On colouring $\left(2 P_{2}, H\right)$-free and $\left(P_{5}, H\right)$-free graphs ${ }^{\tau \pi}$

Konrad K. Dabrowski, Daniël Paulusma*
Department of Computer Science, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom

A R T I CLE IN F O

Article history:

Received 22 December 2017
Received in revised form 2 February 2018
Accepted 2 February 2018
Available online 5 February 2018
Communicated by Marcin Pilipczuk

Keywords:

Colouring
Hereditary graph class
Computational complexity
$\left(H_{1}, H_{2}\right)$-free
Paths

Abstract

The Colouring problem asks whether the vertices of a graph can be coloured with at most k colours for a given integer k in such a way that no two adjacent vertices receive the same colour. A graph is $\left(H_{1}, H_{2}\right)$-free if it has no induced subgraph isomorphic to H_{1} or H_{2}. A connected graph H_{1} is almost classified if Colouring on $\left(H_{1}, H_{2}\right)$-free graphs is known to be polynomial-time solvable or NP-complete for all but finitely many connected graphs H_{2}. We show that every connected graph H_{1} apart from the claw $K_{1,3}$ and the 5-vertex path P_{5} is almost classified. We also prove a number of new hardness results for Colouring on $\left(2 P_{2}, H\right)$-free graphs. This enables us to list all graphs H for which the complexity of Colouring is open on $\left(2 P_{2}, H\right)$-free graphs and all graphs H for which the complexity of Colouring is open on $\left(P_{5}, H\right)$-free graphs. In fact we show that these two lists coincide. Moreover, we show that the complexities of Colouring for $\left(2 P_{2}, H\right)$-free graphs and for $\left(P_{5}, H\right)$-free graphs are the same for all known cases.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Graph colouring is an extensively studied concept in both Computer Science and Mathematics due to its many application areas. A k-colouring of a graph $G=(V, E)$ is a mapping $c: V \rightarrow\{1, \ldots, k\}$ such that $c(u) \neq c(v)$ whenever $u v \in E$. The Colouring problem that of deciding whether a given graph G has a k-colouring for a given integer k. If k is fixed, then we write k-Colouring instead. It is well known that even 3-Colouring is NP-complete [22].

Due to the computational hardness of Colouring, it is natural to restrict the input to special graph classes. A class is hereditary if it is closed under vertex deletion. Hereditary graph classes form a large collection of well-known graph classes for which the Colouring problem has been extensively studied. A classical result in the area is due

[^0]to Grötschel, Lovász, and Schrijver [14], who showed that Colouring is polynomial-time solvable for perfect graphs.

Graphs with no induced subgraph isomorphic to a graph in a set \mathcal{H} are said to be \mathcal{H}-free. It is readily seen that a graph class \mathcal{G} is hereditary if and only if it there exists a set \mathcal{H} such that every graph in \mathcal{G} is \mathcal{H}-free. If the graphs of \mathcal{H} are required to be minimal under taking induced subgraphs, then \mathcal{H} is unique. For example, the set \mathcal{H} of minimal forbidden induced subgraphs for the class of perfect graphs consists of all odd holes and odd antiholes [6].

Král’, Kratochvíl, Tuza, and Woeginger [21] classified the complexity of Colouring for the case where \mathcal{H} consists of a single graph H. They proved that Colouring on H-free graphs is polynomial-time solvable if H is an induced subgraph of P_{4} or $P_{1}+P_{3}$ and NP-complete otherwise. ${ }^{1}$

Král' et al. [21] also initiated a complexity study of Colouring for graph classes defined by two forbidden induced subgraphs H_{1} and H_{2}. Such graph classes are said to be bigenic. For bigenic graph classes, no di-

[^1]

Fig. 1. The graphs from the three pairs $\left(H_{1}, H_{2}\right) \in\left\{\left(K_{1,3}, 4 P_{1}\right),\left(K_{1,3}, 2 P_{1}+P_{2}\right),\left(C_{4}, 4 P_{1}\right)\right\}$ of graphs on at most four vertices, for which the complexity of Colouring on (H_{1}, H_{2})-free graphs is still open.

Fig. 2. The graphs from the four pairs $\left(H_{1}, H_{2}\right) \in\left\{\left(K_{1,3}, \overline{C_{4}+P_{1}}\right),\left(P_{5}, \overline{C_{3}+2 P_{1}}\right),\left(P_{5}, \overline{C_{3}+P_{2}}\right),\left(P_{5}, \overline{P_{1}+2 P_{2}}\right)\right\}$ of connected graphs on at most five vertices, for which the complexity of Colouring on $\left(H_{1}, H_{2}\right)$-free graphs is still open.
chotomy is known or even conjectured, despite many results [1,2,4,5,7,8,10,15,16,18,20,21,23,26-28,31]. For instance, if we forbid two graphs H_{1} and H_{2} with $\left|V\left(H_{1}\right)\right| \leq$ 4 and $\left|V\left(H_{2}\right)\right| \leq 4$, then there are three open cases left, namely when $\left(H_{1}, H_{2}\right) \in\left\{\left(K_{1,3}, 4 P_{1}\right),\left(K_{1,3}, 2 P_{1}+P_{2}\right)\right.$, $\left.\left(C_{4}, 4 P_{1}\right)\right\}$ (see [23] and Fig. 1). If H_{1} and H_{2} are connected with $\left|V\left(H_{1}\right)\right| \leq 5$ and $\left|V\left(H_{2}\right)\right| \leq 5$, then there are four open cases left, namely when $H_{1}=P_{5}$ and $H_{2} \in$ $\left\{\overline{C_{3}+2 P_{1}}, \overline{C_{3}+P_{2}}, \overline{P_{1}+2 P_{2}}\right\}$ (see [20] and Fig. 2) and when $H_{1}=K_{1,3}$ and $H_{2}=\overline{C_{4}+P_{1}}$ (see [28] and Fig. 2). To give another example, Blanché et al. [1] determined the complexity of Colouring for (H, \bar{H})-free graphs for every graph H except when $H=P_{3}+s P_{1}$ for $s \geq 3$ or $H=P_{4}+s P_{1}$ for $s \geq 2$.

