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Abstract—Determining the magnitude of particular fault
signature components (FSCs) generated by wind turbine
(WT) faults from current signals has been used as an
effective way to detect early abnormalities. However, the
WT current signals are time-varying due to the constantly
varying generator speed. The WT frequently operates with
the generator close to synchronous speed, resulting in
FSCs manifesting themselves in the vicinity of the supply
frequency and its harmonics, making their detection more
challenging. To address this challenge, the detection of
rotor electrical asymmetry in WT doubly-fed induction gen-
erators (DFIGs), indicative of common winding, brush gear
or high resistance connection faults, has been investigated
using a test-rig under three different driving conditions,
and then an effective extended Kalman filter (EKF) based
method is proposed to iteratively estimate the FSCs and
track their magnitude. The proposed approach has been
compared with a continuous wavelet transform (CWT) and
an iterative localized discrete Fourier-transform (IDFT). The
experimental results demonstrate that the CWT and IDFT
algorithms fail to track the FSCs at low load operation
near synchronous speed. In contrast, the EKF was more
successful in tracking the FSCs magnitude in all operating
conditions, unambiguously determining the severity of the
faults over time and providing significant gains in both
computational efficiency and accuracy of fault diagnosis.

Index Terms—Wind turbines, Extended Kalman filter,
Continuous wavelet transform, Condition monitoring, Fault
diagnosis, DFIG, CWT, Fourier-transform.

I. INTRODUCTION

IN recent years, wind energy has experienced substantial
growth compared to other forms of power generation.

While alternatives are emerging, a large proportion of currently
installed and manufactured wind turbines (WTs) continue to

Manuscript received September 05, 2017; revised November 29,
2017; revised January 17, 2018; accepted February 13, 2018. This
work was supported in part by the SUPERGEN Wind Hub under Grant
EP/L014106/1. The work of R. K. Ibrahim was also supported by the
Higher Committee for Education Development (HCED) in Iraq.

R. K. Ibrahim is with the Wolfson School of Mechanical, Electrical
and Manufacturing Engineering, Centre for Renewable Energy Systems
Technology (CREST), Loughborough University, Loughborough, LE11
3TU, UK (e-mail: R.Ibrahim@lboro.ac.uk).

S. J. Watson is with the TU Delft Wind Energy Institute, Delft University
of Technology, Kluyverweg 1, 2629 HS Delft, Netherlands (e-mail:
S.J.Watson@tudelft.nl).
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use induction generators. The doubly-fed induction generator
(DFIG) in particular remains an attractive generator technol-
ogy with a strong market position [1] due to its unique wide
range variable-speed-constant-frequency operating capability
coupled with low power electronic inverter rating requirements
and effective power flow control.

Undetected generator faults in DFIGs have been associated
with high failure rates, replacement of major components and
subsequent significant downtime [2]. The primary cause of this
higher downtime in the offshore environment is the increased
need for heavy-lifting vessels [3]. Usually, faults evolve from
an incipient stage to a progressively more severe condition and
eventually turn to failure. Early fault detection can hence avoid
catastrophic failures and downtime reduction through enabling
careful condition based maintenance planning [4]. An analysis
of failure statistics showed that 20% to 70% of the generator
faults were related to bearings, 3% to 38% to the stator, 7% to
50% to the rotor and the rest were categorized as ‘other’ [5].
Another study, which reviewed 80 journal papers published
by the IEEE and IEE/IET on the subject of induction machine
failure statistics over the past 26 years, reported that 21% of
generator faults were bearing problems, 35% stator related and
44% rotor related [6]. Rotor electrical unbalance is identified
as an indicator of some of the major contributors to WT
generator failure rate [7], [8]. This condition is representative
of a number of recognized rotor electrical fault modes in DFIG
systems such as brush gear degradation, rotor winding fault
and/or improper connection between the slip ring unit and
the rotor cable leads and its analysis and detection has been
the topic of a number of studies conducted on representative
academic scale test rig systems and MW size DFIG field
applications [4]–[12]. Undetected electric faults may gradually
develop to a major short circuit, and can cause severe damage
to the machine and the system to which it is connected [13].
Therefore, early detection of rotor electrical unbalance faults
of in-service generators is essential to eliminate consequential
damage.

