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In this Letter, we show that it is possible to structure the longitudinal polarization component of light. We
illustrate our approach by demonstrating linked and knotted longitudinal vortex lines acquired upon
nonparaxially propagating a tightly focused subwavelength beam. The remaining degrees of freedom in the
transverse polarization components can be exploited to generate customized topological vector beams.
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The concept of light being a transverse wave—that is, the
direction of the electric field is perpendicular to the
propagation direction defined by the Poynting flux—
represents an approximation that is suitable if the angular
spectrum is sufficiently narrow [1]. However, many prac-
tical applications ranging from microscopy to data storage
require tight focusing. Tight focusing implies a broad
angular spectrum, and the notion of light being transverse
becomes inappropriate. Hence, the longitudinal polariza-
tion component can typically not be neglected [2,3]. Here,
longitudinal polarization refers to the electric field compo-
nent parallel to the propagation direction, and transverse
polarizations to the ones perpendicular to the latter. To
mention a few examples, a “needle beam” with a particu-
larly large longitudinal component was proposed in
Ref. [4], and radial transverse polarization permits the
significant decrease of the focal spot size [5,6], while
the generated longitudinal component may even dominate
the interaction with matter [7]. Last but not least, a Möbius
strip in the polarization of light was realized in Ref. [8].
In addition, there is current substantial interest in

“structured light,” that is, generating customized light fields
that suit specific needs in applications in a range of fields
[9–14]. Since the proposal of the Gerchberg-Saxton algo-
rithm [15] in 1972, advances in light shaping [16–18] now
permit the realization of complex light patterns in the
transverse polarization plane, including light distributions,
the optical vortex lines [19] of which form knots [20–23].
Knotted topological defect lines and their dynamics have
been studied in diverse other settings, including, for
example, classical fluid dynamics [24–26], excitable media
[27–29], and nematic colloids [30,31]. To date, the
approach has typically been to determine the longitudinal
polarization component of the electric field from given
transverse components [2,32], and attempts to target com-
plex structures in the longitudinal component have not yet
been pursued. The reason for this is twofold. On the one

hand, the longitudinal component is not directly accessible
by beam-shaping techniques. On the other hand, non-
paraxial beam configurations are required, and topological
light is usually studied in the paraxial approximation. It is
therefore not immediately evident that the whole range of
three-dimensional light configurations known for trans-
verse components can be realized in the longitudinal
component as well.
In this Letter, we will show that complex light shaping of

the longitudinal polarization component is indeed possible.
To this end, we first identify nonparaxial light patterns that
give rise to vortex lines that form knots or links. Second, we
invert the problem and derive how one must structure the
transverse components of a tightly focused beam to give
rise to a given complex pattern in the longitudinal compo-
nent and, thus, present the first example of nontransverse
nonparaxial knots. Finally, we demonstrate that the remain-
ing degrees of freedom in the transverse polarization
components allow for simultaneous transverse shaping,
which could be interesting for applications, e.g., inscribing
vortex lines into Bose-Einstein condensates.
We begin with the equations describing a monochromatic

light beam:

∇2Eðr⊥; zÞ þ k20Eðr⊥; zÞ ¼ 0; ð1Þ

∇ · Eðr⊥; zÞ ¼ ∇⊥ ·E⊥ þ ∂zEz ¼ 0: ð2Þ

Here, k20 ¼ ω2=c2 ¼ ð2π=λÞ2, and we have introduced the
transverse coordinates r⊥ ¼ ðx; yÞ and transverse electric
field components E⊥ ¼ ðEx; EyÞ as we consider propaga-
tion in the positive z direction. All three components ofE in
Eq. (1) fulfill the same wave equation, and for a given field
configuration Efðr⊥Þ at z ¼ 0 (e.g., at focus) the general
solution for propagation in the positive z direction reads
Êðk⊥;zÞ¼Êfðk⊥ÞexpðikzzÞ, where kzðk⊥Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2⊥

p
,
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k⊥ ¼ ðkx; kyÞ, and the symbol ^ denotes the transverse
Fourier domain. The prescribed field configuration Êf must
obey certain constraints. First, in order to get a valid bulk
solution far away from any interfaces, there must be no
evanescent fields present; that is, Êf ¼ 0 for k2⊥ ≥ k20.
Second, Eq. (2) implies for solutions propagating in the z
direction that Êf

