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ABSTRACT
We present stellar specific angular momentum j∗ measurements of two z ∼ 1.5 galaxies in the KGES
sample and 12 DYNAMO z ∼ 0.1 analogues of high-redshift galaxies. We combine natural seeing
integral field spectroscopic data to trace line emission out to high multiples of effective radius re ,
with adaptive optics assisted Keck/OSIRIS observations to trace the rapid rise in rotation curve
in the inner regions. Our spaxel-wise integration method gives results that are on average within
measurement uncertainty of the traditional rotation curve model method. At z ∼ 0, combining
GMOS and OSIRIS datasets improves the measurement uncertainty in j∗ from 13% (GMOS only)
or 16% (OSIRIS only) to 10%. At z ∼ 1.5, systematics allow for at best 20% uncertainty on j∗.
DYNAMO analogues of high-z galaxies have low j∗ for their stellar mass M∗, and low bulge-to-total
light ratio β for their j∗/M∗. The high-z galaxy COSMOS 127977 has j∗/M∗ consistent with normal
local disk galaxies, while UDS 78317 is consistent with local analogues. However, our high-resolution
OSIRIS data reveal that UDS 78317 may be a merging system. We report a relationship between
distance to the β − j∗/M∗ plane and the ratio of velocity dispersion to rotational velocity σ/vmax ,
where galaxies that deviate more from the plane are more dispersion-dominated due to turbulence.
Much of the scatter in M∗ − j∗ that is not explained by variations in the bulge-to-total ratio or
evolution with redshift may be driven by increased turbulence due to star formation, or by treating
mergers as rotating disks.

Key words: galaxies: bulges — galaxies: evolution — galaxies: fundamental pa-
rameters — galaxies: high redshift — galaxies: kinematics and dynamics — galaxies:
spiral

1 INTRODUCTION

A galaxy’s angular momentum (AM) J and mass M are two
of its fundamental properties, as together they trace the im-
pact of cumulative tidal forces on that galaxy’s size and
density evolution (Mo et al. 1998). Stellar AM J∗ regulates
disk thickness and colour (Hernandez & Cervantes-Sodi
2006) and is a physical proxy for morphology as first
shown by Fall (1983) and later Romanowsky & Fall (2012);
Obreschkow & Glazebrook (2014); Cortese et al. (2016);
Sweet et al. (2018); Posti et al. (2018); Fall & Romanowsky
(2018, hereafter RF12, OG14, C16, S18, P18, FR18).

? E-mail: sarah@sarahsweet.com.au

It is common to remove the stellar mass scaling of J
and instead study stellar specific AM j∗ = J∗/M∗. The ear-
liest such study was conducted by Fall (1983), who found
that j∗ ∝ qMα

∗ , with normalisation q setting parallel tracks
for early- and late-type galaxies, and slope α ≈ 2/3 in
accordance with predictions for cold dark matter (CDM)
haloes. RF12 later analysed the dependence of this relation
on bulge-to-total light ratio β, and showed that q differs
between disky and bulge-dominated galaxies. Since then,
2D integral field spectroscopic (IFS) studies have confirmed
the earlier findings that earlier types with larger bulges
have lower j∗, but with important clarifications regarding
the slope α, as follows. For a subset of The HI Nearby
Galaxy Survey (THINGS, Leroy et al. 2008; Walter et al.
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2008) OG14 found that α ≈ 2/3 for 0 6 β 6 0.32, but
a 3D fit between M∗, j∗ and β yields α ∼ 1 at constant β.
C16, analysing galaxies observed by the Sydney-AAO Multi-
object Integral field (SAMI, Croom et al. 2012) Galaxy
Survey (Bryant et al. 2015; Allen et al. 2015; Sharp et al.
2015) agreed, finding that α & 2/3 for single morphol-
ogy classes and α ∼ 1 for late-types. More recently, S18
showed for THINGS, galaxies in RF12 and a subset of the
Calar Alto Legacy Integral Field Area Survey (CALIFA,
Sánchez et al. 2012; Husemann et al. 2013; Walcher et al.
2014; Sánchez et al. 2016) that α = 0.56 ± 0.06 for all bulge
fractions, and α = 1.03±0.11 for constant β when β is treated
as a free parameter. The finding that α ∼ 1 leads to a tight
relation in β− j∗/M∗ space, particularly for galaxies that host
pseudobulges and have bulge-to-total mass ratios smaller
than β . 0.4. Such galaxies appear to progress along this
relation as they build their pseudobulges through secular
evolution (Kormendy & Kennicutt 2004; Wyse et al. 1997;
Sweet et al. 2018). Conversely, FR18 did not find separate
relations for galaxies that host pseudobulges and classical
bulges.

At redshifts z > 1 galaxies become increasingly
disparate from traditional morphological classifications
in the Hubble sequence (reviewed in Glazebrook 2013;
Madau & Dickinson 2014). The dynamical time of the uni-
verse is shorter, so major and minor mergers are common
(Baugh et al. 1996; Weil et al. 1998; Tissera 2000). The
first stable disks are starting to appear but have clumpy
morphologies (Glazebrook et al. 1995b; Driver et al.
1995; Abraham et al. 1996b,a; Conselice et al. 2000;
Elmegreen et al. 2005), high gas fractions (Daddi et al.
2010; Tacconi et al. 2013), high rates of star formation
(Bell et al. 2005; Juneau et al. 2005; Swinbank et al. 2009;
Genzel et al. 2011) and corresponding enhanced turbulence
with respect to local spiral galaxies (Förster Schreiber et al.
2009; Wisnioski et al. 2011; Wuyts et al. 2012; Fisher et al.
2014). These high-z galaxies are predicted in the most
recent cosmological hydrodynamical simulations to have
lower j∗/M∗ (e.g. Lagos et al. 2017; Teklu et al. 2015),
linked to lower disk stability against formation of their
star-forming clumps (Obreschkow et al. 2015). There are
few analyses at high redshift, owing to the scarcity of
high-resolution observations of such galaxies, and all use
the proxy j = krv for some characteristic radius r and
velocity v, with proportionality k dependent on the Sérsic
index (Sérsic 1963) in an effort to account for the variation
in j∗ with morphology (Förster Schreiber et al. 2006;
Burkert et al. 2016; Contini et al. 2016; Swinbank et al.
2017; Harrison et al. 2017; Alcorn et al. 2018). Most find α

consistent with 2/3, with redshift dependence varying from
no evolution (Burkert et al. 2016; Alcorn et al. 2018) up to
a factor of (1+z)−1.5 (Förster Schreiber et al. 2006).

Samples of nearby galaxies that have properties similar
to those at high redshifts are easier to study than their high-
z counterparts, given the relative gains in surface bright-
ness and spatial resolution (Glazebrook 2013). The caveat
is that local analogues may not be truly representative of
high-z galaxies, so it is insightful to compare the two sam-
ples where possible. Possible analogues of high-z galaxies
include z ∼ 0.1 DYNAmics of Massive Objects (DYNAMO)
sample (Green et al. 2010, 2014) - the turbulent disk galax-
ies in DYNAMO are analogous to the clumpy disks with

high star-formation rates found at 1 . z . 2; Lyman-
break analogues (LBAs), which are similar to Lyman-break
galaxies at z ∼ 3 in terms of UV luminosity, stellar mass
and star-formation rate (Heckman et al. 2005); supercom-
pact LBAs (Basu-Zych et al. 2009; Gonçalves et al. 2010),
with high velocity dispersions similar to the z ∼ 2 galax-
ies of Law et al. (2007); tadpole galaxies (Straughn et al.
2006; Elmegreen & Elmegreen 2010), which each have a sin-
gle bright star-forming clump with a tail, and appear to
be smaller versions of tadpole galaxies at high redshift as
first identified by van den Bergh et al. (1996); green peas
(Cardamone et al. 2009), which are compact and low-mass
but have high star-formation rates and velocity dispersions,
and clumpy morphology. Of these, only DYNAMO has ex-
tensive IFS data including an analysis of AM, and then only
for four galaxies (Obreschkow et al. 2015).