Previous works [14], [15] showed that faults in electrical
machines can be detected in a non-invasive manner by either
current or power signal analysis. The use of current and
power signals analysis has consequently been proposed as a
general tool for WT fault detection [16]–[20]. In particular,
the diagnostic application of stator current signature analysis
to detect DFIG rotor asymmetry conditions has been studied
on laboratory test rigs, simulation studies [5], [8], [9], [21],
[22], or analytical formulations of fault frequencies [10], [11].
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Rotor electrical unbalance has been emulated by connecting
external resistances to machine windings [4]–[11], [23], [24].

The available literature indicates that rotor asymmetries
generate particular spectral signatures (called fault signatures)
in the frequency spectra of WT current signals. Theoretical
and analytical formulations of fault signature frequencies and
their generation were attempted in [8], [10], [25] to define the
signal spectral component that can be monitored for diagnostic
purposes. To date, various WT condition monitoring (CM)
techniques that aim to utilize these and similar diagnostic
signals have been developed [17], [19], [26], [27]. However,
a fully satisfactory method to detect the full range of WT
faults in their early stages has not been achieved yet, and
false alarms are still frequently reported from sites with the
generator being a significant contributor [2], demonstrating the
need to optimize these alarms. The root cause of generator
false alarms can be related to the following problems:

• lack of clear understanding of the diagnostic information
embedded in the DFIG stator current spectral content;

• lack of signal processing tools with sufficient sensitivity
and reasonable computational efficiency to extract the in-
stantaneous amplitude (IA) of fault signature components
(FSCs) from the WT current signals.

The first problem has largely been addressed in [9], [10],
[21], [28] with a comprehensive theoretical analysis of the
DFIG stator current spectrum content for the machine op-
erating in steady state, both with and without supply and/or
winding asymmetries. The research reported in this paper will
focus on a potential solution to address the second problem
where the FSCs in the WT current signals have nonlinear and
non-stationary characteristics due to the constantly varying
shaft rotating speeds caused by turbine variable loads [29].
Furthermore, a wide range of CM technique performance
assessment under relevant transient conditions has not been
widely reported in the literature, particularly when the machine
operates at low load near to synchronous speed. As a result,
in these conditions, the FSCs are particularly difficult to
detect or differentiate using existing methods, which may
lead to an increase in the false alarms for these conditions.
This problem has not received attention in reported literature
despite the fact that actual WTs frequently operate at low load
conditions where the generator rotational speed is close to the
synchronous speed, motivating the research in this study to
propose potential solutions.

In this paper, we introduce an effective approach to enhance
the detection of rotor electrical asymmetry in WT DFIGs by
analyzing the generator current signals. Firstly, the analytical
expressions defining rotor electrical asymmetry fault signature
in DFIG stator current described in [9], [28] have been used
to enable FSCs to be recalculated over time as a function
of machine speed. Secondly, an adaptive extended Kalman
filter (EKF) tracker has been proposed to extract the IAs of
the FSCs based on the corresponding machine speed signal
and the estimated error covariance. At each time step, the
calculated FSCs along with those extracted from the measured
current signal are processed by the EKF to predict the future
state of the FSCs, and continuously update the IAs of FSCs

as real-time monitored signal data samples become available.
The proposed technique has been validated experimentally
on a WT drive train test rig with two fault levels of rotor
electrical asymmetries at three different driving conditions
whose variability is representative of WT generator field oper-
ation. The performance of the proposed approach is compared
with some of the leading WT generator CM techniques [9],
[30]. The reported experimental findings demonstrate clear and
significant gains in both the computational efficiency and the
diagnosis accuracy using the proposed technique.

This paper is organized as follows. Section II describes the
signature of rotor electrical asymmetry in the DFIG current
signals and the use of CWT and IDFT for frequency tracking.
Section III describes the methodology used in the present
work using an EKF for diagnosing rotor electrical asymmetry.
Section IV describes the data available and employed in the
present work. In Section V, the results obtained for three test
cases are presented using the EKF, CWT and IDFT tracking
algorithms. Finally, conclusions are drawn and final remarks
are made in Section VI.

