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Abstract

Periodic spatial variations of some parameter arise in analogue gravity experiments aimed at detecting the
analogue version of the Hawking effect in a white hole flow. Having the same spatial periodicity as low-frequency
dispersive modes, they can induce resonances which significantly modify the scattering coefficients. This has
been shown numerically in a previous work [X. Busch et al., Phys. Rev. D 90, 105005 (2014)], but the precise
dependence of the low-frequency effective temperature on the amplitude and length of the undulation remains
elusive. In this article, using the Korteweg-de Vries equation, we explicitly compute this dependence in the
small-amplitude limit and find three regimes of “short”, “intermediate” and “long” undulations showing different
scaling laws. In the latter, the effective temperature is completely determined by the properties of the undulation,
independently of the surface gravity of the analogue white hole flow. These results are extended to a more
realistic hydrodynamical model in an appendix.

Contents

1 Introduction 2

2 Modes over an infinite undulation 3

2.1 The linearized KdV equation . . . . . . . 3

2.2 Periodic static solutions of the (nonlinear)
KdV equation . . . . . . . . . . . . . . . . 5

2.3 Modes over the undulation and transfer
matrix . . . . . . . . . . . . . . . . . . . . 6

3 White-hole like flows 8

3.1 Setup and general idea . . . . . . . . . . . 8

3.2 Low-frequency effective temperature: an
explicit calculation . . . . . . . . . . . . . 11

3.3 Low-frequency effective temperature: gen-
eralization . . . . . . . . . . . . . . . . . . 15

4 Conclusions 17

A Detuned undulation 18
A.1 Lagrangian description of the linear KdV

equation . . . . . . . . . . . . . . . . . . . 18
A.2 Modes over a detuned undulation . . . . . 19
A.3 Transfer matrix . . . . . . . . . . . . . . . 22

A.3.1 Undulation with step-like amplitude 24
A.3.2 Undulation with slowly-varying

amplitude . . . . . . . . . . . . . . 25
A.4 Relation between the transfer matrix and

the scattering matrix . . . . . . . . . . . . 25

B Linearly-growing modes over tuned undu-
lations 27

C A more realistic model of water waves 29
C.1 Gravity waves on a detuned undulation . 29
C.2 Second-order undulation . . . . . . . . . . 30
C.3 Gravity waves on a tuned undulation and

effective temperature . . . . . . . . . . . . 31

D Low-frequency effective temperature in a
subcritical flow 32

∗florent.c.michel@durham.ac.uk
†renaud.parentani@th.u-psud.fr
‡scott.robertson@th.u-psud.fr

1

ar
X

iv
:1

80
1.

03
84

0v
1 

 [
gr

-q
c]

  1
1 

Ja
n 

20
18

florent.c.michel@durham.ac.uk
renaud.parentani@th.u-psud.fr
scott.robertson@th.u-psud.fr


1 Introduction

Undulations, i.e., static spatially periodic modulations of some physical quantity, are ubiquitous in experiments
involving a flow over an obstacle. They have been studied, for instance, in water currents [2–10] and in Bose-Einstein
condensates flowing faster than the Landau critical velocity [11]. Roughly speaking, such modulations can be seen
as macroscopic superpositions of low-frequency linear waves. As such, small perturbations propagating over them
can be strongly affected via n-wave mixing, with n ≥ 3, provided some resonance conditions are satisfied.

These modulations are particularly relevant for the study of analogue white hole flows, i.e., flows going from
supercritical to subcritical along the direction of the fluid velocity [1, 12, 13]. As was shown by W. Unruh [14], there
exists a mathematical correspondence between the behavior of sound waves close to the point where the flow velocity
crosses the speed of low-frequency waves in the fluid frame and that of scalar fields around the horizon of a black hole.
This correspondence being independent of the sign of the flow velocity, it therefore also holds for its time-reversed
version, known as a white hole. The original model of [14] was then extended to a variety of different systems like
gravity waves in water [15], cold atoms [16], polaritons [17], light in a nonlinear optical fiber [18], “slow” sound [19,
20], and magnetohydrodynamics [21], prompting theoretical studies of the link with Hawking radiation (HR) and
experimental realizations aimed at detecting its condensed matter analogue [10, 22, 23]. An account of the main
advances in this field can be found in [24] and references therein. The majority of these works use the assumption
that the flow is homogeneous far from the (analogue) horizon, which is necessary for the corresponding space-time
to be asymptotically flat. However, experimental setups involving white hole flows generically have undulations
extending far from the near-horizon region and whose effect on the scattering of linear waves, used to probe the
Hawking effect, remains unclear. The main objective of the present work is to tackle this problem and determine, in
the case of gravity waves on water, how the presence of an undulation affects the scattering coefficients.

