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Abstract: Lithospheric organic carbon (“petrogenic”; OCpetro) is oxidized during exhumation and 23 
subsequent erosion within mountain ranges. This process is a significant source of CO2 to the 24 
atmosphere over geologic timescales, but the mechanisms that govern oxidation rates in 25 
mountain landscapes remain poorly constrained. We demonstrate that, on average, 67 ± 11 % of 26 
OCpetro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of 27 
Taiwan is oxidized within soils, leading to CO2 emissions of 6.1 – 18.6 t C km-2 yr-1. The 28 
molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals 29 
that OCpetro remineralization is microbially mediated. Rapid oxidation in mountain soils drives 30 
CO2 emissions fluxes that increase with erosion rate, thereby counteracting CO2 drawdown by 31 
silicate weathering and biospheric OC burial. 32 

One Sentence Summary: Oxidation of lithospheric organic carbon in eroding mountain soils is 33 
rapid and microbially mediated, and resulting CO2 emissions counteract CO2 drawdown by 34 
silicate weathering and biospheric organic carbon burial.35 
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Main Text: Erosion-induced weathering in collisional mountain belts is a major carbon-cycle 36 
regulator over million-year timescales and provides a link between tectonics and climate (1, 2). 37 
Atmospheric CO2 is consumed by the export and burial in marine sediments of biospheric 38 
organic carbon (OCbio) and carbonate minerals precipitated following silicate rock weathering 39 
(1). The CO2 drawdown flux associated with both processes increases with erosion rate (3, 4), 40 
highlighting the importance of steep, erosive orogens in driving CO2 drawdown. By comparison, 41 
CO2 release during exhumation and erosion has received considerably less attention despite its 42 
potential to partially or fully negate the effects of geological CO2 consumption (1, 5, 6). 43 
Oxidative weathering of both sulfide minerals (coupled with carbonate dissolution) and 44 
petrogenic organic carbon (OCpetro) contained in exhumed rocks can increase atmospheric CO2 45 
and decrease O2 concentrations over geologic timescales (1, 7-9). Still, the mechanisms that 46 
govern oxidation rates and efficiencies in mountain belts remain under-constrained (5, 8, 9). 47 

To better constrain orogenic CO2 emissions, we assess the controls on OCpetro oxidation 48 
and export within the Central Range of Taiwan, one of the fastest exhuming and eroding 49 
mountain belts on Earth (10). Steep relief (11), frequent typhoon landfall (10), and high bedrock 50 
landslide rates (11) lead to long-term erosion rates of 3 – 6 mm yr-1 across the range (10). While 51 
supplemental contributions from deeper in the exhumation path are likely, weathering in such 52 
mountain landscapes occurs primarily on hillslopes and in colluvial deposits (12, 13). We 53 
therefore assess OC molecular and isotopic evolution within multiple hillslope soil profiles 54 
located in the LiWu and WuLu River basins (Fig. S1) and verify these observations at the 55 
catchment scale using LiWu River suspended sediments (14). Soils at our study sites are ≤ 1 m 56 
thick, including mineral (A+E) and saprolite (C) layers (15), experience residence times on the 57 
order of centuries (14), and overlay bedrock ranging from Mesozoic greenschist and amphibolite 58 
at low elevations (Tananao schists) to Cenozoic slate and phyllite near the Lishan Fault (Pilushan 59 
and Lushan formations) (16). All lithologies are carbonaceous, with bedrock outcrops containing 60 
0.2 – 0.7 % OCpetro (Table S1) (17).  61 

Significant OCpetro loss is observed in all soil profiles, as evidenced by the relationship 62 
between soil OC content (% OCsoil) and 14C activity (expressed as “fraction modern” or Fm) 63 
(14). To account for differences in % OC between bedrock lithologies (17), % OCsoil is expressed 64 
as 65 

∆%OC = % OCsoil 	% OCbedrock, (1) 66 

where % OCbedrock is the OC content of bedrock immediately underlying each soil sample. The 67 
average fraction of bedrock OC that is oxidized during soil formation, fox, can then be quantified 68 
by utilizing the fact that OCpetro is inherently 14C-free (Fmpetro = 0.0) and setting Fmbio = 1.045 ± 69 
0.079, the measured 14C activity of vascular plant leaf-wax fatty acids extracted form A+E 70 
horizon soils (Table S2) (14). Soil OC is treated as a mixture of OCbio and residual OCpetro, 71 
leading to the equation (14): 72 

