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Abstract

Camera trapping is widely used to monitor mammalian wildlife but creates

large image datasets that must be classified. In response, there is a trend

towards crowdsourcing image classification. For high-profile studies of charis-

matic faunas, many classifications can be obtained per image, enabling consen-

sus assessments of the image contents. For more local-scale or less charismatic

communities, however, demand may outstrip the supply of crowdsourced clas-

sifications. Here, we consider MammalWeb, a local-scale project in North East

England, which involves citizen scientists in both the capture and classification

of sequences of camera trap images. We show that, for our global pool of image

sequences, the probability of correct classification exceeds 99% with about nine

concordant crowdsourced classifications per sequence. However, there is high

variation among species. For highly recognizable species, species-specific con-

sensus algorithms could be even more efficient; for difficult to spot or easily

confused taxa, expert classifications might be preferable. We show that two

types of incorrect classifications – misidentification of species and overlooking

the presence of animals – have different impacts on the confidence of consensus

classifications, depending on the true species pictured. Our results have implica-

tions for data capture and classification in increasingly numerous, local-scale

citizen science projects. The species-specific nature of our findings suggests that

the performance of crowdsourcing projects is likely to be highly sensitive to the

local fauna and context. The generality of consensus algorithms will, thus, be

an important consideration for ecologists interested in harnessing the power of

the crowd to assist with camera trapping studies.

Introduction

For several centuries (Greenwood 2007; Ratcliff 2008), cit-

izen science projects have engaged non-professionals in

the scientific process (Bonney et al. 2014). While ecologi-

cal research has spearheaded the development of citizen

science (Dickinson et al. 2010; Bonney et al. 2014), there

are successful projects across a variety of disciplines from

meteorology (Hennon et al. 2014) to astronomy (Willett

et al. 2013). Typically, these initiatives crowdsource data

capture (i.e. volunteers as ‘sensors’ in Goodchild 2007),

data classification (interpreting collected data) or, occa-

sionally, a combination of both (Kosmala et al. 2016).

Some may even include citizen scientists in data analyses

(Haklay 2013).

In the field of ecology, technological developments

(Newman et al. 2012) and increasing recognition of the

need for monitoring over large spatial and temporal scales
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(Conrad and Hilchey 2011; Stephens et al. 2015) have led

to a proliferation of ecological citizen science projects (Kos-

mala et al. 2016). Concurrent with this is growing concern

over ‘volunteer’ skill and the resultant quality of data

(Cohn 2008; Dickinson et al. 2010, 2012; Lukyanenko et al.

2016). Data capture can be improved through iterative pro-

tocol refinement or intensive training (Kosmala et al.

2016). In one case of community-managed resource moni-

toring, regular follow-up training for volunteers enabled

them to produce data of quality comparable to that col-

lected by professional scientists (Danielsen et al. 2014).

For data classification, quality can be improved by

aggregating inputs from multiple users, especially when

processing large datasets. For example Snapshot Serengeti

is an ecological research project utilizing crowdsourced

classifications to identify the contents of images taken by

motion sensing camera traps deployed in Serengeti

National Park. Researchers attracted over 28 000 online

volunteers who, within 3 days, cast one million ‘votes’ for

what they thought was in the camera trap photos, equiva-

lent to processing an 18-month backlog of images (Swan-

son et al. 2015). For each photo, a consensus

classification was determined from votes cast by an aver-

age of 27 volunteers. They were then validated against

almost 4000 ‘gold standard’ images, classified by experts,

to show that consensus classifications typically had an

accuracy exceeding 97% (Swanson et al. 2015, 2016).

The considerable success of Snapshot Serengeti might be

due, in part, to project-specific factors. These include: (1)

the presence in images of highly charismatic and diverse

African megafauna which are novel to largely European

and American audiences; (2) the low image to volunteer

ratio (approximately 1.2 million images for 28 000 volun-

teers, or ~43:1); and (3) the long-established platform

(https://www.zooniverse.org/) on which the project was

hosted, with a large and dedicated international userbase.

In contrast, many citizen science projects focus on less

charismatic faunas in areas of lower species diversity.

Despite their lower diversity, focal communities may

include species of conservation concern, as well as species

that are locally common and, therefore, important con-

tributors to ecosystem function (Geider et al. 2001; Gas-

ton and Fuller 2008). The local relevance and lower

charisma of these studies might make it harder to mobi-

lize a large international userbase. As a result, it may be

necessary to determine image contents with fewer user

classifications by crowdsourcing more economically.

An example of this is MammalWeb, a project in North

East England that pilots the approach of involving local

citizen scientists in monitoring mammals with camera

traps. Participants engage in both data capture and data

classification (camera trapping and classification of

images) as defined by Kosmala et al. (2016).

MammalWeb has a high image to classifier ratio (~550:1)
and monitors mammals that are less diverse and may be

considered less charismatic (Lorimer 2007) than their

African counterparts. Preliminary indications from the

pilot period are that the deployment of camera traps by

MammalWeb’s citizen scientists can yield useful data.

Examples include the identification of a raccoon (Procyon

lotor), an invasive non-native species, subsequently

trapped and re-homed by the United Kingdom’s (UK)

Department for the Environment, Food and Rural Affairs

(DEFRA) and the contribution of thousands of new

mammal records to the Environmental Records Informa-

tion Centre (ERIC) for the North East of England.