When considering white hole flows of ideal fluids, the dispersion relation in the asymptotic downstream (e.g.
for surface water waves) or upstream (e.g. for Bose-Einstein condensates) region generically leads to the emission
of a wave with zero frequency and nonvanishing wave vector. There are then two known mechanisms for such an
emission. The first one, discussed in [25, 26] for water waves and in [11] and Appendix C of [1] for Bose-Einstein
condensates, is due to the fact that, given an obstacle and parameters for the upstream flow, the amplitude of the
periodic wave is generally nonzero unless these parameters are precisely fine-tuned to suppress it. (A procedure to
design an obstacle shape reducing the undulation amplitude in water waves was proposed in [27] and applied in [10].
Another procedure was used in [13] in the context of flowing atomic Bose condensates.) The second mechanism is
the amplification of incoming low-frequency perturbations by the analogue Hawking effect [9], exhibiting a close
relation between this effect and undulations. Moreover, in the experiment [10] the undulation seems to play an
important role in the wave conversion, which cannot be unambiguously separated from the contribution of the flow
gradient localized above the obstacle. These observations, calling for a better understanding of the scattering in the
presence of an undulation, are the main motivations for the present work.

The effect of an undulation on the analogue HR was addressed numerically in the context of Bose-Einstein
condensates in [1]. It was shown that a sufficiently long undulation can significantly modify the effective temperature.
Importantly, it was found to be reduced when the undulation has a phase close to that of a nonlinear solution of the
field equations. This study raises two important questions. The first one concerns the analytical description of the
reduction, which was so far obtained only numerically. Second, it is not completely clear from the numerical results
whether the effective temperature goes to zero in the limit of a long undulation or saturates to a finite value – nor,
in the latter case, how this value depends on the undulation amplitude.

We here aim at answering these two questions by computing analytically the effective temperature in the presence
of an undulation in a transcritical flow. In the main text we use a simple model based on the Korteweg-de Vries
(KdV) equation to describe surface waves on a two-dimensional flow of an ideal fluid. Although idealized, it has the
advantage of showing the main features in a transparent way, keeping technicalities to a minimum. In Appendix C,
the same analysis is carried out in a more involved model fully taking into account the dispersion relation of water
waves obtained when neglecting viscosity, surface tension, and vorticity. We believe that the similarities between the
results of our two models and the generality of the arguments used to motivate them indicate they should be only
weakly affected when including these three effects. In Appendix D we briefly discuss the case of subcritical flows
(see also Refs. [27–30]) to be closer to the experiments [10, 31].

This paper is organized as follows. Section 2 is devoted to the computation of the modes over a long undulation.
We show in which sense it may be thought of as the zero-frequency limit of a three-wave resonance and exhibits the
specific features of this limit. These results are applied to white-hole like flows in Section 3, where the implications
of a small undulation for the analogue Hawking radiation are determined. We conclude in Section 4. In Appendix A
we consider the resonant scattering on a “detuned” undulation, i.e., a region where some external parameter varies
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periodically, in the case there is a resonance at finite frequency. We take the opportunity to detail two points which
are also relevant to the case studied in the main text, namely the Lagrangian description of the KdV equation and
the relation between the transfer and scattering matrices. Appendix B relates the properties of the modes to the
nonlinear solutions of the KdV equation. Appendix C generalizes the main results to a more realistic model of
water waves, assuming incompressibility, irrotationality, no viscosity, and no surface tension, but keeping terms of all
orders in the wave vector. Finally, in appendix D we briefly comment on the case of a subcritical flow.

2 Modes over an infinite undulation

The aim of this section is to exhibit the general properties of low-frequency modes over an undulation. This is a
preliminary step to the calculation of the spectrum in analogue white-hole flows done in Section 3. In Appendix A,
the interested reader will find a complete treatment of the case of a “detuned” undulation, corresponding to an
externally imposed modulation of some parameter with an arbitrary period. There, we find that the behavior of
resonant modes depends on the relative signs of the energies and momenta of the two waves involved in the resonant
scattering: the resonant modes are exponentially growing in time (respectively in space) if their energies (respectively
energy currents) have opposite signs, and bounded if they have the same sign. Here instead, we consider the effects
of “tuned” undulations which are themselves static solutions of the KdV equation. As we shall see, this introduces
a qualitative difference: the resonance now involves modes with a vanishing energy, leading to a linear, instead
of exponential, growth in space or time. In Appendix B, we show that this behavior can be directly related to
variations of the nonlinear solutions.