Whether locally or at high redshift, j∗ is difficult to mea-
sure. The best practise is to integrate over spatially-resolved
Ji in spaxels i from resolved velocity and mass maps, as
in OG14, C16 and S18. OG14 demonstrated that using 2D
IFS affords an order-of-magnitude improvement in precision
over integrated or long-slit spectroscopic observations of lo-
cal galaxies. Ideally, one aims to reach large multiples of
the effective radius re in order to trace the bulk of j∗, e.g.
0.99 j∗ is enclosed within 3re (Sweet et al. 2018). To do so
requires sufficient signal-to-noise at the faint outskirts of the
galaxy. One also desires to adequately sample the inner re-
gions of the galaxies where the rotation curve is rapidly ris-
ing, in order to sufficiently constrain the velocity field. This
requires adaptive optics (AO)-assisted IFS observations, but
the improved PSF and finer sampling come at the price of
signal-to-noise, so such data are less suitable for probing
to large multiples of re , as discussed in Glazebrook (2013).
(One exception may be the recent deep AO imaging for
the SINS/zC-SINF survey at z ∼ 2 (Förster Schreiber et al.
2018), but AM measurements have not yet been presented.)
The combination of seeing-limited and AO-assisted IFS data
to measure j∗ was first demonstrated by Obreschkow et al.
(2015, hereafter O15) for four galaxies in DYNAMO. O15
found that their j∗ is three times lower for their M∗ than
normal local galaxies. These analogues have β < 0.1 so their
low j∗ is not a consequence of their photometric morphology
but may be related to their star-formation-induced turbu-
lence.

In this work we combine natural seeing data to trace
low surface brightness outskirts of the galaxies and the bulk
of j∗, with adaptive optics (AO)-assisted data to mitigate
the effects of beam-smearing in the high surface brightness
inner regions, giving improved constraints on the velocity
field. We present the first such measurement for galaxies at
high redshift (z ∼ 1.5) along with measurements for 12 local
analogues from the DYNAMO sample.

In Section 2 we describe the samples and our datasets.
Section 3 contains the details of our methods for making
the measurements presented in this paper. In Section 4 we
analyse the relative merits of seeing-limited and AO-assisted
data, and the combination of the two. We analyse the re-
lation between stellar mass, specific AM and morphology
for high-z galaxies and their local analogues in Section 5.
Section 6 discusses possible future evolution of DYNAMO
galaxies and the implications in light of our z ∼ 1.5 observa-
tions. Section 7 concludes the paper.
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We assume a cosmology where H0 = 70kms−1Mpc−1,
ΩM = 0.27 and ΩΛ = 0.73, and quote comoving coordiates.

2 SAMPLE & OBSERVATIONS

We compare the angular momentum properties of two galax-
ies at z ∼ 1.5 with 12 local turbulent galaxies in DYNAMO,
which have been suggested as local analogues of high-z
galaxies, and normal local galaxies from THINGS, RF12
and CALIFA which were presented in S18. The sample se-
lection, observations and data processing for the DYNAMO
and z ∼ 1.5 samples are described in this Section.

2.1 DYNAMO – low-redshift analogue sample

The DYNAMO sample (Green et al. 2010, 2014) is a
set of 95 star-forming galaxies at z ∼ 0.1 selected
from the Sloan Digital Sky Survey Data Release 4
(Adelman-McCarthy et al. 2006) as having high Hα fluxes
due to star formation LHα > 1042 erg s−1. DYNAMO
galaxies are analogous to rotating disk galaxies at 1 .
z . 2 in that they have similarly high velocity disper-
sions (Green et al. 2010; Bassett et al. 2014) and clumpy
morphologies (Fisher et al. 2017b). Their specific star for-
mation rates match those of galaxies between 0 . z . 2
(Green et al. 2010, 2014), Fisher et al., in prep.).

For this and related projects we observed a subset of
20 DYNAMO galaxies. Seeing-limited observations were ob-
tained with Gemini GMOS (Hook et al. 2004) for 13 of
the 20, and emission line intensity and velocity maps mea-
sured at Hβ λ 4861 Å (Fisher et al. 2017a). Keck OSIRIS
(Larkin et al. 2006a,b) AO observations covering the Pα
λ 18750 Å line were obtained for another 13 of the sam-
ple (Oliva-Altamirano et al. 2018); seven have both GMOS
and OSIRIS data.

Fisher et al. (2017b) presented Hubble Space Telescope
(HST) narrow-band Hα and continuum imaging for 10 of the
galaxies, using the FR647M, FR716N and FR782N ramp
filters on the Wide Field Camera / Advanced Camera for
Surveys (ACS). This imaging is used to constrain inclination
and scale length, and for surface density images, for which
we assume a constant mass-to-light ratio. 1 We use medium-
band imaging for the galaxies that have those data, and
narrow-band otherwise. OSIRIS 1.9µm maps are used for
the galaxies that do not have any HST imaging.

2.2 KGES – high-redshift sample

Our high-redshift sample is drawn from the KMOS Galaxy
Evolution Survey (KGES; Tiley et al., in preparation).
KGES comprises KMOS (Sharples et al. 2013) observations
of Hα, [N ii]6548 and [N ii]6583 emission from 285 galaxies at
1.3 . z . 1.5 in well-known extragalactic fields (COSMOS,
CDFS, and UDS). Target galaxies were predominantly se-
lected to be bright (K > 22.7) and blue (I − J < 1.7), with
higher priority assigned to those which have an established

1 As we are concerned with specific angular momentum, the mass
normalisation cancels in our calculations.

spectroscopic redshift. The KMOS PSF FWHM for the tar-
gets in this work is 0”.6.

We observed two KGES targets, COSMOS 127977 and
UDS 78317, with Keck OSIRIS during 2017 December 5-7
in the Hn4 and Hn3 filters respectively, in order to cover
rest-frame Hα λ 6563 Å. These data were processed using
the current OSIRIS data reduction pipeline DRP 4.0.0 using
rectification matrices taken on 2017 December 14-15. Emis-
sion line intensity and velocity maps were then extracted
from the data cubes. The OSIRIS PSF FWHM for these
observations is 0”.1.

Surface density maps are derived from HST ACS I-band
F814W archival imaging assuming a constant mass-to-light
ratio, with COSMOS 127977 imaging from the Cosmic Evo-
lution Survey (COSMOS, Scoville et al. 2007) (HST pro-
gram 9822), and UDS 78317 imaging from the Cosmic As-
sembly Near-IR Deep Extragalactic Legacy Survey (CAN-
DELS, Koekemoer et al. 2011) (HST program 12064).

Maps of COSMOS 127977 and UDS 78317 are shown in
Fig. 1 and 2, illustrating that the seeing-limited data probe
to higher radii, while the AO-assisted data are more sensitive
to structure, particularly in the inner regions of the galaxy.

3 METHODS

3.1 Specific angular momentum

For each galaxy we combine two datasets to calculate j∗
from spatially-resolved integral field spectroscopic (IFS) ob-
servations, using the methods of OG14, O15 and S18. The
two complementary datasets are a) adaptive optics (AO)-
assisted OSIRIS observations, which are sensitive to the
rapidly-changing inner regions of the rotation curve, min-
imising the effects of beam smearing; b) seeing-limited
GMOS/KMOS data, which are more sensitive than OSIRIS
to the low surface brightness outer regions where the rota-
tion curve becomes flat, in an effort to trace the bulk of the
AM. In the spaxels where both datasets have S/N<3 we in-
clude a model estimate to extrapolate the surface brightness
and velocity profiles to ri = ∞.