Using data collected in the MammalWeb study, we

investigated economical approaches to aggregating user

input into consensus classifications. This included analys-

ing species-level variations in the number of classifications

(including different combinations of correct and incorrect

classifications) needed to achieve consensus at various

confidence levels, and differentiating between two types of

incorrect classifications: misidentification of a species or

missing the presence of an animal altogether.

Relative to applying a generic consensus algorithm to

all images, we showed that images of certain species could

be retired more rapidly because (1) consensus was

achieved with fewer classifications or (2) referral to expert

classification may be preferable. Since MammalWeb com-

bines data collection and classification in one citizen

science project, we also examined whether this increased

engagement affected the accuracy of classifications.

Materials and Methods

Project background and citizen scientist
recruitment

MammalWeb focuses on North East England, addressing

a general dearth of mammal monitoring in an area (Croft

et al. 2017) with a relatively limited fauna (14 wild mam-

mal species cf. 40 in the Snapshot Serengeti data base;

Swanson et al. 2015). Between March 2015 and March

2018, we recruited 79 citizen scientists across the region

(centred around County Durham) to deploy camera traps

for the MammalWeb project. They consisted mainly of

Durham University staff and members of the Durham

Wildlife Trust (a local non-governmental organization

focused on environmental conservation, education and

engagement). Recruiting and training citizen scientists

from local community groups such as the Durham Wild-

life Trust is comparable to projects such as eMammal

(Forrester et al. 2017). Many participants were retirees,

and most reported curiosity about local wildlife as their

motivation for joining. A small number of contributors
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were local primary and secondary school teachers using

camera traps in their teaching.

Camera trap data capture and classification

After training the citizen scientists to use a standard proto-

col, they were lent camera traps (primarily Browning

Strikeforce, Reconyx Hyperfire and Bushnell cameras) and

self-selected sites on which to deploy them. During deploy-

ment, all cameras were set to burst mode and would typi-

cally take three images in quick succession per trigger. By

default, most cameras included a 30 second pause before

the next trigger. Volunteers uploaded their camera trap

images to the MammalWeb website (http://www.Mamma

lWeb.org/), and also submitted metadata such as the

deployment time period, location, make and model of cam-

era trap and height of camera above ground.

Anyone with an Internet connection can register on

MammalWeb to classify images (i.e. to be a ‘Spotter’),

including those who deployed camera traps and uploaded

photos (i.e. ‘Trappers’). Spotters were recruited through

the same channels as Trappers, plus at public events and

schools. Spotter classification effort varied from tens to

thousands of images. Consequently, to characterize the dis-

tribution and skewness of classification intensity by indi-

vidual Spotters, we calculated the proportions of those

who classified fewer than 100 images and greater than

1000 images. We also determined the relative contribution

from the top 10% of Spotters in terms of classifications.

Uploaded camera trap photos taken less than 10 sec-

onds apart were grouped into sequences, which typically

(c. 84% of sequences) consisted of the three images taken

in one burst (indeed, 94% of sequences are of length 2 or

3). The contextual information provided by adjacent

images in a sequence should aid classifications that would

otherwise be problematic (Fig. S1). Therefore, Mam-

malWeb’s classification interface is such that the ‘next

photo’ button takes a Spotter to the next photo in the

sequence rather than to another randomly selected one in

the global pool of images (Fig. S2). By going backwards

and forwards through a sequence, Spotters may show

greater accuracy in classifying the animals depicted since

there is a greater chance of at least one clear image within

the sequence. Users were encouraged to proceed only

after they have classified all images in a sequence. Upon

clicking ‘next sequence’, they were shown a randomly

selected sequence from the global pool (or, optionally, the

user’s own pool of uploaded photo sequences).

The classifications for each image in a sequence were

aggregated into the classification for that sequence. For

example a three-image sequence where the images are

sequentially classified as ‘blank’, ‘rabbit’ and ‘grey squirrel’

will have ‘rabbit and grey squirrel’ as its classification. We

treated each sequence as the base unit of animal detection,

and all analyses for classification accuracy and consensus

classifications were conducted at the sequence level.

Determining classification accuracy

We determined the accuracy of MammalWeb citizen sci-

entists and assessed how the nature of a classification –
correct and incorrect – may influence the calculation of a

consensus. This was done by comparison with a ‘gold

standard’ set of classifications created by us, consisting of

10 483 sequences (35 417 images).

We calculated the probabilities of a user classification

being correct for each species. For incorrect classifications,

we examined, for each species, the proportions of classifi-

cations that were for another species or for the absence of

any animal. With this information we also constructed a

confusion matrix breaking down cases of mistaken identi-

fications by species, and calculating false-negative (miss-

ing the presence of a species) and false-positive (stating a

species is present when it is not) rates.

We also compared classification accuracies of citizen

scientists who deployed camera traps and uploaded

images (‘Trappers’) and those who did not. Within the

Trapper group, we also investigated whether they were

more accurate when classifying their own images versus

those uploaded by others. Both comparisons used gener-

alized linear mixed effects models, with a binary response

(correct or incorrect), spotter type (spotter or trapper, or

uploader or other trapper) as a fixed effect, and spotter

identity as a random effect.

