaries

We consider only finite, undirected graphs without multiple edges or self-loops. Let G = (V, E) be a graph. The *complement* \overline{G} of G is the graph with vertex set V(G) and an edge between two distinct vertices if and only if these two vertices are not adjacent in G. For a subset $S \subseteq V$, we let G[S] denote the subgraph of G *induced* by S, which has vertex set S and edge set $\{uv \mid u, v \in S, uv \in E\}$.

Let $\{H_1, \ldots, H_p\}$ be a set of graphs. A graph *G* is (H_1, \ldots, H_p) -free if *G* has no induced subgraph isomorphic to a graph in $\{H_1, \ldots, H_p\}$. If p = 1, we may write H_1 -free instead of (H_1) -free. The *disjoint union* G + H of two vertex-disjoint graphs *G* and *H* is the graph $(V(G) \cup V(H), E(G) \cup E(H))$. The disjoint union of *r* copies of a graph *G* is denoted by *rG*. A *linear forest* is the disjoint union of one or more paths.

The graphs C_r , K_r and P_r denote the cycle, complete graph and path on r vertices, respectively. The graph K_3 is also known as the *triangle*. The graph $K_{r,s}$ denotes the complete bipartite graph with partition classes of size rand s, respectively. The graph $K_{1,3}$ is also called the *claw*.

The graph $S_{h,i,j}$, for $1 \le h \le i \le j$, denotes the subdivided claw, that is, the tree that has only one vertex x

Fig. 3. Examples of $T_{h,i,j}$ graphs.

of degree 3 and exactly three leaves, which are at distance *h*, *i* and *j* from *x*, respectively. Observe that $S_{1,1,1} = K_{1,3}$. The graph $S_{1,1,2}$ is also known as the *fork* or the *chair*.

The graph $T_{h,i,j}$ with $0 \le h \le i \le j$ denotes the graph with vertices $a_0, \ldots, a_h, b_0, \ldots, b_i$ and c_0, \ldots, c_j and edges $a_0b_0, b_0c_0, c_0a_0, a_pa_{p+1}$ for $p \in \{0, \ldots, h-1\}$, b_pb_{p+1} for $p \in \{0, \ldots, i-1\}$ and c_pc_{p+1} for $p \in \{0, \ldots, j-1\}$. Note that $T_{0,0,0} = C_3$. The graph $T_{0,0,1} = \overline{P_1 + P_3}$ is known as the *paw*, the graph $T_{0,1,1}$ as the *bull*, the graph $T_{1,1,1}$ as the *net*, and the graph $T_{0,0,2}$ is known as the *hammer*; see also Fig. 3. Also note that $T_{h,i,j}$ is the line graph of $S_{h+1,i+1,j+1}$.

Let \mathcal{T} be the class of graphs for which every component is isomorphic to a graph $T_{h,i,j}$ for some $1 \le h \le i \le j$ or a path P_r for some $r \ge 1$. The following result, which is due to Schindl and which we use in Section 5, shows that the $T_{h,i,j}$ graphs play an important role for our study.

Theorem 1 ([31]). For $p \ge 1$, let H_1, \ldots, H_p be graphs whose complement is not in \mathcal{T} . Then COLOURING is NP-complete for (H_1, \ldots, H_p) -free graphs.

3. Almost classified graphs

In this section we prove the following result, from which it immediately follows that every connected graph apart from $K_{1,3}$ and P_5 is almost classified. In Section 5 we discuss why $K_{1,3}$ and P_5 are not almost classified.

Theorem 2. There are only finitely many pairs (H_1, H_2) of connected graphs with $\{H_1, H_2\} \cap \{K_{1,3}, P_5\} = \emptyset$, such that the complexity of COLOURING on (H_1, H_2) -free graphs is unknown.