Below we describe the steps taken in our calculation:
1) The observed deprojected spaxel-wise AM Ji is de-

rived separately for the AO-assisted and the seeing-limited
kinematic data, where the calculation Ji = rivimi is per-
formed in every spaxel i at deprojected radius r whose cir-
cular velocity v is derived from ionized gas kinematic maps2

and mass m from stellar surface density maps derived from
the HST images described in the previous Section, assuming
a constant mass-to-light ratio. The kinematic centre is com-
puted by minimising the convolution of the light-weighted

2 We assume that the ionized gas corotates with the stars, ex-

pecting that the asymmetric drift between the two is negligible

due to their comparable velocity dispersions (Bassett et al. 2014).
At high redshift the validity of this assumption is an open ques-

tion. El-Badry et al. (2018) found that the assumption of coro-

tation tends to cause j∗ to be overestimated by around 20 per
cent for galaxy disk components. If the assumption of cororation

is invalid for our bulgeless z ∼ 1.5 sample galaxies to a similar

extent as it is for FIRE galaxies, then j∗ would similarly be re-
duced by 0.1 dex and the main conclusions of the paper would be

unchanged.
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COSMOS˙127977 OSIRIS Ha intensity
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Figure 1. Ionized gas and continuum maps of COSMOS 127977 at z = 1.62.Top row: KMOS Hα intensity, Hα velocity. Bottom row:
HST I -band continuum, downsampled to 0.1x0.1” spaxels, OSIRIS Hα intensity, OSIRIS Hα velocity. The circle in the centre panels

denotes PSF FWHM. The natural seeing maps probe higher radii, while the adaptive optics-assisted maps detect more structure due to

the finer PSF.

velocity field with its 180-degree rotation. Inclination and
position angle are assumed to be constant with radius and
are derived from a fit to the HST imaging. We do not treat
non-circular motions in this paper; in a future paper we will
investigate the contribution of non-circular motions to total
j∗ and spatially-resolved PDF( j∗).

2) The model Ji in every spaxel is also computed by
fitting an exponential profile ṽi ≈ v f lat

(
1 − exp(−ri/rflat)

)
to the velocity field, where r f lat is the radius at which the
velocity reaches the converged velocity v f lat . The surface
mass density is estimated by fitting Σ̃(ri ) ≈ sdexp(−ri/rd)
to the imaging, where sd is the fitted surface mass density
normalisation and rd is the exponential disk scale length.
The resulting model is then

J̃i = ri ṽi Σ̃(ri ) = riv f lat
(
1 − exp(−ri/rflat)

)
sdexp(−ri/rd). (1)

The fitted rotation curves used to derive the model are
shown in Figure 3. On average, the model is consistent
with the observed J∗ to the 5% level, when integrating over
the same high signal-to-noise spaxels. We reiterate that the
model simply serves as an estimate of Ji in the low signal-
to-noise spaxels and allows to reach the total AM.

3) The total j∗ is then given by combining 1) and 2) to

calculate J∗/M∗, where J∗ = |
∑i Ji | is the norm of the sum

over:

a) the observed Ji from AO-assisted data in the spaxels
where the AO-assisted data have S/N> 3,

b) the observed Ji from seeing-limited data in the spax-
els where the seeing-limited data have S/N> 3 and AO
S/N< 3, and,

c) the estimated Ji in other spaxels, integrated to ri =
∞.

In this way, the AO data contribute in the inner re-
gions, the seeing-limited data contribute in the outer regions
where the AO data are missing or lack the sensitivity to be
reliable, and the model contributes elsewhere. The natural
seeing vi measurements are only used in the outer regions
where dv/dr is small, so the effect of beam-smearing is
also small. Including the estimated Ji in the spaxels where
data are missing comprises an average of 13 per cent of the
total j∗. In Figure 4 and 5 we show the cumulative stellar
specific AM as a function of radius in order to illustrate
the contribution to j∗ by the AO-assisted data, the natural
seeing data and the model-informed estimate.
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UDS˙78317 KMOS Ha intensity
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Figure 2. As for Fig. 1 but for UDS 78317 at z = 1.47.

This method differs from traditional measurements in
the following ways:

(i) Long-slit spectroscopy, such as in RF12, can suffer
from misalignment between the kinematic and photometric
major axes. The 2D nature of IFS means that the kinematic
major axis need not be known a priori (Sweet et al. 2016).

(ii) Most other work, whether long-slit or IFS, utilises the
proxy j̃∗ = krv, with single fitted characteristic radius r and
velocity v, and the factor k = k (n) an empirical function
of Sérsic index n in an effort to account for the variation
in j∗ with morphology. However, the velocity fields of many
galaxies may not always be well described by simple 1D rota-
tion curves assumed by this model. OG14 showed for nearby
spiral galaxies that spaxel-wise integration of fine spatial res-
olution IFS data gives an order-of-magnitude improvement
in precision3. The corresponding correction is described by(

j∗
103 kpc km s−1

)
≈ 1.01


 j̃∗

103 kpc km s−1




1.3

. (2)

3 We note that at high redshifts, where physical spatial resolution

is coarser, the decrease in uncertainty may not be so dramatic.
However, we choose to use this consistent method throughout the

paper.

This is likely to be even more critical for high-z and local
clumpy galaxies, such as those presented in this work. In this
work we compare the spaxel-wise integration method to the
traditional rotation curve model method for local turbulent
DYNAMO disk galaxies as well as two z ∼ 1.5 systems.

(iii) In the inner regions of the galaxy, where the rota-
tion curve is rapidly changing, beam smearing can cause the
velocity field to be underestimated. This is particularly an
issue for seeing-limited observations of high-z objects, and
can be ameliorated by AO-assisted data of sufficient quality.

(iv) Reaching the outskirts of the galaxy is critical to
trace the bulk of the AM (e.g. 0.99 j∗ at 3re , as in Sweet et al.
2018). AO-only data often lacks the sensitivity to reach such
high multiples of the effective radius, so we mitigate this by
including seeing-limited data as well.

We demonstrate (ii), (iii) and (iv) in this paper.

The method described above was performed on the two
z ∼ 1.5 galaxies and 20 DYNAMO galaxies described in
the previous Section. We discarded eight DYNAMO galaxies
where the fit failed due to poor S/N or disturbed kinematics
indicative of a merger, in order to obtain a meaningful con-
trol sample against which to compare the z ∼ 1.5 galaxies.
Six of the remaining 12 galaxies were observed with both
AO and natural seeing, and our measurements for those are
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Figure 3. Rotation curves for natural seeing (top panel), adaptive optics (AO)-assisted (middle panel), and natural seeing & AO

combined data (bottom panel). Grey points are the unbinned spaxels (after a sigma-clip for clarity only), blue points are binned spaxels,
red curve is the model fit used to extrapolate when calculating total j∗ . Top: COSMOS 127977. The natural seeing data are more sensitive
to the low surface brightness outer regions of the galaxies, while the AO-assisted data are less affected by beam smearing, particularly

in the inner parts where the rotation curves are rapidly rising. The combination of the two datasets allows for better characterisation of
total stellar specific angular momentum jtot . Bottom: UDS 78317. This galaxy is not well fit by the model rotation curve since it is not
a regular disk but a merger, as revealed by the AO maps shown in Figure 2.
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Figure 4. Cumulative specific angular momentum as a function of radius. The blue profile represents the combined dataset, with

labels showing the contribution from adaptive optics-assisted data, seeing-limited data and model-informed estimate. The orange and
red profiles indicate the same measurement made solely with seeing-limited or AO-assisted data respectively. The transparent shading
indicates the uncertainty on each cumulative profile. The black line gives the model profile. The y-axis is normalised to the adopted

j∗ measurement as given in Table 3. The horizontal lines represent the relative contribution of each component to the combined (blue)

profile; due to our spaxel-wise integration method, which accounts for azimuthal variation in S/N of the various datasets, these are simply
an approximate mean boundary rather than a strict radial cut. Only the galaxies with both natural seeing and AO data are shown in

this Figure. Section 4 has more details.

presented in Table 1. We take the philosophy that (modulo
S/N) more data generally gives a truer result, and adopt
the combined seeing-limited and AO measurements in pref-
erence over the seeing-limited or AO data alone. The ex-
ceptions are C22-2, where the AO data are too shallow and
limited in radial extent to give any improvement over the
seeing-limited observations, and SDSS 013527-1039, where
the sky is poorly constrained in the natural seeing map. The

final adopted results for the 12 DYNAMO and two z ∼ 1.5
systems are presented in Table 3. Note that four of these
DYNAMO galaxies (C22-2, D13-5, G04-1, G20-2) were pre-
sented in O15. Since that paper, we have obtained additional
observations, and improved our analysis software to better
exclude low S/N spaxels and more carefully fix the kinematic
centre, inclination and position angle. The j∗ values in this
work consequently differ from those in O15; they are within
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Figure 5. (Continued from Figure 4) Cumulative specific AM as a function of radius, showing the contribution from AO data, seeing-

limited data and model-informed estimate. Only the galaxies with both natural seeing and AO data are shown in this Figure.

errors on average, but individual galaxies differ by between
28 and 69 per cent. Relative uncertainties have decreased
from 13.5 per cent to 10 per cent.