Evaluating consensus classifications

For consensus classifications, we determined the following

for each sequence, j: Tj (‘total classifications’), the total

number of unique classifications for the sequence; Ps;j
(‘present’), the number of unique classifications indicating

species s is present in one or more photos within the

sequence; Os;j (‘other’), the number of unique classifica-

tions indicating that species not including s are present in

the sequence; Bj (‘blank’), the number of unique classifi-

cations indicating that the sequence is devoid of animals.

The total number of classifications for a sequence is thus:

Tj ¼ Ps;j þ Os;j þ Bj. These numbers allowed us to deter-

mine the number of classifications indicating a species’

presence in a sequence (Ps;j) and the number indicating

its absence (‘absence’: As;j ¼ Os;j þ Bj). We then used this

information for four separate analyses.

First, using all sequences in our gold standard set that

were identified as containing species s, we asked what

proportion of classifiers (‘Spotters’) agreed with this

designation
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ð
X
j

Ps;j=
X
j

TjÞ

This parameter, which we designate as Pr(s) (the proba-

bility that species s is correctly identified in a sequence),

serves as a crude indicator of which species are typically

most (or least) readily identified within our focal fauna.

For each gold standard species s, we also examined classi-

fiers’ incorrect classifications to determine the relative

proportions of those that were misclassifications (given by

Os;j) versus failed detections (given by Bj). This compar-

ison serves to indicate how the potential for classifiers to

overlook or misclassify varies among species.

Second, we used binary logistic regression to assess

how the presence of a species in an image sequence is

related to the number of classifications indicating its pres-

ence and absence. We conducted this analysis both for

the full dataset (across all species) and then separately for

different species. Specifically, we determined whether the

number of classifications indicating presence (Ps;j) and

absence (As;j ¼ Os;j þ Bj) of a given species (or no species

at all) in a sequence was related to its true presence in, or

absence from, the sequence. This model can be repre-

sented as Vs;j � Ps;j þ As;j, where Vs,j is a binomial indica-

tor that species s is truly present in (Vs,j = 1) or absent

from (Vs,j = 0) sequence j (and the error has a binomial

distribution). Where multiple species have been identified

to occur in sequence j, there may of course be multiple

species in the image. This would not be a problem, as

both users and gold standard classifiers can classify multi-

ple species in any image (and so, for two species a and b

that occur in sequence j, 0 ≤ Pa,j + Pb,j ≤ 2Tj). Far more

commonly, however, where multiple species have been

identified to occur in sequence j, one or more of those

species has been designated in error. Here, using the

entire dataset would include non-independent data points

(because, where species a and b are both identified as

being in sequence j, even though only one of them is

actually in the sequence, model Va;j �Pa;j þ Aa;j is neces-

sarily the converse of model Vb;j � Pb;j þ Ab;j). To avoid

this issue, we created 1000 random bootstrap samples of

the dataset, stratified by sequence, in which all sequences

were represented only once. We analysed each bootstrap

sample as described above, and report mean and standard

deviations of their Akaike information criteria (AICs,

Akaike 1974). Analyses of the (bootstrapped) full dataset

suggested strong support (based on AIC scores; see

Results) for an influence of the pictured species s on the

relationship between confidence in classifications and Ps
and As. To determine the effect of this variation among

species, we analysed data on the more commonly occur-

ring species using only the subset of sequences for which

at least one user has indicated the presence of the focal

species.

Third, we investigated whether, for a given species s in

sequence j, the impact on confidence of classifications for

other species (‘false positives’, Os;j) differs from that of

blanks (‘false negatives’, Bj). This analysis recognizes the

fact that species differ in both their detectability and their

recognizability; thus, classifications representing confusion

over a species’ identity might reduce confidence in the

species’ presence to a different extent to classifications

suggesting that no animal species occurred in the

sequence. This analysis used binary logistic regression, as

described above; this time, the focus was on comparing

the performance of the model Vs;j �Ps;j þOs;j þ Bj with

that of the simpler model Vs;j �Ps;j þ As;j.

Fourth, we determined the rate at which we can retire

sequences of species from the pool of sequences to be

classified, given a target confidence threshold. This was

based on two sources of information. Specifically, we used

Pr(s) from our first analysis as an estimate of the proba-

bility that any new classification would be for the pic-

tured species. We also used fitted models of the form

Vs;j � Ps;j þ As;j to estimate the number of classifications

needed (R) to achieve a given level of confidence C. For a

given number of classifications indicating absence of a

species in a sequence (As;j ¼ 0; 1; 2; 3f g), it is possible to

identify the number of classifications for the species’ pres-

ence (Ps;j) which would be required to give the desired

confidence that the species is present:

RC;s;j � Ps;j þ As;j

The probability that this combination of classifications

will be obtained is then:

Pr As;j; Ps;jjPr sð Þ
� � ¼ As;j þ Ps;j

Ps;j

� �
Pr sð ÞPs;j 1� Pr sð Þð ÞAs;j

The average number of classifications needed before a

sequence containing a given species can be retired from

the pool for classification is then given by the average

sum of As,j + Ps,j for As;j ¼ 0; 1; 2; 3f g, weighted by the

probability with which each is obtained, plus the proba-

bility that none of these criteria are satisfied, multiplied

by the number of classifications we would accept before

removing the sequence from the classification pool. We

can then compare the implications of different

approaches and target confidence thresholds for the speed

at which sequences can be considered classified.