Fmsoil = Fmbio
∆%OC + ox % OCbedrock

∆%OC + % OCbedrock
. (2) 73 

Fmsoil is a hyperbolic function of ∆%OC with curvature that is defined by both %OCbedrock and 74 
fox, as shown in Fig 1. We simultaneously solve Eq. 2 for the best-fit % OCbedrock and fox values 75 
using orthogonal distance regression and account for uncertainty using Monte Carlo resampling 76 
(14). 77 
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 On average, 67 ± 11 % (± 1) of bedrock OC is lost during soil formation, a minimum 78 
estimate since deep weathering has likely already removed OC from initial bedrock (18). To test 79 
if observed % OC trends simply reflect mobile element losses during weathering and not 80 
oxidation per se, we solve Eq. 2 for a subset of samples after normalizing OC content to the 81 
immobile element titanium (Table S1) (14). Calculated fox values using normalized and un-82 
normalized data are identical within uncertainty, indicating no appreciable mobility effect on our 83 
results (Fig. S2). 84 

Assuming that all OC lost is oxidized to CO2 (8), fox can be used to estimate the steady-85 

state CO2 emission flux from soils due to OCpetro oxidation, termed ox, according to 86 

Φox =	 ox)(% OCbedrock)( soil)( soil

soil
, (3) 87 

where soil is the soil density, zsoil is the soil thickness (15), and soil is the soil residence time on 88 

hillslopes. We estimate soil using three independent methods (landslide rates, catchment-average 89 
denudation rates, OCbio erosion rates) and incorporate uncertainty for each variable in Eq. 3 90 
using Monte Carlo resampling across the range of observed values (14), resulting in a median 91 

ox range of 6.1 – 18.6 t C km-2 yr-1 for conditions prevalent across the Central Range (Fig. 92 

S3A) (14). We emphasize that ox is a minimum estimate of total CO2 emissions by OCpetro 93 
oxidation due to the potential for OC losses occurring during deep weathering (18). Still, this 94 
flux is statistically identical to two independent, catchment-integrated OCpetro oxidation estimates 95 
for Taiwanese rivers based on fluvial OCpetro export (≤ 12 t C km-2 yr-1) (19) and dissolved 96 
rhenium yield (7 – 13 t C km-2 yr-1; Fig. S3B) (5) and is 2- to 6-fold higher than estimates of CO2 97 
drawdown by silicate weathering in the LiWu catchment (Fig. S3C) (18). The observation that 98 

ox matches catchment-integrated emissions implies that OCpetro oxidation in Taiwan occurs 99 
predominantly within rapidly eroding hillslope soils. 100 

A saprolite depth profile collected from the WuLu catchment indicates that bedrock OC 101 
can be oxidized and replaced with OCbio before A+E horizons have fully developed. Two 102 
samples collected at 0.5 m and 0.2 m depth contain similar OC concentrations (0.20 %, 0.28 %, 103 
respectively) but drastically different Fm values (0.108, 0.839, respectively; Table S1). Rapid 104 
OCpetro oxidation can occur (i) abiotically without chemical alteration, (ii) abiotically with 105 
chemical alteration, (iii) biotically without chemical alteration, or (iv) biotically with chemical 106 
alteration and 14C-depleted biomass production (20-22). To assess alteration and to track 107 
multiple OC sources within a single sample, we utilize Ramped PyrOx (RPO) serial combustion 108 
(23). This technique heats each sample at a constant ramp rate to separate OC based on thermal 109 
lability and determines Fm values for specific temperature intervals (termed RPO fractions) (14). 110 
To quantitatively compare OC chemical structure, we determine the underlying thermal 111 
activation energy (E) distribution for each sample, termed p(0,E), as this is an intrinsic property 112 
of carbon bond strength and thus a proxy for chemical composition (23). Unlike 14C activity, 113 
end-member mixing does not shift OC in E space. Mixing OCbio with unaltered OCpetro will thus 114 
result in a bimodial p(0,E) distribution, whereas chemical alteration is required to explain the 115 
presence of intermediate E values (14, 23).  116 