3.2 Bulge-to-total ratios

We measure bulge-to-total mass ratios β for the DYNAMO
galaxies using HST imaging where available, and IFS con-
tinuum maps otherwise, using the methods described in
Savorgnan & Graham (2016). Briefly, multiple components
including bulge, disk, AGN, bar and ring are identified from
the images and unsharp masks. Corresponding Sérsic, expo-
nential, Gaussian, Moffat, Ferrer and symmetric Gaussian

ring components are simultaneously fit to the circularized
1D light profile, where the final functional forms are cho-
sen through an iterative process in order to minimise the
residuals.

For the high-z galaxies we use the HST archival imag-
ing to estimate β using a similar method to the 2D bulge-
disk decompositions described in Fisher & Drory (2008) and
used for the THINGS galaxies that are presented in S18 and
included in this work. In both cases the photometry is con-
sistent with a bulgeless galaxy.

The two methods both include a careful, iterative ap-
proach and are not reproducible with automatic routines
(Fisher & Drory 2008; Savorgnan & Graham 2016). Despite
the differences they have been shown to achieve consis-

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/stz750/5380806 by guest on 26 M

arch 2019



Angular momentum with adaptive optics at z ∼ 1.5 9

Table 1. Measured properties of DYNAMO and z = 1.5 galaxies for natural seeing, adaptive optics and combination of natural seeing
and adaptive optics.

Name Obs z r f lat v f lat j∗ ∆ j∗ j̃∗
[kpc] [km s−1] [kpc km s−1] [kpc km s−1] [kpc km s−1]

(1) (2) (3) (4) (5) (6) (7) (8)

C22-2 GMOS 0.071 1.3 164 449 53 498

C22-2 OSIRIS 0.071 2.5 247 1101 216 1281
C22-2 GMOS+OSIRIS 0.071 2.5 171 384 39 413

D13-5 GMOS 0.075 0.5 182 10343 2068 10342

D13-5 OSIRIS 0.075 0.4 174 567 88 565
D13-5 GMOS+OSIRIS 0.075 0.4 171 466 51 437

G04-1 GMOS 0.130 1.5 227 976 124 1051

G04-1 OSIRIS 0.130 0.9 242 1065 173 1119
G04-1 GMOS+OSIRIS 0.130 0.7 221 991 118 1025

G20-2 GMOS 0.141 0.9 143 295 20 282
G20-2 OSIRIS 0.141 0.6 122 281 29 281

G20-2 GMOS+OSIRIS 0.141 0.7 121 309 19 277

SDSS 013527−1039 GMOS 0.127 1.3 120 424 55 467
SDSS 013527−1039 OSIRIS 0.127 1.0 118 404 53 429

SDSS 013527−1039 GMOS+OSIRIS 0.127 1.0 111 85 12 185

SDSS 234657+0056 GMOS 0.182 1.1 92 330 23 337
SDSS 234657+0056 OSIRIS 0.182 0.9 92 506 84 540

SDSS 234657+0056 GMOS+OSIRIS 0.182 0.7 85 404 41 428

COSMOS 127977 KMOS 1.62 3.4 215 3154 434 3242
COSMOS 127977 OSIRIS 1.62 4.7 248 3074 363 3045

COSMOS 127977 KMOS+OSIRIS 1.62 3.9 236 2532 227 2279

UDS 78317 KMOS 1.47 0.4 57 569 76 484
UDS 78317 OSIRIS 1.47 0.8 44 628 114 534

UDS 78317 KMOS+OSIRIS 1.47 0.2 29 338 64 200

Columns: (1) galaxy identifier; (2) data source (natural seeing GMOS or KMOS, adaptive optics OSIRIS, or combination of natural

seeing and adaptive optics); (3) redshift; (4) radius at which rotation curve becomes flat; (5) asymptotic velocity; (6) stellar specific

AM; (7) measurement uncertainty in j∗ ; (8) stellar specific AM using j̃∗ = krv. Note that only the galaxies with both natural and AO
are presented in this table.

tent results for the same galaxies, with the 1D fits un-
dertaken for DYNAMO because of the lower failure rate
for decompositions and more instructive isophotal analysis
(Savorgnan & Graham 2016). The 2D fits were appropriate
for the more distant z ∼ 1.5 sources with lower physical res-
olution.

3.3 Stellar masses

Our integrated stellar mass measurements for the DYNAMO
sample are derived from 2MASS Ks-band apparent magni-
tudes (4Rs i.e. 99% of the light), with Galactic extinction
correction according to Schlafly & Finkbeiner (2011). We
conduct an empirical k-correction (Glazebrook et al. 1995a)
with a universal mass-to-light ratio M/LKs = 0.5M�/L�

assuming a Kroupa (2001) IMF for consistency with the
THINGS, RF12 and CALIFA samples from S18, which we
include here as control samples. The typical error introduced
by assuming a constant M/L ratio is less than 20 per cent
(Bell et al. 2003). Using stellar masses following the meth-
ods in Kauffmann et al. (2003) instead does not change the
results of this paper, but not all of the DYNAMO sample
have these available so we opt for the more complete set of
measurements.

The z ∼ 1.5 masses are derived from SED fitting with
hyper-z (Bolzonella et al. 2000), using the methods de-
scribed in Swinbank et al. (2017). We adopt measurement
uncertainties of a standard 0.2 dex to conservatively ac-

count for deviations in results between common SED fitting
codes, and possible effects of low photometric signal-to-noise
(Mobasher et al. 2015).

3.4 Velocity dispersions

In the z ∼ 1.5 galaxies the velocity dispersions are calcu-
lated as the median of the KMOS observed dispersion map,
corrected for instrumental broadening and beam smearing
according to the methods of Johnson et al. (2018). Briefly,
we create KMOS data cubes for 105 model galaxies and con-
volve these intrinsic data with PSFs typical of the sample to
obtain mock observed data. We compare the properties of
the intrinsic and mock observed cubes to obtain correction
factors that can be applied to the sample.

For DYNAMO, the velocity dispersions are assumed to
be constant across the disk and are derived from fits to the
to GMOS observations, as described in Fisher et al. (2019).

Velocity dispersions for THINGS are based on CO mea-
surements presented in Mogotsi et al. (2016), under the as-
sumption that CO dispersions trace Hα dispersions, as dis-
cussed in White et al. (2017) for gas-rich, turbulent DY-
NAMO galaxies, and demonstrated for one disk galaxy at
z = 1.4 by Übler et al. (2018).
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4 THE EFFECT OF IMAGE QUALITY ON
MEASURED SPECIFIC ANGULAR
MOMENTUM

In this Section we discuss the effects of spatial resolution
and radial coverage on the determination of angular mo-
mentum. We present the 2D maps and 1D rotation curves
for the two z ∼ 1.5 systems, and then give a quantitative
comparison of specific AM measured in the three data types
(seeing-limited, adaptive optics, combined) as described
in Section 3, for the z ∼ 1.5 COSMOS 129799 galaxy as
well as for local turbulent galaxies in the DYNAMO sample.