All data processing, analyses and modelling was con-

ducted in R 3.5.1 (R Core Team, 2017) with the packages

dplyr (Wickham et al. 2017), ggplot2 (Wickham 2016),

lubridate (Grolemund and Wickham 2011), lme4 (Bates

et al. 2015) and EnvStats (Millard 2013).
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Results

As of 7 March 2018, MammalWeb citizen scientists had

cumulatively deployed camera traps at 261 unique sites in

North East England for 15238 camera trap days. This

yielded 173315 images uploaded to our website. Since

project inception, 265 Spotters (including those who

deployed camera traps, i.e. Trappers) had contributed, via

the MammalWeb website, 249425 classifications of the

content of 115944 images (40709 sequences). For the

images with at least one classification, the median number

of classifications was 2 (IQR: 1–3, maximum: 33). The

majority of classifications were submitted by a small

number of Spotters (Fig. S3). More than half (58.9%) of

MammalWeb users (n = 156) classified less than 100 pho-

tos, whereas 11.3% of the users (n = 30) each classified

more than 1000 photos (Fig. S3). The top 10% of Spot-

ters (n = 27, 15 of whom were Trappers) contributed

84.9% of all classifications.

At the sequence level, 21 species have been classified in

our dataset. For most of the species in sequences with a

gold standard, >90% of user-provided classifications were

correct (Fig. 1A). Badgers (Meles meles) were recognized

by more than 95% of classifiers and only four species

were correctly classified by <80% of users. Species vary

markedly in whether incorrect classifications are due to

missing the presence of an animal (Bj) or mistaking it for

another species (Os;j) (Fig. 1B). For instance, most of the

erroneous classifications of sequences containing brown

hares (Lepus europaeus) were due to mistaken identifica-

tion (59 out of 66 incorrect classifications; Fig. 1). In

contrast, 96% of misclassifications of small rodents (a

shared designation in MammalWeb for species of <500 g

in body mass, principally rats, Rattus norvegicus; mice

Apodemus sylvaticus and Mus musculus; and voles, Micro-

tus agrestis) were due to them being missed altogether

(473 out of 494 incorrect classifications where small

rodents were present according to the gold standard;

Table 1).

Among Spotters, those who also deployed camera traps

and uploaded photos (‘Trappers’) were slightly more

accurate in their classifications (Fig. 2A). In addition,

Trappers were more accurate when classifying images they

had obtained than those uploaded by other Trappers

(Fig. 2B).

Analyses of the data across species showed that both

the number of classifications indicating presence and the

number indicating absence of a species provide important

information about the probability with which that species

is actually in a sequence (Fig. 3). On the global level,

when a single classification has been submitted indicating

a species’ presence, it is about 95% likely that the species

in question does appear in the sequence. Predictably,

more classifications for the species being present increase

Figure 1. (A) Proportional accuracy of submitted classifications across the whole pool of sequences with gold standard classifications. Sample

sizes (n) represent the number of classifications provided for sequences in which the gold standard indicates that the named species is present.

Vertical lines show (from left to right) 80, 90 and 95% accuracy across all classifications of these sequences. (B) Proportions of incorrect

classifications (classifications indicating absence of the true species in a sequence) that were for another species (green) or the absence of any

animal (blue). Vertical line is 50%. Sample sizes (n) are the number of incorrect classifications.
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the likelihood that it is there, whereas more classifications

for its absence have the opposite effect (Fig. 3).

The above analysis is based on a model of the form

Vs;j �Ps;j þ As;j. However, models that included, also, the

pictured species (s*) as a fixed factor, outperformed the

simpler model (ΔAIC = 196.74, SD = 19.99). Consequently,

we also analysed the relationship between image contents

and numbers of classifications for individual species.

Twelve species (including ‘nothing’, or blank (B), that is

where no image in the sequence contained an animal)

appeared in more than 200 gold standard sequences and so

were analysed at the species level. For the different species,

Table 1. Confusion matrix for accuracies of commonly classified species.

Gold standard

Badger

(1745)

Blackbird

(858)

Domestic

cat (907)

Grey

squirrel

(2471)

Hedgehog

(682)

Pheasant

(805)

Rabbit

(3188)

Red

fox

(1004)

Roe

Deer

(4784)

Small

rodent

(1277)

Nothing

(6353)