II. FREQUENCY TRACKING AND FAULT DETECTION

The rotor electrical asymmetry condition in DFIGs is man-
ifested through a range of additional sideband components
in the stator current signal spectrum; it was experimentally
proven in [9], [28] that the rotor electrical imbalance faults
in a WT based DFIG can give rise to additional frequency
components in the stator current at frequencies given by:

ff =

(
I ± k(1− s)

p

)
.fs (1)

where ff are the series of the calculated fault signature
components (FSCs) related to the fault, fs is the fundamental
supply frequency, k is the component order (k= 1, 2, 3...), s
is the slip, I is a constant which relates to air-gap field space
harmonics and p the number of pole pairs.

Rotor electrical imbalance faults could be detected by
monitoring the magnitudes of the components in (1) over
time, taking into account variable operating conditions. Efforts
have been made to extract the magnitude of the FSCs using a
continuous wavelet transform [31]–[33]. However, the CWT
cannot achieve fine resolution in both the time and frequency
domains simultaneously. In addition, high computational time
is needed to obtain good results with the CWT, making it un-
suitable for large size data analysis. To overcome this, another
frequency tracking methodology was proposed in [9] using the
iterative localized discrete Fourier transform (IDFT) algorithm
to extract the energy of the FSCs, defined in (1), over time. The
IDFT has good computational efficiency and applies a discrete
Fourier analysis over a narrow band around the frequency
of interest to extract a peak amplitude which is assumed to
be the amplitude of the FSC within the predefined window.
However, the challenge with this assumption is that the FSC
can be difficult to isolate accurately as it can be merged with
other frequency components irrelevant to the fault or it can
be hidden in other components such as the supply frequency
and its harmonics due to the variable operating conditions.
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This makes the use of the IDFT difficult to implement when
monitoring actual WTs. One of the purposes of this paper is
to demonstrate an approach which is better able to isolate a
FSC under variable loading conditions. The next section will
illustrate the theory behind this approach.

III. EKF FOR FREQUENCY TRACKING

The EKF is an efficient recursive algorithm widely applied
in the fields of radar tracking [34] and adaptive control
[35]. The conventional Kalman filter assumes a linear system
dynamics model with Gaussian noise in the measurements,
which is not always realistic in many applications. The EKF
on the other hand is an extension of the conventional Kalman
filter to non-linear system dynamics and has been used for state
estimations of induction motors and WT DFIGs [36], [37]. In
this section, the observed FSC at time k is first modelled.
The mathematical formulation of the EKF used to iteratively
estimate the FSCs is then briefly presented. Theoretically, the
stator current waveform in one phase (e.g., phase A) of DFIG
can be expressed as:

zk(t) =
∑
i

Ai cos(2πfitk + θi) (2)

where Ai and fi are the amplitude with initial phase θi and the
frequency of the ith sinusoid, respectively. We used a Fourier
transform to convert the time description of the stator current
waveform into an equivalent function in the frequency domain
thus:

zk(f) =
∑
i

Ai[δ(fk + fi) + δ(fk − fi)] (3)

The one-sided Fourier transform of (3) at (fs) the main supply
frequency can be written as:

zk(f) = Aδ(fk − fs) (4)

By substituting (1) into (4), we obtain the representation of
the FSCs in the frequency domain:

zk(f) = Aδ
(
fk −

( p

pI ± k(1− s)
)
ff
)

= Aδ(fk − αff )
(5)

where

α =
( p

pI ± k(1− s)
)

(6)

The dynamics of the state variables can be represented by the
state variable equation as follows:

xk = f(xk−1,uk) + wk (7)

where f is a non-linear function of states, uk is the control
vector, wk is a white noise driving function to account for the
dynamic variation of the state variables. The observed FSC
yk at time k with the additive noise vk can be described as
follows:

yk = zk + vk (8)

and can be represented by the following linear stochastic
system:

yk =
[
1 1

] [ A
αff

]
+ vk (9)

The above linear representation is also equivalent to the
following non-linear stochastic system:

State equation xk+1 = f(xk) + wk (10)
Measurement equation yk = Hxk + vk (11)

where

xk =
[
xk(1) xk(2)

]T
=
[
A αff

]T
(12)

f(xk) =
[
xk(1) xk(1)xk(2)

]T
=
[
A Aαff

]T
(13)

H =
[
1 1

]
(14)