We work with the one-dimensional KdV equation:

∂tη + µ∂xη + ∂3
xη + 6 η ∂xη = 0, (1)

where µ > 0. (See appendix A and Refs. [32, 33].) To study linear perturbations, we write η = η(0) + δη where η(0)

is an exact stationary solution of Equation (1) and δη is a “small” perturbation. Neglecting terms quadratic in δη,
one obtains the linearized KdV equation:

∂tδη + ∂x

((
µ+ 6 η(0)

)
δη
)

+ ∂3
xδη = 0. (2)

In the following we first review a few properties of this linear equation which will play an important role in the
scattering over an undulation. We generalize Equation (2), replacing the factor µ+6η(0) by an arbitrary differentiable
function of x, so that the same formalism can be applied to “detuned” undulations. Applying it to Equation (1)
allows us to determine the shape of the resonant modes as well as the leading terms in the transfer matrix at low
frequencies, which will be used in Section 3 to determine the corrections to the emission spectrum of a white-hole
flow. The analysis presented in this section is extended to a more realistic model of water waves in Appendices C.2
and C.3.

2.1 The linearized KdV equation

In this subsection we consider the mathematical description of periodic variations of some parameter entering the
field equation. These might be “detuned” (see Appendix A.2 for a fuller treatment), corresponding to local variations
of some external potential or, in the case of water waves, to the height of the obstacle put at the bottom of the
flume. However, in the main body of this paper we shall restrict our attention to “tuned” undulations, which are
themselves static nonlinear solutions of the KdV equation.

To this end, we consider the linearized stationary KdV equation:

∂tδη(t, x) + ∂x (µ̄(x) δη(t, x)) + ∂3
xδη(t, x) = 0, (3)

where µ̄ ∈ C0(R) is a non-constant periodic function of x. The relation between Equation (3) and the forced
KdV equation used to model water waves [32] is discussed in appendix A.1. In the case of “tuned” undulations
considered here, the undulation is a solution η(0) of the KdV equation, and enters Equation (2) through the relation
µ̄ = µ+ 6η(0).

Let us call λµ the fundamental period of µ̄ and define kµ ≡ 2π/λµ. For all n ∈ Z, we define

µn ≡
1

λµ

∫ λµ

0

µ̄(x) e−inkµxdx. (4)
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Then, for any x ∈ R,

µ̄(x) =
∑
n∈Z

µn einkµx. (5)

Since µ̄ is real-valued, µ−n = µ∗n for all n ∈ Z. To determine the scattering coefficients analytically, we work
perturbatively in the variations of µ̄. More precisely, we define a small parameter ε > 0, ε � 1, and assume the
coefficients µn scale as

∀n ∈ Z,
µn
µ0

= O
(
ε|n|
)
. (6)

The calculation can then be performed to any given order in ε by expanding Equation (3) in this parameter.
It is of value to first recall some properties of the solutions in the case ε = 0. Then, Equation (3) becomes

[∂t + µ0 ∂x + ∂3
x]δη(t, x) = 0. (7)

The constant µ0, chosen here to be positive, is equal to c0 + v0, where c0 is the low-frequency group velocity
in the fluid frame, and v0 < 0 is the flow speed. With these choices, Equation (7) describes small-amplitude
counter-propagating waves over a (subcritical) flow to the left, i.e., waves whose group velocities in the reference
frame of the fluid are all positive. As this equation has no explicit space or time dependence, there exists a continuous
basis of bounded solutions of the form

δηω,k : (t, x) 7→ ei(kx−ωt), (8)

where (ω, k) ∈ R2. Using Equation (7), one finds Equation (8) is a solution if and only if the dispersion relation
ω = ω0(k) is satisfied, where

ω0(k) = µ0 k − k3. (9)

It is shown in Figure 1. At fixed value of ω, the dispersion relation has three complex roots in k. For ω ∈ R, the
number of real ones depends on whether |ω| is larger or smaller than a critical value