False

positive

rate

User classifications

Badger (1680) .955 .003 .001 .001 .001 .000 .008

Blackbird (773) .858 .001 .000 .001 .001 .000 .001 .003 .048

Domestic cat (886) .001 .951 .001 .007 .001 .026

Grey squirrel (2379) .001 .005 .001 .926 .003 .004 .012 .002 .004 .039

Hedgehog (578) .001 .006 .001 .798 .002 .008 .001 .059

Pheasant (773) .945 .002 .001 .016

Rabbit (2905) .002 .003 .003 .019 .002 .877 .003 .002 .001 .002 .037

Red fox (968) .002 .001 .008 .000 .001 .923 .003 .002 .001 .042

Roe Deer (4513) .002 .002 .000 .003 .004 .932 .003 .012

Small rodent (836) .001 .001 .016 .003 .001 .613 .004 .063

Nothing (7770) .035 .124 .026 .065 .161 .046 .063 .058 .054 .370 .975 .203

False negative rate .045 .142 .049 .074 .202 .055 .123 .077 .068 .387 .025

Shaded cells are true positive rates representing the probability of a user classification being correct given an image of a certain species. False neg-

ative rates are the inverse (including stating there is nothing when an animal is present), and false positive rates are how often a species is identi-

fied when it is not there. Numbers of classifications are in parentheses. E.g. For badgers, there are 1680 user classifications indicating their

presence of which 0.8% are incorrect (false positives). There are 1,745 classifications where badgers are truly present, of which 95.5% were cor-

rect identified (true positives), and 4.5% where they were not identified (false negatives).

Figure 2. Of the citizen scientists who classified at least 10 sequences, (A) those who deployed camera traps (30 ‘Trappers’, 13446

classifications) were marginally more accurate at image classification than those who did not (102 ‘Spotters’, 12100 classifications) but this effect

was not supported (DAIC = �1.49, model weight = 0.32, relative to a model that did not account for the Spotter type). (B) There was strong

support for the finding that 26 Trappers who classified images they uploaded (‘Uploaders’, 2578 classifications) were more accurate than

Trappers who classified images uploaded by other Trappers (‘Other Trappers’, 10136 classifications) (DAIC = 66.28, model weight = 1.00, relative

to a model that did not account for the Spotter type). In both panels, each data point represents a different individual; point size reflects relative

numbers of classifications. Boxes and whiskers summarize predicted accuracy levels across individuals (line across each box indicates the median

and the box boundaries indicate the interquartile range, IQR; whiskers identify extreme data points that are not more than 1.5 times the IQR on

both sides; dots are more extreme outliers).
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there was marked variation in the meaning of different

combinations of classifications indicating presence and

absence (Fig. 4). In particular, some designations (e.g.

small rodents) require larger numbers of classifications for

their presence to confer confidence in their appearance in

the sequence (e.g. P = 3 for 97.5% confidence), but classifi-

cations for their absence (A) make relatively little difference

(Fig. 4). Other species, such as badgers, need few classifica-

tions for their presence to instil confidence that they are

truly present but small numbers of differing classifications

substantially undermine that confidence (Fig. 4). Notably,

increases in the number of classifications indicating that

the sequence contains ‘nothing’ do not materially increase

the likelihood of consensus being correct (Fig. 4). Even

with 5 classifications indicating that the sequence contains

‘nothing’, the level of confidence does not rise above

97.5%. Any dissenting classifications, indicating that there

is ‘something’ in the sequence, have a very high impact on

confidence that the sequence is indeed devoid of animals.

Models for individual species differed when separating

classifications for absence (A) into those for other species

(O) and those for no animals (B) (Fig. S4). For eight spe-

cies, doing so produced a better-supported model

(Table S1). Coefficient values suggest the relative reduc-

tion in confidence resulting from classifications for no

animals (B) and those for other species (O) (Fig. S5).

Classifications for other species (O) have a particularly

strong effect on confidence for badgers, red foxes, and

domestic cats (Fig. 5 and Fig. S5).

Globally (without regard to specific species), 42.9% of

sequences can be retired with 97.5% confidence after four

classifications and a further 21.4% of sequences could be

retired after seven (Table S2). At the 99% confidence

level, 34.7% of sequences can be retired after five classifi-

cations (Table S2). The implication of these analyses is

that, on average, 7.2 classifications would be needed per

sequence to retire them with 97.5% confidence, while an

average of 9.1 classifications are required for 99% confi-

dence. If algorithms for sequence retirement are sensitive

to the species most likely to be pictured, 88.1% or more

of sequences containing highly recognizable species, such

as badgers, could be retired after just two classifications

(with 97.5% confidence) (Table S3). However, less recog-

nizable species would need many more classifications to

instil confidence (Table S3). For example, only about

85% of sequences classified as small rodents can be

retired at 97.5% confidence even after six classifications

(Table S3).

Discussion

There is a trend for citizen science projects to crowd-

source data classification. The question of how proliferat-

ing projects can obtain confident classifications from a

finite group of contributors suggests that more economic

ways of utilizing user input would be beneficial. Data

from the MammalWeb project suggest that individual

classifiers are typically highly accurate and that a reliable

consensus could be reached with approximately nine clas-

sifications per sequence. Moreover, we show that greater

economy could be obtained by treating different species

separately, and by discriminating between classifications

that conflict over the identity of the pictured species, and

classifications suggesting no species is present. Here, we

discuss our results and their implications for crowd-

sourced image classification, increasing the classification

rate and large-scale mammal monitoring.

Implications for crowdsourced image
classification

The majority of MammalWeb’s camera trap image classi-

fications originated from relatively few contributors

(Fig. S3), a pattern common among scientific crowd-

sourcing efforts (Sauermann and Franzoni 2015). That

the top 10% of MammalWeb classifiers (‘Spotters’)

Figure 3. Global-level relationship between the number of

classifications for the presence (P) and absence (A) of a given species

in a sequence and the probability that it is indeed in the sequence.