This formulation leads to the EKF algorithm in order to
linearize the above system which is slightly different from
a standard linear Kalman filter model. The recursive tracking
process of a series of fault frequencies at any time step from
k equal to zero is outlined as follows:

Step 1) Predict the estimates of the state variables x̂k+1|k
and the error covariance Mk+1|k

x̂k+1|k = fx̂k|k (15)

Mk+1|k = FPk|kFT + Qk (16)

Step 2) Update the Kalman gain Kk

rk = |zk − ẑk| (17)

Sk = HkPk|k−1HT
k + rk (18)

Kk = Pk|k−1HT
k S−1k (19)

where

Fk =
∂f(xk)

∂xk

∣∣∣
xk=x̂k|k

=

[
1 0

x̂k|k(2) x̂k|k(1)

]
=

[
1 0

(1− ε) ˆ(αff )k|k Âk|k

] (20)

Step 3) Update the state variables x̂k|k

x̂k|k = x̄k|k−1 + Kk[yk −Hk(x̄k|k−1)] (21)

Step 4) Update the error covariance

Pk|k = (I−KkH)Pk|k−1 + qB

B =

[
0 0
0 1

]
(22)

where the symbols¯andˆstand for the predicted and updated
values, respectively. I is the identity matrix. The vector zk is
the observed FSCs which is obtained by applying the Fast
Fourier Transform (FFT) algorithm for each interval of interest
from the current signal in the time domain, and ẑk is the
expected normal state which represents the calculated FSCs
in (1). rk denotes the measurement innovation.

The design of a stable EKF was largely addressed in [38],
[39] which report theoretically supported design guidelines to
characterize the EKF design by a vector of three parameters
(r, ε, q). An easier and more transparent tuning of EKFs is
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introduced in [40] where the results showed that ε must be
set to zero to achieve the basic property of unbiasedness, and
that the performance of the EKF tracker then only depends on
the ratio λ = r/q; Ref. [40] proceeds to suggest that q = 1
(and hence λ = r) for a further significant simplification of
the tuning procedure. Hence, the task of tuning the design
parameters of the EKF tracker (parametrized with r, ε, q) is
reduced to the fact that only a single parameter (λ = r) has
to be chosen [40]. This EKF tuning approach was followed
in this paper where, r is set to be the difference between the
observed FSCs and the calculated FSCs in order to (a) limit
the variation of the innovation vector, (b) cope with spurious
measured values, (c) enhance the estimated accuracy and (d)
help the EKF to provide proper weighting.

In the implementation of the EKF, we assume that at time k
an initial estimate of the state variable is known and is denoted
by xk−1|k−1 and that its associated covariance matrix is also
known and denoted by Mk−1|k−1. The estimated variables
are not affected by this assumption because the EKF is not
sensitive to moderate changes in the initial covariance [41].

The principal stages of the tracking method based on the
EKF to iteratively estimate the FSCs in the stator current signal
are
• Input the initial measured generator rotational speed and the
stator current data points, the initial value of the state variables
x0 and its associated covariance matrix M0, and covariance of
the measured error r0 at a sampling interval ∆tk
• Calculate the mean speed for the sample and the slip
• Calculate the stator current spectrum using an FFT
• Calculate discrete constants from frequencies of interest,k
• Calculate amplitudes for each constant,k
• Extract maximum amplitude and its frequency zk
• Calculate the FSCs of interest using (1) ẑk
• Predict the estimates of the state variables and the error
covariance using equations (15) and (16)
• Calculate covariance of the measured error rk using (17)
• Compute the Kalman filter gain Kk using (19)
• Update the estimates of the state variables and the error
covariance with the measurement zk using (21) and (22)
• Project ahead using equations (15) and (16)
• Repeat the process starting with next sampling interval
∆tk+1

IV. CASE STUDY

The proposed approach has been applied to the generator
current signals collected from a purpose built WT drive train
test rig. As shown in Fig. 1, the test rig comprises of a 54-kW
DC variable-speed drive connected via a two-stage gearbox
to a four-pole DFIG that was rated for the experiment at
30 kW. The rotational speed of the DC motor is controlled
by an external model incorporating the properties of a 2-MW
WT operating under closed-loop conditions, driven by realistic
wind conditions at a variety of wind speeds and turbulence
intensities. The rotor circuit of the generator is coupled via
slip rings to an external three-phase resistive load bank so
that electrical imbalance can be applied to the generator rotor.
The test rig was instrumented and controlled using LabVIEW,