ωmax = 2
(µ0

3

)3/2

: (10)

• If |ω| < ωmax, the three roots are real. We denote them as k
(i)
ω , i ∈ {1, 2, 3}, with k

(1)
ω < k

(2)
ω < k

(3)
ω . The

second one, k
(2)
ω , corresponds to a right-moving wave, whose group velocity

(
dk

(2)
ω /dω

)−1

is positive. The

two other roots correspond to left-moving waves, with negative group velocities. For ω > 0 , we also have

k
(1)
ω < 0 and k

(3)
ω > k

(2)
ω > 0. So, the quantity k

(i)
ω dk

(i)
ω /dω, which will play an important role in the following,

is strictly positive for i ∈ {1, 2} and strictly negative for i = 3. In the low-frequency limit ω = 0, one finds

k
(2)
ω = 0 and k

(3)
ω = −k(1)

ω = ku, where ku ≡ √µ0 is the wave vector of the “tuned” undulation η(0).

• If |ω| > ωmax, only one real root remains: k
(1)
ω for ω > 0 and k

(3)
ω for ω < 0. The two other roots are complex

with nonvanishing (and opposite) imaginary parts.

As shown in appendix A.1, the sign of the energy of a wave is given by ω k. It is indicated in the figure by the
style of the curve: continuous for positive-energy modes and dashed for negative-energy ones. In the following we
concentrate on modes with 0 < ω < ωmax. Those with −ωmax < ω < 0 are simply their complex conjugates, so
there is no need to study them separately. The modes with i ∈ {2, 3} then have positive energies while the mode

with i = 1 has a negative energy. A resonance can occur if there exists (i, j) ∈ {1, 2, 3}2 and nr ∈ N \ {0} such that

k
(i)
ω − k(j)

ω = nr kµ, where kµ is defined above Equation (4).
Scattering on a “detuned” undulation is studied in appendix A. The main result is that, when there is a 3-wave

resonance, i.e., two linear waves interacting resonantly with the undulation, the corresponding modes are either
bounded or exponentially increasing in one direction depending on the relative signs of the energy and energy flux of
the two interacting waves. If they have energies with the same sign, then the mode is bounded in time; otherwise
the mode grows or decays exponentially as t→∞. Similarly, it is spatially bounded if their energy fluxes have the
same sign, and exponentially increasing or decreasing as |x| → ∞ otherwise. As we will see in the following, in the
limit of a “tuned” undulation, which is itself a static solution of the KdV equation, this exponential behavior is
replaced by a linear growth.
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Figure 1: Dispersion relation ω versus k for the linear KdV equation (7) with µ0 = 2.5. The (subsonic) flow velocity v0 < 0 is
to the left, and µ0 = c0 + v0 where c0 is the low-frequency group velocity of linear waves. The style of the line gives the
sign of the energy of the corresponding mode: continuous for positive energies and dashed for negative ones. The horizontal
dot-dashed line shows ω = ωmax of Equation (10). The large dot shows the wave vector ku of the “tuned” undulation. The
black dotted line materializes a constant value of ω strictly between 0 and ωmax. Its intersection points with the blue curve
gives the three wave vectors k

(i)
ω at that frequency.

2.2 Periodic static solutions of the (nonlinear) KdV equation

As our analysis will rely on the structure of the stationary (nonlinear) solutions of Equation (1), we now review
their most relevant properties. A more detailed account can be found in the textbook [34]. Setting ∂tη = 0 in
Equation (1), one obtains the stationary KdV equation

∂x
(
µ η + ∂2

xη + 3η2
)

= 0. (11)

Integration over x gives
µ η + ∂2

xη + 3η2 = C, (12)

where C is an integration constant, see the left panel of Fig. 2 for four solutions with µ = 1 and C = 0. We assume

µ2 + 12C > 0. 1 Let η0 ≡
(√

µ2 + 12C − µ
)/

6 and ∆η ≡ η − η0. Equation (12) becomes

(µ+ 6η0) ∆η + ∂2
x∆η + 3 ∆η2 = 0. (13)

Multiplication by ∂x∆η gives

∂x

(
µ+ 6η0

2
∆η2 +

1

2
(∂x∆η)