Proof. We first make a useful observation. Let *H* be a tree that is not isomorphic to $K_{1,3}$ or P_5 and that is not an induced subgraph of P_4 . If *H* contains a vertex of degree at least 4 then it contains an induced $K_{1,4}$. If *H* has maximum degree 3, then since *H* is connected and not isomorphic to $K_{1,3}$, it must contain an induced $S_{1,1,2}$. If *H* has maximum degree at most 2, then it is a path, and since it is not isomorphic to P_5 and not an induced subgraph of P_4 , it follows that *H* must be a path on at least six vertices. We conclude that if *H* is a tree that is not isomorphic to $K_{1,3}$ or P_5 and that is not an induced subgraph of P_4 , then *H* contains $K_{1,4}$ or $S_{1,1,2}$ as an induced subgraph or *H* is a path on at least six vertices.

Now let (H_1, H_2) be a pair of connected graphs with $\{H_1, H_2\} \cap \{K_{1,3}, P_5\} = \emptyset$. If H_1 or H_2 is an induced subgraph of P_4 , then COLOURING is polynomial-time solvable for (H_1, H_2) -free graphs, as COLOURING is polynomial-time solvable for P_4 -free graphs (see, for example, [21]). Hence we may assume that this is not the case. If H_1 and H_2 both contain at least one cycle [9] or both contain an induced $K_{1,3}$ [17], then even 3-COLOURING is NP-complete. Hence we may also assume that at least one of H_1, H_2 is a tree and that at least one of H_1, H_2 is a $K_{1,3}$ -free graph. This leads, without loss of generality, to the following two cases.

Case 1. H_1 is a tree and $K_{1,3}$ -free.

Then H_1 is a path. First suppose that H_1 has at least 22 vertices. It is known that 4-COLOURING is NP-complete for (P_{22}, C_3) -free graphs [19] and that COLOURING is NP-complete for (P_9, C_4) -free graphs [10] and for $(2P_2, C_r)$ -free graphs for all $r \ge 5$ [21]. Hence we may assume that H_2 is a tree. By the observation at the start of the proof, this implies that H_2 contains an induced $4P_1$ or $2P_1 + P_2$. Since H_1 is a path on at least 22 vertices, H_1 contains an induced $4P_1$. As COLOURING is NP-complete for $(4P_1, 2P_1 + P_2)$ -free graphs [21], COLOURING is NP-complete for (H_1, H_2) -free graphs.

Now suppose that H_1 has at most 21 vertices. By the observation at the start of the proof, H_1 is a path on at least six vertices. It is known that 5-COLOURING is NP-complete for P_6 -free graphs [18]. As K_6 is not 5-colourable, this means that 5-COLOURING is NP-complete for (P_6 , K_6)-free graphs, as observed in [12]. Therefore we may assume that H_2 is K_6 -free. Recall that COLOUR-ING is NP-complete for ($2P_1 + P_2, 4P_1$)-free graphs [21], which are contained in the class of ($P_6, 4P_1$)-free graphs. Therefore we may assume that H_2 is $4P_1$ -free. Since H_2 is ($K_6, 4P_1$)-free, Ramsey's Theorem [29] implies that $|V(H_2)|$ is bounded by a constant. We conclude that both H_1 and H_2 have size bounded by a constant.

Case 2. H_1 is a tree and not $K_{1,3}$ -free, and H_2 is $K_{1,3}$ -free and not a tree.

Then H_1 contains a vertex of degree at least 3 and H_2 contains an induced cycle C_r for some $r \ge 3$. It is known that 3-COLOURING is NP-complete for $(K_{1,5}, C_3)$ -free graphs [25] and for $(K_{1,3}, C_r)$ -free graphs whenever $r \ge 4$ [21]. We may therefore assume that H_1 is a tree of maximum degree at most 4 and that H_2 contains at least one induced C_3 but no induced cycles on more than three vertices. Recall that 4-COLOURING is NP-complete for

Fig. 4. Graphs that are not induced subgraphs of the complement of G'_1 .

 (P_{22}, C_3) -free graphs [19]. Hence we may assume that H_1 is a P_{22} -free tree. As H_1 has maximum degree at most 4, we find that H_1 has a bounded number of vertices.