The related problems Precolouring Extension and List Colouring have also been studied for bigenic graph classes. For the first problem, we are given a graph G, an integer k and a k-colouring c^{\prime} defined on an induced subgraph of G. The question is whether G has a k-colouring c extending c^{\prime}. For the second problem, each vertex u of the input graph G has a list $L(u)$ of colours. Here the question is whether G has a colouring c that respects L, that is, with $c(u) \in L(u)$ for all $u \in V(G)$. For the Precolouring Extension problem no classification is known and we refer to the survey [12] for an overview on what is known. In contrast to the incomplete classifications for Colouring and Precolouring Extension, Golovach and Paulusma [13] showed a dichotomy for the complexity of List Colouring on bigenic graph classes.

Our Approach. To get a handle on the computational complexity classification of Colouring for bigenic graph classes, we continue the line of research in [2,16,20,26-28] by considering pairs $\left(H_{1}, H_{2}\right)$, where H_{1} and H_{2} are both connected. We introduce the following notion. We say that a connected graph H_{1} is almost classified if Colouring on (H_{1}, H_{2})-free graphs is known to be either polynomialtime solvable or NP-complete for all but finitely many connected graphs H_{2}. This leads to the following research question:

Which connected graphs are almost classified?

Our Results. In Section 3 we show, by combining known results from the literature, that every connected graph H_{1}
apart from the claw $K_{1,3}$ and the 5 -vertex path P_{5} is almost classified. In fact we show that the number of pairs $\left(H_{1}, H_{2}\right)$ of connected graphs for which the complexity of Colouring is unknown is finite if neither H_{1} nor H_{2} is isomorphic to $K_{1,3}$ or P_{5}. In Section 4 we prove a number of new hardness results for Colouring restricted to $\left(2 P_{2}, H_{2}\right)$-free graphs (which form a subclass of (P_{5}, H_{2})-free graphs). We do the latter by adapting the NP-hardness construction from [11] for List Colouring restricted to complete bipartite graphs. In Section 5, we first summarize our knowledge on the complexity of Colouring restricted to $\left(2 P_{2}, H\right)$-free graphs and $\left(P_{5}, H\right)$-free graphs. Afterwards, we list all graphs H for which the complexity of Colouring on $\left(2 P_{2}, H\right)$-free graphs is still open, and all graphs H for which the complexity of Colouring on (P_{5}, H)-free graphs is still open. As it turns out, these two lists coincide. Moreover, the complexities of Colouring for ($2 P_{2}, H$)-free graphs and for $\left(P_{5}, H\right)$-free graphs turn out to be the same for all cases that are known.

2. Preliminaries

We consider only finite, undirected graphs without multiple edges or self-loops. Let $G=(V, E)$ be a graph. The complement \bar{G} of G is the graph with vertex set $V(G)$ and an edge between two distinct vertices if and only if these two vertices are not adjacent in G. For a subset $S \subseteq V$, we let $G[S]$ denote the subgraph of G induced by S, which has vertex set S and edge set $\{u v \mid u, v \in S, u v \in E\}$.

Let $\left\{H_{1}, \ldots, H_{p}\right\}$ be a set of graphs. A graph G is $\left(H_{1}, \ldots, H_{p}\right)$-free if G has no induced subgraph isomorphic to a graph in $\left\{H_{1}, \ldots, H_{p}\right\}$. If $p=1$, we may write H_{1}-free instead of $\left(H_{1}\right)$-free. The disjoint union $G+H$ of two vertex-disjoint graphs G and H is the graph $(V(G) \cup$ $V(H), E(G) \cup E(H)$). The disjoint union of r copies of a graph G is denoted by $r G$. A linear forest is the disjoint union of one or more paths.

The graphs C_{r}, K_{r} and P_{r} denote the cycle, complete graph and path on r vertices, respectively. The graph K_{3} is also known as the triangle. The graph $K_{r, s}$ denotes the complete bipartite graph with partition classes of size r and s, respectively. The graph $K_{1,3}$ is also called the claw.

The graph $S_{h, i, j}$, for $1 \leq h \leq i \leq j$, denotes the subdivided claw, that is, the tree that has only one vertex x

Fig. 3. Examples of $T_{h, i, j}$ graphs
of degree 3 and exactly three leaves, which are at distance h, i and j from x, respectively. Observe that $S_{1,1,1}=$ $K_{1,3}$. The graph $S_{1,1,2}$ is also known as the fork or the chair.

The graph $T_{h, i, j}$ with $0 \leq h \leq i \leq j$ denotes the graph with vertices $a_{0}, \ldots, a_{h}, b_{0}, \ldots, b_{i}$ and c_{0}, \ldots, c_{j} and edges $a_{0} b_{0}, b_{0} c_{0}, c_{0} a_{0}, a_{p} a_{p+1}$ for $p \in\{0, \ldots, h-1\}, b_{p} b_{p+1}$ for $p \in\{0, \ldots, i-1\}$ and $c_{p} c_{p+1}$ for $p \in\{0, \ldots, j-1\}$. Note that $T_{0,0,0}=C_{3}$. The graph $T_{0,0,1}=\overline{P_{1}+P_{3}}$ is known as the paw, the graph $T_{0,1,1}$ as the bull, the graph $T_{1,1,1}$ as the net, and the graph $T_{0,0,2}$ is known as the hammer; see also Fig. 3. Also note that $T_{h, i, j}$ is the line graph of $S_{h+1, i+1, j+1}$.