Solid lines show the mean relationship (over 1000 bootstrapped

samples) between the probability (predicted by the fitted model) that

a species is present in the sequence and the number of classifications

for that species (P), for 0 (orange line), 1 (blue line), 2 (green line)

and 3 (red line) classifications indicating the species is absent (A).

Polygons around the lines show � mean SE across the bootstrapped

samples. Dashed horizontal lines show probabilities of 0.975 and

0.99. Corresponding dashed vertical lines show the number of

classifications for the species required to give a confidence of 97.5%.
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contributed 84.9% of all classifications is comparable to

the average of 79% from a survey of seven projects on

the Zooniverse citizen science platform (Sauermann and

Franzoni 2015).

Notably, Spotters who also helped to deploy camera

traps (‘Trappers’) were slightly more accurate in their

classifications (Fig. 2A). This might be assumed to

occur because citizen scientists involved in both the

Figure 4. Species-level relationship between the number of classifications indicating the presence (P) and absence (A) of a given species, and the

probability that it appears in a sequence. Solid lines show the mean relationship between the probability (predicted by the fitted model) that a

species is present in the sequence and the number of classifications for that species, for 0 (orange line), 1 (blue line), 2 (green line) and 3 (red

line) classifications indicating the species is absent. Polygons around the lines show � mean SE. Dashed horizontal lines show probabilities of

0.975 and 0.99. Corresponding dashed vertical lines show the number of classifications for the species that are required to give a confidence of

97.5%.
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data capture and classification stages of the project are

engaged to a higher level (Haklay 2013) than those

involved only in classification. Alternatively, it could

reflect the fact that many Trappers are nature enthusi-

asts since they were recruited from a local nature-based

organization (similar to Forrester et al. 2017). However,

the data show that this difference arises principally

because Trappers were more accurate in classifying

images captured by themselves (Fig. 2B). This is possi-

bly due to direct access to those images on their own

computers, where they can be scrutinized to a greater

extent than on our website. It is also possible that

these Trappers are simply more familiar with the fauna

at sites where they deployed camera traps, although the

vertebrate biota across North East England shows lim-

ited spatial variation.

Figure 5. Implications of distinguishing between different types of classifications indicating that a species is absent (A). For some typically highly

detectable species, such as the badger, classifications suggesting that no animal is present in the sequence (‘false negatives’, B) are more

damaging to confidence than are classifications suggesting that the pictured species is some other species (‘false positives’, O). For visually

distinctive species, such as the grey squirrel, the converse is true. For species that are seldom overlooked or misclassified, classifications indicating

their absence count equally, regardless of whether they are for other species or no animals at all.
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We showed that the accuracy of volunteer-contributed

classifications is generally high (Fig. 1). With only one

classification indicating the presence of a species, the like-

lihood is about 95% that the species is indeed present

(Fig. 3). For a given sequence where the species present is

known, true-positive rates are generally high, which also

suggests high accuracy (Table 1). In spite of this accuracy,

to confer higher confidence in consensus classifications,

multiple classifications are required per sequence. Specifi-

cally, without an algorithm that distinguishes between

species, sequences in our dataset can be retired from the

classification pool after an average of 7.2 classifications

(for an accuracy of ≥97.5%) or 9.1 classifications (for

≥99% accuracy) (Table S2). Given that there is some evi-

dence that different types of classifications against the

presence of a species may carry different weight (and, in

particular, that classifications for the absence of any spe-

cies of interest are generally less damaging to confidence

than classifications for a different species; Fig. 5), more

elaborate approaches accounting for the nature of dissent

might substantially improve these figures.

For some species, the number of classifications can be

substantially reduced (e.g. 97.5% confidence with just two

classifications indicating the presence of a badger, Fig. 4);

for other species, however, larger numbers would be

required and an early transfer to expert classification

might be preferable (Table S3). Species-level differences

were also evident when differentiating the impacts from

misidentification (i.e. the false-positive identification of a

species) or mistakenly stating that no animal was present

(i.e. false negative) (Fig. 5, Fig. S5 and Table 1). A good

example of the complications around false positives is

given by brown hares. We found that brown hares are rel-

atively poorly recognized in our dataset. In fact, they are

commonly confused with rabbits (Oryctolagus cuniculus),

the more frequently occurring lagomorph in the region.

Although our analyses suggest that the majority of

sequences containing rabbits could be removed after only

three or four classifications (depending on the desired

confidence level), this overlooks the possibility that brown

hares might be of more interest, would need many more

classifications to compel confidence, and could be over-

looked if apparent rabbit sequences are retired rapidly.

More data would be required to assess this problem, espe-

cially in relation to the specific probability with which

hares are classified as rabbits (and the resultant probabil-

ity that a sequence could achieve consensus on a rabbit

being pictured, even if a hare is the actual subject).

With these analyses, we illustrated the importance of

considering (1) the entire combination of classifications

for the presence and absence of a species when calculating

consensus classifications, and (2) the potential usefulness

of a species-specific approach to doing so rather than

applying a single algorithm to the entire dataset. An addi-

tional benefit is that even though an animal may be more

or less evident in different images, achieving consensus

for a sequence would let us retire all of its constituent

images without needing consensus on each one.