We constrain bedrock E using particulate OC (POC) from 27 suspended sediment 117 
samples, including isolated ≥ 2 mm clasts, collected from the LiWu River during four typhoon 118 
events (14). Because sediment exported during typhoons is dominated by material sourced from 119 
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bedrock incision, distributed runoff erosion, and landsliding throughout the basin (11, 12), we 120 
expect this sample set to integrate outcropped bedrock lithologies that contain relatively 121 

unweathered OCpetro. This is supported by bulk POC 13C content (expressed as 13C values) and 122 
total nitrogen to POC ratios (Table S3), which span the range of Tananao schist, Lushan 123 
formation, and Pilushan formation values (17). Fig. 2A shows that bedrock OC is exclusively 124 
associated with E ≥ 185 kJ mol-1 (termed high-E; Fig. S3A) (14), consistent with the observed 125 
partial graphitization of this material (16). We additionally constrain vascular-plant OC p(0,E) 126 
using two organic-rich (≥ 5 %) surface soils characterized by bulk Fm values similar to those of 127 
plant-wax fatty acids (14). For both samples, ≥ 90 % of OC is associated with E < 150 kJ mol-1 128 
(termed low-E), indicating that OCbio and OCpetro are effectively separated in E space. 129 

Energy distributions and 14C activity in soil and saprolite materials provide strong 130 
evidence for OCpetro chemical alteration during weathering. Up to 51 % of OC contained in 131 
saprolites and deep A+E horizons lies between 150 and 185 kJ mol-1 (termed mid-E; Table S4; 132 
Fig. S4B-C); higher than that corresponding to vascular-plant OC (< 150 kJ mol-1) yet lower 133 
than bedrock OC (≥ 185 kJ mol-1). This observation can result from either (i) increasing 134 
vascular-plant OC E by stabilization during aging in soils (24) or (ii) decreasing residual OCpetro 135 
E during oxidative weathering (20, 21). We assess the relative importance of these mechanisms 136 
using the 14C activity of each RPO fraction (Table S5). As shown in Fig. 2B, low-E Fm values 137 
cluster near those of vascular-plant fatty acids, whereas high-E material approaches Fm of zero. 138 
Meanwhile, mid-E OC spans an Fm range from 0.083 ± 0.002 to 0.912 ± 0.008. We rule out the 139 
possibility that 14C-depleted mid-E OC exclusively reflects OCbio aging because (i) this would 140 
require a biospheric component that has aged up to 20,000 14C yr, significantly longer than the 141 
centennial soil residence times in Taiwan (14), and (ii) plant-wax fatty acids are not detected in 142 
some saprolite samples (Table S6). Thus, mid-E material must reflect a mixture of weathered 143 
OCpetro and moderately aged OCbio.  144 

We treat OCpetro that has been chemically altered during weathering as a unique end 145 
member described by Fm = 0.0 and a value of fmid, the fraction of p(0,E) contained within the 146 
mid-E range, greater than the highest observed saprolite value of 0.51 (14). Fig. 3A shows that 147 
all hillslope samples, with the exception of one unweathered saprolite, are adequately explained 148 
by a mixture of OCbio and chemically altered OCpetro. This end member is also observed in LiWu 149 
River POC collected during typhoon floods, as evidenced by the divergence from a vertical 150 
mixing line between OCpetro and OCbio in Fig. 3A. Therefore, along with unweathered bedrock 151 
OC (19) sourced from deep incision and landsliding (11), we detect catchment-scale export of 152 
chemically altered OCpetro from Central Range hillslopes during typhoon flood events. Because 153 
calculated fmid depends on our choice of mid-E range (here, 150 to 185 kJ mol-1), it is possible 154 
that mixing trends and end-member compositions are sensitive to changes in E boundary values. 155 
We test this sensitivity by allowing these boundary values to vary by ± 10 kJ mol-1 (14). 156 
Although quantitative differences exist (Fig. S5), resulting mixing trends are qualitatively robust, 157 
indicating that the importance of chemically altered OCpetro is insensitive to our choice of mid-E 158 
boundary values. 159 