Fig. 1: Schematic representation of the test rig.

see [42] for more details. In the experiments, a rotor unbalance
fault was implemented on the test rig by adding two additional
external resistances to one phase of the rotor circuit through an
external load bank. In the healthy state, the rotor resistance was
1.3 Ω per phase and additional resistances of 0.3 Ω and 0.6 Ω
were successively added to one phase to create two fault levels.
These correspond to two levels of rotor unbalance of 23% and
46%, respectively, given as a percentage of the rotor balanced
phase resistance. The test rig enables the generator to be driven
at a desired pre-programmed wind speed profile that emulates
realistic WT transient behavior and is achieved by providing
a pre-defined speed reference profile to the controller. The
relevant signals for condition monitoring were collected from
the terminals of the generator at a sampling frequency of
5 kHz. An example of the measured current signal under faulty
conditions is shown in Fig.2.

Fig. 2: The current-time waveform.

It can be seen that the amplitude of the current-time wave-
form gave no indication of abnormal conditions. Consequently,
an FFT algorithm is used to convert the generator current
signal from the time domain into the frequency domain in
a healthy condition (no unbalance) and with a rotor unbalance
as shown in Fig.3. As is generally expected for any grid
connected machine the supply frequency (50 Hz) and its har-
monics are clearly seen in the spectra. There are also spectral
components present around the even and odd harmonics even
when operating in a healthy state. This is believed to be caused
by pre-existing low level rotor excitation imbalance commonly
induced by inherent manufacturing imperfections [9], [21].
However, the comparison of healthy and faulty data indicates
a significant rise in magnitude of a number of twice slip
frequency 2sf sideband components on the current harmonics
which can be clearly observed when the 23% unbalance is
applied to the generator rotor. In Fig. 3, the FFT algorithm
cannot reveal the time information of any frequency changes
i.e. no time domain information is available regarding fault
occurrence and progression. Thus, an EKF has been proposed
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Fig. 3: Comparison of the current spectra for healthy case and
rotor unbalance case.

to detect faults by monitoring the magnitudes of the FSCs
over time, taking into account variable operating conditions.
The rotor unbalance fault gave rise to a number of side-band
components in the current spectra. Monitoring all components
would be impractical in an operating environment, so we have
selected a series of FSCs that exhibit the highest magnitude.
The FSCs of interest to be tracked using the EKF algorithm
are labelled as f1, f2, f3, f5 in Fig. 3.

V. PERFORMANCE COMPARISON

In order to show the effectiveness of the proposed approach
based on an EKF, we have selected the CWT and IDFT,
used in [9], [30] for WT generator CM, for comparison. The
algorithms are tested under varying rotational speed conditions
representative of the operating regimes seen by a hypothetical
wind turbine out in the field. At each test, the test rig was run
for a period of 150 s after which the 23% and 46% unbalance
fault conditions were applied at 150 s and 300 s, respectively.
The driving conditions selected for testing are shown in Fig.4,
corresponding to the following WT operating conditions:
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Fig. 4: Generator speed test conditions.

Test case 1. Super-synchronous speed with high turbulence
intensity: In this test, a high mean wind speed (15 m/s) with
high turbulence intensity (20%) was applied to the test rig via
a dc motor, the speed of which was controlled by an external
model incorporating the properties of a 2 MW exemplar
turbine model developed by the University of Strathclyde as
part of the Supergen Wind Energy Technologies Consortium

[9]. The CWT, IDFT and EKF methods have been applied
to the current spectra in Fig.3 to extract the IAs of the four
defined frequencies of interest (f1, f2, f3, f5) for the detection
of rotor unbalance. The results under super-synchronous speed
with high turbulence intensity are shown in Fig.5. Note, if the
tracked FSC of each method shows a step change in magnitude
when the fault condition was present or has changed, then the
method has successfully captured the component frequency
related to the fault.