By assumption, H_1 contains a vertex of degree at least 3. As COLOURING is NP-complete for $(K_{1,3}, K_4)$ -free graphs [21], we may assume that H_2 is K_4 -free. By the observation at the start of the proof, H_1 must contain an induced $K_{1,4}$ or $S_{1,1,2}$. Recall that COLOURING is NP-complete for the class of $(2P_1 + P_2, 4P_1)$ -free graphs [21], which is contained in the class of $(K_{1,4}, S_{1,1,2}, 4P_1)$ -free graphs. Hence we may assume that H_2 is $4P_1$ -free. Since H_2 is $(K_4, 4P_1)$ -free, Ramsey's Theorem [29] implies that $|V(H_2)|$ is bounded by a constant. Again, we conclude that in this case both H_1 and H_2 have size bounded by a constant. \Box

Corollary 1. Every connected graph apart from $K_{1,3}$ and P_5 is almost classified.

4. Hardness results

In this section we prove that COLOURING restricted to $(2P_2, H)$ -free graphs is NP-complete for several graphs H. To prove our results we adapt a hardness construction from Golovach and Heggernes [11] for proving that LIST COLOURING is NP-complete for complete bipartite graphs. As observed in [13], a minor modification of this construction yields that LIST COLOURING is NP-complete for complete split graphs, which are the graphs obtained from complete bipartite graphs by changing one of the bipartition classes into a clique.

We first describe the construction of [11], which uses a reduction from the NP-complete [30] problem Not-ALL-EQUAL 3-SATISFIABILITY with positive literals only. To define this problem, let $X = \{x_1, x_2, ..., x_n\}$ be a set of logical variables, and let $C = \{C_1, C_2, ..., C_m\}$ be a set of 3-literal clauses over X in which all literals are positive and every literal appears at most once in each clause. The question is whether X has a truth assignment such that each clause in C contains at least one true literal and at least one false literal. If so, we say that such a truth assignment is *satisfying*.

Let (X, C) be an instance of NOT-ALL-EQUAL 3-SATISFIABIL-ITY with positive literals only. We construct an instance (G_1, L) of LIST COLOURING as follows. For each x_i we introduce a vertex, which we also denote by x_i and which we say is of *x*-type. We define $L(x_1) = \{1, 2\}$, $L(x_2) = \{3, 4\}, \ldots, L(x_n) = \{2n - 1, 2n\}$. In this way, each x_i has one odd colour and one even colour in its list, and all lists $L(x_i)$ are pairwise disjoint. For each C_j we introduce two vertices, which we denote by C_j and C'_j and which we say are of *C*-type. If $C_j = \{x_g, x_h, x_i\}$ with $L(x_g) = \{a, a + 1\}$, $L(x_h) = \{b, b + 1\}$ and $L(x_i) = \{c, c + 1\}$, then we set $L(C_j) = \{a, b, c\}$ and $L(C'_j) = \{a + 1, b + 1, c + 1\}$. Hence each C_j has only odd colours in its list and each C'_j has only even colours in its list. To obtain the graph G_1 we add an edge between every vertex of *x*-type and every vertex of *C*-type. Note that G_1 is a complete bipartite graph with bipartition classes $\{x_1, \ldots, x_n\}$ and $\{C_1, \ldots, C_m\} \cup \{C'_1, \ldots, C'_m\}$.

We also construct an instance (G_2, L) where G_2 is obtained from G_1 by adding edges between every pair of vertices of *x*-type. Note that G_2 is a complete split graph.

The following lemma is straightforward. We refer to [11] for a proof for the case involving G_1 . The case involving G_2 follows from this proof and the fact that the lists $L(x_i)$ are pairwise disjoint, as observed in [13].

Lemma 1 ([11]). (C, X) has a satisfying truth assignment if and only if G_1 has a colouring that respects L if and only if G_2 has a colouring that respects L.

We now extend G_1 and G_2 into graphs G'_1 and G'_2 , respectively, by adding a clique *K* consisting of 2*n* new vertices k_1, \ldots, k_{2n} and by adding an edge between a vertex k_ℓ and a vertex *u* of the original graph if and only if $\ell \notin L(u)$. We say that the vertices k_1, \ldots, k_{2n} are of *k*-type.

Lemma 2. (\mathcal{C}, X) has a satisfying truth assignment if and only if G'_1 has a 2n-colouring if and only if G'_2 has a 2n-colouring.