Let \mathcal{T} be the class of graphs for which every component is isomorphic to a graph $T_{h, i, j}$ for some $1 \leq h \leq i \leq j$ or a path P_{r} for some $r \geq 1$. The following result, which is due to Schindl and which we use in Section 5, shows that the $T_{h, i, j}$ graphs play an important role for our study.

Theorem 1 ([31]). For $p \geq 1$, let H_{1}, \ldots, H_{p} be graphs whose complement is not in \mathcal{T}. Then Colouring is NP-complete for (H_{1}, \ldots, H_{p})-free graphs.

3. Almost classified graphs

In this section we prove the following result, from which it immediately follows that every connected graph apart from $K_{1,3}$ and P_{5} is almost classified. In Section 5 we discuss why $K_{1,3}$ and P_{5} are not almost classified.

Theorem 2. There are only finitely many pairs $\left(H_{1}, H_{2}\right)$ of connected graphs with $\left\{H_{1}, H_{2}\right\} \cap\left\{K_{1,3}, P_{5}\right\}=\emptyset$, such that the complexity of Colouring on $\left(H_{1}, H_{2}\right)$-free graphs is unknown.

Proof. We first make a useful observation. Let H be a tree that is not isomorphic to $K_{1,3}$ or P_{5} and that is not an induced subgraph of P_{4}. If H contains a vertex of degree at least 4 then it contains an induced $K_{1,4}$. If H has maximum degree 3 , then since H is connected and not isomorphic to $K_{1,3}$, it must contain an induced $S_{1,1,2}$. If H has maximum degree at most 2 , then it is a path, and since it is not isomorphic to P_{5} and not an induced subgraph of P_{4}, it follows that H must be a path on at least six vertices. We conclude that if H is a tree that is not isomorphic to $K_{1,3}$ or P_{5} and that is not an induced subgraph of P_{4}, then H contains $K_{1,4}$ or $S_{1,1,2}$ as an induced subgraph or H is a path on at least six vertices.

Now let $\left(H_{1}, H_{2}\right)$ be a pair of connected graphs with $\left\{H_{1}, H_{2}\right\} \cap\left\{K_{1,3}, P_{5}\right\}=\emptyset$. If H_{1} or H_{2} is an induced subgraph of P_{4}, then Colouring is polynomial-time solvable for (H_{1}, H_{2})-free graphs, as Colouring is polynomial-time solvable for P_{4}-free graphs (see, for example, [21]). Hence we may assume that this is not the case. If H_{1} and H_{2} both contain at least one cycle [9] or both contain an induced $K_{1,3}$ [17], then even 3-Colouring is NP-complete. Hence we may also assume that at least one of H_{1}, H_{2} is a tree and that at least one of H_{1}, H_{2} is a $K_{1,3}$-free graph. This leads, without loss of generality, to the following two cases.

Case 1. H_{1} is a tree and $K_{1,3}$-free.
Then H_{1} is a path. First suppose that H_{1} has at least 22 vertices. It is known that 4-Colouring is NP-complete for (P_{22}, C_{3})-free graphs [19] and that Colouring is NPcomplete for (P_{9}, C_{4})-free graphs [10] and for $\left(2 P_{2}, C_{r}\right)$-free graphs for all $r \geq 5$ [21]. Hence we may assume that H_{2} is a tree. By the observation at the start of the proof, this implies that H_{2} contains an induced $K_{1,4}, S_{1,1,2}$ or P_{6}. Therefore H contains an induced $4 P_{1}$ or $2 P_{1}+P_{2}$. Since H_{1} is a path on at least 22 vertices, H_{1} contains an induced $4 P_{1}$. As Colouring is NP-complete for $\left(4 P_{1}, 2 P_{1}+P_{2}\right)$-free graphs [21], Colouring is NP-complete for $\left(H_{1}, H_{2}\right)$-free graphs.

Now suppose that H_{1} has at most 21 vertices. By the observation at the start of the proof, H_{1} is a path on at least six vertices. It is known that 5-Colouring is NP-complete for P_{6}-free graphs [18]. As K_{6} is not 5 -colourable, this means that 5-Colouring is NP-complete for (P_{6}, K_{6})-free graphs, as observed in [12]. Therefore we may assume that H_{2} is K_{6}-free. Recall that ColourING is NP-complete for ($2 P_{1}+P_{2}, 4 P_{1}$)-free graphs [21], which are contained in the class of $\left(P_{6}, 4 P_{1}\right)$-free graphs. Therefore we may assume that H_{2} is $4 P_{1}$-free. Since H_{2} is ($K_{6}, 4 P_{1}$)-free, Ramsey's Theorem [29] implies that $\left|V\left(H_{2}\right)\right|$ is bounded by a constant. We conclude that both H_{1} and H_{2} have size bounded by a constant.

Case 2. H_{1} is a tree and not $K_{1,3}$-free, and H_{2} is $K_{1,3}$-free and not a tree.

Then H_{1} contains a vertex of degree at least 3 and H_{2} contains an induced cycle C_{r} for some $r \geq 3$. It is known that 3-Colouring is NP-complete for ($K_{1,5}, C_{3}$)-free graphs [25] and for ($K_{1,3}, C_{r}$)-free graphs whenever $r \geq 4$ [21]. We may therefore assume that H_{1} is a tree of maximum degree at most 4 and that H_{2} contains at least one induced C_{3} but no induced cycles on more than three vertices. Recall that 4-Colouring is NP-complete for

$3 P_{2}$

$T_{0,2,2}$

Fig. 4. Graphs that are not induced subgraphs of the complement of G_{1}^{\prime}.
(P_{22}, C_{3})-free graphs [19]. Hence we may assume that H_{1} is a P_{22}-free tree. As H_{1} has maximum degree at most 4, we find that H_{1} has a bounded number of vertices.