In Fig.5(a), the conventional CWT is able to capture fault
components f1 and f2 where their IAs did show a marked
change when the fault condition was applied or has changed.
The CWT failed to capture other components due to the
influence of the window function on the results, where the
window size is well matched with the oscillation of com-
ponent f1 and f2 but as the fault frequency increases the
window is no longer able to capture the variation of the
fault components. A more robust window design is necessary
in order to improve simultaneously high time resolution and
high frequency resolution. But, this is not an easy task as
the difference between the f1, f2 and f3 components is
about 50 Hz and increases to 100 Hz for component f5.
In addition, these components overlap with the main supply
frequencies and other dominant frequency components of the
current signal that are irrelevant to the fault. To overcome these
shortcomings, the IDFT algorithm was applied to extract the
magnitude of the FSCs. The results are shown in Fig.5(b).

In Fig.5(b), it is seen that the IDFT method has successfully
tracked the magnitude of the four fault-related frequencies
with increasing fault severity (i.e., from 300 s to 450 s)
despite the fact that the shaft speed was varying continuously
throughout the experiments. Similar to the IDFT results, the
EKF algorithm has successfully picked up the four FSCs that
are changing proportionally to the rotational speed as shown
in Fig.5(c). The results show that the EKF is able to track
the fault frequencies, giving quantitative information about the
fault progression.

However, the tracking results of each algorithm in Fig.5
follow different variation tendencies due to the fact that the
current signals from an operational WT are not stationary but
are time-varying in nature because of the constantly varying
generator speed, making the detection of FSCs by the tracking
algorithms more challenging. In order to demonstrate the best
achieved performance for detecting the rotor unbalance fault
and revealing the actual fault degree, the performance of all
diagnostic methods during the fault event is evaluated using
root mean squared error (RMSE) values. Since the increase in
the degree of rotor unbalance can be calculated from the IA
variations of the FSCs extracted by the diagnostic methods, a
general expression is derived for machine operation with rotor
unbalance degree η̂k by calculating the difference between the
IA for each component under healthy and faulty conditions
divided by the order of the component order times the average
under healthy conditions as follows:

η̂k =
IAf − IAh

k.IAh
.100% (23)

where the IAh and IAf are the IA at any time step k for each
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Fig. 5: Tracking the magnitude of fault frequencies of interest using (a) CWT (b) IDFT and (c) EKF for test case 1.

component under healthy and faulty conditions respectively
and k is the component order (k= 1, 2, 3...). The RMSE is
given by

RMSE =
1

N

N∑
i=1

(ηi − η̂i) (24)

where the ηi is the degree of the fault during the experiment,
corresponding to the two levels of rotor unbalance of 23%
and 46%. TableI summarizes the results of the performance
evaluation. It is clear from the table that the IDFT and EKF
methods perform best in terms of the RMSE for all FSCs.
The CWT is incapable of detecting the fault by tracking the
components f3 and f5, but the RMSE values for components
f1 and f2 are lower than the same components for the IDFT.
The comparison between the three methods shows that the
RMSE for all FSCs is much lower when using the EKF
method.

TABLE I: RMSE of the tracking methods for test case 1.

Fault Signature Components RMSE Values (%)
CWT IDFT EKF

f1 1.967 2.135 0.325
f2 1.134 1.301 0.258
f3 N/A 2.115 0.441
f5 N/A 0.420 0.236

Test case 2. Super-synchronous speed with low turbulence
intensity: This test represents 7.5 m/s mean wind speed with
low turbulence intensity 6%. The slip for this state differs
significantly from case 1 with a wide range as seen in Fig.4.
Similar results to the previous test case are observed in Fig.6,
where the CWT is only able to track the fault component
f1 and f2. This explains why in [30], [43] only the fault

component f1 which is the twice slip frequency was tracked
using the CWT. In contrast, both the IDFT and EKF methods
can successfully show the presence of the fault. It is also
clear that the variation tendencies of the IAs at the four
characteristic frequencies have been correctly extracted despite
the time-varying features due to the variable speed operation
and the disturbance of the components unrelated to the fault.

TABLE II: RMSE of the tracking methods for test case 2.