Proof. Let $i \in \{1, 2\}$. By Lemma 1, we only need to show that G_i has a colouring that respects L if and only if G'_i has a 2n-colouring. First suppose that G_i has a colouring c that respects L. We extend c to a colouring c' of G'_i by setting $c'(k_\ell) = \ell$ for $\ell \in \{1, ..., 2n\}$. Now suppose that G'_i has a 2n-colouring c'. As the k-type vertices form a clique, we may assume without loss of generality that $c'(k_\ell) = \ell$ for $\ell \in \{1, ..., 2n\}$. Hence the restriction of c' to G_i yields a colouring c that respects L. \Box

In the next two lemmas we show forbidden induced subgraphs in G'_1 and G'_2 , respectively. The complements of these forbidden graphs are shown in Figs. 4 and 5, respectively.

Lemma 3. The graph G'_1 is $(2P_2, \overline{3P_2}, \overline{T_{0,2,2}})$ -free.

Proof. We will prove that $\overline{G'_1}$ is $(C_4, 3P_2, T_{0,2,2})$ -free. Observe that in $\overline{G'_1}$, the set of *x*-type vertices is a clique, the set of *C*-type vertices is a clique and the set of *k*-type vertices is an independent set. Furthermore, in $\overline{G'_1}$, no *x*-type vertex is adjacent to a *C*-type vertex.

C₄-freeness. For contradiction, suppose that $\overline{G'_1}$ contains an induced subgraph *H* isomorphic to *C*₄; say the vertices of *H* are u_1, u_2, u_3, u_4 in that order. As the union of the

Fig. 5. Graphs that are not induced subgraphs of the complement of G'_2 .

set of *x*-type and *C*-type vertices induces a P_3 -free graph in $\overline{G'_1}$, there must be at least two vertices of the C_4 that are neither *x*-type nor *C*-type. Since the *k*-type vertices form an independent set, we may assume without loss of generality that u_1 and u_3 are of *k*-type. It follows that u_2 and u_4 cannot be of *k*-type. As the set of *x*-type vertices and the set of *C*-type vertices each from a clique in $\overline{G'_1}$, but u_2 is non-adjacent to u_4 , we may assume without loss of generality that u_2 is of *x*-type and u_4 is of *C*-type. Then u_4 is adjacent to the two *k*-type neighbours of an *x*-type vertex, which correspond to an even and odd colour. This is not possible as u_4 , being a *C*-type vertex, is adjacent in $\overline{G'_1}$ to (exactly three) *k*-type vertices, which correspond either to even colours only or to odd colours only. We conclude that $\overline{G'_1}$ is C_4 -free.

3P₂-freeness. For contradiction, suppose that $\overline{G'_1}$ contains an induced subgraph *H* isomorphic to $3P_2$. As the *C*-type vertices and *x*-type vertices each form a clique in $\overline{G'_1}$, one edge of *H* must consist of two *k*-type vertices. This is not possible, as *k*-type vertices form an independent set in $\overline{G'_1}$. We conclude that $\overline{G'_1}$ is $3P_2$ -free.

T_{0,2,2}-freeness. For contradiction, suppose that $\overline{G'_1}$ contains an induced subgraph H isomorphic to $T_{0,2,2}$ with vertices $a_0, a_1, a_2, b_0, b_1, b_2, c_0$ and edges $a_0b_0, b_0c_0, c_0a_0, c_0a_$ a_0a_1 , a_1a_2 , b_0b_1 , b_1b_2 . As the k-type vertices form an independent set in $\overline{G'_1}$, at least one of a_1, a_2 and at least one of b_1, b_2 is of x-type or C-type. As the x-type vertices and the C-type vertices form cliques in $\overline{G'_1}$, we may assume without loss of generality that at least one of a_1, a_2 is of C-type and at least one of b_1, b_2 is of x-type. As the C-type vertices and the x-type vertices each form a clique in G'_1 , this means that c_0 must be of k-type, a_0 cannot be of x-type and b_0 cannot be of C-type. As k-type vertices form an independent set in $\overline{G'_1}$, a_0 and b_0 cannot be of *k*-type. Therefore a_0 is of *C*-type and b_0 is of *x*-type. This is a contradiction, as C-type vertices are non-adjacent to *x*-type vertices. We conclude that $\overline{G'_1}$ is $T_{0,2,2}$ -free. \Box

Lemma 4. The graph G'_2 is $(2P_2, \overline{2C_3}, \overline{C_3 + P_4}, \overline{2P_4}, \overline{T_{0,0,4}})$ -free.