By assumption, H_{1} contains a vertex of degree at least 3. As Colouring is NP-complete for ($K_{1,3}, K_{4}$)-free graphs [21], we may assume that H_{2} is K_{4}-free. By the observation at the start of the proof, H_{1} must contain an induced $K_{1,4}$ or $S_{1,1,2}$. Recall that Colouring is NP-complete for the class of ($2 P_{1}+P_{2}, 4 P_{1}$)-free graphs [21], which is contained in the class of ($K_{1,4}, S_{1,1,2}, 4 P_{1}$)-free graphs. Hence we may assume that H_{2} is $4 P_{1}$-free. Since H_{2} is $\left(K_{4}, 4 P_{1}\right)$-free, Ramsey's Theorem [29] implies that $\left|V\left(H_{2}\right)\right|$ is bounded by a constant. Again, we conclude that in this case both H_{1} and H_{2} have size bounded by a constant.

Corollary 1. Every connected graph apart from $K_{1,3}$ and P_{5} is almost classified.

4. Hardness results

In this section we prove that Colouring restricted to ($2 P_{2}, H$)-free graphs is NP-complete for several graphs H. To prove our results we adapt a hardness construction from Golovach and Heggernes [11] for proving that LIST Colouring is NP-complete for complete bipartite graphs. As observed in [13], a minor modification of this construction yields that List Colouring is NP-complete for complete split graphs, which are the graphs obtained from complete bipartite graphs by changing one of the bipartition classes into a clique.

We first describe the construction of [11], which uses a reduction from the NP-complete [30] problem Not-AllEqual 3-Satisfiability with positive literals only. To define this problem, let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set of logical variables, and let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be a set of 3-literal clauses over X in which all literals are positive and every literal appears at most once in each clause. The question is whether X has a truth assignment such that each clause in \mathcal{C} contains at least one true literal and at least one false literal. If so, we say that such a truth assignment is satisfying.

Let (X, \mathcal{C}) be an instance of Not-All-EQual 3-SatisfiabilITY with positive literals only. We construct an instance (G_{1}, L) of List Colouring as follows. For each x_{i} we introduce a vertex, which we also denote by x_{i} and which we say is of x-type. We define $L\left(x_{1}\right)=\{1,2\}, L\left(x_{2}\right)=$ $\{3,4\}, \ldots, L\left(x_{n}\right)=\{2 n-1,2 n\}$. In this way, each x_{i} has one odd colour and one even colour in its list, and all lists $L\left(x_{i}\right)$ are pairwise disjoint. For each C_{j} we introduce two vertices, which we denote by C_{j} and C_{j}^{\prime} and which we say are of C-type. If $C_{j}=\left\{x_{g}, x_{h}, x_{i}\right\}$ with $L\left(x_{g}\right)=\{a, a+1\}$, $L\left(x_{h}\right)=\{b, b+1\}$ and $L\left(x_{i}\right)=\{c, c+1\}$, then we set $L\left(C_{j}\right)=$ $\{a, b, c\}$ and $L\left(C_{j}^{\prime}\right)=\{a+1, b+1, c+1\}$. Hence each C_{j}
has only odd colours in its list and each C_{j}^{\prime} has only even colours in its list. To obtain the graph G_{1} we add an edge between every vertex of x-type and every vertex of C-type. Note that G_{1} is a complete bipartite graph with bipartition classes $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{C_{1}, \ldots, C_{m}\right\} \cup\left\{C_{1}^{\prime}, \ldots, C_{m}^{\prime}\right\}$.

We also construct an instance (G_{2}, L) where G_{2} is obtained from G_{1} by adding edges between every pair of vertices of x-type. Note that G_{2} is a complete split graph.

The following lemma is straightforward. We refer to [11] for a proof for the case involving G_{1}. The case involving G_{2} follows from this proof and the fact that the lists $L\left(x_{i}\right)$ are pairwise disjoint, as observed in [13].

Lemma 1 ([11]). (C,X) has a satisfying truth assignment if and only if G_{1} has a colouring that respects L if and only if G_{2} has a colouring that respects L.

We now extend G_{1} and G_{2} into graphs G_{1}^{\prime} and G_{2}^{\prime}, respectively, by adding a clique K consisting of $2 n$ new vertices $k_{1}, \ldots, k_{2 n}$ and by adding an edge between a vertex k_{ℓ} and a vertex u of the original graph if and only if $\ell \notin L(u)$. We say that the vertices $k_{1}, \ldots, k_{2 n}$ are of k-type.

Lemma 2. (\mathcal{C}, X) has a satisfying truth assignment if and only if G_{1}^{\prime} has a $2 n$-colouring if and only if G_{2}^{\prime} has a $2 n$-colouring.

Proof. Let $i \in\{1,2\}$. By Lemma 1 , we only need to show that G_{i} has a colouring that respects L if and only if G_{i}^{\prime} has a $2 n$-colouring. First suppose that G_{i} has a colouring c that respects L. We extend c to a colouring c^{\prime} of G_{i}^{\prime} by setting $c^{\prime}\left(k_{\ell}\right)=\ell$ for $\ell \in\{1, \ldots, 2 n\}$. Now suppose that G_{i}^{\prime} has a $2 n$-colouring c^{\prime}. As the k-type vertices form a clique, we may assume without loss of generality that $c^{\prime}\left(k_{\ell}\right)=\ell$ for $\ell \in\{1, \ldots, 2 n\}$. Hence the restriction of c^{\prime} to G_{i} yields a colouring c that respects L.

