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The Colouring problem asks whether the vertices of a graph can be coloured with at 
most k colours for a given integer k in such a way that no two adjacent vertices receive 
the same colour. A graph is (H1, H2)-free if it has no induced subgraph isomorphic to H1
or H2. A connected graph H1 is almost classified if Colouring on (H1, H2)-free graphs is 
known to be polynomial-time solvable or NP-complete for all but finitely many connected 
graphs H2. We show that every connected graph H1 apart from the claw K1,3 and the 
5-vertex path P5 is almost classified. We also prove a number of new hardness results 
for Colouring on (2P2, H)-free graphs. This enables us to list all graphs H for which the 
complexity of Colouring is open on (2P2, H)-free graphs and all graphs H for which the 
complexity of Colouring is open on (P5, H)-free graphs. In fact we show that these two 
lists coincide. Moreover, we show that the complexities of Colouring for (2P2, H)-free 
graphs and for (P5, H)-free graphs are the same for all known cases.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Graph colouring is an extensively studied concept in 
both Computer Science and Mathematics due to its many 
application areas. A k-colouring of a graph G = (V , E) is a 
mapping c : V → {1, . . . , k} such that c(u) �= c(v) whenever 
uv ∈ E . The Colouring problem that of deciding whether 
a given graph G has a k-colouring for a given integer k. 
If k is fixed, then we write k-Colouring instead. It is well 
known that even 3-Colouring is NP-complete [22].

Due to the computational hardness of Colouring, it is 
natural to restrict the input to special graph classes. A class 
is hereditary if it is closed under vertex deletion. Heredi-
tary graph classes form a large collection of well-known 
graph classes for which the Colouring problem has been 
extensively studied. A classical result in the area is due 
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to Grötschel, Lovász, and Schrijver [14], who showed that
Colouring is polynomial-time solvable for perfect graphs.

Graphs with no induced subgraph isomorphic to a 
graph in a set H are said to be H-free. It is readily seen 
that a graph class G is hereditary if and only if it there 
exists a set H such that every graph in G is H-free. If 
the graphs of H are required to be minimal under tak-
ing induced subgraphs, then H is unique. For example, 
the set H of minimal forbidden induced subgraphs for the 
class of perfect graphs consists of all odd holes and odd 
antiholes [6].

Král’, Kratochvíl, Tuza, and Woeginger [21] classified the 
complexity of Colouring for the case where H consists of 
a single graph H . They proved that Colouring on H-free 
graphs is polynomial-time solvable if H is an induced sub-
graph of P4 or P1 + P3 and NP-complete otherwise.1

Král’ et al. [21] also initiated a complexity study 
of Colouring for graph classes defined by two forbid-
den induced subgraphs H1 and H2. Such graph classes 
are said to be bigenic. For bigenic graph classes, no di-

1 We refer to Section 2 for notation used throughout Section 1.
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Fig. 1. The graphs from the three pairs (H1, H2) ∈ {(K1,3, 4P1), (K1,3, 2P1 + P2), (C4, 4P1)} of graphs on at most four vertices, for which the complexity of
Colouring on (H1, H2)-free graphs is still open.

Fig. 2. The graphs from the four pairs (H1, H2) ∈ {(K1,3, C4 + P1), (P5, C3 + 2P1), (P5, C3 + P2), (P5, P1 + 2P2)} of connected graphs on at most five ver-
tices, for which the complexity of Colouring on (H1, H2)-free graphs is still open.
chotomy is known or even conjectured, despite many 
results [1,2,4,5,7,8,10,15,16,18,20,21,23,26–28,31]. For in-
stance, if we forbid two graphs H1 and H2 with |V (H1)| ≤
4 and |V (H2)| ≤ 4, then there are three open cases left, 
namely when (H1, H2) ∈ {(K1,3, 4P1), (K1,3, 2P1 + P2),

(C4, 4P1)} (see [23] and Fig. 1). If H1 and H2 are con-
nected with |V (H1)| ≤ 5 and |V (H2)| ≤ 5, then there are 
four open cases left, namely when H1 = P5 and H2 ∈
{C3 + 2P1, C3 + P2, P1 + 2P2} (see [20] and Fig. 2) and 
when H1 = K1,3 and H2 = C4 + P1 (see [28] and Fig. 2). 
To give another example, Blanché et al. [1] determined 
the complexity of Colouring for (H, H)-free graphs for 
every graph H except when H = P3 + sP1 for s ≥ 3 or 
H = P4 + sP1 for s ≥ 2.