z ðk⊥ ¼ 0Þ ¼ 0.
As preparation for what follows, we first investigate how

to obtain a nonparaxial tightly focused knot or link in Ez,
assuming that we can directly prescribe Ef

z . For the trans-
verse paraxial case, recipes to generate vortex lines in
various shapes are known, and they usually involve linear
combinations of Laguerre-Gaussian modes [22,33]. These
paraxial recipes are not directly applicable to our problem,
since at such a small width the Laguerre-Gaussian modes
contain a considerable amount of evanescent field ampli-
tudes. Moreover, due to the nonparaxiality, the whole
problem becomes wavelength dependent, and, as already
mentioned above, we have to ensure that Êf

z ðk⊥ ¼ 0Þ ¼ 0,
as otherwise Eq. (2) would be violated. Nevertheless, we
found that it is possible to adopt those recipes for the
nonparaxial case by an educated guess. Starting from a
given linear combination of Laguerre-Gaussian modes f,
filtering in the transverse Fourier domain [34],

Hk0ðk⊥Þ ¼ e−1=½2λ
2ð

ffiffiffiffi
k2⊥

p
−k0Þ2�; H0ðk⊥Þ ¼ 1 − e−ð3λk⊥Þ2 ;

chops off evanescent amplitudes as well as amplitudes
close to k⊥ ¼ 0, and the longitudinal polarization compo-
nent at z ¼ 0 reads

Êf
z ðk⊥Þ ¼

�
f̂ðk⊥ÞHk0H0 for k2⊥ < k20;

0 for k2⊥ ≥ k20:
ð3Þ

Since the higher-order Laguerre-Gaussian modes are
broader in Fourier space and thus lose relative weight after
attenuation, one must decrease the relative amplitudes of
the lower-order modes to a certain extent. We have found
that the following field structures produce a Hopf link or
trefoil, respectively:

fHopf ¼ 4LGσ
00 − 5LGσ

01 þ 11LGσ
02 − 8LGσ

20; ð4Þ

ftrefoil ¼ 9LGσ
00 − 20LGσ

01 þ 40LGσ
02

− 18LGσ
03 − 34LGσ

30; ð5Þ

for wavelength λ ¼ 780 nm and width σ ¼ 370 nm ≈ λ=2
of the usual Laguerre-Gaussian modes LGσ

ijðr⊥Þ. The
resulting amplitudes before and after filtering for f being
either fHopf or ftrefoil defined in Eqs. (4) and (5) are plotted
in Fig. 1 after normalization to unity. We note that
individual mode amplitudes can be changed by about
10% without altering the topology, demonstrating a degree
of robustness and hence experimental feasibility.

Let us now verify that the presented patterns in the focal
plane in fact give rise to vortex lines with the desired
topology. It is straightforward to propagate the filtered
component Ef

z , as defined in Eq. (3), in the z direction. The
vortex lines throughout three-dimensional space are
depicted by the black lines in Figs. 2(a) and 2(b) together
with a slice in the z ¼ 0 plane of the light profile phase. The
obtained vortex lines are topologically equivalent to a Hopf
link and a trefoil, as drawn in the insets.
We now address the main point of this Letter, i.e., how

to choose the transverse polarization components to obtain
a given longitudinal polarization component. Because only
the transverse components Ex and Ey are accessible to
beam shaping, this point is also of great practical
relevance. When inspecting Eq. (2), at first glance the
problem may seem to be ill posed, given that only the
longitudinal derivative of the longitudinal polarization
enters, i.e., ∂zEz. However, in Fourier space it is easy
to see from Eq. (2) that a linearly polarized solution to this
problem is given by

Ef
x ¼ efx ¼ −i

Z
x

−∞
F−1½kzÊf

z �ðx0; yÞdx0; Ef
y ¼ 0; ð6Þ

trefoilknil fpoH

(a)

(c) (d) (g) (h)

(b) (e) (f)

FIG. 1. The profiles fHopf and ftrefoil of Eqs. (4) and (5) (a),(e) at
narrow widths contain evanescent waves. This is demonstrated in
(c) and (g), where the profiles are shown in the transverse Fourier
domain together with a circle of radius k0. A spectral attenuation
(d),(h) according to Eq. (3) removes the evanescent amplitudes as
well as amplitudes close to k⊥ ¼ 0 (see the text for details) and
alters Ef

z in the focal plane significantly (b),(f).