Fatty acid molecular distributions and 13C values imply that rapidly oxidized OCpetro in 160 
soils is incorporated into microbial biomass, supporting laboratory-based incubation studies (20, 161 
22). We calculate fmicrobial, the fraction of total fatty acids that are microbial in origin (25, 26), as 162 
a proxy for the relative abundance of heterotrophic vs. vascular-plant biomass (14). This 163 
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approach excludes fungal contributions and is thus a minimum estimate of heterotrophic 164 
biomass. Fig. 3B shows that bulk Fm is negatively correlated with fmicrobial across all soil and 165 
POC samples. We do not expect this trend to be linear due to fatty acid production biases (25, 166 
26). Still, this relationship clearly suggests that heterotrophic biomass is more abundant in 167 
samples containing predominantly 14C-free OC. 168 

 Sample limitation prevented measurement of microbial fatty acid 14C activity (14), but 169 

their 13C values imply that bedrock OC is used as substrate (Table S7) (26, 27). Bulk OC and 170 

plant-wax fatty acid 13C values correlate strongly in A+E horizons (r2 = 0.959; p-val < 0.001; n 171 
= 7), reflecting the predominance of OCbio in these samples, but are uncorrelated in C-horizons 172 
(p-val > 0.05; n = 4) due to a lack of significant OCbio contribution to saprolites (Fig. S6). Still, if 173 

OCbio were the sole substrate for heterotrophs, then microbial and plant-wax fatty acid 13C 174 

values should correlate strongly with a constant 13C offset (27) in all samples. This is not 175 
observed in either A+E horizon (p-val > 0.05; n = 7) or saprolite (p-val > 0.05; n = 4) samples, 176 
indicating that vascular plant OC cannot be the only substrate. Rather, this lack of correlation 177 
requires a secondary microbial carbon source (20-22), namely bedrock OC. We conclude that 178 
mid-E, 14C-free material is a product of microbial bedrock oxidation, produced either directly by 179 
extracellular enzymes or indirectly after acid hydrolysis (20), and is manifest as 14C-depleted 180 
living biomass (22) or as residual, chemically altered OCpetro (21). 181 
  Substantial bedrock OC replacement within saprolites implies that significant weathering 182 
occurs ≤ 1 m below the surface and that microbially mediated OCpetro oxidation can proceed at a 183 
pace matching the rapid exhumation in Taiwan. We propose that exhumation and hillslope 184 
erosion rates exert a first-order control on CO2 emissions from OCpetro oxidation, as faster 185 
erosion will increase the rate of bedrock exposure to the weathering front (8). This is further 186 
supported by measurements of the dissolved rhenium flux from Taiwanese rivers, a proxy for 187 
OCpetro oxidation, which increases with erosion rate (5). However, the relationship between 188 
OCpetro oxidation and physical erosion rate cannot be linear. Large earthquakes and typhoons are 189 
known to cause widespread bedrock landsliding (28-30) and elevated export of OCpetro by rivers 190 
(19). Such events increase catchment-averaged erosion rates (28), but could decrease catchment-191 
averaged OCpetro oxidation efficiency by bypassing the hillslope soil weathering window. OCpetro 192 
remineralization in Taiwan is incomplete, as evidenced by the abundance of bedrock OC in 193 
sediments exported by rivers (19) and deposited in nearby coastal margins (31). We predict a 194 
dampened response of OCpetro-derived CO2 emissions to further erosion rate increases, as 195 
increasing landslide rates will result in less catchment area that is available for soil formation and 196 
weathering. 197 
 Microbially mediated oxidative weathering in Taiwanese hillslope soils offsets geologic 198 

