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Periodic spatial modulations arise in analogue gravity experiments aimed at detecting the analogue
version of the Hawking effect in a white-hole flow. Having the same spatial periodicity as low-frequency
dispersive modes, they can induce resonances which significantly modify the scattering coefficients. This
has been shown numerically in a previous work [X. Busch et al., Phys. Rev. D 90, 105005 (2014)], but
the precise dependence of the low-frequency effective temperature on the amplitude and length of the
undulation remains elusive. In this article, using the Korteweg–de Vries equation, we explicitly compute
this dependence in the small-amplitude limit and find three regimes of “short,” “intermediate” and “long”
undulations showing different scaling laws. In the latter, the effective temperature is completely determined
by the properties of the undulation, independently of the surface gravity of the analogue white-hole flow.
These results are extended to a more realistic hydrodynamical model in an Appendix C.
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I. INTRODUCTION

Undulations, i.e., static spatially periodic modulations
of some physical quantity, are ubiquitous in experiments
involving a flow over an obstacle. They have been studied,
for instance, in water currents [1–11] and in Bose-Einstein
condensates flowing faster than the Landau critical velocity
[12]. Roughly speaking, such modulations can be seen as
macroscopic superpositions of low-frequency linear waves.
As such, small perturbations propagating over them can be
strongly affected via n-wave mixing, with n ≥ 3, provided
some resonance conditions are satisfied.
These modulations are particularly relevant for the study

of analogue white-hole flows, i.e., flows going from
supercritical to subcritical along the direction of the fluid
velocity [13–15]. As was shown by William Unruh [16],
there exists a mathematical correspondence between the
behavior of sound waves close to the point where the flow
velocity crosses the speed of low-frequency waves in the
fluid frame and that of scalar fields around the horizon of a
black hole. This correspondence being independent of the
sign of the flow velocity, it therefore also holds for its time-
reversed version, known as a white hole. The original
model of [16] was then extended to a variety of different
systems like gravity waves in water [17], cold atoms [18],
polaritons [19], light in a nonlinear optical fiber [20],

“slow” sound [21,22], and magnetohydrodynamics [23],
prompting theoretical studies of the link with Hawking
radiation (HR) and experimental realizations aimed at
detecting its condensed matter analogue [11,24,25]. An
account of the main advances in this field can be found in
[26] and references therein. The majority of these works
use the assumption that the flow is homogeneous far from
the (analogue) horizon, which is necessary for the corre-
sponding space-time to be asymptotically flat. However,
experimental setups involving white-hole flows generically
have undulations extending far from the near-horizon
region and whose effect on the scattering of linear waves,
used to probe the Hawking effect, remains unclear. The
main objective of the present work is to tackle this problem
and determine, in the case of gravity waves on water,
how the presence of an undulation affects the scattering
coefficients.
When considering white-hole flows of ideal fluids, the

dispersion relation in the asymptotic downstream (e.g. for
surface water waves) or upstream (e.g. for Bose-Einstein
condensates) region generically leads to the emission of a
wave with zero frequency and nonvanishing wave vector.
There are then two known mechanisms for such an
emission. The first one, discussed in [27,28] for water
waves and in [12] and Appendix C of [15] for Bose-
Einstein condensates, is due to the fact that, given an
obstacle and parameters for the upstream flow, the ampli-
tude of the periodic wave is generally nonzero unless
these parameters are precisely fine-tuned to suppress it.
(A procedure to design an obstacle shape reducing the
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undulation amplitude in water waves was proposed in [29]
and applied in [11]. Another procedure was used in [14] in
the context of flowing atomic Bose condensates.) The
second mechanism is the amplification of incoming low-
frequency perturbations by the analogue Hawking effect
[10], exhibiting a close relation between this effect and
undulations. Moreover, in the experiment [11] the undu-
lation seems to play an important role in the wave
conversion, which cannot be unambiguously separated
from the contribution of the flow gradient localized above
the obstacle. These observations, calling for a better
understanding of the scattering in the presence of an
undulation, are the main motivations for the present work.
The effect of an undulation on the analogue HR was

addressed numerically in the context of Bose-Einstein
condensates in [15]. It was shown that a sufficiently long
undulation can significantly modify the effective temper-
ature. Importantly, it was found to be reduced when the
undulation has a phase close to that of a nonlinear solution
of the field equations. This study raises two important
questions. The first one concerns the analytical description
of the reduction, which was so far obtained only numeri-
cally. Second, it is not completely clear from the numerical
results whether the effective temperature goes to zero in the
limit of a long undulation or saturates to a finite value—nor,
in the latter case, how this value depends on the undulation
amplitude.
We here aim at answering these two questions by

computing analytically the effective temperature in the
presence of an undulation in a transcritical flow. In the main
text we use a simple model based on the Korteweg–de
Vries (KdV) equation to describe surface waves on a two-
dimensional flow of an ideal fluid. Although idealized, it
has the advantage of showing the main features in a
transparent way, keeping technicalities to a minimum. In
Appendix C, the same analysis is carried out in a more
involved model fully taking into account the dispersion
relation of water waves obtained when neglecting viscosity,
surface tension, and vorticity. We believe that the similar-
ities between the results of our two models and the
generality of the arguments used to motivate them indicate
they should be only weakly affected when including these
three effects. In Appendix D we briefly discuss the case of
subcritical flows (see also Refs. [29–32]) to be closer to the
experiments of [11,33].
This paper is organized as follows. Section II is devoted

to the computation of the modes over a long undulation.
We show in which sense it may be thought of as the zero-
frequency limit of a three-wave resonance and exhibits the
specific features of this limit. These results are applied to
white-hole-like flows in Sec. III, where the implications of
a small undulation for the analogue Hawking radiation are
determined. We conclude in Sec. IV. In Appendix A we
consider the resonant scattering on a “detuned” undulation,
i.e., a region where some external parameter varies

periodically, in the case there is a resonance at finite
frequency. We take the opportunity to detail two points
which are also relevant to the case studied in the main text,
namely the Lagrangian description of the KdVequation and
the relation between the transfer and scattering matrices.
Appendix B relates the properties of the modes to the
nonlinear solutions of the KdV equation. Appendix C
generalizes the main results to a more realistic model of
water waves, assuming incompressibility, irrotationality, no
viscosity, and no surface tension, but keeping terms of all
orders in the wave vector. Finally, in Appendix D we briefly
comment on the case of a subcritical flow.

II. MODES OVER AN INFINITE UNDULATION

The aim of this section is to exhibit the general properties
of low-frequency modes over an undulation. This is a
preliminary step to the calculation of the spectrum in
analogue white-hole flows done in Sec. III. In
Appendix A, the interested reader will find a complete
treatment of the case of a detuned undulation, correspond-
ing to an externally imposed modulation of some parameter
with an arbitrary period. There, we find that the behavior
of resonant modes depends on the relative signs of the
energies and momenta of the two waves involved in the
resonant scattering: the resonant modes are exponentially
growing in time (respectively in space) if their energies
(respectively energy currents) have opposite signs, and
bounded if they have the same sign. Here instead, we
consider the effects of “tuned” undulations which are
themselves static solutions of the KdV equation. As we
shall see, this introduces a qualitative difference: the
resonance now involves modes with a vanishing energy,
leading to a linear, instead of exponential, growth in space
or time. In Appendix B, we show that this behavior can be
directly related to variations of the nonlinear solutions.
We work with the one-dimensional KdV equation:

∂tηþ μ∂xηþ ∂3
xηþ 6η∂xη ¼ 0; ð1Þ

where μ > 0. (See Appendix A and Refs. [34,35].) To study
linear perturbations, we write η ¼ ηð0Þ þ δη, where ηð0Þ is
an exact stationary solution of Eq. (1) and δη is a “small”
perturbation. Neglecting terms quadratic in δη, one obtains
the linearized KdV equation:

∂tδηþ ∂xððμþ 6ηð0ÞÞδηÞ þ ∂3
xδη ¼ 0: ð2Þ

In the following we first review a few properties of this
linear equation which will play an important role in the
scattering over an undulation. We generalize Eq. (2),
replacing the factor μþ 6ηð0Þ by an arbitrary differentiable
function of x, so that the same formalism can be applied
to detuned undulations. Applying it to Eq. (2) allows us to
determine the form of the resonant modes as well as the
leading terms in the transfer matrix at low frequencies,
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which will be used in Sec. III to determine the corrections
to the emission spectrum of a white-hole flow. The analysis
presented in this section is extended to a more realistic
model of water waves in Appendix C.

A. The linearized KdV equation

In this subsection we consider the mathematical descrip-
tion of periodic variations of some parameter entering the
field equation. These might be detuned (see Appendix A 2
for a fuller treatment), corresponding to local variations of
some external potential or, in the case of water waves, to
the height of the obstacle put at the bottom of the flume.
However, in the main body of this paper we shall restrict
our attention to tuned undulations, which are themselves
static nonlinear solutions of the KdV equation.
To this end, we consider the following generalized form

of Eq. (2):

∂tδηðt; xÞ þ ∂xðμ̄ðxÞδηðt; xÞÞ þ ∂3
xδηðt; xÞ ¼ 0; ð3Þ

where μ̄ ∈ C0ðRÞ is a nonconstant periodic function
of x. The relation between Eq. (3) and the forced KdV
equation used to model water waves [34] is discussed in
Appendix A 1. In the case of tuned undulations considered
here, the undulation is a solution ηð0Þ of the KdV equation,
and enters Eq. (3) through the relation μ̄ ¼ μþ 6ηð0Þ.
Let us call λμ the fundamental period of μ̄ and define

kμ ≡ 2π=λμ. For all n ∈ Z, we define

μn ≡ 1

λμ

Z
λμ

0

μ̄ðxÞe−inkμxdx: ð4Þ

Then, for any x ∈ R,

μ̄ðxÞ ¼
X
n∈Z

μneinkμx: ð5Þ

Since μ̄ is real valued, μ−n ¼ μ�n for all n ∈ Z. To determine
the scattering coefficients analytically, we work perturba-
tively in the variations of μ̄. More precisely, we define a
small parameter ϵ > 0, ϵ ≪ 1, and assume the coefficients
μn scale as

∀n ∈ Z;
μn
μ0

¼ OðϵjnjÞ: ð6Þ

The calculation can then be performed to any given order
in ϵ by expanding Eq. (3) in this parameter. [This justifies
a posteriori the scaling in Eq. (6).]
It is of value to first recall some properties of the

solutions in the case ϵ ¼ 0. Then, Eq. (3) becomes

½∂t þ μ0∂x þ ∂3
x�δηðt; xÞ ¼ 0: ð7Þ

The constant μ0, chosen here to be positive, is equal to
c0 þ v0, where c0 is the low-frequency group velocity in
the fluid frame, and v0 < 0 is the flow speed. With
these choices, Eq. (7) describes small-amplitude

counterpropagating waves over a (subcritical) flow to the
left, i.e., waves whose group velocities in the reference
frame of the fluid are all positive. As this equation has no
explicit space or time dependence, there exists a continuous
basis of bounded solutions of the form

δηω;k∶ ðt; xÞ ↦ eiðkx−ωtÞ; ð8Þ

where ðω; kÞ ∈ R2. Using Eq. (7), one finds Eq. (8) is a
solution if and only if the dispersion relation ω ¼ ω0ðkÞ is
satisfied, where

ω0ðkÞ ¼ μ0k − k3: ð9Þ

It is shown in Fig. 1. At fixed value of ω, the dispersion
relation has three complex roots in k. For ω ∈ R, the
number of real ones depends on whether jωj is larger or
smaller than a critical value,

ωmax ¼ 2

�
μ0
3

�
3=2

∶ ð10Þ

(i) If jωj < ωmax, the three roots are real. We denote

them as kðiÞω , i ∈ f1; 2; 3g, with kð1Þω < kð2Þω < kð3Þω .

The second one, kð2Þω , corresponds to a right-moving

wave, whose group velocity ðdkð2Þω =dωÞ−1 is pos-
itive. The two other roots correspond to left-moving
waves, with negative group velocities. For ω > 0,

FIG. 1. Dispersion relation ω versus k for the linear KdV
equation (7) with μ0 ¼ 2.5. The (subsonic) flow velocity v0 < 0
is to the left, and μ0 ¼ c0 þ v0 where c0 is the low-frequency
group velocity of linear waves. The style of the line gives the sign
of the energy of the corresponding mode: continuous for positive
energies and dashed for negative ones. The horizontal dot-dashed
line shows ω ¼ ωmax of Eq. (10). The large dot shows the wave
vector ku of the tuned undulation. The black dotted line
materializes a constant value of ω strictly between 0 and
ωmax. Its intersection points with the blue curve give the three

wave vectors kðiÞω at that frequency.
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we also have kð1Þω < 0 and kð3Þω > kð2Þω > 0. So, the

quantity kðiÞω dkðiÞω =dω, which will play an important
role in the following, is strictly positive for i ∈
f1; 2g and strictly negative for i ¼ 3. In the low-

frequency limit ω ¼ 0, one finds kð2Þω ¼ 0 and

kð3Þω ¼ −kð1Þω ¼ ku, where ku ≡ ffiffiffiffiffi
μ0

p
is the wave

vector of the tuned undulation ηð0Þ.
(ii) If jωj > ωmax, only one real root remains: kð1Þω for

ω > 0 and kð3Þω for ω < 0. The two other roots are
complex conjugates with nonvanishing imagi-
nary parts.

As shown in Appendix A 1, the sign of the energy of a wave
is given by ωk. It is indicated in the figure by the style of the
curve: continuous for positive-energy modes and dashed
for negative-energy ones. In the following we concentrate
on modes with 0 < ω < ωmax. Those with −ωmax < ω < 0

are simply their complex conjugates, so there is no need to
study them separately. The modes with i ∈ f2; 3g then have
positive energies while the mode with i ¼ 1 has a negative
energy. A resonance can occur if there exists ði; jÞ ∈
f1; 2; 3g2 and nr ∈ Nnf0g such that kðiÞω − kðjÞω ¼ nrkμ,
where kμ is defined above Eq. (4).
Scattering on a detuned undulation is studied in

Appendix A. The main result is that, when there is a
three-wave resonance, i.e., two linear waves interacting
resonantly with the undulation, the corresponding modes
are either bounded or exponentially increasing in one
direction depending on the relative signs of the energy
and energy flux of the two interacting waves. If they have
energies with the same sign, then the mode is bounded in
time; otherwise the mode grows or decays exponentially as
t → ∞. Similarly, it is spatially bounded if their energy
fluxes have the same sign, and exponentially increasing or
decreasing as jxj → ∞ otherwise. As we will see in the
following, in the limit of a tuned undulation, which is itself

a static solution of the KdV equation, this exponential
behavior is replaced by a linear growth.