The related problems Precolouring Extension and
List Colouring have also been studied for bigenic graph 
classes. For the first problem, we are given a graph G , an 
integer k and a k-colouring c′ defined on an induced sub-
graph of G . The question is whether G has a k-colouring c
extending c′ . For the second problem, each vertex u of the 
input graph G has a list L(u) of colours. Here the ques-
tion is whether G has a colouring c that respects L, that 
is, with c(u) ∈ L(u) for all u ∈ V (G). For the Precolouring 
Extension problem no classification is known and we re-
fer to the survey [12] for an overview on what is known. 
In contrast to the incomplete classifications for Colouring

and Precolouring Extension, Golovach and Paulusma [13]
showed a dichotomy for the complexity of List Colouring

on bigenic graph classes.

Our Approach. To get a handle on the computational 
complexity classification of Colouring for bigenic graph 
classes, we continue the line of research in [2,16,20,26–28]
by considering pairs (H1, H2), where H1 and H2 are both 
connected. We introduce the following notion. We say that 
a connected graph H1 is almost classified if Colouring on 
(H1, H2)-free graphs is known to be either polynomial-
time solvable or NP-complete for all but finitely many 
connected graphs H2. This leads to the following research 
question:

Which connected graphs are almost classified?

Our Results. In Section 3 we show, by combining known 
results from the literature, that every connected graph H1
apart from the claw K1,3 and the 5-vertex path P5 is 
almost classified. In fact we show that the number of 
pairs (H1, H2) of connected graphs for which the com-
plexity of Colouring is unknown is finite if neither H1
nor H2 is isomorphic to K1,3 or P5. In Section 4 we 
prove a number of new hardness results for Colouring re-
stricted to (2P2, H2)-free graphs (which form a subclass 
of (P5, H2)-free graphs). We do the latter by adapting the 
NP-hardness construction from [11] for List Colouring re-
stricted to complete bipartite graphs. In Section 5, we first 
summarize our knowledge on the complexity of Colouring

restricted to (2P2, H)-free graphs and (P5, H)-free graphs. 
Afterwards, we list all graphs H for which the complex-
ity of Colouring on (2P2, H)-free graphs is still open, and 
all graphs H for which the complexity of Colouring on 
(P5, H)-free graphs is still open. As it turns out, these two 
lists coincide. Moreover, the complexities of Colouring for 
(2P2, H)-free graphs and for (P5, H)-free graphs turn out 
to be the same for all cases that are known.

2. Preliminaries

We consider only finite, undirected graphs without 
multiple edges or self-loops. Let G = (V , E) be a graph. The 
complement G of G is the graph with vertex set V (G) and 
an edge between two distinct vertices if and only if these 
two vertices are not adjacent in G . For a subset S ⊆ V , we 
let G[S] denote the subgraph of G induced by S , which has 
vertex set S and edge set {uv | u, v ∈ S, uv ∈ E}.

Let {H1, . . . , H p} be a set of graphs. A graph G is 
(H1, . . . , H p)-free if G has no induced subgraph isomor-
phic to a graph in {H1, . . . , H p}. If p = 1, we may write 
H1-free instead of (H1)-free. The disjoint union G + H of 
two vertex-disjoint graphs G and H is the graph (V (G) ∪
V (H), E(G) ∪ E(H)). The disjoint union of r copies of a 
graph G is denoted by rG . A linear forest is the disjoint 
union of one or more paths.