Proof. We will prove that $\overline{G'_2}$ is $(C_4, 2C_3, C_3 + P_4, 2P_4, T_{0,0,4})$ -free. Observe that in $\overline{G'_2}$, the set of *C*-type vertices is a clique, the set of *x*-type vertices is an independent set and the set of *k*-type vertices is an independent set. Furthermore, in $\overline{G'_2}$, no *x*-type vertex is adjacent to a *C*-type vertex and every *x*-type vertex has degree 2. In fact, the union of the set of *x*-type vertices and the *k*-type vertices induces a disjoint union of P_3 s in $\overline{G'_2}$.

C₄-freeness. For contradiction, suppose that $\overline{G'_2}$ contains an induced subgraph H isomorphic to C_4 , say the vertices of H are u_1, u_2, u_3, u_4 in that order. As the union of the set of x-type and C-type vertices induces a P₃-free graph in $\overline{G'_2}$, there must be at least two vertices of the C_4 that are neither x-type nor C-type. Since the k-type vertices form an independent set, we may assume without loss of generality that u_1 and u_3 are of k-type. It follows that u_2 and u_4 cannot be of k-type. As the set of vertices of C-type form a clique in $\overline{G'_2}$, at least one of u_2, u_4 , say u_2 , is of *x*-type. If u_4 is also of x-type, then u_2 and u_4 are x-type vertices with the same two colours in their list, namely those corresponding to u_1 and u_3 . This is not possible. Thus u_4 must be of C-type. Then u_4 is adjacent to the two k-type neighbours of an x-type vertex, which correspond to an even and odd colour. This is not possible as u_4 , being a C-type vertex, is adjacent in $\overline{G'_2}$ to (exactly three) *k*-type vertices, which correspond either to even colours only or to odd colours only. We conclude that $\overline{G'_2}$ is C_4 -free.

(**2C**₃, **C**₃ + **P**₄, **2P**₄)-**freeness.** For contradiction, suppose that $\overline{G'_2}$ contains an induced subgraph *H* isomorphic to 2*C*₃, *C*₃ + *P*₄ or 2*P*₄. As the *k*-type and *x*-type vertices induce a disjoint union of *P*₃s in $\overline{G'_2}$, both components of *H* must contain a *C*-type vertex. This is not possible, as *C*-type vertices form a clique in $\overline{G'_2}$. We conclude that $\overline{G'_2}$ is (2*C*₃, *C*₃ + *P*₄, 2*P*₄)-free.

T_{0,0,4}-**freeness.** For contradiction, suppose that $\overline{G_2}$ contains an induced subgraph *H* isomorphic to $T_{0,0,4}$ with vertices $a_0, a_1, a_2, a_3, a_4, b_0, c_0$ and edges $a_0b_0, b_0c_0, c_0a_0, a_0a_1, a_1a_2, a_2a_3, a_3a_4$.

First suppose, that neither b_0 nor c_0 is of *C*-type. Since the union of the set of *x*-type vertices and the *k*-type vertices induces a disjoint union of P_{3} s in $\overline{G'_{2}}$ it follows that a_0 is of *C*-type. Since b_0 and c_0 are not of *C*-type and no vertex of *C*-type has a neighbour of *x*-type in $\overline{G'_{2}}$, it follows that b_0 and c_0 must be of *k*-type. This is not possible, because the *k*-type vertices form an independent set in $\overline{G'_{2}}$.