2
+ ∆η3

)
= 0, (14)

which can be integrated over x, giving

(∂x∆η)
2

= −2 (∆η − η1) (∆η − η2) (∆η − η3) , (15)

where (η1, η2, η3) ∈ C3 satisfies  η1 + η2 + η3 = −µ+ 6η0

2
η1η2 + η2η3 + η3η1 = 0

, (16)

and η1η2η3 is another free integration constant. Spatially bounded solutions exist if and only if (η1, η2, η3) ∈ R3.
Ordering these three numbers as η1 ≤ η2 ≤ η3, the bounded solutions are periodic if η2 6= η1, with values of η going
from η2 to η3. The wavelength λ is:

λ =
2
√

2√
η3 − η1

K

(√
η3 − η2

η3 − η1

)
= 4

∫ π/2

0

dθ√√
µ̄2 − 3 (η3 − η2)

2
+ (η3 − η2) cos (2θ)

, (17)

1This condition is equivalent to the existence of real homogeneous solutions, given by η =
(
±
√
µ2 + 12C − µ

)/
6.
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Figure 2: Left panel: Plots of 4 different periodic nonlinear solutions of Eq. (12) with different amplitudes, for µ = 1 and
C = 0. Right panel: Wave vector ku as a function of the amplitude Au, defined as half the difference between the maximum
and minimum values reached by η.

where K is the complete elliptic integral of the first kind and µ̄ ≡ µ + 6η0. The wavelength λ diverges in the
limit η2 → η1. In the following, it will be convenient to use the wave vector ku ≡ 2π/λ, whose dependence on the
amplitude is shown in Figure 2, right panel.

We concentrate on small-amplitude undulations, i.e., with η2 ≈ η3. In this limit, the wave vector ku tends to√
µ̄, the strictly positive zero-frequency root of the dispersion relation over the solution η = η0, see Fig. 1. This is

an important point: the wavelength of the undulation is, to lowest order, always equal to that of a zero-frequency
solution of the linearized equation. This property, also found in the model of Appendix C, is the reason why the
undulation has an important effect on the scattering at low frequencies. To next order in η3 − η2, a straightforward
calculation using Equation (17) gives

ku =
√
µ̄

(
1− 15

4µ̄2
A2
u +O

(
A3
u

))
, (18)

where Au = (η3 − η2)/2 is the amplitude of the undulation. The latter has the form

ηu(x) = η0 +Au cos (ku (x− xu))− 3A2
u

2µ̄
+
A2
u

2µ̄
cos (2ku (x− xu)) +

3A3
u

16µ̄2
cos (3ku (x− xu)) +O

(
A4
u

)
, (19)

where xu ∈ R determines the phase at x = 0. The main result to keep in mind is that the spatially bounded solutions
are labeled by three continuous parameters: η0, giving the mean value of η to leading order, the amplitude of the
oscillations Au, and xu, giving (on multiplication by ku) the phase at the origin x = 0.

2.3 Modes over the undulation and transfer matrix

Let us now determine the low-frequency modes over the undulation from a linear calculation. An alternative

derivation in the zero-frequency limit is given in Appendix B. Denoting by k
(i)
ω , i ∈ {1, 2, 3} the solutions of the

dispersion relation (9) at fixed angular frequency ω, ordered as k
(1)
ω < k

(2)
ω < k

(3)
ω for |ω| < ωmax, we have for ω = 0:

k
(1)
0 = −ku, k(2)

0 = 0, and k
(3)
0 = ku.

There are thus two resonances involving two linear waves and the undulation:

• a first-order resonance due to k
(3)
0 − k(2)

0 = k
(2)
0 − k(1)

0 = ku, giving a contribution linear in Au,

• a second-order resonance due to k
(3)
0 − k(1)

0 = 2ku, whose contribution is of order A2
u.

To obtain the corresponding resonant modes, we solve Equation (2) in a background η(0) = ηu given by Equation (19).
Since the coefficients of the differential equation (2) are independent of t and periodic in x with period 2π/ku, one
can look for solutions of the form

δη : (t, x) 7→ e−iωt+ikxρ(x), (20)
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where ω and k are two complex numbers giving respectively the angular frequency and the quasimomentum of the
solution δη, and where ρ ∈ C3 (R,C) is periodic with period 2π/ku. Let (ρn)n∈Z be the coefficients of its Fourier
expansion, defined so that

ρ(x) =
∑
n∈Z

ρneinkux. (21)

The mode is normalized with respect to the inner product (70) if ρ0 is chosen such that