The graphs Cr , Kr and Pr denote the cycle, complete 
graph and path on r vertices, respectively. The graph K3
is also known as the triangle. The graph Kr,s denotes the 
complete bipartite graph with partition classes of size r
and s, respectively. The graph K1,3 is also called the claw.

The graph Sh,i, j , for 1 ≤ h ≤ i ≤ j, denotes the subdi-
vided claw, that is, the tree that has only one vertex x
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Fig. 3. Examples of Th,i, j graphs.
of degree 3 and exactly three leaves, which are at dis-
tance h, i and j from x, respectively. Observe that S1,1,1 =
K1,3. The graph S1,1,2 is also known as the fork or the 
chair.

The graph Th,i, j with 0 ≤ h ≤ i ≤ j denotes the graph 
with vertices a0, . . . , ah , b0, . . . , bi and c0, . . . , c j and edges 
a0b0, b0c0, c0a0, apap+1 for p ∈ {0, . . . , h − 1}, bpbp+1 for 
p ∈ {0, . . . , i − 1} and cpcp+1 for p ∈ {0, . . . , j − 1}. Note 
that T0,0,0 = C3. The graph T0,0,1 = P1 + P3 is known as 
the paw, the graph T0,1,1 as the bull, the graph T1,1,1
as the net, and the graph T0,0,2 is known as the ham-
mer; see also Fig. 3. Also note that Th,i, j is the line graph 
of Sh+1,i+1, j+1.

Let T be the class of graphs for which every component 
is isomorphic to a graph Th,i, j for some 1 ≤ h ≤ i ≤ j or 
a path Pr for some r ≥ 1. The following result, which is 
due to Schindl and which we use in Section 5, shows that 
the Th,i, j graphs play an important role for our study.

Theorem 1 ([31]). For p ≥ 1, let H1, . . . , H p be graphs whose 
complement is not in T . Then Colouring is NP-complete for 
(H1, . . . , H p)-free graphs.

3. Almost classified graphs

In this section we prove the following result, from 
which it immediately follows that every connected graph 
apart from K1,3 and P5 is almost classified. In Section 5
we discuss why K1,3 and P5 are not almost classified.

Theorem 2. There are only finitely many pairs (H1, H2) of con-
nected graphs with {H1, H2} ∩ {K1,3, P5} = ∅, such that the 
complexity of Colouring on (H1, H2)-free graphs is unknown.

Proof. We first make a useful observation. Let H be a tree 
that is not isomorphic to K1,3 or P5 and that is not an in-
duced subgraph of P4. If H contains a vertex of degree at 
least 4 then it contains an induced K1,4. If H has maxi-
mum degree 3, then since H is connected and not isomor-
phic to K1,3, it must contain an induced S1,1,2. If H has 
maximum degree at most 2, then it is a path, and since 
it is not isomorphic to P5 and not an induced subgraph 
of P4, it follows that H must be a path on at least six 
vertices. We conclude that if H is a tree that is not iso-
morphic to K1,3 or P5 and that is not an induced subgraph 
of P4, then H contains K1,4 or S1,1,2 as an induced sub-
graph or H is a path on at least six vertices.
Now let (H1, H2) be a pair of connected graphs with 
{H1, H2} ∩ {K1,3, P5} = ∅. If H1 or H2 is an induced sub-
graph of P4, then Colouring is polynomial-time solvable 
for (H1, H2)-free graphs, as Colouring is polynomial-time 
solvable for P4-free graphs (see, for example, [21]). Hence 
we may assume that this is not the case. If H1 and H2
both contain at least one cycle [9] or both contain an in-
duced K1,3 [17], then even 3-Colouring is NP-complete. 
Hence we may also assume that at least one of H1, H2 is 
a tree and that at least one of H1, H2 is a K1,3-free graph. 
This leads, without loss of generality, to the following two 
cases.