Now suppose that at least one of b_0, c_0 is of *C*-type. Since the vertices of *C*-type induce a clique in $\overline{G'_2}$, it follows that no vertex in $A := \{a_1, a_2, a_3, a_4\}$ is of *C*-type. Since *A* induces a P_4 in $\overline{G'_2}$, but the union of the set of *x*-type vertices and the *k*-type vertices induces a disjoint union of P_3 s in $\overline{G'_2}$, this is a contradiction. We conclude that $\overline{G'_2}$ is $T_{0,0,4}$ -free. \Box

We are now ready to state the two main results of this section. It is readily seen that COLOURING belongs to NP. Then the first theorem follows from Lemma 2 combined with Lemma 3, whereas the second one follows from Lemma 2 combined with Lemma 4. Note that $\overline{2C_3}$ is isomorphic to $K_{3,3}$.

Theorem 3. COLOURING is NP-complete for $(2P_2, \overline{3P_2}, \overline{T_{0,2,2}})$ -free graphs.

Theorem 4. COLOURING is NP-complete for $(2P_2, \overline{2C_3}, \overline{C_3 + P_4}, \overline{2P_4}, \overline{T_{0,0,4}})$ -free graphs.

5. Conclusions

We showed that every connected graph is almost classified except for the claw and the P_5 . Our notion of almost classified graphs originated from recent work [16,20,27, 28] on COLOURING for (H_1, H_2) -free graphs for connected graphs H_1 and H_2 , in particular when $H_1 = P_5$. We decreased the number of open cases for the latter graph by showing new NP-hardness results for $(2P_2, H)$ -free graphs. In the following theorem we summarize all known results for COLOURING restricted to $(2P_2, H)$ -free graphs and (P_5, H) -free graphs.

Theorem 5. Let *H* be a graph on *n* vertices. Then the following two statements hold:

- (i) If \overline{H} contains a graph in { $C_3 + P_4$, $3P_2$, $2P_4$ } as an induced subgraph, or \overline{H} is not an induced subgraph of $T_{1,1,3} + P_{2n-1}$, then COLOURING is NP-complete for ($2P_2$, H)-free graphs.
- (ii) If *H* is an induced subgraph of a graph in {2P₁+P₃, P₁+P₄, P₂ + P₃, P₅, T_{0,0,1} + P₁, T_{0,1,1}, T_{0,0,2}} or of sP₁ + P₂ for some integer s ≥ 0, then COLOURING is polynomial-time solvable for (P₅, H)-free graphs.

Proof. If \overline{H} contains a graph in {2C₃, C₃ + P₄, 3P₂, 2P₄, $T_{0,2,2}, T_{0,0,4}$ } as an induced subgraph, then COLOURING is NP-complete for (2P₂, H)-free graphs due to Theorems 3 and 4. We may therefore assume that \overline{H} is (2C₃, C₃ + P₄, 3P₂, 2P₄, $T_{0,2,2}, T_{0,0,4}$)-free. (Note that $T_{1,1,3} + P_{2n-1}$ is (2C₃, $T_{0,2,2}, T_{0,0,4}$)-free.)

Recall that \mathcal{T} is the class of graphs for which every component is isomorphic to a graph $T_{h,i,j}$ for some $1 \leq h \leq i \leq j$ or a path P_r for some $r \geq 1$. Note that $\overline{2P_2} = C_4 \notin \mathcal{T}$. Therefore, if $\overline{H} \notin \mathcal{T}$, then COLOURING is NP-complete for $(2P_2, H)$ -free graphs by Theorem 1. We may therefore assume that $\overline{H} \in \mathcal{T}$. Since \overline{H} is $2C_3$ -free, \overline{H} can contain at most one component that is not a path. Since \overline{H} is $(T_{0,2,2}, T_{0,0,4})$ -free, if \overline{H} does have a component that is not a path, then this component must be an induced subgraph of $T_{1,1,3}$. The union of components of \overline{H} that are isomorphic to paths form an induced subgraph of $T_{1,1,3} + P_{2n-1}$.

It is known that COLOURING is polynomial-time solvable for (P_5, H) -free graphs if \overline{H} is an induced subgraph of $2P_1 + P_3$ [27], $P_1 + P_4$ (this follows from the fact that $(P_5, \overline{P_1 + P_4})$ -free graphs have clique-width at most 5 [3]; see also [2] for a linear-time algorithm), $P_2 + P_3$ [28], P_5 [16], $T_{0,0,1} + P_1$ [20], $T_{0,1,1}$ [20], $T_{0,0,2}$ [20] or $sP_1 + P_2$ for some integer $s \ge 0$ [28]. \Box

Theorem 5 leads to the following open problem, which shows how the P_5 is not almost classified. Recall that $T_{0,0,0} = C_3$.