Figures 1 and 2 show resolved maps of Hα intensity and
velocity for natural seeing KMOS observations and OSIRIS
AO-assisted data. For both COSMOS 127977 and UDS
78317, the seeing-limited maps probe to larger radii than
the AO maps, while the AO maps display more structure.
For COSMOS 127977, the AO Hα intensity map confirms
the clumpy nature of this galaxy seen in HST imaging. The
difference in substructure between AO and seeing-limited
maps is at the scale of the KMOS PSF and can likely be
attributed to the difference in PSFs of the two maps (0”.1
vs. 0”.6). The corresponding AO velocity map is consistent
with the seeing-limited classification of a rotating disk
galaxy, but also reveals a kinematic twist along the minor
axis that is not seen in natural seeing. In the case of UDS
78313, the finer PSF of the AO data uncovers additional
substructure that is not evident in the seeing-limited data.

The rotation curves presented in Figure 3 illustrate
the complementarity of both natural seeing observations
and AO-assisted data. The natural seeing velocity field
of COSMOS 127977 is well fit by the model rotation
curve in the top panel of Figure 3, while the middle panel
displays the additional structure revealed in the AO maps.
Combining the two datasets as described in Section 3 leads
to a more well-constrained model rotation curve (lower
panel), and therefore a more accurate determination of total
j∗. We reiterate that the model is only used to calculate
ji in the spaxels i where low signal-to-noise prohibits
calculation from the data. The 2D spatial structure traced
by the integral field data (that is, by the AO-assisted maps
in the inner regions of the galaxy and the seeing-limited
maps in the outer regions where the AO data has low S/N)
is used to calculate ji elsewhere. The rotation curves for
merger system UDS 78317 are in stark contrast to the
well-behaved rotation curves of COSMOS 127977. None of
the 1D velocity fields are well fit by model rotation curves;
for this system there is no clear benefit to using any one of
the three datasets in determining j∗.

Figures 4 and 5 show the normalised cumulative stellar
specific angular momentum j∗ (≤ r)/ j∗ in order to illustrate
the degree of convergence, and the relative contribution
to j∗ made by the AO-assisted data, the natural seeing
data and the model-informed estimate. We include the six
DYNAMO and two high-z galaxies for which we have both
AO and seeing-limited observations. All eight qualitatively
show a strong degree of convergence illustrated by the
flatness of the cumulative j∗ profile, owing to the large
multiples of the disk radius 3.5 < r/rd < 10 observed.

The horizontal, dashed and dotted lines in these figures
correspond to the contribution of the AO, seeing-limited
and model spaxels as a fraction of total j∗; on average 69,
18 and 13 per cent respectively. Note that the intersection
of the profile with these lines does not correspond to a strict
radial cut, but can instead be interpreted as an approximate
mean boundary to the physical region where the two data
types and model most strongly contribute. For example, for
C222 the AO-assisted data are most critical for r/rd . 2.75,
the seeing-limited data between 2.75 . r/rd . 5.5, and the
model-informed estimate beyond 5.5 . r/rd . However, since
the length of the x-axis r/rd is set by the limit of the data,
the observations contribute at radii as great as r/rd . 7.3.

For comparison with our adopted spaxel-wise in-
tegration method we also compute the rotation curve
model, adopting j̃∗ = 2v f latrd , which is commonly used
in studies of j∗ large samples of galaxies at z ∼ 1.5 (e.g.
Swinbank et al. 2017). We include these values in Tables 1
and 3. Figure 6 illustrates the per cent difference between
specific angular momenta measured with the two methods,
∆ j∗ = ( j∗ − j̃∗)/ j∗. Across all datasets, j̃∗ differs from our
two-dimensional integrated j∗ by 6.75 per cent, which is
less than the level of measurement uncertainty. The cases
where j̃∗ differs from our j∗ by more than one standard
deviation are the targets that have particularly clumpy
morphology (e.g. G08-5, G20-2, SDSS 033244+0056) or
where the kinematic map shows substructure (e.g. UDS
78317, which has the highest ∆ j∗ = 0.406 for the combined
AO + seeing-limited dataset). Our primary motivation
for adopting the spaxel-wise integration method described
above is to account for the diversity of galaxies such as these.
The result can be interpreted to mean that j∗ measured
from spaxel-wise integration and j̃∗ measured from the ro-
tation curve model method in general give consistent results.

We now consider the systematic effects of the three dif-
ferent data sets (GMOS, OSIRIS, KMOS as well as DY-
NAMO versus z ∼ 1.5 galaxies). As discussed above these
different sets vary in both radial coverage of the velocity
profile and spatial resolution, which can be important for
tracing the bulk of AM. We will consider both the effect on
measurement uncertainties and the systematic effects on the
value of total j∗ across data type. In Table 2 we compare the
three datasets for COSMOS 127977, UDS 78317 and the six
DYNAMO galaxies for which we have both natural seeing
and AO data.

Overall there is a general decrease in median measure-
ment uncertainty ∆ j∗ as more information is included in the
fit, as one would expect for random noise. For COSMOS
127977 the measurement uncertainty decreases from 14%
with KMOS-only to 9% when the OSIRIS and KMOS data
is combined. However, in UDS 78317 the measurement un-
certainty increases from 13% for KMOS-only to 18% for the
combined measurement. This is due to additional substruc-
ture being detected with OSIRIS, as illustrated in Figures 1
and 2.

The DYNAMO sample median uncertainty on j∗ de-
creases from 13% (GMOS-only) or 16% (OSIRIS) to 10%
for the combined data set. The higher median uncertainty
for AO than natural seeing in DYNAMO could be an arte-

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/stz750/5380806 by guest on 26 M

arch 2019



Angular momentum with adaptive optics at z ∼ 1.5 11

2.0 2.5 3.0 3.5 4.0

0.
0

0.
1

0.
2

0.
3

0.
4

log(j∗ [kpc km s−1])

(j ∗
−

˜j ∗
)/

j ∗

z ˜ 1. 5
DYNAMO

Figure 6. Comparison of specific angular momentum measured
from spaxel-wise integration ( j∗) with those measured via the

commonly-used rotation curve model method ( j̃∗). The frac-

tional difference is calculated with ( j∗ − j̃∗ )/ j∗ . Measurements us-
ing all three datasets (AO-assisted, seeing-limited, combination)

are shown. The horizontal line represents the mean fractional

difference.

fact of finer resolution of clumps4, and lower signal-to-noise
at high multiples of re , both of which mean the model fit is
less certain, which in turn contributes to uncertainty in j∗.

Our philosophy to adopt in general the dataset with
the most data results in selecting the dataset that has the
lowest relative measurement uncertainty on j∗. For C22-2
and SDSS 013527-1039, where we respectively adopt seeing-
limited and AO-only data, the relative measurement on j∗
is 1.7 and 0.2 per cent larger respectively.

Using the OSIRIS data on its own can sometimes give
dramatically different values of j∗, due to the more restricted
coverage of the velocity field compared with GMOS or
KMOS. For example, UDS 78317 j∗ measured with OSIRIS
is a factor of two higher than the combined KMOS+OSIRIS
dataset.

The KMOS-only measurements at z ∼ 1.5 in general dis-
agree with the combined KMOS+OSIRIS by at least 20%.
For UDS 78317 the disagreement in j∗ is at the 60 per
cent level. We note that the seeing-limited data are con-
sistent with a rotating disk, but the Hα intensity maps and
‘multi-polar’ velocity maps together indicate that this may
be two rotating galaxies undergoing a merger. It is possi-
ble that using kinemetry (Krajnović et al. 2006) or mod-
elling (Rodrigues et al. 2017) may be able to identify this
system as a merger in the KMOS data, however this is be-
yond the scope of this paper. The implication from our de-
tailed observations of these two z ∼ 1.5 galaxies is that the

4 This is assuming that the clumps have their own velocity field
which disturbs the velocity field of the galaxy (as seen in simula-

tions e.g. Ceverino et al. 2012, but not yet seen in observations).

Table 2. Median j∗ and uncertainty in j∗ for natural, adaptive

optics, and natural + adaptive optics data.