FIG. 2. Propagation of the spectrally attenuated field shown in
Figs. 1(b) and 1(f) gives rise to the vortex lines (black) in the
forms of a Hopf link (a) and a trefoil (b). A phase slice is shown in
the xy plane at z ¼ 0. As a comparison, the idealized Hopf link
and trefoil are shown as insets.

PHYSICAL REVIEW LETTERS 120, 163903 (2018)

163903-2



where F−1½ĝ�ðx; yÞ ¼ gðx; yÞ denotes the inverse trans-
verse Fourier transformation. Obviously, an orthogonally
polarized solution also exists:

Ef
x ¼ 0; Ef

y ¼ efy ¼ −i
Z

y

−∞
F−1½kzÊf

z �ðx; y0Þdy0: ð7Þ
Both x- and y-polarized solutions Eqs. (6) and (7)
evaluated for a Hopf link and trefoil are depicted in
Fig. 3. It is noteworthy that any superposition of real and
imaginary parts of the solutions Eqs. (6) and (7) is
admissible, as long as the coefficients of this superposition
add up to one. Furthermore, any arbitrary field with zero
longitudinal component could be added. We will discuss
this later in more detail.
Unfortunately, the transverse polarization components

computed from Eqs. (6) and (7) are impractical, since, even
though Ef

z has finite support, the components Ef
x ¼ efx or

Ef
y ¼ efy are nonzero on a semi-infinite interval (see Fig. 3).

However, simply attenuating these components by multi-
plying with, e.g., a sufficiently wide super-Gaussian profile
SGw

Nðr⊥Þ ¼ expð−r2N⊥ =w2NÞ allows the resolution of the
problem of semi-infinite light distributions without affect-
ing the propagation of the longitudinal component close to
the optical axis. Evaluating ∇⊥ · ½SGw

Nðr⊥ÞEf
⊥ðr⊥Þ� reveals

that, where ∇⊥SGw
N is large and points in the direction of

Ef
⊥, additional satellite spots in the longitudinal component

will appear. We have checked that using, e.g., a super-
Gaussian with N ¼ 5 and w ¼ 10λ ensures that these
additional spots are sufficiently far from the region of
interest and both the Hopf link and trefoil develop in the
propagation of the modified Ez component.
So far, we have seen that the answer to the problem of

how to choose Ef
⊥ðr⊥Þ for realizing a prescribed Ef

z is not

unique, and there are certain degrees of freedom in the
choice of Ef

⊥. The fundamental theorem of vector calculus
(Helmholtz decomposition) allows us to decompose a
(sufficiently well-behaved) vector field F into an irrota-
tional (curl-free) and a solenoidal (divergence-free) vector
field. In the three-dimensional version, F can be written as
F ¼ −∇ϕþ ∇ ×A, where ϕðrÞ and AðrÞ are usually
referred to as the scalar and vector potential, respectively.
We wish to apply this theorem to the two-dimensional
transverse plane (z ¼ 0) only; that is, we set F ¼ Ef

⊥ðr⊥Þ,
and the decomposition reduces to

Ef
⊥iðr⊥Þ ¼ −∂iVðr⊥Þ þ

X
j

εij∂jWðr⊥Þ; ð8Þ

where i denotes one of the components (x, y), εij denotes
the usual Levi-Civita symbol, and Vðr⊥Þ andWðr⊥Þ denote
scalar fields. The potentials V andW play analogue roles to
ϕ and A in the standard three-dimensional situation
mentioned above. For what is about to follow, it is
important to note that the second term on the right-hand
side of Eq. (8) is divergence-free in the two-dimensional
transverse plane by construction, since

P
i;j∂iεij∂jW ¼ 0.

Coming back to our initial question of how to chooseEf
⊥

in order to produce a desired Ef
z , it is straightforward to

verify that

V̂ðk⊥Þ ¼ −i
kzðk⊥ÞÊf

z ðk⊥Þ
k2⊥

ð9Þ

gives rise to a valid transverse polarization component Ef
⊥.