Open Problem 1. Determine the complexity of COLOURING for $(2P_2, H)$ -free graphs and for (P_5, H) -free graphs if

- $-\overline{H} = sP_1 + P_t + T_{h,i,j} \text{ for } 0 \le h \le i \le j \le 1, s \ge 0 \text{ and}$ $2 \le t \le 3$
- $-\overline{H} = sP_1 + T_{h,i,j} \text{ for } 0 \le h \le i \le 1 \le j \le 3 \text{ and } s \ge 0$ such that $h + i + j + s \ge 3$
- $-\overline{H} = sP_1 + T_{0,0,0}$ for $s \ge 2$
- $\overline{H} = sP_1 + P_t$ for $s \ge 0$ and $3 \le t \le 7$ such that $s + t \ge 6$
- $\overline{H} = sP_1 + P_t + P_u$ for $s \ge 0$, $2 \le t \le 3$ and $3 \le u \le 4$ such that $s + t + u \ge 6$
- $\overline{H} = sP_1 + 2P_2 \text{ for } s \ge 1.$

Open Problem 1 shows the following.

- The open cases for COLOURING restricted to $(2P_2, H)$ -free graphs and (P_5, H) -free graphs coincide.
- The graph *H* in each of the open cases is connected.
- The number of minimal open cases is 10, namely when $\overline{H} \in \{C_3 + 2P_1, C_3 + P_2, P_1 + 2P_2\}$ (see also Section 1) and when $\overline{H} \in \{3P_1 + P_3, 2P_1 + P_4, 2P_3, P_6, T_{0,1,1} + P_1, T_{0,1,2}, T_{1,1}\}$.

As every graph *H* listed in Open Problem 1 appears as an induced subgraph in both the graph G'_1 and the graph G'_2 defined in Section 4, we need new arguments to solve the open cases in Problem 1.

The complexity of COLOURING for $(K_{1,3}, H)$ -free graphs is less clear. As mentioned in Section 1, the cases where $H \in \{4P_1, 2P_1 + P_2, \overline{C_4 + P_1}\}$ are still open. Moreover, $K_{1,3}$ is not almost classified, as the case $H = P_t$ is open for all $t \ge 6$ (polynomial-time solvability for t = 5 was shown in [26]). Note that $|E(\overline{H})|$ may be arbitrarily large, while Open Problem 1 shows that $|E(\overline{H})| \le 8$ in all open cases for the P_5 . Since we have no new results for the case $H_1 = K_{1,3}$, we refer to [24] for further details or to the summary of COLOURING restricted to (H_1, H_2) -free graphs in [12].

References

- A. Blanché, K.K. Dabrowski, M. Johnson, D. Paulusma, Hereditary graph classes: when the complexities of Colouring and Clique Cover coincide, CoRR, arXiv:1607.06757, 2016.
- [2] H.L. Bodlaender, A. Brandstädt, D. Kratsch, M. Rao, J. Spinrad, On algorithms for (P₅, gem)-free graphs, Theor. Comput. Sci. 349 (1) (2005) 2–21.
- [3] A. Brandstädt, H.-O. Le, R. Mosca, Chordal co-gem-free and (P₅,gem)-free graphs have bounded clique-width, Discrete Appl. Math. 145 (2) (2005) 232–241.
- [4] H. Broersma, P.A. Golovach, D. Paulusma, J. Song, Determining the chromatic number of triangle-free $2P_3$ -free graphs in polynomial time, Theor. Comput. Sci. 423 (2012) 1–10.
- [5] K. Cameron, C.T. Hoàng, Solving the clique cover problem on (bull,C₄)-free graphs, CoRR, arXiv:1704.00316, 2017.
- [6] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (1) (2006) 51–229.
- [7] K.K. Dabrowski, F. Dross, D. Paulusma, Colouring diamond-free graphs, J. Comput. Syst. Sci. 89 (2017) 410–431.
- [8] K.K. Dabrowski, P.A. Golovach, D. Paulusma, Colouring of graphs with Ramsey-type forbidden subgraphs, Theor. Comput. Sci. 522 (2014) 34–43.
- [9] T. Emden-Weinert, S. Hougardy, B. Kreuter, Uniquely colourable graphs and the hardness of colouring graphs of large girth, Comb. Probab. Comput. 7 (04) (1998) 375–386.