B. Periodic static solutions of the (nonlinear)
KdV equation

As our analysis will rely on the structure of the stationary
(nonlinear) solutions of Eq. (1), we now review their most
relevant properties. A more detailed account can be found
in the textbook [36]. Setting ∂tη ¼ 0 in Eq. (1), one obtains
the stationary KdV equation,

∂xðμηþ ∂2
xηþ 3η2Þ ¼ 0: ð11Þ

Integration over x gives

μηþ ∂2
xηþ 3η2 ¼ C; ð12Þ

where C is an integration constant, see the left panel of
Fig. 2 for four solutions with μ ¼ 1 and C ¼ 0. We assume
μ2 þ 12C > 0.1 Let η0 ≡ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 12C

p
− μÞ=6 and Δη≡

η − η0. Equation (12) becomes

ðμþ 6η0ÞΔηþ ∂2
xΔηþ 3Δη2 ¼ 0: ð13Þ

Multiplication by ∂xΔη gives

∂x

�
μþ 6η0

2
Δη2 þ 1

2
ð∂xΔηÞ2 þ Δη3

�
¼ 0; ð14Þ

which can be integrated over x, giving

ð∂xΔηÞ2 ¼ −2ðΔη − η1ÞðΔη − η2ÞðΔη − η3Þ; ð15Þ

where ðη1; η2; η3Þ ∈ C3 satisfies

FIG. 2. Left panel: Plots of four different periodic nonlinear solutions of Eq. (12) with different amplitudes, for μ ¼ 1 and C ¼ 0.
Right panel: Wave vector ku as a function of the amplitude Au, defined as half the difference between the maximum and minimum values
reached by η.

1This condition is equivalent to the existence of real homo-
geneous solutions, given by η ¼ ð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 12C

p
− μÞ=6.
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η1 þ η2 þ η3 ¼ −
μþ 6η0

2

η1η2 þ η2η3 þ η3η1 ¼ 0; ð16Þ

and η1η2η3 is another free integration constant. Spatially
bounded solutions exist if and only if ðη1; η2; η3Þ ∈ R3.
Ordering these three numbers as η1 ≤ η2 ≤ η3, the bounded
solutions are periodic if η2 ≠ η1, with η oscillating between
η2 and η3. The wavelength λ is

λ ¼ 2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η3 − η1

p K

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η3 − η2
η3 − η1

r �

¼ 4

Z
π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̄2 − 3ðη3 − η2Þ2

p
þ ðη3 − η2Þ cos ð2θÞ

q ;

ð17Þ

where K is the complete elliptic integral of the first kind
and μ̄≡ μþ 6η0. The wavelength λ diverges in the limit
η2 → η1. In the following, it will be convenient to use the
wave vector ku ≡ 2π=λ, whose dependence on the ampli-
tude is shown in Fig. 2, right panel.
We concentrate on small-amplitude undulations, i.e.,

with η2 ≈ η3. In this limit, the wave vector ku tends toffiffiffī
μ

p
, the strictly positive zero-frequency root of the

dispersion relation over the solution η ¼ η0, see Fig. 1.
This is an important point: the wavelength of the undulation
is, to lowest order, always equal to that of a zero-frequency
solution of the linearized equation. This property, also
found in the model of Appendix C, is the reason why the
undulation has an important effect on the scattering at low
frequencies. To next order in η3 − η2, a straightforward
calculation using Eq. (17) gives

ku ¼
ffiffiffī
μ

p �
1 −

15

4μ̄2
A2
u þOðA3

uÞ
�
; ð18Þ

where Au ¼ ðη3 − η2Þ=2 is the amplitude of the undulation.
The solution takes the form

ηuðxÞ ¼ η0 þ Au cosðkuðx − xuÞÞ

−
3A2

u

2μ̄
þ A2

u

2μ̄
cosð2kuðx − xuÞÞ

þ 3A3
u

16μ̄2
cosð3kuðx − xuÞÞ þOðA4

uÞ; ð19Þ

where xu ∈ R determines the phase at x ¼ 0. The main
result to keep in mind is that the spatially bounded solutions
are labeled by three continuous parameters: η0, giving the
mean value of η to leading order, the amplitude of the
oscillations Au, and xu, giving (on multiplication by ku)
the phase at the origin x ¼ 0.

C. Modes over the undulation and transfer matrix

Let us now determine the low-frequency modes over
the undulation from a linear calculation. An alternative
derivation in the zero-frequency limit is given in

Appendix B. Denoting by kðiÞω ; i ∈ f1; 2; 3g the solutions
of the dispersion relation (9) at fixed angular frequency ω,

ordered as kð1Þω < kð2Þω < kð3Þω for jωj < ωmax, we have for
ω ¼ 0:

kð1Þ0 ¼ −ku; kð2Þ0 ¼ 0; and kð3Þ0 ¼ ku:

There are thus two resonances involving two linear waves
and the undulation:

(i) a first-order resonance due to kð3Þ0 − kð2Þ0 ¼
kð2Þ0 − kð1Þ0 ¼ ku, giving a contribution linear in Au,

(ii) a second-order resonance due to kð3Þ0 − kð1Þ0 ¼ 2ku,
whose contribution is of order A2

u.
To obtain the corresponding resonant modes, we solve
Eq. (2) in a background ηð0Þ ¼ ηu given by Eq. (19). Since
the coefficients of the differential equation (2) are inde-
pendent of t and periodic in x with period 2π=ku, one can
look for Bloch wave solutions [37]:

δη∶ðt; xÞ ↦ e−iωtþikxρðxÞ; ð20Þ

where ω and k are two complex numbers giving respec-
tively the angular frequency and the quasimomentum of
the solution δη, and where ρ ∈ C3ðR;CÞ is periodic with
period 2π=ku. Let ðρnÞn∈Z be the coefficients of its Fourier
expansion, defined so that

ρðxÞ ¼
X
n∈Z

ρneinkux: ð21Þ

The mode is normalized with respect to the inner product
(A6) if ρ0 is chosen such that

2π

���� dkdω
����−1
����X
n∈Z

jρnj2
kþ nku

���� ¼ 1; ð22Þ

and the sign of its energy is

sgn

��
dk
dω

�
−1X

n∈Z

jρnj2
kþ nku

�
: ð23Þ

Similarly, ηu can be expanded as

ηuðxÞ ¼
X
n∈Z

ηneinkux; ð24Þ

where ðηnÞn∈Z ∈ CZ. Plugging Eq. (20) in Eq. (2) and
using Eqs. (21) and (24) gives the recursion relation:
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∀n ∈ Z;

ðω − ω0ðkþ nkuÞÞρn − 6ðkþ nkuÞ
X
l∈Z�

ηlρn−l ¼ 0; ð25Þ

where

ω0ðkÞ ¼ μ̄k − k3 ð26Þ
gives the relation between ω and k on a homogeneous
solution η ¼ η0. We define a small parameter ϵ and solve
Eq. (25) perturbatively in ϵ, assuming the following
scalings:

ω ¼ OðϵÞ; ∀ n ∈ Z; ηn ¼ OðϵjnjÞ; and

∀ n ∈ Z; ρn ¼ Oðϵmaxðjnj−1;0ÞÞ: ð27Þ
As for the previous expansion Eq. (6) in the detuned case,
the KdVequation can then be solved order by order in ϵ. As
could be expected from the unperturbed dispersion relation,

we find three modes: two dispersive ones δηð�Þ
ω whose

group velocities go to ω0
0ðkuÞ in the limit ϵ → 0, and a

hydrodynamic one δηðhÞω whose group velocity tends to
ω0
0ð0Þ. The former are given by

δηðsÞω ∶

8>>>>>>><
>>>>>>>:

ρ0 ¼ − 2ω
k2u
ρc þOðϵ2Þ

ρ�1 ¼
�

ω
Au

∓ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

A2
u
þ 4k2u þOðϵ3Þ

q �
ρc þOðϵÞ

ρ�2 ¼
�
1� ω

2k3u

�
Au

k2u
ρ�1 þOðϵ3Þ

ρ�3 ¼ 9A2
u

16k4u
ρ�1 þOðϵ3Þ

;

ð28Þ
where s ∈ f−1;þ1g and ρc is a constant. The correspond-
ing quasimomenta are

k ¼ −
ω

2k2u
þ sδkd; ð29Þ

where

δkd ≡ 3

8k4u
sgnðωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω4

k2u
þ 4ω2A2

u þOðϵ5Þ
s

: ð30Þ

The hydrodynamic mode is given by

δηðhÞω ∶

8>>>>><
>>>>>:

ρ0 ¼ ω
Auku

ρc þOðϵ2Þ
ρ�1 ¼ �ρc þOðϵÞ
ρ�2 ¼ � Au

k2u

�
1 ∓ ω

k2u

�
ρc þOðϵ3Þ

ρ�3 ¼ � 9A2
u

16k4u
ρc þOðϵ3Þ

: ð31Þ

Its quasimomentum satisfies ω0ðkÞ ¼ ωþOðϵ3Þ, i.e., is
unchanged to this order.

The stationary modes obtained by variations of the
nonlinear solution of the KdV equation, ∂xuηu, ∂η0ηu,
and ∂Au

ηu [see Eqs. (B5)–(B7)] can be obtained as the
limit ω → 0 of the three modes of Eqs. (28) and (31).
Indeed, a straightforward calculation shows that (up to a

global factor) δηðhÞω and δηð�Þ
ω converge uniformly toward

∂xuηu in the limit ω → 0, while the two other modes are
obtained through

Au

4ωρc
ðδηðþÞ

ω þ δηð−Þω Þ !
ω→0

∂Au
ηu þ 2

Au

μ

�
1 −

9A2
u

μ2

�
∂η0ηu

ð32Þ
and

Auku
ωρc

δηðhÞω þ Au

4ωρc
ðδηðþÞ

ω − δηð−Þω Þ !
ω→0

�
1 −

9A2
u

μ2

�
∂η0ηu:

ð33Þ
(In these expressions, the convergence is uniform on any
bounded domain of R2.)
One can compute the transfer matrix T at zero frequency

over a damped undulation of the form

ηu;dðxÞ¼
ηuðxÞ
2

½1− tanhðσuðx−Lu=2ÞÞtanhðσuðxþLu=2ÞÞ�;
ð34Þ

where σu and Lu are two strictly positive numbers. One
example is shown in Fig. 3. Following the notation adopted
in Fig. 1, let us denote with an index 2 the hydrodynamic
wave with vanishing wave vector while indices 1 and 3
denote the dispersive waves with wave vectors going to
� ffiffiffī

μ
p

for ω → 0. To simplify the expressions, we here give
the results for modes normalized to have a single plane
wave with unit amplitude on the left or on the right of the
undulation. Taking the double limit Au → 0, Lu → ∞ at

FIG. 3. Asymptotically turned-off undulation [see Eq. (34)] for
Lu ¼ 100, Au ≈ 0.1, and σu ¼ 0.1.
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fixed AuL, the results become independent of σu. Retaining
only the leading terms gives

jT2;1j ∼ jT2;3j ∼
3Au

2
ffiffiffi
μ

p Lu;

jT1;1 − 1j ∼ jT1;3j ∼ jT3;1j ∼ jT3;3 − 1j ∼ 15A2
u

4μ3=2
Lu: ð35Þ

The transfer coefficients T2;2 − 1, T1;2, and T3;2 go to zero
faster than Au in this limit. The behavior of the coefficients
T2;1 and T1;1 is compared with results from a numerical
resolution of the KdV equation in Fig. 4. The important
point is that imposing a hydrodynamic wave with an
amplitude of order 1 on one side will generate dispersive
waves with amplitudes linear in AuLu on the other side,
while the coefficients relating two dispersive waves are
in A2

uLu. As will be shown in Sec. III, this is crucial to
understand the effect of the undulation on the scattering in a
white-hole-like flow. Moreover, this scaling is preserved in
the more realistic model of Appendix C 3, showing that the
results obtained with the KdVequation qualitatively extend
to that model.

In this section we have thus obtained the low-frequency
modes over a small-amplitude undulation and determined
the corresponding transfer matrix. To study the scattering of
water waves in the presence of undulation, there remains to
determine which linear combination of these modes enters
the incoming mode in a given configuration. This is done in
Sec. III for a “white-hole” flow.

III. WHITE-HOLE-LIKE FLOWS

A. Setup and general idea

As mentioned in the Introduction, one motivation for
studying water waves in the context of analogue gravity is
the possibility to realize white-hole flows with an analogue
horizon. For definiteness, we work with flows oriented to
the left. To fix the ideas, we here define a white-hole flow
by the five properties:
(1) The flow velocity v and speed of long-wavelength

perturbations in the fluid frame c are piecewise-
continuous functions of x such that c is positive and
v does not change sign.

FIG. 4. Plots of the absolute values of the coefficients T2;1 (left panels) and T1;1 (right panels) as functions of the length L of an
undulation of the form (34), for Au ≈ 0.05, μ ¼ 1, and for σu ¼ 1 (top panels) and σu ¼ 0.1 (bottom panels). Blue, continuous lines
show numerical results, while the green, dashed lines show the analytical approximation (35). The difference between the average slopes
is due to higher-order effects, and the oscillations visible on the top plots seem due to the sharp variation of the amplitude at both ends of
the undulation.

GRAVITY WAVES ON MODULATED FLOWS DOWNSTREAM … PHYS. REV. D 97, 065018 (2018)

065018-7



(2) vðxÞ and cðxÞ are asymptotically uniform in the
limits x → �∞.