In the next two lemmas we show forbidden induced subgraphs in G_{1}^{\prime} and G_{2}^{\prime}, respectively. The complements of these forbidden graphs are shown in Figs. 4 and 5, respectively.

Lemma 3. The graph G_{1}^{\prime} is $\left(2 P_{2}, \overline{3 P_{2}}, \overline{T_{0,2,2}}\right)$-free.
Proof. We will prove that $\overline{G_{1}^{\prime}}$ is $\left(C_{4}, 3 P_{2}, T_{0,2,2}\right)$-free. Observe that in $\overline{G_{1}^{\prime}}$, the set of x-type vertices is a clique, the set of C-type vertices is a clique and the set of k-type vertices is an independent set. Furthermore, in $\overline{G_{1}^{\prime}}$, no x-type vertex is adjacent to a C-type vertex.
\mathbf{C}_{4}-freeness. For contradiction, suppose that $\overline{G_{1}^{\prime}}$ contains an induced subgraph H isomorphic to C_{4}; say the vertices of H are $u_{1}, u_{2}, u_{3}, u_{4}$ in that order. As the union of the

$2 C_{3}=\overline{K_{3,3}}$

$C_{3}+P_{4}$

$2 P_{4}$

$T_{0,0,4}$

Fig. 5. Graphs that are not induced subgraphs of the complement of G_{2}^{\prime}.
set of x-type and C-type vertices induces a P_{3}-free graph in $\overline{G_{1}^{\prime}}$, there must be at least two vertices of the C_{4} that are neither x-type nor C-type. Since the k-type vertices form an independent set, we may assume without loss of generality that u_{1} and u_{3} are of k-type. It follows that u_{2} and u_{4} cannot be of k-type. As the set of x-type vertices and the set of C-type vertices each from a clique in $\overline{G_{1}^{\prime}}$, but u_{2} is non-adjacent to u_{4}, we may assume without loss of generality that u_{2} is of x-type and u_{4} is of C-type. Then u_{4} is adjacent to the two k-type neighbours of an x-type vertex, which correspond to an even and odd colour. This is not possible as u_{4}, being a C-type vertex, is adjacent in $\overline{G_{1}^{\prime}}$ to (exactly three) k-type vertices, which correspond either to even colours only or to odd colours only. We conclude that $\overline{G_{1}^{\prime}}$ is C_{4}-free.
$\mathbf{3 P}_{2}$-freeness. For contradiction, suppose that $\overline{G_{1}^{\prime}}$ contains an induced subgraph H isomorphic to $3 P_{2}$. As the C-type vertices and x-type vertices each form a clique in $\overline{G_{1}^{\prime}}$, one edge of H must consist of two k-type vertices. This is not possible, as k-type vertices form an independent set in $\overline{G_{1}^{\prime}}$. We conclude that $\overline{G_{1}^{\prime}}$ is $3 P_{2}$-free.
$\mathbf{T}_{\mathbf{0}, \mathbf{2}, \mathbf{2}}$-freeness. For contradiction, suppose that $\overline{G_{1}^{\prime}}$ contains an induced subgraph H isomorphic to $T_{0,2,2}$ with vertices $a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, c_{0}$ and edges $a_{0} b_{0}, b_{0} c_{0}, c_{0} a_{0}$, $a_{0} a_{1}, a_{1} a_{2}, b_{0} b_{1}, b_{1} b_{2}$. As the k-type vertices form an independent set in $\overline{G_{1}^{\prime}}$, at least one of a_{1}, a_{2} and at least one of b_{1}, b_{2} is of x-type or C-type. As the x-type vertices and the C-type vertices form cliques in $\overline{G_{1}^{\prime}}$, we may assume without loss of generality that at least one of a_{1}, a_{2} is of C-type and at least one of b_{1}, b_{2} is of x-type. As the C-type vertices and the x-type vertices each form a clique in $\overline{G_{1}^{\prime}}$, this means that c_{0} must be of k-type, a_{0} cannot be of x-type and b_{0} cannot be of C-type. As k-type vertices form an independent set in $\overline{G_{1}^{\prime}}, a_{0}$ and b_{0} cannot be of k-type. Therefore a_{0} is of C-type and b_{0} is of x-type. This is a contradiction, as C-type vertices are non-adjacent to x-type vertices. We conclude that $\overline{G_{1}^{\prime}}$ is $T_{0,2,2}$-free.

Lemma 4. The graph G_{2}^{\prime} is $\left(2 P_{2}, \overline{2 C_{3}}, \overline{C_{3}+P_{4}}, \overline{2 P_{4}}, \overline{T_{0,0,4}}\right)$ free.