Case 1. H1 is a tree and K1,3-free.
Then H1 is a path. First suppose that H1 has at least 22 

vertices. It is known that 4-Colouring is NP-complete 
for (P22, C3)-free graphs [19] and that Colouring is NP-
complete for (P9, C4)-free graphs [10] and for (2P2, Cr)-free 
graphs for all r ≥ 5 [21]. Hence we may assume that H2 is 
a tree. By the observation at the start of the proof, this im-
plies that H2 contains an induced K1,4, S1,1,2 or P6. There-
fore H contains an induced 4P1 or 2P1 + P2. Since H1 is a 
path on at least 22 vertices, H1 contains an induced 4P1. 
As Colouring is NP-complete for (4P1, 2P1 + P2)-free 
graphs [21], Colouring is NP-complete for (H1, H2)-free 
graphs.

Now suppose that H1 has at most 21 vertices. By 
the observation at the start of the proof, H1 is a path 
on at least six vertices. It is known that 5-Colouring

is NP-complete for P6-free graphs [18]. As K6 is not 
5-colourable, this means that 5-Colouring is NP-complete 
for (P6, K6)-free graphs, as observed in [12]. Therefore 
we may assume that H2 is K6-free. Recall that Colour-

ing is NP-complete for (2P1 + P2, 4P1)-free graphs [21], 
which are contained in the class of (P6, 4P1)-free graphs. 
Therefore we may assume that H2 is 4P1-free. Since H2 is 
(K6, 4P1)-free, Ramsey’s Theorem [29] implies that |V (H2)|
is bounded by a constant. We conclude that both H1
and H2 have size bounded by a constant.

Case 2. H1 is a tree and not K1,3-free, and H2 is K1,3-free 
and not a tree.

Then H1 contains a vertex of degree at least 3 and H2
contains an induced cycle Cr for some r ≥ 3. It is known 
that 3-Colouring is NP-complete for (K1,5, C3)-free graphs 
[25] and for (K1,3, Cr)-free graphs whenever r ≥ 4 [21]. 
We may therefore assume that H1 is a tree of maxi-
mum degree at most 4 and that H2 contains at least 
one induced C3 but no induced cycles on more than 
three vertices. Recall that 4-Colouring is NP-complete for 
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Fig. 4. Graphs that are not induced subgraphs of the complement of G ′
1.
(P22, C3)-free graphs [19]. Hence we may assume that H1
is a P22-free tree. As H1 has maximum degree at most 4, 
we find that H1 has a bounded number of vertices.

By assumption, H1 contains a vertex of degree at 
least 3. As Colouring is NP-complete for (K1,3, K4)-free 
graphs [21], we may assume that H2 is K4-free. By the ob-
servation at the start of the proof, H1 must contain an in-
duced K1,4 or S1,1,2. Recall that Colouring is NP-complete 
for the class of (2P1 + P2, 4P1)-free graphs [21], which 
is contained in the class of (K1,4, S1,1,2, 4P1)-free graphs. 
Hence we may assume that H2 is 4P1-free. Since H2 is 
(K4, 4P1)-free, Ramsey’s Theorem [29] implies that |V (H2)|
is bounded by a constant. Again, we conclude that in this 
case both H1 and H2 have size bounded by a constant. �
Corollary 1. Every connected graph apart from K1,3 and P5 is 
almost classified.

4. Hardness results

In this section we prove that Colouring restricted to 
(2P2, H)-free graphs is NP-complete for several graphs H . 
To prove our results we adapt a hardness construction 
from Golovach and Heggernes [11] for proving that List 
Colouring is NP-complete for complete bipartite graphs. 
As observed in [13], a minor modification of this con-
struction yields that List Colouring is NP-complete for 
complete split graphs, which are the graphs obtained from 
complete bipartite graphs by changing one of the biparti-
tion classes into a clique.