Fault Signature Components RMSE Values (%)
CWT IDFT EKF

f1 2.757 2.413 0.318
f2 2.213 0.608 0.276
f3 N/A 2.067 0.382
f5 N/A 0.388 0.234

The performances of the three methods are summarized
in TableII. Again, the performance of the IDFT and EKF is
better in terms of the RMSE values for all FSCs. Compared
to the CWT and IDFT, the EKF proved capable of dealing
with different variable speed driving conditions with lower
RMSE values. In addition, the components f1 and f2 for the
CWT show higher RMSE values compared to the results in
case 1 as larger variation in rotational speed for test case
2 makes it more challenging to track the FSCs. It can be
concluded that the EKF not only showed the best performance
overall in terms of RMSE metric, but also in terms of the
rotor unbalance fault detection at different driving conditions,
whereas the CWT method performed worst. One explanation
for the poor performance of the CWT method can be the
windowing technique which has been influenced by the speed
variations.

Test case 3. Near-synchronous speed: Following the successful
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Fig. 6: Tracking the magnitude of fault frequencies of interest using (a) CWT (b) IDFT and (c) EKF for test case 2.

detection of the fault conditions at super-synchronous speed, it
is important now to verify the CM capability of the algorithms
when the machine operates near to the synchronous speed.
In this case, the slip will be near to zero so the FSCs in
equation (1) will be very close to the supply frequency (50 Hz)
and its harmonics (both odd and even), making CM and fault
detection more challenging even though this condition occurs
frequently for an operational wind turbine. The results of such
a scenario are shown in Fig.7.

Both the CWT and IDFT algorithms, shown in Fig.7(a) and
(b) have failed to effectively track the FSCs; the shortcoming
of the CWT and IDFT methods is that both use windowing
technique, and do not have an observer to avoid tracking the
FSCs when they are so close as to be effectively merged with
the supply frequency and its harmonics.

On the other hand, the EKF shows much better resolution
of the varying fault conditions, as shown in Fig. 7(c). The
results clearly show that the amplitude of the fault-related
frequencies jumps sharply when the 23% unbalance fault is
introduced at 150 s. A similar jump occurs for the 46%
unbalance condition introduced at 300 s that shows clear
differences between healthy and faulty conditions particularly
for components f2, f3 and f5. The performances of the FSCs
tracked by the EKF in terms of the percentage RMSE values
are found to be 0.378, 0.244, 0.386 and 0.352 for the f1, f2,
f3 and f5, respectively. It can be seen that the EKF shows
more accurate fault tracking across all the driving conditions
and the RMSE values for all FSCs are very close. Over the
three cases, the EKF shows better fault resolution compared
to the CWT and IDFT as it does not use any windowing
technique, rather it uses the Kalman gain(Kk). The Kalman
gain acts as a relative weight given to the current extracted and
measurement values, and its value is continuously tuned to get
the correct estimation value of the FSCs and their magnitude
from the non-stationary current signal. At each time step, the

Kk is calculated from the covariance. The constantly varying
generator speeds and non-linear operation lead to an increase
or decrease of the Kalman gain, so with a high gain the filter
places more weight on the most recent measurements, and
thus follows them more responsively to avoid tracking the
noise (i.e. the supply frequency and its harmonics or other
dominant frequency components of the current signal) which
are irrelevant to the fault. With a low gain, the filter follows
the model predictions more closely to track the fault signatures
and smooth out the noise.

To show the effectiveness of the proposed EKF, we compare
in Fig. 8 the tracking results of the EKF associated with the
spectral component frequencies against the actual frequencies,
described by equation (1), across all driving conditions. As
it can be seen from Fig. 8, that the tracking frequencies
are different from the actual frequencies in normal operation
when there is no fault because the magnitude of the actual
frequencies is very small and merged with the noise so they
are difficult to detect or differentiate. Once, the fault has been
applied, the EKF immediately captured the frequencies related
to the fault and continued to track them over time despite
the fact that the actual frequencies are more affected by the
speed variations and follow exactly the same speed variation
tendencies as shown in Fig. 4. It can also be seen for case 3
that the f1 and f5 FSCs are particularly difficult to capture
compared to the others cases due to the operation at low
load near to synchronous speed, resulting in FSCs manifesting
themselves in the vicinity of the supply frequency and its
harmonics with extraneous noise as shown in Fig. 3. This led
to an increase in the variation of the innovation vector rk for
these conditions. However, the magnitude of the tracked f1
and f5 FSCs is still useful for fault detection, and did show a
step change in magnitude when the fault condition was present
or was changed as discussed above.