Natural seeing adaptive optics natural + AO

z ∼ 1.5

log( j∗) 3.50 ± 0.06 3.49 ± 0.05 3.4 ± 0.04

∆ j∗/ j∗ 0.14 0.12 0.09

z ∼ 0

log( j∗) 2.64 ± 0.24 2.73 ± 0.10 2.60 ± 0.14
∆ j∗/ j∗ 0.13 ± 0.02 0.16 ± 0.01 0.10 ± 0.01

systematic uncertainty on j∗ is at best 20 percent, and in
some cases may be significantly higher. While we acknowl-
edge that our sample is small, nonetheless we recommend
that caution should be taken when interpreting j∗ that is
measured with only natural seeing at z > 1.

The GMOS-only measurements can be thought of as
analogous to the KMOS+OSIRIS dataset at z ∼ 1.5. Both
AO enabled observation with OSIRIS at z ∼ 1.5 and the
seeing-limited (∼0.5-0.7 arcsec) observations of DYNAMO
galaxies with GMOS offer a resolution in the central part
of the rotation curve of order ∼1 kpc. Moreover, both data
sets reach sufficiently far in radius to adequately constrain
the flat rotation curve. Observations of DYNAMO galaxies
that include OSIRIS offer finer spatial resolution that what
is available on unlensed galaxies at z & 1. We can therefore
use this comparison to understand what information is lost
on measurements of j∗ on z & 1 galaxies.

With the exception of one target (D13-5), the j∗ values
of GMOS-only observations of DYNAMO galaxies agree
with the corresponding GMOS+OSIRIS values to the 11
per cent level. The values of j∗ for D13-5 are a factor of
two higher in the GMOS-only data than in the combined
GMOS+OSIRIS data. This discrepancy arises because
the seeing-limited data are not well fit by the exponential
disk model used for extrapolation. We note that this mea-
surement has the highest measurement uncertainty (20%)
in our sample. When combining the data, the low S/N
GMOS spaxels are replaced by OSIRIS, so the combination
is well fit. We interpret this to indicate that the general
correspondence between GMOS-only and GMOS+OSIRIS
in DYNAMO galaxies indicates that using KMOS+OSIRIS
at z ∼ 1.5 is sufficient to achieve a robust result in that
using finer spatial resolution would not appreciably alter
the measurement of j∗.

The consequence is that high-redshift studies that
utilise only natural seeing observations, or only adaptive
optics-assisted data, in general are likely to measure less
well-constrained j∗ than if using a combination of seeing-
limited and AO-assisted data, and may also marginally over-
estimate j∗. One might expect that effect of using only nat-
ural seeing data would be to underestimate j∗ due to beam
smearing, but since our natural seeing data are scaled for
beam smearing we do not see that effect here.
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Figure 7. The relation between stellar mass M∗ and stellar spe-
cific angular momentum j∗ for the two z ∼ 1.5 galaxies (red

filled circles) and the local analogue DYNAMO galaxies (purple

filled circles), overlaid on the results for normal local disk galaxies
(grey and black diamonds, squares and small circles) presented in

Sweet et al. (2018). The DYNAMO galaxies occupy the low- j∗
region occupied by moderately bulge-dominated local galaxies,
but themselves have low bulge fraction β. COSMOS 127977 has

a high j∗ for its stellar mass and is consistent with local spirals.
UDS 78317 lies within the DYNAMO scatter, but the OSIRIS

observations reveal that this system is a merger.

5 THE RELATION BETWEEN STELLAR
MASS, SPECIFIC ANGULAR MOMENTUM
AND MORPHOLOGY

In this Section we analyse the relationship between stellar
mass, specific angular momentum (AM) and morphology of
z ∼ 1.5 galaxies and their local analogues in the DYNAMO
sample, compared with normal local galaxies from THINGS,
CALIFA and RF12 as presented in Sweet et al. (2018), in
order to quantify how bulge growth and disk stability are
correlated with the build-up of AM and stellar mass M∗.
We use our full DYNAMO sample (that is, we include the
galaxies for which we have only seeing-limited data, those
for which we only have AO-assisted data, and those for
which we have both) since there is likely to be no significant
systematic effect on stellar specific AM j∗ as demonstrated
in Section 4.

The M∗ − j∗ plane is shown in Figure 7. DYNAMO
galaxies all lie below the 2D relation for normal local
disk galaxies, in the region occupied by normal galaxies
with moderate (β ∼ 0.4) bulge fraction. There is a large
amount of scatter, likely due to the range of specific star
formation rates and consequent range of star formation-
induced turbulence, which is connected via disk stability
to a corresponding range in j∗. The z ∼ 1.5 disk galaxy
COSMOS 127977 is consistent with local L∗ galaxies, with
a large j∗ = 2500±200 kpc km s−1 and log(M∗/M� ) = 10.77.
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Figure 8. The relation between bulge fraction β and stellar spe-
cific angular momentum per unit stellar mass j∗/M∗ for the two

z ∼ 1.5 galaxies and the local analogue DYNAMO galaxies, over-

laid on the results for normal local disk galaxies presented in
Sweet et al. (2018). The DYNAMO galaxies are offset from the

relation defined by local galaxies that host pseudobulges, with

relatively small bulges for their j∗/M∗ ratios. COSMOS 127977
is also below the local relation, but within the dispersion of the

local sample. UDS 78317 is consistent with the highest j∗/M∗

DYNAMO galaxies.
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galaxies THINGS presented in Sweet et al. (2018). DYNAMO
galaxies and COSMOS 127977 are offset from THINGS galaxies.
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The merging system at z ∼ 1.5, UDS 78317, lies below the
M∗ − j∗ relation amongst the DYNAMO sample. We point
out that, since the system is not in dynamical equilibrium,
the assumptions made in determining j∗ in this manner are
not valid, so this measurement may not be meaningful.

Motivated by the empirical finding by OG14 and S18
that the 3D fit

j∗
103 kpc km s−1 = ke(−gβ)

(
M∗

1010 M�

)α
, (3)

yields α ∼ 1, and the physical interpretation that
j∗/M∗ = J∗/M2

∗ is connected with disk stability
(Obreschkow & Glazebrook 2014), we show the β − j∗/M∗

plane in Figure 8. This Figure illustrates that the location
of UDS 78317 and the DYNAMO galaxies on Figure 7
cannot simply be explained by high β, since these systems
do not have large bulges. They all have low β for their ratio
of j∗ to M∗ compared with the relation for normal local disk
galaxies that host pseudobulges, presented in Sweet et al.
(2018). COSMOS 127977 is within the scatter of the local
control samples owing to its high j∗. If our assumption
that the gas and stars corotate is incorrect for this z ∼ 1.5
galaxy as discussed in Footnote 2, then its log( j∗/M∗) would
be overestimated by 0.1 dex, moving it marginally below
the scatter of the local control samples but still above the
turbulent DYNAMO systems.

We investigate the relation between degree of turbu-
lence and distance from the β − j∗/M∗ relation along the
β axis in Figure 9. The degree of turbulence is quantified
by the ratio of velocity dispersion σ to rotational veloc-
ity v f lat , which is shown to correlate with clump size in
Fisher et al. (2017a). It stands to reason that clump size
correlates with mass as clumps have relatively constant sur-
face brightness both in Hα emission (Fisher et al. 2017b)
and stellar mass (Cava et al. 2018). In this sense σ/v f lat
is an accessible proxy for clumpiness. There are two sep-
arate groups on this plot, where turbulent DYNAMO and
z ∼ 1.5 galaxy COSMOS 127977 have a larger offset from
the β − j∗/M∗ relation than regular local THINGS galaxies,
which have low dispersion. σ/v f lat for UDS 78317 is too
high for that galaxy to appear on this figure, but this is not
unexpected, since as a merging system its v f lat does not cor-
respond to that of a rotating disk. The implied result of the
broad trend between clumpiness and offset from β − j∗/M∗

is that galaxies that deviate further from the pseudobulge
relation are still in the process of building their bulges. Inter-
estingly, high-z galaxy COSMOS 127977 is consistent with
local analogue DYNAMO galaxies only once its turbulence
is accounted for, suggesting that ignoring this parameter can
yield an incomplete picture of galaxy evolution.