We first describe the construction of [11], which uses 
a reduction from the NP-complete [30] problem Not-All-

Equal 3-Satisfiability with positive literals only. To define 
this problem, let X = {x1, x2, . . . , xn} be a set of logical 
variables, and let C = {C1, C2, . . . , Cm} be a set of 3-literal 
clauses over X in which all literals are positive and every 
literal appears at most once in each clause. The question 
is whether X has a truth assignment such that each clause 
in C contains at least one true literal and at least one false 
literal. If so, we say that such a truth assignment is satisfy-
ing.

Let (X, C) be an instance of Not-All-Equal 3-Satisfiabil-

ity with positive literals only. We construct an instance 
(G1, L) of List Colouring as follows. For each xi we in-
troduce a vertex, which we also denote by xi and which 
we say is of x-type. We define L(x1) = {1, 2}, L(x2) =
{3, 4}, . . . , L(xn) = {2n − 1, 2n}. In this way, each xi has 
one odd colour and one even colour in its list, and all 
lists L(xi) are pairwise disjoint. For each C j we introduce 
two vertices, which we denote by C j and C ′

j and which we 
say are of C-type. If C j = {xg, xh, xi} with L(xg) = {a, a + 1}, 
L(xh) = {b, b +1} and L(xi) = {c, c+1}, then we set L(C j) =
{a, b, c} and L(C ′ ) = {a + 1, b + 1, c + 1}. Hence each C j
j
has only odd colours in its list and each C ′
j has only even 

colours in its list. To obtain the graph G1 we add an edge 
between every vertex of x-type and every vertex of C-type. 
Note that G1 is a complete bipartite graph with bipartition 
classes {x1, . . . , xn} and {C1, . . . , Cm} ∪ {C ′

1, . . . , C
′
m}.

We also construct an instance (G2, L) where G2 is ob-
tained from G1 by adding edges between every pair of 
vertices of x-type. Note that G2 is a complete split graph.

The following lemma is straightforward. We refer to 
[11] for a proof for the case involving G1. The case in-
volving G2 follows from this proof and the fact that the 
lists L(xi) are pairwise disjoint, as observed in [13].

Lemma 1 ([11]). (C, X) has a satisfying truth assignment if and 
only if G1 has a colouring that respects L if and only if G2 has a 
colouring that respects L.

We now extend G1 and G2 into graphs G ′
1 and G ′

2, 
respectively, by adding a clique K consisting of 2n new 
vertices k1, . . . , k2n and by adding an edge between a ver-
tex k� and a vertex u of the original graph if and only if 
� /∈ L(u). We say that the vertices k1, . . . , k2n are of k-type.

Lemma 2. (C, X) has a satisfying truth assignment if and only 
if G ′

1 has a 2n-colouring if and only if G ′
2 has a 2n-colouring.

Proof. Let i ∈ {1, 2}. By Lemma 1, we only need to show 
that Gi has a colouring that respects L if and only if G ′

i
has a 2n-colouring. First suppose that Gi has a colouring c
that respects L. We extend c to a colouring c′ of G ′

i by 
setting c′(k�) = � for � ∈ {1, . . . , 2n}. Now suppose that G ′

i
has a 2n-colouring c′ . As the k-type vertices form a clique, 
we may assume without loss of generality that c′(k�) = �

for � ∈ {1, . . . , 2n}. Hence the restriction of c′ to Gi yields 
a colouring c that respects L. �

In the next two lemmas we show forbidden induced 
subgraphs in G ′

1 and G ′
2, respectively. The complements of 

these forbidden graphs are shown in Figs. 4 and 5, respec-
tively.

Lemma 3. The graph G ′
1 is (2P2, 3P2, T0,2,2)-free.

Proof. We will prove that G ′
1 is (C4, 3P2, T0,2,2)-free. Ob-

serve that in G ′
1, the set of x-type vertices is a clique, the 

set of C-type vertices is a clique and the set of k-type ver-
tices is an independent set. Furthermore, in G ′

1, no x-type 
vertex is adjacent to a C-type vertex.