2π

∣∣∣∣ dkdω

∣∣∣∣−1
∣∣∣∣∣∑
n∈Z

|ρn|2
k + nku

∣∣∣∣∣ = 1, (22)

and the sign of its energy is

sgn

( dk

dω

)−1 ∑
n∈Z

∣∣∣ρ(n)
n

∣∣∣2
k + nku

 . (23)

Similarly, ηu can be expanded as

ηu(x) =
∑
n∈Z

ηneinkux, (24)

where (ηn)n∈Z ∈ CZ. Plugging Equation (20) in Equation (2) and using Eqs. (21, 24) gives the recursion relation:

∀n ∈ Z, (ω − ω0 (k + nku)) ρn − 6 (k + nku)
∑
l∈Z∗

ηlρn−l = 0, (25)

where
ω0(k) = µ̄ k − k3 (26)

gives the relation between ω and k on a homogeneous solution η = η0. We define a small parameter ε and solve
Equation (25) perturbatively in ε, assuming the following scalings:

ω = O (ε) ; ∀n ∈ Z, ηn = O
(
ε|n|
)
; and ∀n ∈ Z, ρn = O

(
εmax(|n|−1,0)

)
. (27)

As could be expected from the unperturbed dispersion relation, we find three modes: two dispersive ones δη
(±)
ω

whose group velocities go to ω′0 (ku) in the limit ε→ 0, and a hydrodynamic one δη
(h)
ω whose group velocity tends to

ω′0(0). The former are given by

δη(s)
ω :



ρ0 = −2ω

k2
u

ρc +O
(
ε2
)

ρ±1 =

(
ω

Au
∓ s
√
ω2

A2
u

+ 4k2
u +O (ε3)

)
ρc +O (ε)

ρ±2 =

(
1± ω

2k3
u

)
Au
k2
u

ρ±1 +O
(
ε3
)

ρ±3 =
9A2

u

16k4
u

ρ±1 +O
(
ε3
)

, (28)

where s ∈ {−1,+1} and ρc is a constant. The corresponding quasi-momenta are

k = − ω

2k2
u

+ sδkd, (29)

where

δkd ≡
3

8k4
u

sgn(ω)

√
ω4

k2
u

+ 4ω2A2
u +O (ε5). (30)
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The hydrodynamic mode is given by

δη(h)
ω :



ρ0 =
ω

Auku
ρc +O

(
ε2
)

ρ±1 = ±ρc +O (ε)

ρ±2 = ±Au
k2
u

(
1∓ ω

k2
u

)
ρc +O

(
ε3
)

ρ±3 = ± 9A2
u

16k4
u

ρc +O
(
ε3
)

. (31)

Its quasimomentum satisfies ω0(k) = ω +O
(
ε3
)
, i.e., is unchanged to this order.

The stationary modes obtained by variations of the nonlinear solution of the KdV equation, ∂xuηu, ∂η0ηu, and
∂Auηu (see Eqs. (117,118,119)), can be obtained as the limit ω → 0 of the three modes of Eqs. (28, 31). Indeed, a

straightforward calculation shows that (up to a global factor) δη
(h)
ω and δη

(±)
ω converge uniformly toward ∂xuηu in

the limit ω → 0, while the two other modes are obtained through

Au
4ωρc

(
δη(+)
ω + δη(−)

ω

)
−→
ω→0

∂Auηu + 2
Au
µ

(
1− 9A2

u

µ2

)
∂η0ηu (32)

and
Auku
ωρc

δη(h)
ω +

Au
4ωρc

(
δη(+)
ω − δη(−)

ω

)
−→
ω→0

(
1− 9A2

u

µ2

)
∂η0ηu. (33)

(In these expressions, the convergence is uniform on any bounded domain of R2.)
To see the effects of the linearly-growing terms, one can compute the transfer matrix T at zero frequency over a

damped undulation of the form

ηu,d(x) =
ηu(x)

2
[1− tanh (σu (x− Lu/2)) tanh (σu (x+ Lu/2))] , (34)

where σu and Lu are two strictly positive numbers. One example is shown in Figure 3. Following the notation
adopted in Fig. 1, let us denote with an index 2 the hydrodynamic wave with vanishing wave vector while indices 1
and 3 denote the dispersive waves with wave vectors going to ±√µ̄ for ω → 0. To simplify the expressions, we here
give the results for modes normalized to have a single plane wave with unit amplitude on the left or on the right of
the undulation. Taking the double limit Au → 0, Lu →∞ at fixed AuL and retaining only the leading terms gives

|T2,1| ∼ |T2,3| ∼
3Au
2
√
µ
Lu,

|T1,1 − 1| ∼ |T1,3| ∼ |T3,1| ∼ |T3,3 − 1| ∼ 15A2
u

4µ3/2
Lu.