Proof. We will prove that $\overline{G_{2}^{\prime}}$ is $\left(C_{4}, 2 C_{3}, C_{3}+P_{4}, 2 P_{4}\right.$, $T_{0,0,4}$)-free. Observe that in $\overline{G_{2}^{\prime}}$, the set of C-type vertices is a clique, the set of x-type vertices is an independent set and the set of k-type vertices is an independent set. Furthermore, in $\overline{G_{2}^{\prime}}$, no x-type vertex is adjacent to a C-type vertex and every x-type vertex has degree 2 . In fact, the union of the set of x-type vertices and the k-type vertices induces a disjoint union of $P_{3} \mathrm{~S}$ in $\overline{G_{2}^{\prime}}$.
\mathbf{C}_{4}-freeness. For contradiction, suppose that $\overline{G_{2}^{\prime}}$ contains an induced subgraph H isomorphic to C_{4}, say the vertices of H are $u_{1}, u_{2}, u_{3}, u_{4}$ in that order. As the union of the set of x-type and C-type vertices induces a P_{3}-free graph in $\overline{G_{2}^{\prime}}$, there must be at least two vertices of the C_{4} that are neither x-type nor C-type. Since the k-type vertices form an independent set, we may assume without loss of generality that u_{1} and u_{3} are of k-type. It follows that u_{2} and u_{4} cannot be of k-type. As the set of vertices of C-type form a clique in $\overline{G_{2}^{\prime}}$, at least one of u_{2}, u_{4}, say u_{2}, is of x-type. If u_{4} is also of x-type, then u_{2} and u_{4} are x-type vertices with the same two colours in their list, namely those corresponding to u_{1} and u_{3}. This is not possible. Thus u_{4} must be of C-type. Then u_{4} is adjacent to the two k-type neighbours of an x-type vertex, which correspond to an even and odd colour. This is not possible as u_{4}, being a C-type vertex, is adjacent in $\overline{G_{2}^{\prime}}$ to (exactly three) k-type vertices, which correspond either to even colours only or to odd colours only. We conclude that $\overline{G_{2}^{\prime}}$ is C_{4}-free.
$\left(\mathbf{2 C}_{\mathbf{3}}, \mathbf{C}_{\mathbf{3}}+\mathbf{P}_{\mathbf{4}}, \mathbf{2 P} \mathbf{4}\right)$-freeness. For contradiction, suppose that $\overline{G_{2}^{\prime}}$ contains an induced subgraph H isomorphic to $2 C_{3}, C_{3}+P_{4}$ or $2 P_{4}$. As the k-type and x-type vertices induce a disjoint union of $P_{3} s$ in $\overline{G_{2}^{\prime}}$, both components of H must contain a C-type vertex. This is not possible, as C-type vertices form a clique in $\overline{G_{2}^{\prime}}$. We conclude that $\overline{G_{2}^{\prime}}$ is ($2 C_{3}, C_{3}+P_{4}, 2 P_{4}$)-free.
$\mathbf{T}_{\mathbf{0}, \mathbf{0}, \mathbf{4}}$-freeness. For contradiction, suppose that $\overline{G_{2}^{\prime}}$ contains an induced subgraph H isomorphic to $T_{0,0,4}$ with vertices $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, b_{0}, c_{0}$ and edges $a_{0} b_{0}, b_{0} c_{0}, c_{0} a_{0}$, $a_{0} a_{1}, a_{1} a_{2}, a_{2} a_{3}, a_{3} a_{4}$.

First suppose, that neither b_{0} nor c_{0} is of C-type. Since the union of the set of x-type vertices and the k-type vertices induces a disjoint union of $P_{3} s$ in $\overline{G_{2}^{\prime}}$ it follows that a_{0} is of C-type. Since b_{0} and c_{0} are not of C-type and no vertex of C-type has a neighbour of x-type in $\overline{G_{2}^{\prime}}$, it follows that b_{0} and c_{0} must be of k-type. This is not possible, because the k-type vertices form an independent set in $\overline{G_{2}^{\prime}}$.

Now suppose that at least one of b_{0}, c_{0} is of C-type. Since the vertices of C-type induce a clique in $\overline{G_{2}^{\prime}}$, it follows that no vertex in $A:=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ is of C-type. Since A induces a P_{4} in $\overline{G_{2}^{\prime}}$, but the union of the set of x-type vertices and the k-type vertices induces a disjoint union of $P_{3} S$ in $\overline{G_{2}^{\prime}}$, this is a contradiction. We conclude that $\overline{G_{2}^{\prime}}$ is $T_{0,0,4}$-free.

We are now ready to state the two main results of this section. It is readily seen that Colouring belongs to NP. Then the first theorem follows from Lemma 2 combined with Lemma 3, whereas the second one follows from Lemma 2 combined with Lemma 4. Note that $\overline{2 C_{3}}$ is isomorphic to $K_{3,3}$.

Theorem 3. Colouring is NP-complete for $\left(2 P_{2}, \overline{3 P_{2}}, \overline{T_{0,2,2}}\right)$ free graphs.

Theorem 4. Colouring is NP-complete for $\left(2 P_{2}, \overline{2 C_{3}}, \overline{C_{3}+P_{4}}\right.$, $\overline{2 P_{4}}, \overline{T_{0,0,4}}$-free graphs.

5. Conclusions

We showed that every connected graph is almost classified except for the claw and the P_{5}. Our notion of almost classified graphs originated from recent work [16,20,27, 28] on Colouring for $\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$-free graphs for connected graphs H_{1} and H_{2}, in particular when $H_{1}=P_{5}$. We decreased the number of open cases for the latter graph by showing new NP-hardness results for $\left(2 P_{2}, H\right)$-free graphs. In the following theorem we summarize all known results for Colouring restricted to $\left(2 P_{2}, H\right)$-free graphs and (P_{5}, H)-free graphs.

Theorem 5. Let H be a graph on n vertices. Then the following two statements hold:
(i) If \bar{H} contains a graph in $\left\{C_{3}+P_{4}, 3 P_{2}, 2 P_{4}\right\}$ as an induced subgraph, or \bar{H} is not an induced subgraph of $T_{1,1,3}+$ $P_{2 n-1}$, then Colouring is NP-complete for $\left(2 P_{2}, H\right)$-free graphs.
(ii) If \bar{H} is an induced subgraph of a graph in $\left\{2 P_{1}+P_{3}, P_{1}+P_{4}\right.$, $\left.P_{2}+P_{3}, P_{5}, T_{0,0,1}+P_{1}, T_{0,1,1}, T_{0,0,2}\right\}$ or of $s P_{1}+P_{2}$ for some integer $s \geq 0$, then Colouring is polynomial-time solvable for $\left(P_{5}, H\right)$-free graphs.