C4-freeness. For contradiction, suppose that G ′
1 contains 

an induced subgraph H isomorphic to C4; say the vertices 
of H are u1, u2, u3, u4 in that order. As the union of the 
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Fig. 5. Graphs that are not induced subgraphs of the complement of G ′
2.
set of x-type and C-type vertices induces a P3-free graph 
in G ′

1, there must be at least two vertices of the C4 that are 
neither x-type nor C-type. Since the k-type vertices form 
an independent set, we may assume without loss of gener-
ality that u1 and u3 are of k-type. It follows that u2 and u4
cannot be of k-type. As the set of x-type vertices and the 
set of C-type vertices each from a clique in G ′

1, but u2 is 
non-adjacent to u4, we may assume without loss of gen-
erality that u2 is of x-type and u4 is of C-type. Then u4
is adjacent to the two k-type neighbours of an x-type ver-
tex, which correspond to an even and odd colour. This is 
not possible as u4, being a C-type vertex, is adjacent in G ′

1
to (exactly three) k-type vertices, which correspond either 
to even colours only or to odd colours only. We conclude 
that G ′

1 is C4-free.

3P2-freeness. For contradiction, suppose that G ′
1 contains 

an induced subgraph H isomorphic to 3P2. As the C-type 
vertices and x-type vertices each form a clique in G ′

1, one 
edge of H must consist of two k-type vertices. This is not 
possible, as k-type vertices form an independent set in G ′

1. 
We conclude that G ′

1 is 3P2-free.

T0,2,2-freeness. For contradiction, suppose that G ′
1 con-

tains an induced subgraph H isomorphic to T0,2,2 with 
vertices a0, a1, a2, b0, b1, b2, c0 and edges a0b0, b0c0, c0a0, 
a0a1, a1a2, b0b1, b1b2. As the k-type vertices form an in-
dependent set in G ′

1, at least one of a1, a2 and at least 
one of b1, b2 is of x-type or C-type. As the x-type vertices 
and the C-type vertices form cliques in G ′

1, we may as-
sume without loss of generality that at least one of a1, a2
is of C-type and at least one of b1, b2 is of x-type. As the 
C-type vertices and the x-type vertices each form a clique 
in G ′

1, this means that c0 must be of k-type, a0 cannot be 
of x-type and b0 cannot be of C-type. As k-type vertices 
form an independent set in G ′

1, a0 and b0 cannot be of 
k-type. Therefore a0 is of C-type and b0 is of x-type. This 
is a contradiction, as C-type vertices are non-adjacent to 
x-type vertices. We conclude that G ′

1 is T0,2,2-free. �
Lemma 4. The graph G ′

2 is (2P2, 2C3, C3 + P4, 2P4, T0,0,4)-
free.

Proof. We will prove that G ′
2 is (C4, 2C3, C3 + P4, 2P4,

T0,0,4)-free. Observe that in G ′
2, the set of C-type vertices 

is a clique, the set of x-type vertices is an independent set 
and the set of k-type vertices is an independent set. Fur-
thermore, in G ′

2, no x-type vertex is adjacent to a C-type 
vertex and every x-type vertex has degree 2. In fact, the 
union of the set of x-type vertices and the k-type vertices 
induces a disjoint union of P3s in G ′ .
2
C4-freeness. For contradiction, suppose that G ′
2 contains 

an induced subgraph H isomorphic to C4, say the vertices 
of H are u1, u2, u3, u4 in that order. As the union of the 
set of x-type and C-type vertices induces a P3-free graph 
in G ′

2, there must be at least two vertices of the C4 that are 
neither x-type nor C-type. Since the k-type vertices form 
an independent set, we may assume without loss of gener-
ality that u1 and u3 are of k-type. It follows that u2 and u4
cannot be of k-type. As the set of vertices of C-type form 
a clique in G ′

2, at least one of u2, u4, say u2, is of x-type. 
If u4 is also of x-type, then u2 and u4 are x-type vertices 
with the same two colours in their list, namely those cor-
responding to u1 and u3. This is not possible. Thus u4 must 
be of C-type. Then u4 is adjacent to the two k-type neigh-
bours of an x-type vertex, which correspond to an even 
and odd colour. This is not possible as u4, being a C-type 
vertex, is adjacent in G ′

2 to (exactly three) k-type vertices, 
which correspond either to even colours only or to odd 
colours only. We conclude that G ′

2 is C4-free.