(3) The flow is subcritical in the downstream region:

lim
x→−∞

���� vðxÞcðxÞ
���� < 1: ð36Þ

(4) It is supercritical in the upstream region:

lim
x→þ∞

���� vðxÞcðxÞ
���� > 1: ð37Þ

(5) There exists only one point xh ∈ R such that

lim
x→x−h

���� vðxÞcðxÞ
���� ≤ 1 and lim

x→xþh

���� vðxÞcðxÞ
���� ≥ 1: ð38Þ

The point xh is the analogue horizon.2

Such setups have been extensively studied, see for instance
Refs. [10,13,29,30,38,39]. One important result, related to
the Hawking effect in astrophysical black holes, is the
divergence of the scattering coefficient βω relating the
incoming counterpropagating mode (corresponding to a
wave sent from the downstream region upward) to the
outgoing negative-energy wave. (An analytical proof is
given in [32].) More precisely, βω gives the amplitude of the
normalized [in the sense of Eq. (A8), see Appendix A 1 for
details] negative-energy wave obtained when sending from
the left a normalized counterpropagating incident wave
with angular frequency ω. The crucial point is that jωβ2ωj
has a finite limit as ω → 0, which is interpreted as the
effective temperature Teff of the analogue horizon.3

The effective temperature can be determined from the
zero-frequency limits of the amplitudes of the plane waves
in the asymptotic downstream region. Let us denote by Ain
that of the incident wave and Aneg that of the negative-
energy one. Using Eq. (A9) to relate them to normalized
waves and the dispersion relation (9) to relate the wave
vectors to the angular frequency ω, one finds

Teff ¼ 2μ̄ð−∞Þ3=2
����Aneg

Ain

����2: ð39Þ

For sufficiently smooth white-hole flows, one can show
[38] that Teff ≈ κ=ð2πÞ, where κ ≡ j∂xðvþ cÞx¼xh j is the
analogue of the surface gravity.
However, as also mentioned in the Introduction, flows

realized in experiments generally have an undulation in the
downstream region. To avoid ambiguity, we shall refer to
them as white-hole-like flows, for which the conditions 2
and 3 above are replaced, respectively, by

2’. vðxÞ and cðxÞ are asymptotically uniform in the limit
x → þ∞ and periodic at x → −∞.

3’. The flow is subcritical in the downstream region:

∃xM ∈R; ∀ x∈R; x < xM ⇒ jvðxÞ=cðxÞj< 1:

ð40Þ

Our aim in this section is to understand the effects of a
small-amplitude undulation on Teff . To this end, we
determine the wave content of the relevant mode as a
function of x, which may be thought of as the position of a
detector measuring the local wave amplitudes using aWKB
approximation (or, equivalently, as the total length of the
undulation if the measurement is performed in the flat
asymptotic downstream region). As we shall see, because
of the resonance discussed in Sec. II, their amplitudes
change significantly even when going far away from the
horizon, which affects the effective temperature. When
decreasing x from xh toward −∞, one obtains two limit
regimes:

(i) Close to the horizon [more precisely, for small
values of Auðxh − xÞ], in the limit Au ≪ 1, the
contribution from the undulation is negligible and

one recovers the temperature Tð0Þ
eff of a white-hole

flow without undulation.
(ii) For xh − x ≫ A−2

u , the wave content is dominated by
the linearly growing terms over the undulation: βω
then becomes proportional to Au and the effective
temperature scales like A2

u.
For this reason, and as will be shown more precisely below,
the two limits Au → 0 (small undulation) and x → −∞
(long undulation) do not commute: sending first Au to 0 and

then x to −∞ gives Teff ¼ Tð0Þ
eff , while taking first x → −∞

and then Au ≪ 1 gives a different effective temperature

TðuÞ
eff , determined by the behavior of the modes of Sec. II

over the undulation. In Sec. III B we consider a toy model

in which Tð0Þ
eff and TðuÞ

eff can be computed explicitly as well
as the interpolation between them when decreasing x.

In Sec. III C we generalize the calculation of TðuÞ
eff using

a forced KdV equation.

B. Low-frequency effective temperature:
An explicit calculation

Let us consider the KdV equation with variable
coefficient:

2Assuming v=c is continuous, this condition simplifies: there
exists only one xh ∈ R such that jvðxhÞ=cðxhÞj ¼ 1.

3In quantum fluids, choosing units in which the Boltzmann
and Planck constants are equal to 1, Teff is the low-frequency
temperature of the ensemble of quasiparticles spontaneously
produced by the analogue Hawking effect. In general, the
effective temperatures defined using the various incoming modes
will differ due to the coupling between copropagating and
counterpropagating modes in the rest frame of the fluid [13].
However, when using the KdV equation there are only two
independent incoming modes over a transcritical flow, and
conservation of the inner product (A6) ensures their effective
temperatures are equal.
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∂tηþ ∂xðμηÞ þ ∂3
xηþ 6η∂xη ¼ 0; ð41Þ

where μ is a given function of x. We focus on time-
independent solutions. Integrating Eq. (41) over x gives

μηþ ∂2
xηþ 3η2 ¼ C; ð42Þ

where C is a real constant. To be specific, let us assume that
μ has a steplike profile:

μðxÞ ¼
�
μ− x < 0

μþ x > 0
: ð43Þ

for some real numbers μ− > 0 and μþ < 0. The trivial
solution η ¼ 0 then corresponds to a white-hole flow with
negative velocity. Stationary perturbations in the down-
stream region x < 0 are given by Eqs. (18) and (19) with μ̄

replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2− þ 12C

p
and with η0 ¼ ðk2u − μ−Þ=6. A

similar procedure can be used to find the stationary
solutions in the upstream region x > 0. At fixed C, they
are described by a single parameter Ad ∈ R:

ηdðxÞ ¼ −
μþ þ k2d

6
þ Ade−kdx −

A2
d

k2d
e−2kdx

þ 3A3
d

4k4d
e−3kdx þOðA4

dÞ; ð44Þ

where kd ≡ ðμ2þ þ 12CÞ1=4 is the decay rate of the pertur-
bation to linear order. The general global solution is then
given by Eq. (44) for x > 0 and by Eq. (19) for x < 0, with
amplitude Au and phase kuxu related to Ad by the require-
ment that η be continuous and differentiable at x ¼ 0. To
leading order in Ad, these two requirements become

sinðkuxuÞ ≈ −
kdAd

kuAu
ð45Þ

and

Au ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k2d þ k2u þ μþ − μ−

6
− Ad

�
2

þ k2d
k2u

A2
d

s
: ð46Þ

We now wish to compute the incoming, counterpropa-

gating mode ϕðinÞ
ω and its derivative δηðinÞω ≡ ∂xϕ

ðinÞ
ω at low

frequency.4 We consider two cases:
(1) As a warm-up exercise, we compute it over the

homogeneous solution ηð0Þ ¼ 0 and determine the

corresponding effective temperature Tð0Þ
eff .

(2) We then turn to the case Ad ≠ 0, and thus Au ≠ 0, to
see the effects of the undulation.

1. Low-frequency effective temperature on
the homogeneous solution η= 0

To compute the effective temperature, one needs the

structure of the incoming counterpropagating mode δηðinÞω ,
which corresponds to sending a wave from the left, in the
low-frequency limit. We first notice that the waves with real
wave vectors in the region x > 0 are incoming, with group
velocities v� c < 0, and are thus absent in the mode we
are interested in.5 This mode thus must be exponentially
decreasing for x → ∞. Second, we note that at zero
frequency any stationary mode is an infinitesimal differ-
ence between two nonlinear stationary solutions. (See
Sec. II C and Appendix B.)
In our case, the relevant stationary solution depends on

the two parameters C and Ad, giving two possible asymp-
totically bounded modes. However, as can be seen from
Eq. (44), ∂Ad

ηd is exponentially decreasing as x → þ∞
while ∂Cηd goes to a finite constant −1=μþ. In the
low-frequency limit, we thus have

δηðinÞω ∝ ð∂Ad
ηð0ÞÞAd¼C¼0: ð47Þ

Evaluating the derivative and using the matching conditions
at x ¼ 0 gives

δηðinÞω ∝
� e−kdx x > 0

cos ðkuxÞ − kd
ku
sin ðkuxÞ x < 0

: ð48Þ

Integrating over x, one obtains

ϕðinÞ
ω ∝

� e−kdx x > 0

1þ k2d
k2u
− kd

ku
sin ðkuxÞ − k2d

k2u
cos ðkuxÞ x < 0

:

ð49Þ

The effective temperature can then be determined using
Eq. (39): the amplitude of the incoming wave, which is
uniform in the limit ω → 0, goes to 1þ k2d=k

2
u while that

of the negative-energy wave, with wave vector −ku for

ω ¼ 0þ, goes to ðkd=ð2kuÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2d=k

2
u

q
, giving

4The field ϕ is defined as the integral of δη over x. As is shown
in Appendix A 1, ϕ is the field appearing in the Lagrangian
formulation of the KdV equation, and the natural quantity to
define normalized modes.

5In the derivation of the KdV equation, the limit jv=cj → 1 is
taken. As a result, v − c is not well defined and copropagating
waves are uniform. Their group velocity is thus undefined.
However, when using a more refined model such as that of
Appendix C 2, one finds that their group velocity is negative. The
interested reader may also notice that this degeneracy is related to
the constraint mentioned in footnote 9.
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Tð0Þ
eff ¼

μ3=2−

2

�
1þ
���� μ−μþ

����
�

−1
: ð50Þ

Recalling from Eq. (10) that ωmax ∝ μ3=2− , this expression is
of the same form as those found in the steplike regime
of Bogoliubov–de Gennes [40] and the quartic dispersion
relation considered in [41].

2. Low-frequency effective temperature on a
white-hole-like flow with undulation

We now consider the case Ad ≠ 0, and thus Au ≠ 0,
keeping for simplicity C ¼ 0 for the background flow.
(This hypothesis will be relaxed below.) The idea of the
calculation is the same as above. Since the background
solution goes to zero exponentially in the limit x → þ∞,
the structure of the modes in this region is unaffected and

ϕðinÞ
0 must still be exponentially decreasing, which implies

ηðinÞ0 ∝ ∂Ad
ηð0Þ. However, the additional terms in Eq. (19)

give linearly growing ones in ϕðinÞ
0 in the limit x → −∞,

represented in Fig. 5. For sufficiently large values of−x and
small amplitudes Au, the relative variations of the ampli-
tudes of the waves over a distance 2π=ku becomes
negligible. Using a WKB approximation, the amplitudes
of the incident and negative-energy waves for ω ¼ 0þ can
thus be locally evaluated unambiguously.
An interesting point is that, when focusing on the limit

x → −∞, one does not need to know the relationship
between ðAu; xuÞ and Ad. Indeed, assuming ∂Ad

Au ≠ 0

[which can be verified explicitly using Eq. (46)], and
keeping only the constant term (which gives a linearly

growing contribution to ϕðinÞ
0 after integration over x) and

the linearly growing one, we obtain

δηðinÞ0 ∝
�
−
3Au

k2u
þ 15A2

u

2μ3=2−
x sinðkuðx − xuÞÞ

�
∂Ad

Au þ � � � ;

ð51Þ

where the neglected terms give finite contributions to ϕðinÞ
0

in the limit x → −∞ or grow linearly with coefficients of
higher order in Au. Integrating over x gives

ϕðinÞ
0 ∝ −

�
3Au

k2u
þ 15A2

u

2μ2−
cosðkuðx − xuÞÞ

�
x∂Ad

Au þ � � � :

ð52Þ

Using again Eq. (39), one obtains the effective temperature:

TðuÞ
eff ≈

25A2
u

8
ffiffiffiffiffiffi
μ−

p : ð53Þ

Equation (53) [along with its generalization given later in
(64)] is the main result of this work. They show that an
undulation with an arbitrarily small amplitude will, if
extending over a sufficiently long domain (this condition
is made more precise below), efficiently suppress the

scattering, replacing the effective temperature Tð0Þ
eff of

Eq. (50) by TðuÞ
eff of Eq. (53). Moreover, this new effective

temperature goes to zero like A2
u for Au → 0. Although the

above calculation is done in a very specific case, it is clear
from the derivation that this scaling only depends on the
properties of the periodic, stationary solutions for x → −∞
and thus applies much more generally. In particular,
Eq. (53), whose derivation involves only the properties
of the flow in the asymptotic regions x → �∞, remains
valid when replacing the steplike profile for μ with a
smooth one. Below we consider two generalizations: in
Sec. III C we use white-hole-like flows of the forced KdV

FIG. 5. Left panel: Plot of the homogeneous solution η ¼ 0 (green) and of a modulated solution (blue) of the KdV equation with
variable coefficient (41). The function μ has a hyperbolic tangent profile μðxÞ ¼ Aþ B tanhðσxÞ with σ ¼ 100 and ðA; BÞ ∈ R2 chosen
so that μð−∞Þ ¼ 0.8 and μðþ∞Þ ¼ −1.5. Right panel: Incoming, counterpropagating mode over the modulated solution (blue) and
over the homogeneous solution η ¼ 0 (green). (The normalization is arbitrary.)
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equation and show that Eq. (53) is recovered up to adding a
constant to μ− accounting for the different mean back-
ground flow. In Appendix C 3, we use a more realistic
model of water waves and find the same scaling between
the effective temperature computed far from the horizon
and the amplitude of the undulation.
Before that, it is useful to consider the effective temper-

ature TeffðxÞ obtained when doing the measurement at a
finite (negative) value of x. Redoing the above calculation
while keeping the leading terms of constant amplitude in

ϕðinÞ
0 gives6

TeffðxÞ ≈
μ3=2−

2

1þ 225A4
u

4μ3−
x2� ffiffiffiffiffiffiffiffiffiffiffiffi

1 − μ−
μþ

q
þ sgnðAdÞ 3jAujffiffiffiffi

μ−
p x

�
2
: ð54Þ

This is represented in Fig. 6. Three regimes can be
distinguished:

(i) For 0 < −x ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ− − μ2−=μþ

p
=ð3jAujÞ, the terms

linear in x are negligible and one recovers

TeffðxÞ ≈ Tð0Þ
eff .