One finding that might be very general to crowd-

sourced classifications is that far more classifications are

required to classify with confidence a sequence having no

subjects of interest, than to classify with confidence a

sequence that does contain animals. Indeed, five or more

uncontested classifications suggesting that a sequence is

devoid of animals is needed to impart 97.5% confidence

in that designation (Fig. 4). That contrasts with the other

species considered in Fig. 4, which require between two

and three uncontested classifications to give high confi-

dence that they are actually present. As we noted above,

more efficient algorithms for crowdsourcing reliable clas-

sifications should probably discriminate between the

weight attributed to disagreements over whether a species

is present and disagreements over the identity of a pic-

tured species.

Increasing the classification rate

Our analyses suggest that a higher ratio of classifiers to

images will be necessary before MammalWeb can be

expanded and expected to contribute to timely and infor-

mative ecological analyses. In particular, our analyses sug-

gest that, without distinguishing species, at least four or

an average of 7.2 classifications will be required per

sequence for 97.5% confidence in consensus. In the first

120 weeks of the project, we accumulated new sequences

at a rate of approximately 370 per week, and new

sequence classifications at a rate of approximately 1324

per week; this yields a ratio of approximately 3.6 classifi-

cations per sequence. This suggests that one option to

ensure that classifications keep pace with accumulating

image data is to increase our classifier pool by a factor of

approximately 2.5, relative to the number of camera trap-

pers. At present, we have approximately 3.5 classifiers to

every trapper, so this would need to increase to approxi-

mately 9:1. Such an increase should inform any efforts to

extend the reach of the MammalWeb project and can be

built on existing work that seeks to understand citizen

scientist motivations and to promote their continued

involvement (Eveleigh et al. 2014; Everett and Geoghegan

2016; Jennett et al. 2016; Wald et al. 2016).

One alternative to increasing the relative size of the

classifier pool is to encourage higher classification effort

from existing users. Species-specific algorithms for

sequence retirement could be problematic in this regard.

For example some of the more recognizable species in

our dataset are also some of the more charismatic. If
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these sequences are removed more rapidly than others,

the dataset could rapidly become biased towards less

charismatic species, more indistinct photos and images

devoid of animals. Preliminary evidence from Snapshot

Serengeti suggests that moderate numbers of images

devoid of wildlife can actually increase classifier-engage-

ment, by ensuring the relative rarity and novelty of wild-

life images (Bower et al. 2015). In contrast, MammalWeb

participants routinely cite animal-free images (about 41%

of all sequences, based on gold standard classifications) as

a deterrent to classification. It would be useful to investi-

gate the source of this difference in the reported impacts

of blank images on motivation. This may be related to

the charisma of the animals being monitored, whether a

project involves citizen scientists in both data capture and

classification, user interface design or inaccuracies in self-

reporting.

The importance of sequences devoid of animals is clear

(Fig. 4). Given the high proportion (31.4% according to

the gold standard) of blank sequences in our dataset (and

many other camera trap datasets), it is clear that the rela-

tively low confidence with which blank sequences can be

classified will have a major impact on the overall speed at

which sequences can be retired without a species-specific

classification algorithm. Options for reducing the propor-

tion of blanks in the dataset include asking Trappers –
who are more accurate at classifying their own images

(Fig. 2) – to pre-screen their data and remove blanks

before upload, or using an automated algorithm to do so

(see further below).

One further possibility for overcoming limitations to

classification effort is to use the dataset to identify classi-

fiers who have very high accuracy, giving a higher weight-

ing to their votes, or preferentially tasking them with

classifying more difficult images. User skill level was

accounted for in one of the Bayesian consensus models

by Siddharthan et al. (2016), requiring 3.2 classifications

per image to achieve 91% confidence. Some crowd-

sourcing platforms (e.g. van der Wal et al. 2016) include

automated checking and training functionality with com-

puter-generated structured feedback for volunteers, which

could help to increase individual accuracy and reduce

required numbers of classifications.

Implications for large-scale mammal
monitoring

In contrast to some other taxa, mammals have not been

routinely monitored at a community level in the UK (Bat-

tersby and Greenwood 2004; Croft et al. 2017). Over the

past two decades, mammals have been recorded by many of

the volunteers who conduct the British Trust for Ornithol-

ogy’s (BTO) Breeding Bird Survey (BBS) (Harris et al.

2016). However, given the nocturnal habits and generally

low detectability of many mammals, the relatively short

period during which the daytime-only BBS is carried out

means that many species will be missed where they occur,

and site-specific changes could be highly subject to stochas-

ticity. Camera trapping would deliver a substantially richer

picture of mammal occurrence in space and time and, ulti-

mately, an approach like MammalWeb could be used to

monitor mammals at a national level. In spite of this,

MammalWeb was deliberately implemented at a local level

to determine the feasibility of the approach. Our analyses

suggest that the approach taken by MammalWeb should be

feasible with modest efforts to increase the engagement or

accuracy of existing classifiers, or the ratio of classifiers to

images. The system could, consequently, be extended – but,

at least given the current approach, it would be important

to increase recruitment of classifiers to a greater extent than

recruitment of camera trappers.