(2C3,C3 + P4,2P4)-freeness. For contradiction, suppose 
that G ′

2 contains an induced subgraph H isomorphic to 
2C3, C3 + P4 or 2P4. As the k-type and x-type vertices 
induce a disjoint union of P3s in G ′

2, both components 
of H must contain a C-type vertex. This is not possible, as 
C-type vertices form a clique in G ′

2. We conclude that G ′
2

is (2C3, C3 + P4, 2P4)-free.

T0,0,4-freeness. For contradiction, suppose that G ′
2 con-

tains an induced subgraph H isomorphic to T0,0,4 with 
vertices a0, a1, a2, a3, a4, b0, c0 and edges a0b0, b0c0, c0a0, 
a0a1, a1a2, a2a3, a3a4.

First suppose, that neither b0 nor c0 is of C-type. Since 
the union of the set of x-type vertices and the k-type 
vertices induces a disjoint union of P3s in G ′

2 it follows 
that a0 is of C-type. Since b0 and c0 are not of C-type and 
no vertex of C-type has a neighbour of x-type in G ′

2, it fol-
lows that b0 and c0 must be of k-type. This is not possible, 
because the k-type vertices form an independent set in G ′

2.
Now suppose that at least one of b0, c0 is of C-type. 

Since the vertices of C-type induce a clique in G ′
2, it fol-

lows that no vertex in A := {a1, a2, a3, a4} is of C-type. 
Since A induces a P4 in G ′

2, but the union of the set of 
x-type vertices and the k-type vertices induces a disjoint 
union of P3s in G ′

2, this is a contradiction. We conclude 
that G ′

2 is T0,0,4-free. �
We are now ready to state the two main results of 

this section. It is readily seen that Colouring belongs to 
NP. Then the first theorem follows from Lemma 2 com-
bined with Lemma 3, whereas the second one follows from 
Lemma 2 combined with Lemma 4. Note that 2C3 is iso-
morphic to K3,3.
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Theorem 3. Colouring is NP-complete for (2P2, 3P2, T0,2,2)-
free graphs.

Theorem 4. Colouring is NP-complete for (2P2, 2C3, C3+P4,

2P4, T0,0,4)-free graphs.

5. Conclusions

We showed that every connected graph is almost clas-
sified except for the claw and the P5. Our notion of almost 
classified graphs originated from recent work [16,20,27,
28] on Colouring for (H1, H2)-free graphs for connected 
graphs H1 and H2, in particular when H1 = P5. We de-
creased the number of open cases for the latter graph by 
showing new NP-hardness results for (2P2, H)-free graphs. 
In the following theorem we summarize all known re-
sults for Colouring restricted to (2P2, H)-free graphs and 
(P5, H)-free graphs.

Theorem 5. Let H be a graph on n vertices. Then the following 
two statements hold:

(i) If H contains a graph in {C3 + P4, 3P2, 2P4} as an induced 
subgraph, or H is not an induced subgraph of T1,1,3 +
P2n−1 , then Colouring is NP-complete for (2P2, H)-free 
graphs.

(ii) If H is an induced subgraph of a graph in {2P1+P3,P1+P4,

P2 + P3, P5, T0,0,1 + P1, T0,1,1, T0,0,2} or of sP1 + P2 for 
some integer s ≥ 0, then Colouring is polynomial-time 
solvable for (P5, H)-free graphs.