6 DISCUSSION

In this Section we discuss the potential evolution of DY-
NAMO galaxies in M∗ − j∗ − β space, and compare the re-
sulting implications for high-z galaxies with our findings at
z ∼ 1.5.

We have seen in the previous Section that DYNAMO
galaxies have low j∗ for a given stellar mass, occupying the

space generally populated by early-type galaxies. However,
unlike early types, DYNAMO galaxies do not have a large
central bulge and are clumpy and turbulent, representing
an earlier stage of evolution than typical local disk galaxies.
The DYNAMO galaxies exhibit a large scatter, but this is
not due to the inclusion of present-day mergers, since this
sample excludes systems that do not appear to be disks (i.e.,
those with disturbed velocity maps and/or non-exponential
surface brightness profiles)5. The scatter can be at least par-
tially attributed to the range in star-formation properties,
noting that they have specific star formation rates consistent
with galaxies between 0 . z . 2 (e.g. C22-2 is consistent
with other z = 0 galaxies). If the clumps in these galax-
ies remain bound and migrate to the centre, as proposed in
Ceverino et al. (2012), then perhaps the mass of the clumps
could build the bulge mass, and these high-z analogues may
evolve to reach the present day relation traced by pseudob-
ulges in Figure 8. For three of these targets (D13-5, G04-1
and G20-2), data presented in Fisher et al. (2017a) can be
used to make a back-of-envelope calculation of future bulge
fraction β f uture = (Mclump + βM∗)/(M∗ + Mclump ), where
Mclump = SFRclump tdep is the clump mass available to
build the bulge, SFRclump is the total star formation rate
in the clumps, tdep is the depletion time for the galaxy, β
is the current bulge fraction and M∗ is the current stellar
mass of the galaxy. The future bulge fractions projected in
this way for D13-5, G04-1 and G20-2 are β f uture = 0.19,
0.24 and 0.25 respectively. These estimates move these three
galaxies into the range of the pseudobulge relation in Fig-
ure 8, indicating that the clumps could contribute to build-
ing up the bulges, though perhaps not on their own. Addi-
tionally, if there was future gas accretion there would need
to be subsequent secular evolution to keep these galaxies on
the pseudobulge relation. We have a current (Cycle 25) HST
program (PI: Fisher) to measure clump stellar masses, which
will improve these estimates. In a future paper we will inves-
tigate whether or not summing the mass of the clumps with
the bulge is sufficient to relocate DYNAMO galaxies to the
pseudobulge relation, or whether there is some additional
mechanism required.

Now, the distance to the pseudobulge relation is gen-
erally correlated with degree of turbulence, quantified as
σ/v f lat , where σ is not from thermal pressure alone but also
from turbulence pressure due to star formation. In the case
of DYNAMO galaxies, these gas-rich, turbulent disks repre-
sent an earlier stage in evolution and have not yet built up
their bulges. The contribution from star formation-induced
turbulence is high owing to the large clumps and high star
formation rates, so σ/v f lat is a proxy for clumpiness. As the
DYNAMO galaxies evolve towards the pseudobulge track,
they move to the right of Figure 9, so they must also de-
crease their σ/v f lat in order to remain consistent with the
trend shared with normal local galaxies. This would require
star formation to decrease and the disk to settle as they
move closer to the pseudobulge track and become more like
typical present-day disk galaxies. The corollary is that the

5 There may still be remnants of past mergers in the sample,

since past gas-rich mergers would leave disky, bulge-less systems

(Hopkins et al. 2009).
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pseudobulge relation breaks down for clumpy galaxies, and
should not be used at z & 1.

There is still the outstanding question as to why
high-z-like disks exist today, since their clumpy nature
and low AM do not necessarily follow from their high
star formation rates by which they were selected. They
may have formed in the high-redshift universe and have
somehow survived in their clumpy, bulgeless form to the
present day, evolving less than their counterparts owing to
a relatively under-dense environment. Alternatively they
may have formed more recently, but in unique environments
where the conditions resemble those in the denser, earlier
universe. Analysis of their environments and stellar ages
may help to distinguish between these scenarios.

If we assume that DYNAMO galaxies are in fact ana-
logues of galaxies at 0 . z . 2, then comparing to typical
local galaxies in THINGS can be informative about the red-
shift evolution of j∗. For DYNAMO in this work and O15 we
see low j∗/M∗

6 and low β, suggesting that disks at z ∼ 1.5
are likewise in general less stable than at z ∼ 0. The en-
hanced star formation-induced turbulence in DYNAMO –
which (together with gas fraction, high dispersion, disky na-
ture, compactness and clumpiness) earns that sample the
‘high-z analogue’ label, since it is also the case in high-z
disks – is consistent with this picture.

It is instructive to confirm the above discussion, where
we treat DYNAMO galaxies as local analogues of clumpy
high-z disks, with high-quality observations of systems at
z ∼ 1.5. Interestingly, neither of the two z ∼ 1.5 galaxies pre-
sented here matches this description. COSMOS 127977 is
consistent with typical z ∼ 0 disks in M∗ − j∗ and β − j∗/M∗

space, even though it has an enhanced σ/v f lat compared
with local THINGS galaxies by virtue of its bright, star-
forming clumps. Inclusion of the σ/v f lat turbulence parame-
ter is necessary to see its expected correspondence with local
analogues, suggesting that this is an important parameter
in understanding galaxy evolution. We note that COSMOS
127977 was selected for observation based on the seeing-
limited KGES data. The KGES z ∼ 1.5 sample exhibits a
wide range of rotational velocity and angular size. For this
pilot work we pre-selected galaxies 1) that show evidence of
rotation in KGES, to ensure a high-quality j∗ measurement
despite the challenges of observing at such high redshift; and
2) that maximally occupy half of the OSIRIS field of view,
to facilitate on-detector beam-switching sky subtraction and
sampling with as many resolution elements as possible. This
selection is consequently biased towards higher j∗ and larger
effective radius, thus also to higher M∗. COSMOS 127977
may be a more evolved system than most z ∼ 1.5 galaxies,
in the sense that it has experienced the right conditions for
its disk to settle and j∗ to build up, bringing it nearer the
pseudobulge relation.

The other z ∼ 1.5 system in our sample, UDS 78317, ap-
pears to be a merging system, so is not a normal z ∼ 1.5 disk

6 We remind the reader that analysing this ratio (rather than j∗ ,

or j∗/M
2/3
∗ ) is motivated by OG14 and S18, who find that the

slope of the M∗ − j∗ relation α ∼ 1 for fixed β; OG14 make the
physical interpretation that j∗/M∗ = J∗/M

2
∗ is connected with

disk stability.