CO2 drawdown and O2 production by silicate weathering and OCbio burial (1, 5, 8, 22). The ox 199 

range calculated here is similar in magnitude to CO2 source estimates from sulfide oxidation ( 200 
22.9 ± 1.0 t C km-2 yr-1; LiWu basin only) (9), as well as CO2 sinks from silicate weathering (3.1 201 
± 0.1 t C km-2 yr-1; LiWu basin only; Fig. S3C) (18) and OCbio burial (21 ± 10 t C km-2 yr-1; 202 
Taiwan average; Fig. S3D) (14, 32). This process is likely globally significant, as rapid soil 203 
formation is observed in other tropical and temperate orogenic settings such as the Southern Alps 204 
of New Zealand (33). We therefore hypothesize that CO2 consumption is not favored within 205 
highly erosive mountain belts dominated by OC- and sulfide-rich low- and intermediate-grade 206 
metasedimentary lithologies. This results from the observation that OCpetro and sulfide mineral 207 
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oxidation is not limited by reaction kinetics even at high erosion rates (5, 8, 21), unlike silicate 208 
weathering and OCbio export (4, 34). Conversely, the magnitude of the net CO2 sink likely 209 
increases with physical erosion rate in orogens dominated by high-grade metamorphic and 210 
igneous rocks due to their lower OCpetro and sulfide contents. While the global fluxes and the 211 
timescales over which they impact atmospheric CO2 and O2 concentrations remain to be 212 
assessed, our results demonstrate the importance of microbially mediated OCpetro oxidation and 213 
its relationship to tectonic and erosive controls on the global carbon cycle and Earth’s long-term 214 
climate.  215 
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 395 

Fig. 1. Evidence for bedrock OC oxidation. Blue line is the solution to Eq. 2 assuming no 396 
OCpetro oxidation during soil formation (OCbio addition only; fox = 0). Black line is the orthogonal 397 
distance regression best-fit solution that minimizes the residual error between measured (green 398 
circles, orange triangles) and predicted Fmsoil values. Shaded region for both trends is the 399 

propagated ± 1 uncertainty (14). Best-fit results indicate that 67 ± 11 % of bedrock OC is lost 400 
during oxidative weathering. ∆%OC = 0 is shown as a vertical dashed line. Measurement error 401 
bars are smaller than marker sizes. 402 

403 
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 404 

Fig. 2. Evidence for OCpetro chemical alteration. (A) Representative p(0,E) distributions 405 
highlighting the differences between OC end members: average of LiWu POC exported during 406 
typhoon events (n = 27; black), organic-rich A+E horizon topsoil (green), and C horizon 407 
saprolite (orange). Each p(0,E) distribution integrates to unity (y-axis values not shown) (14, 23). 408 
(B) E vs. Fm relationships for all soils (green circles, orange triangles) and LiWu POC (white 409 
diamonds) in which RPO fraction 14C activity was measured. Marker sizes represent the relative 410 
amount of total OC contained in each RPO fraction. Constraints on end-member E and Fm 411 
ranges are described in the main text (blue, vascular-plant OCbio; gray, OCpetro). Black arrows 412 
represent theoretical trends for end-member mixing (vertical) and chemical alteration 413 
(horizontal) (23) and indicate that alteration is necessary in order to explain the presence of mid-414 
E OC. For both panels, dashed lines separate OC into low-E (<150 kJ mol-1), mid-E (150 ≤ E < 415 
185 kJ mol-1), and high-E (≥185 kJ mol-1) regions. Fm error bars are smaller than marker sizes. 416 

417 
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 418 

Fig. 3. Evidence for microbially mediated bedrock OC oxidation. (A) Bulk Fm vs. fmid 419 
relationships for soil (green circles, orange triangles) and LiWu POC (white diamonds). All soils, 420 
with the exception of the 0.5 m saprolite discussed in the main text, are described by a mixing 421 
line between vascular-plant OCbio (blue) and chemically altered OCpetro (red) (14). LiWu River 422 
POC is dominated by bedrock OC (gray) but does contain detectable chemically altered OCpetro, 423 
as evidenced by the deviation from a vertical mixing line between OCbio and OCpetro. (B) Bulk 424 
Fm vs. fmicrobial relationships for all samples in which fatty acid concentrations were analyzed 425 
(14). The relative abundance of microbial fatty acids increases with decreasing Fm across all 426 
samples, suggesting that microbial respiration is the source of chemically altered OCpetro. 427 
Measurement error bars are smaller than marker sizes.  428 
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