(35)

The transfer coefficients T2,2−1, T1,2, and T3,2 go to zero faster than Au in this limit. The behavior of the coefficients
T2,1 and T1,1 is compared with results from a numerical resolution of the KdV equation in Figure 4. The important
point is that imposing a hydrodynamic wave with an amplitude of order 1 on one side will generate dispersive
waves with amplitudes linear in AuLu on the other side, while the coefficients relating two dispersive waves are in
A2
uLu. As will be shown in Section 3, this is crucial to understand the effect of the undulation on the scattering in a

white-hole like flow. Moreover, this scaling is preserved in the more realistic model of appendix C.3, showing that
the results obtained with the KdV equation qualitatively extend to that model.

In this section we have thus obtained the low-frequency modes over a small-amplitude undulation and determined
the corresponding transfer matrix. To study the scattering of water waves in the presence of undulation, there
remains to determine which linear combination of these modes enters the incoming mode in a given configuration.
This is done in Section 3 for a “white-hole” flow.

3 White-hole like flows

3.1 Setup and general idea

As mentioned in the introduction, one motivation for studying water waves in the context of analogue gravity is the
possibility to realize “white hole” flows with an analogue horizon. For definiteness, we work with flows oriented to
the left. To fix the ideas, we here define a white hole flow by the five properties:

8



Figure 3: Asymptotically turned-off undulation (see Equation (34)) for Lu = 100, Au ≈ 0.1, and σu = 0.1.
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|T2,2|

Figure 4: Plots of the absolute values of the coefficients T2,1 (left panels) and T1,1 (right panels) as functions of the length L
of an undulation of the form (34), for Au ≈ 0.05, µ = 1, and for σu = 1 (top panels) and σu = 0.1 (bottom panels). Blue,
continuous lines show numerical results, while the green, dashed lines show the analytical approximation (35). The difference
between the average slopes is due to higher-order effects, and the oscillations visible on the top plots seem due to the sharp
variation of the amplitude at both ends of the undulation.
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1. the flow velocity v and speed of long-wavelength perturbations in the fluid frame c are piecewise-continuous
functions of x such that c is positive and v does not change sign;

2. v(x) and c(x) are asymptotically uniform in the limits x→ ±∞;

3. the flow is subcritical in the downstream region:

lim
x→−∞

∣∣∣∣v(x)

c(x)

∣∣∣∣ < 1; (36)

4. it is supercritical in the upstream region:

lim
x→+∞

∣∣∣∣v(x)

c(x)

∣∣∣∣ > 1; (37)

5. there exists only one point xh ∈ R such that

lim
x→x−h

∣∣∣∣v(x)

c(x)

∣∣∣∣ ≤ 1 and lim
x→x+

h

∣∣∣∣v(x)

c(x)

∣∣∣∣ ≥ 1. (38)

The point xh is the analogue horizon. 2

Such setups have been extensively studied, see for instance Refs [9, 12, 27, 28, 35, 36]. One important result,
related to the Hawking effect in astrophysical black holes, is the divergence of the scattering coefficient βω relating
the incoming counter-propagating mode (corresponding to a wave sent from the downstream region upward) to
the outgoing negative-energy wave. More precisely, βω gives the amplitude of the normalized (in the sense of
Equation (72), see Appendix A.1 for details) negative-energy wave obtained when sending from the left a normalized
counter-propagating incident wave with angular frequency ω. The crucial point is that

∣∣ωβ2
ω

∣∣ has a finite limit as
ω → 0, which is interpreted as the effective temperature Teff of the analogue horizon. 3

The effective temperature can be determined from the zero-frequency limits of the amplitudes of the plane
waves in the asymptotic downstream region. Let us denote by Ain that of the incident wave and Aneg that of the
negative-energy one. Using Equation (73) to relate them to normalized waves and the dispersion relation (9) to
relate the wave vectors to the angular frequency ω, one finds

Teff = 2µ̄(−∞)3/2

∣∣∣∣Aneg

Ain

∣∣∣∣2. (39)

For sufficiently smooth white hole flows, one can show [35] that Teff ≈ κ/(2π), where κ ≡
∣∣∂x (v + c)x=xh

∣∣ is the
analogue of the surface gravity.