Then, the (sufficiently well-behaved) scalar functionWðr⊥Þ
may be chosen arbitrarily and does not give rise to any
longitudinal polarization component. The irrotational
choice for Ef

⊥, that is, evaluating Eqs. (8) and (9) with
Wðr⊥Þ ¼ 0, for the Hopf link and trefoil are shown in Fig. 4.

trefoilknil fpoH

(a)

(c) (d) (g) (h)

(b) (e) (f)

FIG. 3. Amplitude and phase in the z ¼ 0 plane for the linearly
polarized transverse components Eqs. (6) and (7) that give rise to
a longitudinal component forming the Hopf link [Figs. 1(b) and
2(a)] are shown in (a)–(d) and the trefoil [Figs. 1(f) and 2(b)] is
shown in (e)–(h). The color maps for each figure are on the right
of the two rows of plots. Both transverse fields Ef

⊥ ¼ ðefx; 0Þ and
Ef

⊥ ¼ ð0; efyÞ shown in (a)–(d) and (e)–(h), respectively, yield
the same longitudinal field, as well as superpositions Ef

⊥ ¼
ðαefx; βefyÞ as long as the coefficients fulfill αþ β ¼ 1.

trefoilknil fpoH

(a)

(c) (d) (g) (h)

(b) (e) (f)

FIG. 4. Irrotational transverse amplitude and phase profiles in
the z ¼ 0 plane producing a Hopf link (a)–(d) and a trefoil (e)–(h)
in the longitudinal polarization component. In contrast to Fig. 3,
here the transverse field producing the desired longitudinal
component is fixed by Eqs. (8) and (9) to Ef

⊥ ¼ −∇⊥Vðr⃗⊥Þ,
and we cannot change the weight of the components shown in
(a)–(d) and (e)–(h), respectively.
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While the transverse polarization components shown in
Figs. 3 and 4 produce exactly the same longitudinal field,
they are completely different, in particular, from a topo-
logical point of view. Unlike the light distributions in
Fig. 3, which do not contain vortices in the transverse
polarization components, the irrotational transverse polari-
zation components in Fig. 4 each feature phase singular-
ities. Furthermore, note that the amplitudes required in the
irrotational transverse polarizations are only roughly 2–3
times the peak amplitude in the longitudinal polarization.
Finally, in contrast to Eqs. (6) and (7), the irrotational
choice Eqs. (8) and (9) with Wðr⊥Þ ¼ 0 gives rise to a
transverse light distribution with finite support, provided
that the prescribed Ef

z ðr⊥Þ has finite support.
We have seen that all possible transverse polarization

components producing a certain longitudinal component
differ by a two-dimensional solenoidal field ð∂yW;−∂xWÞ,
and the function Wðr⊥Þ represents the degree of freedom
one has when shaping the Ef

⊥. As our examples show, it is
possible to control the topological structure of longitudinal
and transverse electric field components simultaneously.
Tightly focused beams containing vortex lines could play a
role in inscribing vortex lines with specific topology into
Bose-Einstein condensates using two-photon Rabi transi-
tions [33,35]. The demonstrated knotted or linked longi-
tudinal vortex lines have an extent of roughly 1 μm3 and
thus match the typical size of a Bose-Einstein condensate.
Being able to exploit the unique features of structured light
in all three vector components of the electric field opens
new avenues in controlling the interaction of light with
matter.
An important practical issue is to actually experimentally

detect such a small structure in the longitudinal polarization
component. Probing of the longitudinal field using mole-
cules was achieved experimentally roughly 15 years ago
[36] and continues to be of interest for light-matter
interactions [37]. We propose using a tomographic method
using a thermal rubidium vapor cell that is very thin
compared to the wavelength [38] to experimentally access
the longitudinal polarization component. Using an addi-
tional strong static magnetic field parallel to the optical
axis and tuning the light field to resonantly drive a π
transition allows the selective coupling of the longitudinal
polarization only. To separate the π transition from the σ�
transitions beyond Doppler broadening (roughly 0.5 GHz
at 100 °C), we need a sufficiently large magnetic field
(roughly B ∼ 1 T). For such large magnetic fields, isolated
pure π transitions exist, e.g., from j5S1=2mjmIi ¼
j5S1=2 � 1=2� 3=2i to j5P3=2 � 1=2� 3=2i. This method
of light-matter coupling can, however, be extended to more
general settings, where the angle of the magnetic field can
be tuned and thus different components of vectorial
topological light can be superposed and inscribed into
matter.

In conclusion, we have presented a simple algorithm to
realize an arbitrary (sufficiently well-behaved) field in the
focal plane in the longitudinal polarization component and
elaborated on how to realize the transverse components for
it. We have highlighted the importance of the occurrence of
evanescent waves and discussed the important degrees of
freedom in the choice of the transverse polarization
components. Using this method has the potential to
broaden the range of possible vectorial structured light
fields extensively and lead to a range of applications in
various fields in physics, including nonlinear optics and
Bose-Einstein condensates.
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