(ii) For −x ≫ 2μ3=2− =ð15A2
uÞ, they become dominant and

the effective temperature becomes TeffðxÞ ≈ TðuÞ
eff .

(iii) For
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ− − μ2−=μþ

p
=ð3jAujÞ ≪ −x ≪ 2μ3=2− =ð15A2

uÞ,
one finds an intermediate regime with

TeffðxÞ ≈
μ5=2−

18A2
ux2

: ð55Þ

This regime is interesting as it shows how the

temperature goes from the value Tð0Þ
eff to the (under

our hypotheses) much smaller value TðuÞ
eff when

increasing the length of the undulation. In particular,
one sees that the main parameter describing this
transition is the product Aux of the amplitude of the
undulation and the length x separating the point
where the measurement is made from the analogue
horizon.

As a consistency check, we compare in the right panel of
the figure results from Eq. (54) to those from a numerical
calculation of the effective temperature with a cutoff
undulation. This finite undulation is defined by multiplying
the background solution ηð0Þ by θðx − x0Þ, where θ is
Heaviside’s step function and x0 < 0, so that the flow is
asymptotically homogeneous and the scattering coeffi-
cients can be computed in the usual way [13,29]. Apart
from small oscillations coming from higher-order effects,
whose relative amplitude seems linear in Au, we observe a
good agreement between the numerical and analytical
results.
Before moving on, let us pause to make a qualitative

summary. As mentioned above, there are two resonances
at zero frequency: a first-order one involving the “hydro-
dynamic” root k ¼ 0 and one dispersive root, and a second-
order one involving the two dispersive roots. The first
resonance is responsible for the term linear in x.7 The
second-order one yields the term in x cosðkuxÞ. When
moving away from x ¼ 0, in the negative-x direction, both
the hydrodynamic and dispersive waves thus have ampli-
tudes growing linearly in jxj, with coefficients of orders Au

and A2
u, respectively. For sufficiently long undulations,

these linearly growing terms dominate over the constant
ones coming from the scattering in the region x ≈ 0, giving
values of βω≈0 proportional to Au, and thus a temperature
proportional to A2

u. We briefly investigated numerically the
case of a finite slope of u near the sonic horizon and found
that: first, the qualitative behavior of TeffðxÞ is similar to
that in Fig. 6; and second, the asymptotic value of TeffðxÞ as
x → −∞ is still given by Eq. (53), as expected from the
above analysis.

3. Effect of damped undulation

A more physical way to send the amplitude of the
undulation to zero at spatial infinity is to add a small
dissipative term to the KdV equation. Focusing on sta-
tionary solutions, we work with the equation

FIG. 6. Square root of the effective temperature computed
numerically over a finite-length undulation with sharp cutoff
(which causes the rapid oscillations with small amplitude) with
Ad ¼ −0.03, μþ ¼ 1, and μ− ¼ −1, as a function of the cutoff

position x. The temperature is adimensionalized by Tð0Þ
eff of

Eq. (50). The green curve shows the numerical result. The blue,
dotted one shows the approximation from Eq. (54) and the red,

dashed line its limit TðuÞ
eff of Eq. (53) for x → −∞.

6If Ad > 0, Eq. (54) has a divergence for a finite negative value
of x. This does not seem to indicate anything dramatic: it is only
the consequence of a local cancellation between the wave with
low wave vector present in the absence of undulation and the
linearly growing part due to the latter, so that the amplitude of the
incoming mode as measured there would vanish.

7More precisely, it gives a finite constant to δη, which after
integration yields a linear term in ϕ.
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∂2
xηþ μηþ 3η2 − ν∂xη ¼ 0; ð56Þ

where ν ≪ kd; ku is a small positive number. This equation
may be written as

∂x

�
1

2
ð∂xηÞ2 þ

μ

2
η2 þ η3

�
¼ νð∂xηÞ2: ð57Þ

To leading order, the evolution of the amplitude Au of the
undulation is thus given by

∂xðA2
uÞ ≈ 2νsin2ðkuxÞA2

u: ð58Þ

Since ν ≪ ku, one can average this equation over a few
wavelengths, leading to

Au ∝ eνx=2 ð59Þ

for x < 0. The effects of this damped undulation on the
scattering can be estimated as follows. Locally, if ν is
sufficiently small, the modes of Eq. (2) have the same form
as above, with Au now slowly varying with x. In particular,

over an interval of length δx centered on x and such that

νjδxj ≪ 1, the nonoscillating part of ϕðinÞ
0 will grow by a

quantity proportional to AuðxÞδx and the oscillating part by
a quantity proportional to AuðxÞ2δx. When computing their
ratio for x → −∞, Au should thus be replaced by

R
0
−∞ AuðxÞ2dxR
0
−∞ AuðxÞdx

¼ Auð0Þ
2

: ð60Þ

For a given value of Auð0Þ, one thus expects that the

effective temperature TðdÞ
eff measured at x → −∞ over a

slowly damped undulation is 4 times smaller than the result
obtained without damping:

TðdÞ
eff ≈

25Auð0Þ2
32

ffiffiffiffiffiffi
μ−

p : ð61Þ

To illustrate this result, we show in Fig. 7 the evolution of
the effective temperature with ν, computed numerically
for different values of x. As expected from the above

FIG. 7. Top: A damped undulation solution of Eq. (56) (left) and the incoming counterpropagating mode over this solution (right). The
parameters are the same as in the right panel of Fig. 5, and ν is set to 0.01. Bottom: Variation of the effective temperature with ν, for
relatively small values of this parameter. The value of −x is multiplied by 2 between each curve, from blue to green, with minimum value
−xmax ¼ 2000. The dashed line materializes the value 1=4.
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calculation, the two limits x → −∞ and ν → 0þ do not
commute:

(i) When sending ν to 0þ at fixed x and then x to −∞,

one recovers the effective temperature TðuÞ
eff com-

puted for ν ¼ 0.
(ii) When sending first x to −∞ and then ν to 0þ, the

effective temperature we obtain is 4 times smaller, in
accordance with Eq. (61).

C. Low-frequency effective temperature:
Generalization

We now wish to generalize the main result of the above
analysis, i.e., Eq. (53), to a wider class of white-hole-like
flows. Let us consider the forced KdV equation

∂tηþ ∂xðμηÞ þ ∂3
xηþ 6η∂xη ¼ f; ð62Þ

where μ and f are two smooth functions of x. We assume μ
has finite limits μ� as x → �∞ and that f is integrable over
R. We denote as h a primitive of f, and by h� its limits
x → �∞. When looking for stationary solutions, Eq. (62)
can be integrated over x, giving

μηþ ∂2
xηþ 3η2 ¼ hþ C; ð63Þ

where C is an integration constant. Locally, the properties
of the solutions are identical to those obtained for
f ¼ 0, with C shifted by h. In particular, if μ and h
are homogeneous we have two uniform solutions ηðxÞ ¼
ð−μ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ 12ðCþ hÞ

p
Þ=6, the one with the þ sign

being subcritical while that with the − sign is supercritical.
We assume that μ and f are such that there exists a value

C0 of C for which there is a white-hole solution, i.e.,
a solution going to ð−μ� ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2� þ 12ðC0 þ h�Þ
p

Þ=6 as
x → �∞.8 Stationary solutions close to this white-hole
flow are given

(i) in the limit x → þ∞, by Eq. (44) with C replaced
by Cþ hþ,

(ii) in the limit x → −∞, by Eqs. (18) and (19) with μ

replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2− þ 12ðCþ h−Þ

p
and with η0 ¼

ðk2u − μ−Þ=6.
As in the previous case, they depend on the two parameters
Ad and C, the quantities Au and xu being fixed by solving
Eq. (62). As above also, the incoming counterpropagating
mode must go to zero as x → þ∞, which tells us that

δηðinÞ0 ∝ ∂Ad
η at fixed C. Using Eqs. (18) and (19) to

determine the behavior of δηðinÞ0 for x → −∞, integrating

over x to obtain ϕðinÞ
0 , and extracting the effective temper-

ature using Eq. (39) gives, to leading order in Au and
assuming Au ≠ 0,

TðuÞ
eff ≈

25A2
u

8ðμ2− þ 12ðCþ h−ÞÞ1=4
: ð64Þ

The other results of the previous subsection also extend
qualitatively to the present case. In particular, one still finds
the three regimes: assuming the origin of x is chosen close
to the analogue horizon, and up to coefficients depending
on the profiles of μ and f,

(i) for −x ≪ A−1
u , TeffðxÞ is close to that computed

without the undulation;
(ii) for −x ≫ A−2

u , TeffðxÞ ≈ TðuÞ
eff ;

(iii) in the intermediate range A−1
u ≪ −x ≪ A−2

u , TeffðxÞ
scales like 1=ðA2

ux2Þ.
The reasoning leading to Eq. (61) also remains valid up to
minor modifications, showing that adding a small dissipa-
tive term will reduce the effective temperature as measured
at infinity by a factor 4 with respect to Eq. (64).

IV. CONCLUSIONS

We have studied the propagation of linear waves in
spatially modulated water flows. In the main text we used a
simple model based on the KdVequation, which shows the
generic features in a relatively transparent way. The same
problem is addressed in a more realistic model of water
waves in Appendix C. In Appendix A we focus on the
simpler case of a detuned undulation, whose wavelength is
different from that of the low-frequency dispersive waves
and which may be understood as a modulation of some
external parameter such as, for instance, the height of an
obstacle. In that case the resonance occurs when the wave
number of the modulation, or an integer multiple of it, is
equal to the difference between two roots of the dispersion
relation at the same frequency.
We considered waves propagating over stationary inho-

mogeneous solutions of the nonlinear KdV equation and
found a low-frequency resonance with peculiar features. In
particular, two modes grow linearly in space, which can be
understood as the limit of the usual exponential behavior
when the energy carried by each wave, and thus the growth
rate, goes to zero. We show in Appendix B that the linear
modes are closely related to the structure of the nearby
nonlinear solutions. Applying these results to white-hole-
like flows with the analogue of a Killing horizon and a
modulated free surface, we found that the latter can
drasticallymodify the analogueHawking emission provided
it extends far enough from the horizon. For a sufficiently

small amplitude (such that TðuÞ
eff < Tð0Þ

eff ), we analytically
determined three regimes, depending on the length L and
amplitude A of the undulation: a regime of short undulation

8This hypothesis should be satisfied without the need to fine-
tune the functions μ and f, as explained in [29]. Indeed, since the
KdV equation is of order 3, the general solution has three
parameters. The condition that it is asymptotically uniform in
the subcritical region gives two constraints to linear order while
the same condition in the supercritical region gives only one
constraint since one of the waves is exponentially decreasing. The
number of constraints is thus equal to that of degrees of freedom,
so one generally expects to find a discrete set of solutions.
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where the latter hardly affects the scattering, one of
“long” undulation where it completely fixes the effective
temperature Teff ∝ A2, and an intermediate one where
Teff ∝ 1=ðA2L2Þ. These scaling laws constitute the main
result of our work. Their derivation shows that they arise
directly from the structure of the solutions close to asymp-
totically homogeneous white-hole ones, and we thus expect
them to be fairly general. The analysis of Appendix C
confirms that they also hold in the case of a more refined
model of water waves. Finally, we considered the effect of a
long undulation in the presence of a dissipative term sending
its amplitude to zero at infinity.We found that, in the limit of
small dissipation, the effective temperature is divided by 4
with respect to the nondissipative result. These results were
verified numerically by solving the KdV equation.
These findings raise two important questions which we

hope to address in future works. The first and, in principle,
most straightforward one is to consider the same problem
in other analogue gravity systems such as cold atoms or
quantum fluids of light. While the similarities between the
nonlinear solutions of the Gross-Pitaevskii and KdV equa-
tions seem to indicate that similar results will hold, it would
be interesting to verify this explicitly and to determine the
coefficients of the linearly growing terms in different
systems. The second question concerns their application
to experiments. Considering for instance the realization of
[11], two elements prevent our results from being directly
applicable. First, the experimental setup was slightly differ-
ent from the one considered here, consisting of a subcritical
water flow over a localized obstacle (briefly discussed in
Appendix D). Second, the undulation amplitude varied
significantly over a few wavelengths. It is thus not clear to
what extent the present analysis, based on the assumptionof a
slowly varying amplitude, can be trusted in this regime. We
expect, however, that low-frequency resonances still play an
important role. It would be of interest to obtain experimental
data with a transcritical flow to be able to compare themwith
our results: the former could point to physical effects not
included in the above analysis while the latter could help
disentangle the contribution from the scattering on the
undulation and from the analogue Hawking effect. As they
stand, the main results of this article can already be used for
estimating the parameter range in which the Hawking effect
should dominate, which we hope will help guide the design
of future analogue gravity experiments.
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APPENDIX A: DETUNED UNDULATION

1. Lagrangian description of the linear KdV equation

We first look for a simple linear equation describing
dispersive, small-amplitude water waves in the presence of
a bottom topography inducing a modulated background
flow. We focus on counterpropagating waves and assume
that the wave vector of the modulation differs from the
zero-frequency wave number ku. For definiteness, we
consider a flow from right to left. The waves we shall
consider then all propagate to the right in the frame of the
fluid. Yet, because of the flow, some of them are dragged
and propagate to the left in the laboratory frame.
We start from the (nonlinear) forced KdV equation [34]

½∂t þ μ0∂x þ ∂3
x þ 6ηðt; xÞ∂x�ηðt; xÞ ¼ ∂xhðxÞ; ðA1Þ

where η gives the water height measured with respect to a
uniform reference solution of the fluid equations for
∂xh ¼ 0, and where μ0 is a real constant. Denoting as v0
the fluid velocity and c0 the speed of long-wavelength
perturbations of the background solution η ¼ 0 in the fluid
frame, μ0 is equal to the group velocity v0 þ c0 of long-
wavelength linear perturbations in the laboratory frame. We
assume the flow is subcritical, i.e., jv0j < c0, so that μ0 > 0.
The function h describes the stationary bottom topography.
We use a unit system inwhich the uniformwater depth of the
background flow is

ffiffiffiffiffiffiffiffi
3=2

p
and the gravitational acceleration

is 16
ffiffiffiffiffiffiffiffi
2=3

p
. [These values are chosen to set the coefficients

of the dispersive and nonlinear terms in Eq. (A1) to simple
values, see for instance [35].] Let us assumewe know a time-
independent solution η0. We look for C3 perturbations δη
of the form ηðt; xÞ ¼ η0ðxÞ þ δηðt; xÞ.
To interpret and generalize the results of the following

subsections, it is useful to adopt a Lagrangian description.
To this end, we define the auxiliary field ϕ, akin to a
velocity potential, by