More generally, mammal monitoring using camera traps

continues to grow globally (Rowcliffe and Carbone 2008),

and there are increasing calls for more systematic and

widespread approaches to the challenge (Steenweg et al.

2017). Crowdsourcing image classification is one solution

to this challenge, and MammalWeb is one of several plat-

forms that engages citizens for wildlife image classification.

Others include Instant Wild (http://www.edgeofexistence.

org/instantwild/, reviewed in Verma et al. 2016), Zooni-

verse (Simpson et al. 2014), eMammal (McShea et al.

2015), iSpot (Silvertown et al. 2015) and BeeWatch (van

der Wal et al. 2016). While our findings regarding accuracy

for specific species might not generalize to other platforms,

the approach to crowdsourcing classifications should.

There are several reasons why our approach might com-

pare favourably to previous algorithms, especially on a

species-by-species basis. As previously discussed, our clas-

sifiers are largely local to North East England and so are

likely to be highly familiar with the small number of spe-

cies commonly occurring on camera traps in the area.

This can be seen in the high accuracy of their classifica-

tions (Fig. 1), especially from those who do the camera

trapping (Fig. 2). Moreover, classifiers on MammalWeb

are shown entire sequences of images, potentially benefit-

ing from contextual information across the sequence.

Whether this provides a measurable benefit and, if so, to

what extent, would be straightforward to determine with a

platform that can easily be adjusted to show photos either

individually or in sequence. Overall, our requirement for

as few as four classifications per sequence for 97.5% confi-

dence (if an animal is present) shows greater achievable

efficiency than consensus algorithms employed where effi-

ciency is not a strong requirement (Swanson et al. 2016).

Researchers frequently point to image classification as a

major barrier to making best use of their camera trapping
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data. As camera trapping increases in scope, the demand

for citizen scientists to assist with image classification is also

likely to increase. Whether supply can keep pace with

demand is unclear but it is likely that more and larger pro-

jects will compete for a finite pool of classifiers, with pro-

jects focused on less charismatic or conservation-relevant

faunas struggling to meet demand. More refined

approaches to training volunteers and making use of their

data (e.g. van der Wal et al. 2016) should help. In addition,

automated techniques to assist with image recognition may

become necessary to alleviate the classification challenge.

This need will be even more pronounced as those running

camera trapping studies embrace more complex forms of

analysis, such as those requiring animal speed and distance

detection (Rowcliffe et al. 2016; Howe et al. 2017). Auto-

mated solutions are starting to emerge but, so far, have

been proprietary (Kays pers. comm.), require manual image

pre-processing (Yu et al. 2013), or yield very high false-

positive rates (Price Tack et al. 2016). Whilst there is likely

to be low transferability of species-detection algorithms

among studies, experience at MammalWeb provides a

strong motivation for change detection algorithms (Radke

et al. 2005) simply to highlight (and remove) photos unli-

kely to contain wildlife; as discussed above, this process

could substantially reduce the average number of classifica-

tions required to retire sequences. Knowing the presence

and identity of wildlife within sequences could provide a

dataset useful for training machine learning algorithms that

are under development (Thom 2017; Norouzzadeh et al.

2018).

In summary, we believe MammalWeb has demon-

strated the viability of a local citizen science camera trap-

ping project that can sustainably monitor wildlife.

Importantly, we have shown the benefits of considering

species level differences when calculating consensus classi-

fications including the relative impacts from false-positive

and false-negative classifications. Our findings regarding

the importance to retirement rates of reducing the pro-

portion of ‘blank’ sequences in the dataset are highly

likely to generalize across projects. Other differences from

past citizen science projects, including involving citizen

scientists in data capture and classification, the methods

we used for crowdsourcing data classifications, and our

insights into the use of sequence-level classifications to

improve retirement rates of photos, are also of value to

future monitoring initiatives.
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Supporting Information

Additional supporting information may be found online

in the supporting information tab for this article.

Figure S1. A sequence of camera trap images taken in

burst mode of a red fox (Vulpes vulpes). When shown in

isolation, the left-hand and middle images in this

sequence might achieve high levels of consensus regarding

their content. By contrast, the right-hand image would be

hard to classify and might be subject to considerable

uncertainty regarding its focal subject.

Figure S2. MammalWeb camera trap image classification

(‘Spotter’) interface.

Figure S3. The majority of classification effort was con-

tributed by relatively few users.

Figure S4. Relationship between classification confidence

and the number of classifications for the presence (P) and

absence (A) of certain species, with the classifications for

absence split into those for other species (O) and blank

(i.e. containing no vertebrates) (B).

Figure S5. Coefficient values (� mean SE) for models

that distinguish between the effects on classification confi-

dence of those for ‘other species’ (O) and ‘blank’ (B).

Table S1. Impact of separating classifications for absence

(A) model term into those for other species (O) and

blank (B). Positive DAICs (bold font) indicate that

increasing the number of parameters by having separate

O and B terms is justified by the improved model fit.

Table S2. Calculations for numbers of sequence-level clas-

sifications needed (CN) to achieve target confidence level

across the global pool of images.

Table S3. Calculations numbers of sequence-level classifi-

cations needed (CN) to achieve target confidence level for

commonly pictured species.
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