Proof. If H contains a graph in {2C3, C3 + P4, 3P2, 2P4,

T0,2,2, T0,0,4} as an induced subgraph, then Colouring

is NP-complete for (2P2, H)-free graphs due to Theo-
rems 3 and 4. We may therefore assume that H is 
(2C3, C3 + P4, 3P2, 2P4, T0,2,2, T0,0,4)-free. (Note that
T1,1,3 + P2n−1 is (2C3, T0,2,2, T0,0,4)-free.)

Recall that T is the class of graphs for which ev-
ery component is isomorphic to a graph Th,i, j for some 
1 ≤ h ≤ i ≤ j or a path Pr for some r ≥ 1. Note that 
2P2 = C4 /∈ T . Therefore, if H /∈ T , then Colouring is 
NP-complete for (2P2, H)-free graphs by Theorem 1. We 
may therefore assume that H ∈ T . Since H is 2C3-free, H
can contain at most one component that is not a path. 
Since H is (T0,2,2, T0,0,4)-free, if H does have a compo-
nent that is not a path, then this component must be 
an induced subgraph of T1,1,3. The union of components 
of H that are isomorphic to paths form an induced sub-
graph of P2n−1. Therefore H is an induced subgraph of 
T1,1,3 + P2n−1.

It is known that Colouring is polynomial-time solv-
able for (P5, H)-free graphs if H is an induced subgraph 
of 2P1 + P3 [27], P1 + P4 (this follows from the fact that 
(P5, P1 + P4)-free graphs have clique-width at most 5 [3]; 
see also [2] for a linear-time algorithm), P2 + P3 [28], 
P5 [16], T0,0,1 + P1 [20], T0,1,1 [20], T0,0,2 [20] or sP1 + P2
for some integer s ≥ 0 [28]. �

Theorem 5 leads to the following open problem, which 
shows how the P5 is not almost classified. Recall that 
T0,0,0 = C3.
Open Problem 1. Determine the complexity of Colouring

for (2P2, H)-free graphs and for (P5, H)-free graphs if

– H = sP1 + Pt + Th,i, j for 0 ≤ h ≤ i ≤ j ≤ 1, s ≥ 0 and 
2 ≤ t ≤ 3

– H = sP1 + Th,i, j for 0 ≤ h ≤ i ≤ 1 ≤ j ≤ 3 and s ≥ 0
such that h + i + j + s ≥ 3

– H = sP1 + T0,0,0 for s ≥ 2
– H = sP1 + Pt for s ≥ 0 and 3 ≤ t ≤ 7 such that s +t ≥ 6
– H = sP1 + Pt + Pu for s ≥ 0, 2 ≤ t ≤ 3 and 3 ≤ u ≤ 4

such that s + t + u ≥ 6
– H = sP1 + 2P2 for s ≥ 1.

Open Problem 1 shows the following.

– The open cases for Colouring restricted to (2P2, H)-
free graphs and (P5, H)-free graphs coincide.

– The graph H in each of the open cases is connected.
– The number of minimal open cases is 10, namely 

when H ∈ {C3 + 2P1, C3 + P2, P1 + 2P2} (see also Sec-
tion 1) and when H ∈ {3P1 + P3, 2P1 + P4, 2P3, P6,

T0,1,1 + P1, T0,1,2, T1,1,1}.

As every graph H listed in Open Problem 1 appears as an 
induced subgraph in both the graph G ′

1 and the graph G ′
2

defined in Section 4, we need new arguments to solve the 
open cases in Problem 1.

The complexity of Colouring for (K1,3, H)-free graphs 
is less clear. As mentioned in Section 1, the cases where 
H ∈ {4P1, 2P1 + P2, C4 + P1} are still open. Moreover, K1,3
is not almost classified, as the case H = Pt is open for 
all t ≥ 6 (polynomial-time solvability for t = 5 was shown 
in [26]). Note that |E(H)| may be arbitrarily large, while 
Open Problem 1 shows that |E(H)| ≤ 8 in all open cases 
for the P5. Since we have no new results for the case 
H1 = K1,3, we refer to [24] for further details or to the 
summary of Colouring restricted to (H1, H2)-free graphs 
in [12].
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