either, even though it is consistent with local analogues of
high-z galaxies in terms of j∗, M∗, β and σ/v f lat , and would
seem to confirm the above evolutionary discussion. This
raises important points about the effect of image quality on
merger / disk interpretation and subsequent ill-advised in-
clusion of mergers as though they were rotating disks. UDS
78317 appears to be a rotating disk in the seeing-limited
data, with the intensity and velocity maps showing no obvi-
ous sign that this system may be a merger (excluding more
detailed analysis such as kinemetry). It is only with the en-
hanced PSF of the AO maps, which reveal that the system
is clumpy and disturbed, that one realises that UDS 78317
may in fact be a merging system and cannot be treated as
a rotating disk galaxy. This is supported by the SINS/zC-
SINF AO survey (Förster Schreiber et al. 2018), who made
a comparison between deep AO and non-AO data for 34
galaxies at z ∼ 2. They found that the larger (angular size)
sources were broadly consistent between the two datasets,
but that for 14 of the 17 smaller, less resolved sources, the
AO maps tended to either further resolve clumps (in six ob-
jects) or resolve new structure (in eight objects), including
minor mergers in three cases. Rodrigues et al. (2017) found
this to be more serious for KMOS3D at z ∼ 1, with merg-
ers being misclassified as rotating disk galaxies in 50 per
cent of cases. We note that gas-rich mergers at high redshift
have been shown to evolve to resemble disk-like systems at
late times, with a range of final AM depending on the AM
vectors of the merging components (Robertson et al. 2006).
We suggest that some fraction of the scatter in M∗ − j∗
presented by other studies at high redshift may thus be
driven by including a greater number of mergers as if they
were rotating disks; this could be checked by measuring
j∗ in the manner described in the current paper for the
SINS/zC-SINF AO and non-AO datasets. Most other high-
z studies (Förster Schreiber et al. 2006; Burkert et al. 2016;
Contini et al. 2016; Swinbank et al. 2017; Harrison et al.
2017) find that j∗ ∝ M2/3 for the 2D relation (with the ex-
ception of Alcorn et al. (2018) who found a shallower slope,
but note that they compute j∗ from integrated spectra).
However, the normalisation of this relation leads to a wide
range of conclusions about the redshift evolution (1 + z)n ,
ranging from n = 0 (Burkert et al. 2016; Alcorn et al. 2018)
to n = −1.5 (Förster Schreiber et al. 2006). Some of this vari-
ation may be due to the inclusion of current mergers, and
other sample selection differences. We also note that these
works assume a smooth disk with simple model j = krv
instead of utilising the spatially-resolved, 2D maps as we
do in this paper. If we perform a similar calculation adopt-
ing j̃∗ = 2v f latrd assuming pure disks, then j̃∗ is lower
than our integrated j∗ by 11 and 40 per cent for COSMOS
127977 and UDS 78317 respectively. This is likely to fur-
ther increase the scatter in j∗/M∗ in those samples (also see
Obreschkow & Glazebrook 2014), and may also affect the
normalisation.

We are gathering a larger, more representative sample
of natural+AO observations of z ∼ 1.5 disks to quantify the
location of high-z galaxies in M∗ − j∗ and β − j∗/M∗ space
in an accurate, self-consistent manner.
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7 CONCLUSIONS

In this paper we have presented high-quality specific AM
measurements for local turbulent galaxies in DYNAMO and
two z ∼ 1.5 systems, using a novel combination of AO-
assisted and seeing-limited data. We make the following
points.

(i) Image quality affects specific AM, in that combining
fine PSF of AO-assisted observations in the central regions
with high signal-to-noise of seeing-limited data in the out-
skirts leads to a more well-constrained j∗. The mean mea-
surement uncertainty ∆ j∗/ j∗ is reduced from 13 per cent
with seeing-limited data or 16 per cent with AO alone to
10 per cent in the combination of the two data types. The
high-quality j∗ measured in this manner may be marginally
lower than j∗ measured with just one type of data or the
other.

(ii) In particular, high-z galaxies observed only in natural
seeing may be misclassified as disk galaxies when they are
in fact merging systems. Such systems may appear to be
consistent with local analogues of high-z galaxies and with
theoretical expectations, but cannot be sensibly compared
with them. Some of the scatter in M∗− j∗ and β− j∗/M∗ space
may be driven by inclusion of merging systems as though
they were rotating disk galaxies.

(iii) Local analogues of high-z galaxies have low j∗ for
their M∗, but also lie below the β− j∗/M∗ relation for normal
local galaxies that host pseudobulges of Sweet et al. (2018).
Their offset from that relation is broadly correlated with and
possibly explained by a physical model whereby enhanced
σ/v f lat is contributed by star formation-induced turbulence.

(iv) COSMOS 127977, a disk galaxy at z ∼ 1.5, is consis-
tent with normal local disk galaxies in terms of j∗, M∗ and
β, albeit with enhanced σ/v f lat . It may be a more evolved
system than typical disks at z ∼ 1.5 and represent an inter-
mediate phase between low- j∗ turbulent disks and today’s
high- j∗, smooth galaxies.

In future papers we will extend this work to a larger
sample of high-z galaxies and present detailed analyses of
spatially-resolved PDF( j∗) (Gillman et al., in prep., Sweet
et al., in prep.).
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Table 3. Adopted properties of DYNAMO and z ∼ 1.5 galaxies.

Name RA Dec z Obs M∗ ∆M∗/M∗ β ∆β

[hms] [dms] [log(M�)] [dex]
(1) (2) (3) (4) (5) (6) (7) (8) (9)

C22-2 22:39:49.34 −08:04:18.0 0.071 GMOS 10.34 0.20 0.10 0.05
D13-5 13:30:07.01 +00:31:53.2 0.075 GMOS+OSIRIS 10.65 0.20 0.02 0.05

G04-1 04:12:19.71 −05:54:48.6 0.130 GMOS+OSIRIS 11.01 0.20 0.10 0.05

G08-5 08:54:18.74 +06:46:20.5 0.132 GMOS 10.57 0.20 0.00 0.05
G10-1 10:21:42.47 +12:45:18.8 0.144 GMOS 10.44 0.20 0.08 0.05

G20-2 20:04:42.92 −06:46:57.9 0.141 GMOS+OSIRIS 10.61 0.20 0.14 0.05

SDSS 013527−1039 01:35:27.10 −10:39:38.6 0.127 OSIRIS 10.83 0.20 0.11 0.05
SDSS 024921−0756 02:49:21.42 −07:56:58.7 0.153 OSIRIS 10.48 0.20 0.73 0.05

SDSS 033244+0056 03:32:44.77 +00:58:42.1 0.182 GMOS 10.86 0.20 0.00 0.05

SDSS 212912−0734 21:29:12.15 −07:34:57.6 0.184 OSIRIS 10.85 0.20 0.00 0.05
SDSS 234657+0056 23:46:57.12 +00:56:28.9 0.182 GMOS+OSIRIS 10.79 0.20 0.05 0.05

COSMOS 127977 09:59:37.961 02:18:02.16 1.62 KMOS+OSIRIS 10.77 0.20 0.00 0.10
UDS 78317 02:17:34.193 -05:10:16.61 1.47 KMOS+OSIRIS 10.32 0.20 0.00 0.10

Name rd r f lat v f lat j∗ ∆ j∗ j̃∗ σ ∆σ

[kpc] [kpc] [km s−1] [kpc km s−1] [kpc km s−1] [kpc km s−1] [km s−1] [km s−1]

(1) (10) (11) (12) (13) (14) (15) (16) (17)

C22-2 1.5 1.3 164 449 53 498 32 5

D13-5 1.3 0.4 171 466 51 437 46 5
G04-1 2.3 0.7 221 991 118 1025 50 5

G08-5 1.3 0.5 248 733 65 660 64 5

G10-1 3.2 1.1 118 670 105 756 52 3
G20-2 1.1 0.7 121 309 19 277 81 5

SDSS 013527−1039 1.8 1.0 118 404 53 429 41 5

SDSS 024921−0756 1.1 0.4 84 188 31 185 57 5
SDSS 033244+0056 1.5 0.7 239 804 59 695 59 5

SDSS 212912−0734 1.5 0.6 101 317 47 303 53 5
SDSS 234657+0056 2.5 0.7 85 404 41 428 – –

COSMOS 127977 4.8 3.9 236 2532 227 2279 57 11

UDS 78317 3.5 0.2 29 338 64 200 60 23

Columns: (1) galaxy identifier; (2) right ascension (J2000); (3) declination (J2000); (4) redshift; (5) adopted data source (natural seeing

GMOS or KMOS, adaptive optics OSIRIS, or combination of natural seeing and adaptive optics); (6) base 10 logarithm of stellar mass;

(7) measurement uncertainty in M∗ ; (8) bulge-to-total ratio; (9) measurement uncertainty in β; (10) exponential disk scale length; (11)
radius at which rotation curve becomes flat; (12) asymptotic velocity; (13) stellar specific AM; (14) measurement uncertainty in j∗ ;

(15) approximate stellar specific AM using j = krv; (16) velocity dispersion; (17) measurement uncertainty in σ.
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Bryant J. J., et al., 2015, MNRAS, 447, 2857

Burkert A., et al., 2016, ApJ, 826, 214

Cardamone C., et al., 2009, MNRAS, 399, 1191
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