Proof. If \bar{H} contains a graph in $\left\{2 C_{3}, C_{3}+P_{4}, 3 P_{2}, 2 P_{4}\right.$, $\left.T_{0,2,2}, T_{0,0,4}\right\}$ as an induced subgraph, then Colouring is NP-complete for $\left(2 P_{2}, H\right)$-free graphs due to Theorems 3 and 4. We may therefore assume that \bar{H} is $\left(2 C_{3}, C_{3}+P_{4}, 3 P_{2}, 2 P_{4}, T_{0,2,2}, T_{0,0,4}\right)$-free. (Note that $T_{1,1,3}+P_{2 n-1}$ is ($2 C_{3}, T_{0,2,2}, T_{0,0,4}$)-free.)

Recall that \mathcal{T} is the class of graphs for which every component is isomorphic to a graph $T_{h, i, j}$ for some $1 \leq h \leq i \leq j$ or a path P_{r} for some $r \geq 1$. Note that $\overline{2 P_{2}}=C_{4} \notin \mathcal{T}$. Therefore, if $\bar{H} \notin \mathcal{T}$, then Colouring is NP-complete for ($2 P_{2}, H$)-free graphs by Theorem 1 . We may therefore assume that $\bar{H} \in \mathcal{T}$. Since \bar{H} is $2 C_{3}$-free, \bar{H} can contain at most one component that is not a path. Since \bar{H} is $\left(T_{0,2,2}, T_{0,0,4}\right)$-free, if \bar{H} does have a component that is not a path, then this component must be an induced subgraph of $T_{1,1,3}$. The union of components of \bar{H} that are isomorphic to paths form an induced subgraph of $P_{2 n-1}$. Therefore \bar{H} is an induced subgraph of $T_{1,1,3}+P_{2 n-1}$.

It is known that Colouring is polynomial-time solvable for $\left(P_{5}, H\right)$-free graphs if \bar{H} is an induced subgraph of $2 P_{1}+P_{3}$ [27], $P_{1}+P_{4}$ (this follows from the fact that $\left(P_{5}, \overline{P_{1}+P_{4}}\right)$-free graphs have clique-width at most 5 [3]; see also [2] for a linear-time algorithm), $P_{2}+P_{3}$ [28], P_{5} [16], $T_{0,0,1}+P_{1}$ [20], $T_{0,1,1}$ [20], $T_{0,0,2}$ [20] or $s P_{1}+P_{2}$ for some integer $s \geq 0$ [28].

Theorem 5 leads to the following open problem, which shows how the P_{5} is not almost classified. Recall that $T_{0,0,0}=C_{3}$.

Open Problem 1. Determine the complexity of Colouring for $\left(2 P_{2}, H\right)$-free graphs and for $\left(P_{5}, H\right)$-free graphs if

- $\bar{H}=s P_{1}+P_{t}+T_{h, i, j}$ for $0 \leq h \leq i \leq j \leq 1, s \geq 0$ and $2 \leq t \leq 3$
- $\bar{H}=s P_{1}+T_{h, i, j}$ for $0 \leq h \leq i \leq 1 \leq j \leq 3$ and $s \geq 0$ such that $h+i+j+s \geq 3$
- $\bar{H}=s P_{1}+T_{0,0,0}$ for $s \geq 2$
- $\bar{H}=s P_{1}+P_{t}$ for $s \geq 0$ and $3 \leq t \leq 7$ such that $s+t \geq 6$
- $\bar{H}=s P_{1}+P_{t}+P_{u}$ for $s \geq 0,2 \leq t \leq 3$ and $3 \leq u \leq 4$ such that $s+t+u \geq 6$
- $\bar{H}=s P_{1}+2 P_{2}$ for $s \geq 1$.

Open Problem 1 shows the following.

- The open cases for Colouring restricted to $\left(2 P_{2}, H\right)$ free graphs and (P_{5}, H)-free graphs coincide.
- The graph H in each of the open cases is connected.
- The number of minimal open cases is 10 , namely when $\bar{H} \in\left\{C_{3}+2 P_{1}, C_{3}+P_{2}, P_{1}+2 P_{2}\right\}$ (see also Section 1) and when $\bar{H} \in\left\{3 P_{1}+P_{3}, 2 P_{1}+P_{4}, 2 P_{3}, P_{6}\right.$, $\left.T_{0,1,1}+P_{1}, T_{0,1,2}, T_{1,1,1}\right\}$.

As every graph H listed in Open Problem 1 appears as an induced subgraph in both the graph G_{1}^{\prime} and the graph G_{2}^{\prime} defined in Section 4, we need new arguments to solve the open cases in Problem 1.

The complexity of Colouring for $\left(K_{1,3}, H\right)$-free graphs is less clear. As mentioned in Section 1, the cases where $H \in\left\{4 P_{1}, 2 P_{1}+P_{2}, \overline{C_{4}+P_{1}}\right\}$ are still open. Moreover, $K_{1,3}$ is not almost classified, as the case $H=P_{t}$ is open for all $t \geq 6$ (polynomial-time solvability for $t=5$ was shown in [26]). Note that $|E(\bar{H})|$ may be arbitrarily large, while Open Problem 1 shows that $|E(H)| \leq 8$ in all open cases for the P_{5}. Since we have no new results for the case $H_{1}=K_{1,3}$, we refer to [24] for further details or to the summary of Colouring restricted to $\left(H_{1}, H_{2}\right)$-free graphs in [12].