ϕðt; xÞ ¼
Z

x

0

δηðt; yÞdy: ðA2Þ

Linearizing the forced KdV equation (A1) gives

∂t∂xϕðt; xÞ þ ∂xðμðxÞ∂xϕðt; xÞÞ þ ∂4
xϕðt; xÞ ¼ 0: ðA3Þ
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Notice that, using ∂xϕ ¼ δη, one recovers Eq. (3).
Equation (A3) is the Euler-Lagrange equation obtained from
extremization of the quadratic action Sq ¼

R
R2 dtdxLq with

Lq ¼ −½ð∂tϕÞð∂xϕÞ þ μð∂xϕÞ2 − ð∂2
xϕÞ2�: ðA4Þ

In practical calculations it is convenient toworkwith complex
solutions of Eq. (A3). The Lagrangian density is then

Lq ¼ −½Reðð∂tϕ
�Þð∂xϕÞÞ þ μj∂xϕj2 − j∂2

xϕj2�: ðA5Þ
A straightforward calculation shows that the inner product
between two arbitrary square integrable solutions ϕ1;ϕ2 of
Eq. (A3), defined by

ðϕ1jϕ2Þ¼
i
2

Z þ∞

−∞
ðϕ2ðt;xÞ∂xϕ

�
1ðt;xÞ−ϕ�

1ðt;xÞ∂xϕ2ðt;xÞÞdx;

ðA6Þ
is conserved by the time evolution. As usual, this definition
can be extended fromL2 solutions to planewaves in the sense
of distributions. If ϕi∶ðt; xÞ ↦ Aieiðkix−ω0ðkiÞtÞ for i ∈ f1; 2g
with ðA1; A2; k1; k2Þ ∈ C2 ×R2, we have

ðϕ1jϕ2Þ ¼ 2πA�
1A2k1δðk1 − k2Þ: ðA7Þ

In this work we focus on stationary, inhomogeneous con-
figurations. It is then convenient to work with the normalized
waves ϕN

ω;i, whereω denotes the angular frequency and i is a
discrete parameter distinguishing the different solutions with
the same frequency, satisfying

jðϕN
ω;ijϕN

ω0;jÞj ¼ δðω − ω0Þδi;j: ðA8Þ
In a homogeneous region, these normalized waves are
given by

ϕN
ω;iðt; xÞ ¼

eiðkix−ωtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πjki dωdki j

q ; ðA9Þ

where ki denotes the ith solution of the dispersion relation for
the angular frequency ω.
This inner product is related to the wave energy in the

following way. The (naive9) Hamiltonian associated with
Eq. (A5) is

Hq½ϕ� ¼
Z þ∞

−∞
ðμj∂xϕj2 − j∂2

xϕj2Þdx: ðA10Þ

Assuming ϕ, its space derivatives up to the third, and ∂tϕ
are square integrable, a straightforward calculation shows
that

Hq½ϕ� ¼ ðϕji∂tϕÞ: ðA11Þ

This equation is valid for both complex and real solutions
of Eq. (A3). If ϕω is a solution with fixed angular frequency
ω ∈ R, we have

Hq½ϕ� ¼ ωðϕωjϕωÞ: ðA12Þ

If ϕω is a plane wave with wave vector k, its energy thus has
the same sign as ωk. The energy flux can be obtained by
multiplication by the group velocity.

2. Modes over a detuned undulation

We now determine solutions of Eq. (3) in the presence of
a detuned undulation. We use the notations of Sec. II A and
work to leading nontrivial order in ϵ. The calculation can be
done to higher orders following the same lines. Our goal is
to show using a simple example the generic features due to
the undulation, which will reappear in other contexts such
as a refined description of water waves (see Appendix C 1),
and which will guide the calculation in the case of a tuned
undulation, done in Sec. II and in Appendix C 3. We
assume the resonance condition is satisfied with nr ¼ 1,
i.e., there exists ωr ∈ �0;ωmax½ and ðir; jrÞ ∈ f1; 2; 3g2
with ir > jr such that kðirÞωr − kðjrÞωr ¼ kμ. We work with
values of the angular frequency ω close to ωr.
Since μ is independent of t and periodic in x with period

λμ, we can look for solutions of Eq. (3) of the form

δηðt; xÞ ¼ e−iωtþikxξðxÞ; ðA13Þ

where ω ∈ C is the angular frequency, k ∈ C is the
quasimomentum, and ξ ∈ C3ðR;CÞ is periodic with period
λμ. The function ξ can be expanded as

ξ∶x ↦
X
n∈Z

ξneinkμx; ðA14Þ

where, for all n ∈ Z,

ξn ¼
1

λμ

Z
λμ

0

e−inkμxξðxÞdx: ðA15Þ

Plugging this form into Eq. (3) gives

9The Lagrangian density (A4) is linear in ∂tϕ, so that the
system is constrained and the Dirac formalism should be used to
obtain the Hamiltonian formulation. A precise analysis is done in
[42] using a two-field model and in [43] for more general systems
of KdV equations. In the present case, it amounts to adding to
the Hamiltonian density λðp − ∂xϕÞ, where p is the momentum
conjugate to ϕ and λ is a Lagrange multiplier. A straightforward
calculation shows that the Poisson bracket of p − ∂xϕ and the
Hamiltonian vanishes for λ ¼ w∂xϕþ ∂3

xϕ, so that there is no
secondary constraint. Hamilton’s principle then gives back the
linearized KdVequation (A3). Notice also that the additional term
in the Hamiltonian vanishes for solutions of the field equation, so
that it neither affects Eqs. (A6)–(A12) nor the discussion of the
wave energy in the main text.
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∀ x ∈ ½0; λμ½;X
n∈Z

ð−ωþ μðxÞðkþ nkμÞ − iμ0ðxÞ

− ðkþ nkμÞ3Þξneinkμx ¼ 0: ðA16Þ

Expanding μ using Eq. (5) and taking the Fourier transform
of the result gives after a few lines of algebra (assuming ξn
decreases sufficiently fast when jnj → ∞ to be able to
exchange the sum and integral)

∀m ∈ Z;
X
n∈Z

Mm;nξn ¼ 0; ðA17Þ

where ðMm;nÞðm;nÞ∈Z2 is a two-dimensional sequence
defined by

Mm;n ¼
�
ω − ω0ðkþ nkμÞ n ¼ m

−ðkþmkμÞμm−n n ≠ m
: ðA18Þ

In the absence of resonance, the system (A17) has
perturbed plane wave solutions with ξ0 ¼ 1, ξn ¼ OðϵjnjÞ
for n ∈ Znf0g, and k such that ω0ðkÞ ≈ ω. The modulation
thus has little effect on the solutions for small values of ϵ.
When a resonance is present, however, such solutions in
general do not exist: as we now show, there is a strong
coupling between two waves, lifting the degeneracy
between the wave vectors k and kþ ku.

The solutions exhibiting the resonance correspond to k ≈
kðirÞωr and k ≈ kðjrÞωr . The two strongly coupled terms will then
be those with n ¼ 0 and n ¼ −1 or n ¼ þ1, respectively.
Without loss of generality [up to shifting n by one unit in

Eq. (A14)], we can assume k ≈ kðjrÞωr . To simplify the

notation, we will write kr ≡ kðjrÞωr . It satisfies

ω0ðkr þ kμÞ ¼ ω0ðkrÞ: ðA19Þ
One can then look for solutions with

∀ n ∈ Z; ξn ¼ Oðϵjn−1=2j−1=2Þ; ðA20Þ
i.e., with ξ0 and ξ1 in Oð1Þ, ξ−1 and ξ2 in OðϵÞ, ξ−2 and ξ3
in Oðϵ2Þ, and so on.10 Notice that this scaling is consistent
with the recursion relation (A17), which gives for any
n ≥ 1

ξnþ1 ¼ OðϵξnÞ and ξ−n ¼ Oðϵξ−ðn−1ÞÞ: ðA21Þ

Keeping only terms of order ϵ in this relation, choosing
m ¼ 2 and m ¼ −1, and using that μ−1 ¼ μ�1 since the
function μ is real, gives

ξ2 ¼
ðkþ 2kμÞμ1

ω − ω0ðkþ 2kμÞ
ξ1 þOðϵ2Þ ðA22Þ

and

ξ−1 ¼
ðk − kμÞμ�1

ω − ω0ðk − kμÞ
ξ0 þOðϵ2Þ: ðA23Þ

Choosing m ¼ 0 and m ¼ 1 gives�
ω − ω0ðkþ kμÞ −ðkþ kμÞμ1

−kμ�1 ω − ω0ðkÞ

��
ξ1

ξ0

�
¼ Oðϵ2Þ:

ðA24Þ
From this matricial equation, two complementary points

of view can be obtained by working at fixed angular
frequency ω or at fixed wave vector k. Working at fixed
k ∈ R, and assuming kðkþ kμÞμ1 ≠ 0, one obtains after a
few algebraic manipulations

ω ¼ 1

2
ðω0ðkÞ þ ω0ðkþ kμÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kðkþ kμÞjμ1j2 þ ðω0ðkÞ − ω0ðkþ kμÞÞ2

q
× ð1þOðϵÞÞÞ: ðA25Þ

The evolution of the wave in time thus crucially depends on
the sign of krðkr þ kμÞ, i.e., whether jr ¼ 1 or jr ¼ 2:

(i) If jr ¼ 2, the only possibility for ir is ir ¼ 3. So, kr
and kr þ kμ are both positive and ω remains real
around the resonance. This can be understood by
noting that the sign of the energy of the wave is the
same as that of the wave vector [see Appendix A 1,
Eq. (A12)]. If kðkþ krÞ > 0, energy conservation
thus prevents any amplification as the two waves
involved have energies of the same sign.

(ii) If jr ¼ 1, kr < 0 while kr þ kμ > 0 (since the
dispersion relation has only one negative root for
ω0 > 0). So, in a finite range of values of k
containing kr, the argument of the square root in
Eq. (A25) is negative. The homogeneous solution
η ¼ 0 is thus dynamically unstable,11 some pertur-
bations growing exponentially in time with a maxi-
mum growth rate close to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkrðkr þ kμÞj
p jμ1j. The

reason is that the two waves entering the resonance
now have opposite energies. They can thus be both
amplified while conserving the total energy of the
system.

10The terms −1=2 in the exponent of Eq. (A20) allow for the
coefficients of the waves with wave vectors k and kþ kμ to both
have amplitudes of order 1, as required close to the resonance.

11The appearance of complex frequencies due to the presence
of the undulation is reminiscent of the modulation instability (see
Sec. 5.1 of [44] for an analysis in nonlinear optics), also known as
the Benjamin-Feir instability [45] in the context of water waves.
The modulation instability occurs due to a resonance between the
sidebands kc � δk of a carrier wave, which resonate with the
carrier through the relation ðkc þ δkÞ þ ðkc − δkÞ ¼ 2kc. It is
thus of second order in the amplitude of the carrier wave.
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To determine the transfer matrix of stationary modes, it is convenient to work at fixed ω ∈ R. A few algebraic
manipulations from Eq. (A24) give, assuming δω≡ ω − ωr ¼ OðϵÞ,

2ω0
0ðkrÞω0

0ðkr þ kμÞδk ¼ ðω0
0ðkrÞ þ ω0

0ðkr þ kμÞÞδω
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω0

0ðkrÞ − ω0
0ðkr þ kμÞÞ2δω2 þ 4ω0

0ðkrÞω0
0ðkr þ kμÞkrðkr þ kμÞjμ1j2 þOðϵ3Þ

q
; ðA26Þ

where δk≡ k − kr, andω0
0 ≡ ∂kω0. Just as the frequency of

Eq. (A25), the wave vector given by Eq. (A26) can be real
or complex depending on which waves are involved in the
resonance. We first notice that in the limit ϵ → 0, i.e., in the
absence of a resonant undulation, we recover

δk ≈
δω

ω0
0ðkrÞ

or δk ≈
δω

ω0
0ðkr þ kμÞ

;

as expected since the two modes we are computing then
have wave vectors close to kr and kr þ kμ. On the other
hand, at resonance, i.e., for δω ¼ 0, we obtain

δk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr

ω0
0ðkrÞ

kr þ kμ
ω0
0ðkr þ kμÞ

jμ1j2 þOðϵ3Þ
s

:

The behavior of the modes at or near the resonance thus
depends on the relative signs of ω0

0ðkÞk evaluated at k ¼ kr
and k ¼ kr þ kμ:

(i) If they have opposite signs (i.e., if ir ¼ 3), δk is
purely imaginary at resonance. The two modes are
thus exponentially increasing and decreasing in x,
with a growth/decay rate equal to

ImðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� kr
ω0
0ðkrÞ

kr þ kμ
ω0
0ðkr þ kμÞ

����
s

jμ1j þOðϵ2Þ

ðA27Þ
for δω ¼ 0. More generally, k has a nonvanishing
imaginary part provided jδωj < δωc, where

δωc ¼ 2jμ1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijω0

0ðkrÞω0
0ðkr þ kμÞkrðkr þ kμÞj

p
jω0

0ðkrÞ − ω0
0ðkr þ kμÞj

þOðϵ2Þ: ðA28Þ
(ii) If they have the same sign, k remains real and the

two modes are bounded.
Since the wave vector gives the sign of the energy of a
wave, multiplying it by the group velocity ω0

0 gives the sign
of the energy flux. These results can thus also be interpreted
in terms of energy conservation: when the energy fluxes of
the two waves involved in the resonance have the same
sign, the sum of their squared amplitude (after proper
normalization) must be uniform in a stationary solution.
When they have opposite signs, however, they can both
grow without bound while maintaining a uniform energy
flux if the growth of the wave with a negative flux exactly
compensates that of the wave with positive flux.
These two behaviors are shown in Fig. 8 in the case

μ1 ∈ iRþ� and μn ¼ 0 for jnj ≥ 2. The undulation thus has
the form

FIG. 8. Illustrations of the two possible resonant mode behaviors over a detuned undulation. Only the real part is shown. The
imaginary part is similar, with a dephasing of approximately π=2. In the left plot, we show the exponentially growing case, with an

undulation of wave vector kð3Þωr − kð2Þωr , thereby mixing modes with opposite energy fluxes (as explained in the main text). In the right plot,

the undulation wave vector is instead equal to kð2Þωr − kð1Þωr , and mixes modes with the same energy flux. For these two plots, the angular
frequency at resonance is ω ¼ 0.8. The two undulations have the form (A29) with μ0 ¼ 2.5, and their amplitudes are jμ1j ¼ 0.05 for the
left panel, and 0.15 for the right panel.
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μðxÞ ¼ μ0 þ 2jμ1j sinðkμxÞ: ðA29Þ

These plots are obtained by solving the linear KdV
equation (3) numerically using a finite difference
method. The modes are shown at resonance ω ¼ ωr,
in the cases ir ¼ jr þ 1 ¼ 3 (left panel) and ir ¼
jr þ 1 ¼ 2 (right panel). The first case thus corresponds
to a dynamically stable modulation of μ with an
exponentially growing mode in x, shown in the figure.
One can verify that the growth rate agrees with
Eq. (A27). The second case corresponds to a dynami-
cally unstable modulation with spatially bounded modes
for ω ∈ R.
To summarize, the main results of this subsection are:
(i) when working at fixed real quasimomentum, a

dynamical instability (presence of exponentially
growing modes in time) is present if the waves
coupled by the undulation have energies of oppo-
site signs;

(ii) when working at fixed real frequency, exponentially
growing mode in space are present if the waves
coupled by the undulation have energy fluxes of
opposite signs.