In summary, the results for the three cases show that the
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Fig. 7: Tracking the magnitude of fault frequencies of interest using (a) CWT (b) IDFT and (c) EKF for test case 3.
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Fig. 8: Tracking the fault frequencies of interest using EKF for (a) test case 1 (b) test case 2 and (c) test case 3.

rotor electrical unbalance fault can be accurately detected by
tracking any component using the EKF, but overall the second
component f2 showed the lowest RMSE in revealing the fault
degree. Whereas, the results using the IDFT in TableI and II
show that the fifth component f5 provides the lowest RMSE
(0.404 as an average percentage) while the results obtained
from other components are not effective in revealing the degree
of rotor unbalance. If we only consider component f5 for fault
diagnosis, our proposed approach demonstrates a significant
improvement over the IDFT method in imbalance diagnosis
accuracy by reducing the percentage RMSE from 0.404 to
0.235. Since the results show that the second component f2

has the best accuracy in the case of the EKF while the fifth
component f5 provides the best accuracy in the case of the
IDFT, this indicates we have successfully reduced the volume
of data required for analysis and storage. To clarify, based on
the Nyqist-Shannon sampling theorem, the data requirements
to monitor component f5 for a period of 1 year would enable
the monitoring of component f2 for a period of approximately
2 years and 4 months, due to the fundamental fact that f5 is
greater than f2 and requires a higher sampling rate to capture.
Hence, our approach shows success in tracking the magnitude
of the FSCs and revealing the severity of the faults over time
with significant gains in both the computational efficiency and
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the diagnosis accuracy.

A. Computational time

To further highlight the improvement offered by an EKF, we
perform computational time (CT) analysis comparing the EKF
method against the CWT and IDFT methods. The calculations
were performed on a computer with an Intel i7 core processor
and 32.0 GB RAM.

Table I shows the plot of the averaged CT for the results
obtained in Figs.5-7 for the series of FSCs. It is seen that
the CWT method requires a higher CT for the FSCs with
lower frequencies because these tend to have much longer
wavelengths with a high signal to noise ratio, whereas the
higher FSCs have much shorter wavelengths with low signal to
noise ratio. Accordingly, this affects the width of the window
function in time to capture the frequencies of interest; there-
fore, it requires more computational resources. In contrast,
the IDFT and EKF require far less computational resource
compared to the CWT. This is due to the fact that the IDFT
and EKF methods apply a discrete Fourier analysis over a
narrow band around the frequency of interest. The IDFT and
EKF have very similar CT requirements making them more
suitable for online monitoring than the CWT.

TABLE III: Computational complexity of the tracking meth-
ods.

Fault Signature Components Computational Time (s)
CWT IDFT EKF

f1 35.65 0.98 1.2
f2 20.05 1.01 1.1
f3 14.79 1.05 1.16
f5 4.32 1.09 1.1

VI. CONCLUSION

This paper has proposed the use of an EKF in the detection
of rotor electrical unbalance fault, indicative of common
winding, brush gear or high resistance connection faults, in
a WT DFIG. The EKF performance was compared with that
of a CWT and an IDFT in terms of its ability to track
a series of fault frequencies associated with three different
unbalance condition levels and for three different simulated
transient operating regimes using data generated by a test
rig. The EKF demonstrated better overall resolution of fault
frequencies particularly where those frequencies are close to
the synchronous frequencies and their harmonics; a condition
that can occur frequently when a turbine is operating with the
generator close to synchronous speed. Due to the parsimonious
nature of the EKF and the fact that it does not employ
windowing, it is able to accurately detect fault frequencies with
minimal computational requirements when compared with a
CWT. The EKF was shown to be capable of detecting the
degree of rotor unbalance with greater accuracy than an IDFT
or CWT. The results presented show that the EKF algorithm
shows promise as a low cost, efficient method for condition

monitoring the output of a WT generator particular with regard
to the detection of electrical faults such as rotor unbalance.

Future work is required to apply this approach to real
operating WTs, which may be suffering from rotor electrical
asymmetries, and to use the detection of the fault degree
to potentially predict the fault progression some time in
advance. Work is also necessary to assess the potential of the
reported technique to be used for detection of a wider range
of WT faults like generator bearing, gearbox-bearing and rotor
eccentricity faults.
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