References

[1] A. Blanché, K.K. Dabrowski, M. Johnson, D. Paulusma, Hereditary graph classes: when the complexities of Colouring and Clique Cover coincide, CoRR, arXiv:1607.06757, 2016.
[2] H.L. Bodlaender, A. Brandstädt, D. Kratsch, M. Rao, J. Spinrad, On algorithms for (P_{5}, gem)-free graphs, Theor. Comput. Sci. 349 (1) (2005) 2-21.
[3] A. Brandstädt, H.-O. Le, R. Mosca, Chordal co-gem-free and (P_{5},gem)-free graphs have bounded clique-width, Discrete Appl. Math. 145 (2) (2005) 232-241.
[4] H. Broersma, P.A. Golovach, D. Paulusma, J. Song, Determining the chromatic number of triangle-free $2 P_{3}$-free graphs in polynomial time, Theor. Comput. Sci. 423 (2012) 1-10.
[5] K. Cameron, C.T. Hoàng, Solving the clique cover problem on (bull, C4)-free graphs, CoRR, arXiv:1704.00316, 2017.
[6] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem, Ann. Math. 164 (1) (2006) 51-229.
[7] K.K. Dabrowski, F. Dross, D. Paulusma, Colouring diamond-free graphs, J. Comput. Syst. Sci. 89 (2017) 410-431.
[8] K.K. Dabrowski, P.A. Golovach, D. Paulusma, Colouring of graphs with Ramsey-type forbidden subgraphs, Theor. Comput. Sci. 522 (2014) 34-43.
[9] T. Emden-Weinert, S. Hougardy, B. Kreuter, Uniquely colourable graphs and the hardness of colouring graphs of large girth, Comb. Probab. Comput. 7 (04) (1998) 375-386.
[10] S. Gaspers, S. Huang, D. Paulusma, Colouring square-free graphs without long induced paths, in: Proc. STACS 2018, in: LIPIcs, vol. 96, 2018, pp. 36:1-36:15.
[11] P.A. Golovach, P. Heggernes, Choosability of P_{5}-free graphs, in: Proc. MFCS 2009, in: LNCS, vol. 5734, 2009, pp. 382-391.
[12] P.A. Golovach, M. Johnson, D. Paulusma, J. Song, A survey on the computational complexity of colouring graphs with forbidden subgraphs, J. Graph Theory 84 (4) (2017) 331-363.
[13] P.A. Golovach, D. Paulusma, List coloring in the absence of two subgraphs, Discrete Appl. Math. 166 (2014) 123-130.
[14] M. Grötschel, L. Lovász, A. Schrijver, Polynomial algorithms for perfect graphs, Ann. Discrete Math. 21 (1984) 325-356.
[15] P. Hell, S. Huang, Complexity of coloring graphs without paths and cycles, Discrete Appl. Math. 216 (1) (2017) 211-232.
[16] C.T. Hoàng, D.A. Lazzarato, Polynomial-time algorithms for minimum weighted colorings of $\left(P_{5}, \overline{P_{5}}\right)$-free graphs and similar graph classes, Discrete Appl. Math. 186 (2015) 106-111.
[17] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (4) (1981) 718-720.
[18] S. Huang, Improved complexity results on k-coloring P_{t}-free graphs, Eur. J. Comb. 51 (2016) 336-346.
[19] S. Huang, M. Johnson, D. Paulusma, Narrowing the complexity gap for colouring (C_{s}, P_{t})-free graphs, Comput. J. 58 (11) (2015) 3074-3088.
[20] T. Karthick, F. Maffray, L. Pastor, Polynomial cases for the vertex coloring problem, CoRR, arXiv:1709.07712, 2017.
[21] D. Král', J. Kratochvíl, Zs. Tuza, G.J. Woeginger, Complexity of coloring graphs without forbidden induced subgraphs, in: Proc. WG 2001, in: LNCS, vol. 2204, 2001, pp. 254-262.
[22] L. Lovász, Coverings and coloring of hypergraphs, Congr. Numer. VIII (1973) 3-12.
[23] V.V. Lozin, D.S. Malyshev, Vertex coloring of graphs with few obstructions, Discrete Appl. Math. 216 (1) (2017) 273-280.
[24] V.V. Lozin, C. Purcell, Coloring vertices of claw-free graphs in three colors, J. Comb. Optim. 28 (2) (2014) 462-479.
[25] F. Maffray, M. Preissmann, On the NP-completeness of the k-colorability problem for triangle-free graphs, Discrete Math. 162 (1-3) (1996) 313-317.
[26] D.S. Malyshev, The coloring problem for classes with two small obstructions, Optim. Lett. 8 (8) (2014) 2261-2270.
[27] D.S. Malyshev, Two cases of polynomial-time solvability for the coloring problem, J. Comb. Optim. 31 (2) (2016) 833-845.
[28] D.S. Malyshev, O.O. Lobanova, Two complexity results for the vertex coloring problem, Discrete Appl. Math. 219 (2017) 158-166.
[29] F.P. Ramsey, On a problem of formal logic, Proc. Lond. Math. Soc. s2-30 (1) (1930) 264-286.
[30] T.J. Schaefer, The complexity of satisfiability problems, in: Proc. STOC 1978, 1978, pp. 216-226.
[31] D. Schindl, Some new hereditary classes where graph coloring remains NP-hard, Discrete Math. 295 (1-3) (2005) 197-202.

[^0]: से This paper was supported by EPSRC (EP/K025090/1) and the Leverhulme Trust (RPG-2016-258).

 * Corresponding author.

 E-mail addresses: konrad.dabrowski@durham.ac.uk (K.K. Dabrowski), daniel.paulusma@durham.ac.uk (D. Paulusma).

[^1]: ${ }^{1}$ We refer to Section 2 for notation used throughout Section 1.