A corollary of these observations is that the presence
of exponentially growing modes in space is equivalent
to the existence of dynamical instabilities if and only
if the waves at play have group velocities with the
same sign.

3. Transfer matrix

In this subsection, we work at fixed ω ∈ �0;ωmax½ and
compute the transfer matrix over a detuned, localized
undulation. We thus consider undulations with space-
dependent amplitudes going to zero as x → �∞, suffi-
ciently fast for asymptotic modes to be well defined. The
transfer matrix then relates the amplitudes of each wave on
the left and on the right of the undulation. It encodes the
effect of the undulation on the solutions of the linearized
KdV equation (3), and can be used to determine the
scattering in more complicated setups. For instance, in
the problem of an obstacle followed by an undulation, in the
case where there is a neat separation of scales between
the two (e.g., if the obstacle is narrow but high while the
undulation has a small amplitude but extends over a long
region), the total transfer matrix is simply the product of
those of the obstacle and undulation. The scattering matrix,
more often used in analogue gravity studies, can then be
obtained straightforwardly, see Appendix A 4.
The first step is to compute the modes with fixed angular

frequency over the undulation. There are three of them. Two
are obtained from Eqs. (A22)–(A24). The possible values of
their quasimomentum k are kr þ δk, where δk takes the two
values of Eq. (A26). In the following, to simplify the
notations we denote by δks the half sum of the two solutions
(A26) and by δkd their half difference. The first one, δks, is
thus always real, while δkd becomes imaginary close to
resonance if the energy fluxes of the two waves have
opposite signs. Explicitly, these two modes read

η�∶ðt; xÞ ↦ eiðkrþδk�Þx−iωt
	 ðkr − kμÞμ1
ω − ðkr − kμÞμ0 þ ðkr − kμÞ3

e−ikμx þ 1þ
�
δω − ω0

0ðkrÞδk� þOðδk2Þ
krμ�1

�
eikμxþ

þ δω − ω0
0ðkÞδk�

ω − ω0ðkr þ 2kμÞ
�
1þ 2

kμ
kr

�
μ1
μ�1

e2ikμx þOðϵ2Þ


; ðA30Þ

where δk� ≡ δks � δkd are the two solutions (A26). The third, nonresonant mode ηnr can be obtained in a similar way. The

main difference is that there is only one term of order 0 in ϵ, with a wave vector equal to kð6−ir−jrÞω . We obtain

ηnr∶ðt; xÞ ↦ eikð1þOðϵ2ÞÞx−iωt
�
1þ ðkþ kμÞμ1

ω − ðkþ kμÞ þ ðkþ kμÞ3
eþikμxþ ðk − kμÞμ�1

ω − ðk − kμÞ þ ðk − kμÞ3
e−ikμx þOðϵ2Þ

�
; ðA31Þ

evaluated at k ¼ kð6−ir−jrÞω .
When considering undulations whose amplitudes go to zero sufficiently fast as x → �∞, one can define two bases of

global modes ðηðLÞi;ω Þi∈f1;2;3g and ðηðRÞi;ω Þi∈f1;2;3g, defined respectively by

∀i ∈ f1; 2; 3g; ∀ t ∈ R; ηðLÞi;ω ðt; xÞ ∼
x→−∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� kðiÞω
2πω0

0ðkðiÞω Þ

����
vuut eiðk

ðiÞ
ω x−ωtÞ ðA32Þ

and
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∀ i ∈ f1; 2; 3g; ∀ t ∈ R; ηðRÞi;ω ðt; xÞ ∼
x→þ∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� kðiÞω
2πω0

0ðkðiÞω Þ

����
vuut eiðk

ðiÞ
ω x−ωtÞ: ðA33Þ

The prefactors in these expressions are chosen so that the
modes are normalized, in the following sense. Defining the
canonical field ϕ for each value of i and ω by

ϕðL=RÞ
i;ω ðt; xÞ ¼

Z
x

0

ηðL=RÞi;ω ðt; yÞdy; ðA34Þ

we impose that it satisfies

∀ ði; jÞ ∈ ⟦1; 3⟧2; ∀ ðω;ω0Þ ∈ R2þ;

jðϕðL=RÞ
i;ω jϕðL=RÞ

j;ω0 Þj ¼ δi;jδðω − ω0Þ; ðA35Þ

where ð·j·Þ is the inner product conserved by the linear KdV
equation, see Appendix A 1. There it is also shown that, for
positive values of ω, the inner product of ϕ with itself gives
the sign of the energy of the wave.
The transfer matrix at fixed frequency, TðωÞ, is the 3 by 3

complex matrix defined by

0
BBB@

ηðLÞ1;ω

ηðLÞ2;ω

ηðLÞ3;ω

1
CCCA ¼ TðωÞ

0
BBB@

ηðRÞ1;ω

ηðRÞ2;ω

ηðRÞ3;ω

1
CCCA: ðA36Þ

The ith line of TðωÞ thus contains the coefficients of the

expansion of ηðLÞi;ω in the basis ðηðRÞj;ωÞj∈f1;2;3g. We now

determine the leading contributions to TðωÞ in two opposite
limits of an undulation with sharp and slowly varying
amplitudes. As it relates two bases of normalized modes,
two of them having positive energy fluxes and one with a

negative energy flux, TðωÞ is an element of SUð2; 1Þ. It can
be related to the scattering matrix Sω by identifying the
incoming and outgoing parts of each mode, see
Appendix A 4.

a. Undulation with steplike amplitude

We first consider an undulation with an amplitude
vanishing outside a finite interval ½−L=2;þL=2� for some
positive number L and constant inside it. The parameter μ
takes the form

μðxÞ ¼ μ0 þ 2jμ1j cosðkμðx − xμÞÞθðx − L=2Þθðxþ L=2Þ
þOðϵ2Þ; ðA37Þ

where xμ ∈ R. It is shown in the left panel of Fig. 9.
Notice that it has discontinuities at x ¼ �L=2 unless
kμð�L=2 − xμÞ ¼ π=2mod π. However, if kμL is suffi-
ciently large the results should be only marginally affected
by a local change of μ smoothly sending the amplitude of
the oscillation to 0 near x ¼ �L. The relation between the
two aforementioned bases can be computed straightfor-
wardly by using the matching conditions at x ¼ �L=2, i.e.,
continuity of η, ∂xη, and μηþ ∂2

xη.
Let us first focus on the resonant case δω ¼ 0, which

gives simple expressions. For definiteness, we also assume
ir ¼ jr þ 1 ¼ 3. (The expressions for other values of ir and
jr are obtained by exchanging the corresponding lines and
columns of TðωÞ.) We obtain

FIG. 9. Schematic drawings of undulations with “steplike” (left panel) and slowly varying (right panel) amplitudes, used in the
computation of the transfer matrix. The dashed line shows the asymptotic value μ0 of μ.
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TðωÞ ¼

0
BB@

1 0 0

0 cos ðδkdLÞ −ie−ikμxμ sin ðδkdLÞ
0 −ieikμxμ sin ðδkdLÞ cos ðδkdLÞ

1
CCA

þOðϵÞ: ðA38Þ

[The next order in ϵ can also be obtained from Eqs. (A30)
and (A31).] Since δkd ∈ iR, the four coefficients relating
two resonant waves grow exponentially with L. This is the
most important effect of the undulation: even if jμ1j ≪ 1,
the amplification of the waves across the undulation can be
large provided the latter is sufficiently long. More precisely,
it remains finite in the limit ϵ → 0 provided L scales like
ϵ−1. If ir ¼ 2 or jr ¼ 1, δkd ∈ R. Then TðωÞ is a rotation
matrix up to a phase, in the sense that one can find a
diagonal, real matrix Dω such that eiDωTðωÞe−iDω ∈ SOð3Þ.
When going slightly off resonance, the transfer matrix

can be read from the following relations between the global
modes:

ηðLÞ1;ω ¼ ηðRÞ1;ω þOðϵÞ;

ηðLÞ2;ω ¼ eþiδksL

�
cos ðδkdLÞ − i

δks
δkd

sin ðδkdLÞ
�
ηðRÞ2;ω − i

μ1
δkd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� kð2Þω kð3Þω

ω0
0ðkð2Þω Þω0

0ðkð3Þω Þ

����
vuut e−iδksL sin ðδkdLÞηðRÞ3;ω þOðϵÞ;

ηðLÞ3;ω ¼ −i
μ�1
δkd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� kð2Þω kð3Þω

ω0
0ðkð2Þω Þω0

0ðkð3Þω Þ

����
vuut eþiδksL sin ðδkdLÞηðRÞ2;ω þ e−iδksL

�
cos ðδkdLÞ þ i

δks
δkd

sin ðδkdLÞ
�
ηðRÞ3;ω þOðϵÞ: ðA39Þ

The corresponding values for the (2,2) coefficient of the transfer matrix are compared with results from a numerical

resolution of Eq. (3) in Fig. 10. (The plots are similar for the three other coefficients involving ηðLÞ2 and/or ηðLÞ3 .) We observe
the same exponential growth in δkdL when δkd ∈ iR. From Eq. (A26), one sees that δω tends to reduce jImðδkdÞj when
moving away from the resonance. The growth rate vanishes for jδωj larger than a critical value.

b. Undulation with slowly varying amplitude

We now consider the case where the amplitude μ1 of the undulation varies slowly with x, shown schematically on the
right panel of Fig. 9. We work in the limit j∂xμ1j=ðkμμ1Þ ≪ 1. The transfer matrix over some interval ½x1; x2� with
x2 ≫ 1=kμ;−x1 ≫ 1=kμ can then be computed by dividing ½x1; x2� into N ≫ 1 subintervals over which μ1 can be
approximated by a constant, multiplying the transfer matrices over each subinterval, and taking the limit N → ∞.

Restricting attention to the subspace spanned by the twowaves of wave vectors kðirÞω and kðjrÞω , one obtains the transfer matrix

TðωÞðx1; x2Þ ≈
�
eþiδkdxf 0

0 e−iδkdxf

�
OE

�Z
x2

x1

−i
�
δksðxÞ Γμ�1
Γμ1 −δksðxÞ

�
dx

��
e−iδkdxi 0

0 eþiδkdxi

�
; ðA40Þ

where OE denotes the path-ordered exponential and

Γ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

krðkr þ kμÞ
ω0
0ðkrÞω0

0ðkr þ kμÞ

s
: ðA41Þ

In the resonant case δω ¼ 0, this becomes

FIG. 10. Plots of the transfer coefficient TðωÞ
2;2 relating the

coefficients of the plane wave of wave vector kð2Þω for an

undulation of the form (A37), where kμ ¼ kð3Þω − kð2Þω for
ω ¼ 0.5, μ0 ¼ 2.5, jμ1j ¼ 0.05, and L ≈ 503. The continuous,
blue line shows results from the numerical integration of the
linear KdVequation. The dashed, green line shows the analytical
result from Eq. (A39).
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TðωÞðx1; x2Þ ≈
 

e−ikrðxuðx2Þ−xuðx1ÞÞ=2 cos ðR x2x1 δkddxÞ −ie−ikrðxuðx2Þþxuðx1ÞÞ=2 sin ðR x2x1 δkddxÞ
−ieþikrðxuðx2Þþxuðx1ÞÞ=2 sin ðR x2x1 δkddxÞ eikrðxuðx2Þ−xuðx1ÞÞ=2 cos ðR x2x1 δkddxÞ

!
: ðA42Þ

One recovers essentially the same behavior as in the case of
an undulation with steplike amplitude, with δkd replaced by
its average over the segment ½x1; x2�.
These results can be used to determine the relations

between the asymptotic modes and the scattering matrix
using the formulas of Appendix A 4 below. In particular, in
the case ir ¼ 3, one sees from Eq. (A47) that the four
coefficients of the scattering matrix relating “resonating”
modes show the same exponential growth in L as those of
the transfer matrix.