- [10] S. Gaspers, S. Huang, D. Paulusma, Colouring square-free graphs without long induced paths, in: Proc. STACS 2018, in: LIPIcs, vol. 96, 2018, pp. 36:1–36:15.
- [11] P.A. Golovach, P. Heggernes, Choosability of P₅-free graphs, in: Proc. MFCS 2009, in: LNCS, vol. 5734, 2009, pp. 382–391.
- [12] P.A. Golovach, M. Johnson, D. Paulusma, J. Song, A survey on the computational complexity of colouring graphs with forbidden subgraphs, J. Graph Theory 84 (4) (2017) 331–363.
- [13] P.A. Golovach, D. Paulusma, List coloring in the absence of two subgraphs, Discrete Appl. Math. 166 (2014) 123–130.
- [14] M. Grötschel, L. Lovász, A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discrete Math. 21 (1984) 325–356.
- [15] P. Hell, S. Huang, Complexity of coloring graphs without paths and cycles, Discrete Appl. Math. 216 (1) (2017) 211–232.
- [16] C.T. Hoàng, D.A. Lazzarato, Polynomial-time algorithms for minimum weighted colorings of (P₅, P₅)-free graphs and similar graph classes, Discrete Appl. Math. 186 (2015) 106–111.
- [17] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (4) (1981) 718–720.
- [18] S. Huang, Improved complexity results on k-coloring P_t-free graphs, Eur. J. Comb. 51 (2016) 336–346.
- [19] S. Huang, M. Johnson, D. Paulusma, Narrowing the complexity gap for colouring (*C_s*, *P_t*)-free graphs, Comput. J. 58 (11) (2015) 3074–3088.
- [20] T. Karthick, F. Maffray, L. Pastor, Polynomial cases for the vertex coloring problem, CoRR, arXiv:1709.07712, 2017.

- [21] D. Král', J. Kratochvíl, Zs. Tuza, G.J. Woeginger, Complexity of coloring graphs without forbidden induced subgraphs, in: Proc. WG 2001, in: LNCS, vol. 2204, 2001, pp. 254–262.
- [22] L. Lovász, Coverings and coloring of hypergraphs, Congr. Numer. VIII (1973) 3–12.
- [23] V.V. Lozin, D.S. Malyshev, Vertex coloring of graphs with few obstructions, Discrete Appl. Math. 216 (1) (2017) 273–280.
- [24] V.V. Lozin, C. Purcell, Coloring vertices of claw-free graphs in three colors, J. Comb. Optim. 28 (2) (2014) 462–479.
- [25] F. Maffray, M. Preissmann, On the NP-completeness of the k-colorability problem for triangle-free graphs, Discrete Math. 162 (1–3) (1996) 313–317.
- [26] D.S. Malyshev, The coloring problem for classes with two small obstructions, Optim. Lett. 8 (8) (2014) 2261–2270.
- [27] D.S. Malyshev, Two cases of polynomial-time solvability for the coloring problem, J. Comb. Optim. 31 (2) (2016) 833–845.
- [28] D.S. Malyshev, O.O. Lobanova, Two complexity results for the vertex coloring problem, Discrete Appl. Math. 219 (2017) 158–166.
- [29] F.P. Ramsey, On a problem of formal logic, Proc. Lond. Math. Soc. s2-30 (1) (1930) 264-286.
- [30] T.J. Schaefer, The complexity of satisfiability problems, in: Proc. STOC 1978, 1978, pp. 216–226.
- [31] D. Schindl, Some new hereditary classes where graph coloring remains NP-hard, Discrete Math. 295 (1–3) (2005) 197–202.