4. Relation between the transfer matrix and the
scattering matrix

In Appendix A 3 we focused on the transfer matrix of
stationary modes in the presence of an undulation, which
can be straightforwardly combined with that of other
sources of inhomogeneities of the flow, e.g. a localized
obstacle. However, experiments using one-dimensional
setups like the one we are considering (see for instance
[11,24,25,33]) usually measure the scattering matrix
instead, which is more directly related to physical observ-
ables. To bridge the gap between these two descriptions, we
here give the expression of the scattering matrix in terms
of the transfer matrix. For definiteness we assume that, for
the frequencies we are interested in, the dispersion relation
is similar to that of the linear KdV equation (see Fig. 1)
for ω ∈ � − ωmax;ωmax½, i.e., that it has three real roots

kð1Þω < kð2Þω < kð3Þω at fixed ω, such that

dkð1Þω

dω
< 0;

dkð2Þω

dω
> 0;

dkð3Þω

dω
< 0: ðA43Þ

The reasoning detailed below can be extended to more
intricate dispersion relations, for instance to the one used
in Appendix C 1.
Let us first recall that the transfer matrix TðωÞ and the

scattering matrix SðωÞ each represent a change of basis in
the same (in the present case, three-dimensional) vector
space, made of the modes with fixed angular frequency ω.
The “left” and “right” bases are defined in Eqs. (A32)
and (A33). The transfer matrix TðωÞ is then defined by
Eq. (A36). Similarly, one defines the “in” and “out” bases

by the condition that ηðinÞi;ω (respectively ηðoutÞi;ω ) contains
asymptotically only one plane wave with a group velocity
oriented toward (respectively, away from) x ¼ 0, with the

wave vector kðiÞω and with the same normalization as in
Eqs. (A32) and (A33). The scattering matrix is then
defined by

0
BBB@

ηðinÞ1;ω

ηðinÞ2;ω

ηðinÞ3;ω

1
CCCA ¼ SðωÞ

0
BBB@

ηðoutÞ1;ω

ηðoutÞ2;ω

ηðoutÞ3;ω

1
CCCA: ðA44Þ

The coefficients of SðωÞ can be related to those of TðωÞ

by expanding the “in” and “out” modes in ηðLÞi and ηðRÞi ,

i ∈ f1; 2; 3g, then the ηðLÞi in terms of the ηðRÞi using
Eq. (A36). We obtain

SðωÞ1;1 ¼ TðωÞ
3;3

TðωÞ
1;1T

ðωÞ
3;3 − TðωÞ

1;3T
ðωÞ
3;1

; SðωÞ1;3 ¼ −TðωÞ
1;3

TðωÞ
1;1T

ðωÞ
3;3 − TðωÞ

1;3 T
ðωÞ
3;1

; SðωÞ1;2 ¼ TðωÞ
1;2T

ðωÞ
3;3 − TðωÞ

3;2T
ðωÞ
1;3

TðωÞ
1;1T

ðωÞ
3;3 − TðωÞ

1;3T
ðωÞ
3;1

;

SðωÞ3;3 ¼ TðωÞ
1;1

TðωÞ
1;1T

ðωÞ
3;3 − TðωÞ

1;3T
ðωÞ
3;1

; SðωÞ3;1 ¼ −TðωÞ
3;1

TðωÞ
1;1T

ðωÞ
3;3 − TðωÞ

1;3 T
ðωÞ
3;1

; SðωÞ3;2 ¼ TðωÞ
3;2T

ðωÞ
1;1 − TðωÞ

1;2T
ðωÞ
3;1

TðωÞ
1;1T

ðωÞ
3;3 − TðωÞ

1;3T
ðωÞ
3;1

;

SðωÞ2;1 ¼ TðωÞ
2;3T

ðωÞ
3;1 − TðωÞ

2;1T
ðωÞ
3;3

TðωÞ
1;1T

ðωÞ
3;3 − TðωÞ

1;3T
ðωÞ
3;1

; SðωÞ2;3 ¼ TðωÞ
2;1T

ðωÞ
1;3 − TðωÞ

2;3 T
ðωÞ
1;1

TðωÞ
1;1T

ðωÞ
3;3 − TðωÞ

1;3 T
ðωÞ
3;1

;

SðωÞ2;2 ¼ TðωÞ
2;2 þ TðωÞ

1;2 ðTðωÞ
2;3T

ðωÞ
3;1 − TðωÞ

2;1T
ðωÞ
3;3 Þ þ TðωÞ

3;2 ðTðωÞ
2;1T

ðωÞ
1;3 − TðωÞ

2;3 T
ðωÞ
1;1 Þ

TðωÞ
1;1T

ðωÞ
3;3 − TðωÞ

1;3 T
ðωÞ
3;1

: ðA45Þ
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In the case of a detuned undulation with steplike amplitude
(see Appendix A 3 a), using Eq. (A39) (or its generalization
to the case ir ≠ 2), we obtain three different expressions
depending on kμ to leading order in ϵ:

(i) if ir ¼ 3 and jr ¼ 2,

SðωÞ ≈
1

TðωÞ
3;3

0
BBB@

TðωÞ
3;3 0 0

0 1 −TðωÞ
2;3

0 TðωÞ
3;2 1

1
CCCA; ðA46Þ

(ii) if ir ¼ 3 and jr ¼ 1,

SðωÞ ≈

0
BB@

TðωÞ
3;3 0 −TðωÞ

1;3

0 1 0

−TðωÞ
3;1 0 TðωÞ

1;1

1
CCA; ðA47Þ

(iii) if ir ¼ 2 and jr ¼ 1,

SðωÞ ≈
1

TðωÞ
1;1

0
BBB@

1 TðωÞ
1;2 0

−TðωÞ
2;1 1 0

0 0 TðωÞ
1;1

1
CCCA: ðA48Þ

APPENDIX B: LINEARLY GROWING MODES
OVER TUNED UNDULATIONS

In this Appendix we provide a more general viewpoint
on linearly growing modes and show their relations with
nonlinear solutions. The nonlinear solutions of the KdV
equation have been extensively studied, see for instance
[36,46] and references therein. A powerful tool to study
their evolution is Whitham’s modulation theory, which can
be used to construct (approximate) scale-invariant solu-
tions. As an example of application to a related subject, in
[47] Whitham’s modulation theory was used to motivate
the nonlinear stability of analogue black hole flows. In the
present case, however, the solutions we are interested in can
be obtained by an elementary calculation, which can more
directly be extended to other models such as that of
Appendix C. It would be interesting to see if they can
be recovered using Whitham’s modulation theory.

1. Modes growing in space

Let us first explain on general grounds why linearly
growing modes are expected in models where, as for the
KdV equation, the wave vector depends on some param-
eters describing the solution. Let us consider a nonlinear,
stationary equation which admits an n-dimensional space
of periodic solutions (n ∈ N�), labeled by the parameters
μ1, μ2, …, μn taking values in some real intervals
I1; I2;…; In. These solutions may be written as

x ↦ fμ1;μ2;…;μnðkμ1;μ2;…;μnxÞ; ðB1Þ

where, for each choice of the parameters, fμ1;μ2;…;μn is
a periodic, differentiable function with period 2π,
and kμ1;μ2;…;μn ∈ R. We further assume that fμ1;μ2;…;μn

and kμ1;μ2;…;μn are differentiable in the parameters.12 Let
i ∈ ⟦1; n⟧. Let us fix the values of μj for all j ∈ ⟦1; n⟧nfig
and define the function

gi∶
�

Ii × R → C

ðμi; xÞ ↦ fμ1;μ2;…;μnðkμ1;μ2;…;μnxÞ
�
: ðB2Þ

For all μi ∈ Ii, the function x ↦ giðμi; xÞ is a solution of

the nonlinear equation under consideration. Let μð0Þi ∈ Ii.
Considering nearby values of μi, we have to linear order:

∀ x ∈ R;

giðμð0Þi þ δμi; xÞ ¼ giðμð0Þi ; xÞ þ δμi∂μi giðμð0Þi ; xÞ þOðδμ2i Þ:
ðB3Þ

This means that x ↦ ∂μi giðμð0Þi ; xÞ is, up to a constant
factor, the difference between two infinitesimally close
nonlinear solutions. It is thus a solution of the linear field

equation over the background solution x ↦ giðμð0Þi ; xÞ.
Using Eq. (B2), it is equal to

∂μi giðμð0Þi ;xÞ
¼½ð∂μifμ1;μ2;…;μnÞðyÞ
þxð∂μi kμ1;μ2;…;μnÞ∂yfμ1;μ2;…;μnðyÞ�y¼kμ1 ;μ2 ;…;μn x

: ðB4Þ

The first term in the right-hand side is periodic in x, and
thus bounded. However, the second one grows linearly with
x provided ð∂μikμ1;μ2;…;μnÞ∂yfμ1;μ2;…;μn does not identically
vanish. The linear equation thus has a mode with a term
whose amplitude grows linearly with x. Moreover, this
mode can be obtained simply by differentiating the non-
linear solution with respect to one of its parameters.
Let us now apply this argument to the KdVequation (1).

The solution (19) depends on three parameters: xu, Au,
and η0. The first one does not give a linear growth since ku
does not depend on xu. One obtains

12By this, we mean that:
(i) the function ðμ1; μ2;…; μnÞ ↦ kμ1;μ2;…;μn is differen-

tiable,
(ii) for all y ∈ R, the function ðμ1; μ2;…; μnÞ ↦

fμ1;μ2;…;μnðyÞ is differentiable.

MICHEL, PARENTANI, and ROBERTSON PHYS. REV. D 97, 065018 (2018)

065018-22



∂xuηuðxÞ ¼ Au sinðkuðx − xuÞÞ

þ A2
uku
μ

sinð2kuðx − xuÞÞ þOðA3
uÞ: ðB5Þ

In the following, to simplify the expressions we choose
xu ¼ 0. Differentiation with respect to η0 gives

∂η0ηuðxÞ ¼ 1 −
3Auffiffiffī
μ

p x sinðkuxÞ −
3A2

u

μ̄2
cosð2kuxÞ

−
3A2

u

μ̄3=2
x sinð2kuxÞ þOðA3

uÞ: ðB6Þ

Finally, differentiation with respect to Au gives

∂Au
ηuðxÞ ¼ cosðkuxÞ þ

Au

μ̄
cosðkuxÞ −

3Au

μ̄

þ 9A2
u

16μ̄2
cosð3kuxÞ þ

15A2
u

2μ̄3=2
x sinðkuxÞ þOðA3

uÞ:

ðB7Þ

These are the three linearly independent, zero-frequency
solutions of the linearized KdV equation over the back-
ground solution ηu. Their most remarkable property is the
presence of terms growing linearly in x. As explained in
Sec. II C, these terms give the dominant contribution to the
transfer matrix over long undulations. We show in Sec. III
that they also determine the effective temperature in white-
hole flows followed by a long undulation. The linear
growth of the modes is illustrated in Fig. 11. The right
panel displays both a solution of Eq. (2) over the undulation
shown in the left panel and a function proportional to
∂Au

ηu. The close agreement between the curves illustrates
that the linear growth of the mode is due to the variation of
the wave vector with the amplitude.

Let us emphasize that the existence of these modes does
not indicate the presence of unbounded solutions of the
KdVequation (1). Instead, they signal the breakdown of the
linear description for the difference between two solutions
with slightly different parameters at large values of jxj.
Indeed, the background solution ηð0Þ and the perturbed one
have phases differing by π for values of jxj on the order of
1=jδkuj, where δku denotes the difference between their
wave vectors, so that they become very different from each
other in a pointwise sense. Nonlinear terms must therefore
be taken into account at large values of jxj.
However, Eq. (2) remains valid for describing small-

amplitude perturbations in a finite domain with extension
L ∈ Rþ. Indeed, since δku is linear in the amplitude ap of
the perturbation close to x ¼ 0, the amplitude of the
oscillations due to the linearly growing terms scales like
apL, and can be made arbitrarily small by lowering japj. In
the following, we assume that japjð1þ LÞ ≪ Au ≪ 1, so
that Eq. (19) is a good approximation of the background
solution and perturbations can be described by the linear
equation (2).

2. Modes growing in time

As explained in Appendix A 2, modes unbounded in
space and time have a similar origin, namely that the
opposite signs of the energies or energy fluxes carried by
two waves allows for an unbounded growth in their
amplitudes without violation of energy conservation. In
the present case, the waves of interest have vanishing
energies. One can thus expect that there exist growing
modes in time as well as in space. This is indeed the
case: assuming ηð0Þ has the form (19), a straightforward
calculation shows that there exists a solution of Eq. (2)
given by

δηt∶ ðt; xÞ ↦ 1þ 6tkuAu sinðkuxÞ þOðA2
uÞ: ðB8Þ

FIG. 11. Left panel: A nonlinear, stationary solution of the KdV equation (1) for μ ¼ 1 and η0 ¼ 0. Right panel: Solution of the
linearized KdV equation (2) over the undulation shown in the left panel, showing a linearly growing mode. The black, dashed line is a
rescaled difference between two undulation solutions of the KdV equation with slightly different amplitudes.
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One should notice, however, that this does not indicate
an instability of the solution in the usual sense, but simply
comes from the Galilean invariance of the KdV equation.
Indeed, looking for solutions of the form

ηv∶ ðt; xÞ ↦ ξðx − vtÞ; ðB9Þ
where v ∈ R, one obtains the following equation for ξ:

ðμ − vÞ∂xξþ ∂3
xξþ 6ξ∂xξ ¼ 0: ðB10Þ

This is exactly the stationary KdVequation with μ replaced
by μ − v. The periodic solutions in ξ are thus given by
Eq. (19), where ku is still given by Eq. (18) and
μ̄≡ μ − vþ 6η0. Working to first order in Au for simplic-
ity, one obtains

ηvðt; xÞ ¼ η0 þ Au cosðkuðx − vt − xuÞÞ þOðA2
uÞ: ðB11Þ

Differentiating with respect to v at fixed μ so that ku is
unchanged, one obtains

∂vηvðt; xÞ ¼
1

6
þ Autku sinðkuðx − vt − xuÞÞ þOðA2

uÞ:
ðB12Þ

Up to a global factor, one recovers Eq. (B8). As in the case
of a spatially growing mode the growth in time signals that
the linear approximation breaks down at late times, since
the “unperturbed” solution with vanishing velocity differs
significantly from the “perturbed” one with velocity vwhen
jvtj becomes close to half the wavelength.

APPENDIX C: A MORE REALISTIC MODEL
OF WATER WAVES

In the main text we used the KdV equation to approxi-
mate the dynamics of shallow-water waves. The aim of the
present Appendix is to sketch an extension of the main
results to the more realistic 2D model used, e.g., in [48].
Since the reasoning is very similar we only give the main
steps required to transpose the above calculations to
this model.

1. Gravity waves on a detuned undulation

We consider the flow of an ideal fluid in a flume in two
dimensions. The background flow is assumed to be sta-
tionary, and we denote by ϕ and ψ the velocity potential
and stream function, respectively. The latter is uniform
along streamlines. It is defined up to a constant, which we
choose so that ψ ¼ 0 at the bottom of the flume. Let us call
ψ s its value at the free surface. We denote by ϕ0 the velocity
potential of the background flow. The unperturbed velocity
is thus v ¼ ∇ϕ0. Looking for perturbed solutions of the
form ϕ ¼ ϕ0 þ δϕ, to first order in δϕ, the wave equation
reads [10,48]

�
1

v2
∂t þ ∂ϕ0

�	
vx

gþ 1
2
∂yv2

ð∂t þ v2∂ϕ0
Þδϕ



þ i∂ϕ0
tanhðiψ s∂ϕ0

Þδϕ ¼ 0; ðC1Þ

where all quantities are evaluated along the line defined by
ψ ¼ ψ s, g is the gravitational acceleration, and ðx; yÞ are
Cartesian coordinates, x in the direction of the flume and y
in the vertical direction.
In this subsection we are interested in the effect of a

detuned undulation, i.e., a periodic modulation of the
velocity with a wavelength different from that of the
zero-frequency dispersive modes. To simplify the nota-
tions, it is convenient to define the rescaled variables
X ≡ ϕ0=ψ s and T ≡ t=ψ s, as well as the functions

V ≡ v2; G≡ ψ s
vx=v2

gþ 1
2
∂yv2

; and fðxÞ ¼ x tanhðxÞ:

ðC2Þ

Equation (C1) becomes�
1

V
∂T þ ∂X

�
½VGð∂T þ V∂XÞδϕ� þ fð−i∂XÞδϕ ¼ 0:

ðC3Þ

Let us consider an undulation of the form

VðXÞ ¼ V0 þ V1eiKuX þ V�
1e

−iKuX þOðV0ϵ
2Þ;

GðXÞ ¼ G0 þG1eiKuX þ G�
1e

−iKuX þOðG0ϵ
2Þ; ðC4Þ

where ϵ is a small parameter, ðV0; G0; KuÞ ∈ ðR�þÞ3 (Ku is
the wave vector of the undulation in our coordinate system),
and ðV1; G1Þ ∈ C2 are of order ϵV0 and ϵG0, respectively.
To zeroth order in ϵ, looking for solutions of the form
δϕ∶ðT;XÞ↦ expðiðKX−ΩTÞÞ, one obtains the dispersion
relation between K and Ω:

G0ðΩ − V0KÞ2 ¼ fðKÞ: ðC5Þ

Let us assume there exists ðΩr; KrÞ ∈ R2 such that K ¼ Kr
and K ¼ Kr þ Ku are both solutions of Eq. (C5) for
Ω ¼ Ωr. We also assume for simplicity that for any
n ∈ Z, K ¼ Kr þ nKu is not a solution of the dispersion
relation unless n ¼ 0 or n ¼ 1. The effects of the undu-
lation on the spectrum for angular frequencies close to Ωr
and the scattering matrix can be derived using the same
procedure as in Appendix A 2. As the expressions we
obtain are slightly cumbersome and do not show funda-
mentally new features, here we only sketch the important
results:

(i) First, we find that the undulation is dynamically
unstable, in that modes with real wave vectors close
to Kr have a complex frequency (with imaginary
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part of order ϵ), if the waves of angular frequencyΩr
and wave vectors Kr and Kr þ Ku have energies
[now given by ΩðΩ − VKÞ] of opposite signs. If
they have energies of the same sign, then the
frequencies remain real.

(ii) Second, when considering modes with real angular
frequencies close to Ωr, we find that their quasi-
momenta are complex (again, with imaginary part of
order ϵ) if the energy fluxes of these waves have
opposite signs. If they have the same sign, quasi-
momenta over the undulation remain real.

One thus obtains the same properties as for the KdV
equation, namely, that the relative sign of the energies of the
resonant waves determines the dynamical stability of
the undulation, while that of the energy fluxes determines
the existence of exponentially growing modes in space.

2. Second-order undulation

To compute the resonant modes over a solution of
the hydrodynamic equations, we need to know the shape
of the undulation to second order in its amplitude, as well as
the first variations of its wave vector. To this end, we look
for stationary solutions for the velocity potential ϕ in the
Cartesian coordinates ðx; yÞ. We set y ¼ 0 at the bottom of
the flume and denote the vertical position of the free surface
at the abscissa x by ysðxÞ. We then have four hydrodynamic
equations to satisfy:

(i) The continuity equation gives Δϕ ¼ 0.
(ii) The boundary condition at the bottom of the flume

is ∀x ∈ R; ∂yϕðx; 0Þ ¼ 0.
(iii) Since the free surface must be a streamline, we have

∀x∈R;y0sðxÞð∂xϕðx;yÞÞy¼ysðxÞ¼ð∂yϕðx;yÞÞy¼ysðxÞ.
(iv) The Bernoulli equation evaluated at the free surface

gives

∀x ∈ R;
1

2
ð∇ϕðx; ysðxÞÞÞ2 þ gysðxÞ ¼ C0; ðC6Þ

where C0 is a real constant.
We look for solutions describing small perturbations over
a homogeneous flow with velocity v0 in the x direction.
Writing ϕ ¼ v0xþ δϕ and expanding the four equations
to second order in δϕ, one obtains after some algebraic
manipulations,

v20
g
ð∂2

xδϕÞ þ ð∂yδϕÞ ≈
y¼ys;0

v30
2g2

∂x∂yð∂xδϕÞ2

−
v0
g
ðð∂yδϕÞð∂y∂xδϕÞ þ 3ð∂xδϕÞð∂2

xδϕÞÞ; ðC7Þ

where all quantities are evaluated along the unperturbed
free surface y ¼ ys;0. Moreover, integrating the Laplace
equation over y gives (see for instance Appendix A of
Ref. [10])

∂yδϕðx; yÞ ¼ i∂x tanhðiy∂xÞδϕðx; yÞ: ðC8Þ

Using Eq. (C8) to express ∂yδϕ in terms of ∂xδϕ in
Eq. (C7) gives

v20
g
∂2
xδϕþ i∂x tanhðiys;0∂xÞδϕ

≈
y¼ys;0

v30
g2

∂xðð∂xδϕÞði∂2
x tanhðiys;0∂xÞδϕÞÞ

−
v0
2g

∂xðði∂x tanhðiys;0∂xÞδϕÞ2 þ 3ð∂xδϕÞ2Þ: ðC9Þ

A straightforward calculation shows that, assuming the
flow is subcritical (v20 < gys;0),

δϕðA;CÞ
u ðx; yÞ ¼ A cos ðk0xÞ

cosh ðk0yÞ
cosh ðk0ys;0Þ

þ B sin ð2k0xÞ
cosh ð2k0yÞ
cosh ð2k0ys;0Þ

þ Cx ðC10Þ

is a solution, where A and C are free real parameters, k0 is
the unique strictly positive solution of the equation:
g tanhðk0ys;0Þ ¼ v20k0, and

B ¼ 3ð1 − F8ξ4Þ
8F4ξys;0v0

A2; ðC11Þ

where F≡ v0=
ffiffiffiffiffiffiffiffiffi
gys;0

p
is the Froude number of the unper-

turbed solution and ξ≡ k0ys;0. The value of C can be fixed
by imposing that the water current be independent of A, as
will be the case, for instance, for an undulation produced by
an immersed obstacle as the current should, under the
above approximations, be the same upstream and down-
stream. We obtain

C ¼ A2
k20v0
4gys;0

3 − F4ξ2

1 − F2
: ðC12Þ

The last information we will need concerning these
nonlinear solutions is the variation of their wave vector (or,
equivalently, their wavelength) with A. One way to obtain it
would be to redo the above calculation to next order,
keeping cubic terms in δϕ. However, there is a simpler
method. The idea is to make use of translation invariance of
the problem: translating the undulation Eq. (C10) in x by a
constant quantity Δx gives another solution of the fluid
equations. Its derivative with respect toΔx is thus a solution
of the linearized equation (C1) over the undulation. By
definition, it has a vanishing angular frequency and the
same periodicity as the undulation. We thus know that
Eq. (C1) will have a solution with vanishing frequency and
quasimomentum. This equation can be solved perturba-
tively in A using the techniques of Sec. II. Going to second
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order in A, we find the difference between the wave vector
ku of the undulation and k0 contributes to the dispersion
relation at small frequencies. Imposing that Ω ¼ K ¼ 0 be
a solution gives

ku ¼ k0

�
1þ

A2g2

8v6
0

ð9− 6F4ξ2þ 5F8ξ4Þ− 3 C
v0

1−F−2þF2ξ2
þO

�
A3g3

v90

��
:

ðC13Þ

3. Gravity waves on a tuned undulation
and effective temperature

One can now solve Eq. (C1) in the background (C10) in
the zero-frequency limit. The calculation follows the same
lines as in Sec. II C: expanding the quantities appearing in
Eq. (C1) in powers of A, one obtains a recursion relation
between the Fourier components of the perturbation, which
can be solved to second order in A. As in the case of the
KdV equation, one obtains two linearly growing modes in
ϕ0. One of them, with a coefficient of order A, is related to
the change in the undulation shape under variations of the
mean water depth. The other one, with a coefficient of order
A2, is related to the change of wave vector of the undulation
with its amplitude.

Their precise form is not particularly enlightening.
However, a useful information one can extract from them
is the low-frequency effective temperature measured over a
long undulation in a white-hole-like flow. The reasoning is
similar to that of Sec. III: the condition that the mode be
counterpropagating and incoming on a white-hole-like flow
selects its asymptotic content, from which the scattering
coefficients can be extracted. One difference, however, is
that there are now two “hydrodynamic”modes whose wave
vectors go to zero in the zero-frequency limit and which
thus become indistinguishable. As we have performed the
explicit calculation at a vanishing frequency only, this
introduces an uncertainty about the relative amplitudes of
the counterpropagating wave and that of the reflected,
copropagating one. We thus define a parameterΛvu equal to
the fraction of the constant term due to the counter-
propagating, incoming wave. In the absence of coupling
between copropagating and counterpropagating modes in
the rest frame of the background flow, one would have
Λvu ¼ 1. As it was shown (see for instance [13]) that
this coupling is generally small in similar setups, we expect
Λvu to be of order 1. Up to this ambiguity, the effective
temperature Teffð∞Þ determined over undulations much
longer than v20y

3
s;0A

−2 can be computed following the
reasoning of Sec. III B with minor modifications. We
obtain

Teffð∞Þ ¼ A2

g1=2y7=2s;0

½9 − 9F2 − 12F4ξ2 − 6F6ξ2 þ 13F8ξ4 − F10ξ4 − 2F12ξ6�2
32Λ2

vuF10ξð3 − F4ξ2Þ2ðF2 − 1þ F4ξ2Þ ð1þOðϵÞÞ: ðC14Þ

In particular, we observe the same scaling in the amplitude
A of the undulation as for the KdVequation [see Eq. (64)].
It is for the moment unclear to us whether Eq. (C14) is

relevant for water wave experiments. Indeed, in practice
dissipative effects due to viscosity, for instance, may
become important for a wave propagating over the undu-
lation before reaching the lengths where Eq. (C14)
becomes valid. However, it shows that the scaling obtained
in Sec. III is not an artifact from the specific approxima-
tions leading to the KdVequation, but also arises in a model
taking the full dispersion relation of water waves (in the
absence of surface tension and dissipation) into account.
We expect that other nondissipative effects like the surface
tension can be included following the same reasoning, and
will lead to the same qualitative results.

APPENDIX D: LOW-FREQUENCY EFFECTIVE
TEMPERATURE IN A SUBCRITICAL FLOW

While a precise study of the scattering in a subcritical
flow is beyond the scope of the present article, in this
Appendix we briefly comment on the main differences with
respect to the white-hole-like case studied in Sec. III. We

again focus on the zero-frequency limit of the effective
temperature (see Refs. [29–32] for previous analyses of the
spectrum in subcritical flows). A more detailed study,
including a calculation of the scattering coefficients for
ω ≠ 0 and their behavior for ω → 0 will be presented in a
future work.
As was explained in Sec. III B, the zero-frequency limit

of the effective temperature can be determined by first
differentiating the (nonlinear) general solution of the KdV
equation with given asymptotic conditions with respect to
its parameters, giving a set of modes at ω ¼ 0. One then has
to select the linear combination of these modes which is
incoming from the left. In the transcritical case of Sec. III B,
one of the three modes is exponentially growing for
x → ∞, one goes to a finite constant, and one goes to
zero exponentially. We argued that only the third one
could contribute to the right-moving incoming mode. This
condition fully determines the low-frequency effective
temperature.
In the subcritical case, where wþ and w− are both

positive, the dispersion relation is qualitatively the same
in the two asymptotic regions (see Fig. 1), and the
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exponentially growing and decaying modes are replaced by
propagating waves with a negative group velocity. Neither
of these waves can contribute to the right-moving incoming
mode. The constant mode cannot either, for the same
reason as in the transcritical case. This means that, in the
limit ω → 0, the right-moving incoming mode must cor-
respond to δη ¼ 0, i.e., to a homogeneous ϕ ¼ R δηdx.
(Conversely, one can check that this mode is indeed

incoming and right-moving if μ−; μþ > 0.) The amplitude
of the oscillating part of the mode thus vanishes, i.e.,
Aneg ¼ 0. From Eq. (39), we thus find Teff ¼ 0, whether or
not an undulation is present in the region x < 0. However,
we expect that the presence of an undulation may
strongly modify the behavior of the scattering coefficients
at low but finite frequencies. This will be studied in a
future work.
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