However, as also mentioned in the Introduction, flows realized in experiments generally have an undulation in the
downstream region. To avoid ambiguity, we shall refer to them as “white-hole like” flows, for which the conditions 2
and 3 above are replaced, respectively, by

2’. v(x) and c(x) are asymptotically uniform in the limit x→ +∞ and periodic at x→ −∞;

3’. the flow is subcritical in the downstream region:

∃xM ∈ R, ∀x ∈ R, x < xM ⇒ |v(x)/c(x)| < 1. (40)

Our aim in this section is to understand the effects of a small-amplitude undulation on Teff . To this end, we
determine the wave content of the relevant mode as a function of x using a WKB approximation. As we shall see,
because of the resonance discussed in Section 2, their amplitudes change significantly even when going far away from
the horizon, which affects the effective temperature. When decreasing x from xh toward −∞, one obtains two limit
regimes:

2Assuming v/c is continuous, this condition simplifies to: there exists only one xh ∈ R such that |v(xh)/c(xh)| = 1.
3In quantum fluids, choosing units in which the Boltzmann and Planck constants are equal to 1, Teff is the low-frequency temperature

of the ensemble of quasi-particles spontaneously produced by the analogue Hawking effect. In general, the effective temperatures defined
using the various incoming modes will differ due to the coupling between co- and counter-propagating modes in the rest frame of
the fluid [12]. However, when using the KdV equation there are only two independent incoming modes over a transcritical flow, and
conservation of the inner product (70) ensures their effective temperatures are equal.
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• close to the horizon (more precisely, for small values of Au (xh − x)), in the limit Au � 1, the contribution from

the undulation is negligible and one recovers the temperature T
(0)
eff of a white hole flow without undulation;

• for xh − x� A−2
u , the wave content is dominated by the linearly-growing terms over the undulation: βω then

becomes proportional to Au and the effective temperature scales like A2
u.

For this reason, and as will be shown more precisely below, the two limits Au → 0 and x→ −∞ do not commute:

sending first Au to 0 and then x to −∞ gives Teff = T
(0)
eff , while taking first x → −∞ and then Au � 1 gives a

different effective temperature T
(u)
eff , determined by the behavior of the modes of Section 2 over the undulation. In

Section 3.2 we consider a toy-model in which T
(0)
eff and T

(u)
eff can be computed explicitly as well as the interpolation

between them when decreasing x. In Section 3.3 we generalize the calculation of T
(u)
eff using a forced KdV equation.

3.2 Low-frequency effective temperature: an explicit calculation

Let us consider the KdV equation with variable coefficient:

∂tη + ∂x (µη) + ∂3
xη + 6η∂xη = 0, (41)

where µ is a given function of x. We focus on time-independent solutions. Integrating Equation (41) over x gives

µη + ∂2
xη + 3η2 = C, (42)

where C is a real constant. To be specific, let us assume that µ has a step-like profile:

µ(x) =

{
µ− x < 0

µ+ x > 0
(43)

for some real numbers µ− > 0 and µ+ < 0. The trivial solution η = 0 then corresponds to a white hole flow with
negative velocity. Stationary perturbations in the downstream region x < 0 are given by Eqs. (18,19) with µ̄ replaced

by
√
µ2
− + 12C and with η0 = (k2

u − µ−)/6. A similar procedure can be used to find the stationary solutions in the

upstream region x > 0. At fixed C, they are described by a single parameter Ad ∈ R:

ηd(x) = −µ+ + k2
d

6
+Ade−kdx − A2

d

k2
d

e−2kdx +
3A3

d

4k4
d

e−3kdx +O
(
A4
d

)
, (44)

where kd ≡
(
µ2

+ + 12C
)1/4

is the decay rate of the perturbation to linear order. The general global solution is then
given by Equation (44) for x > 0 and by Equation (19) for x < 0, with amplitude Au and phase kuxu related to Ad
by the requirement that η be continuous and differentiable at x = 0. To leading order in Ad, these two requirements
become

sin (kuxu) ≈ − kdAd
kuAu

(45)

and

Au ≈
√(

k2
d + k2

u + µ+ − µ−
6

−Ad
)2

+
k2
d

k2
u

A2
d. (46)

We now wish to compute the incoming, counter-propagating mode φ
(in)
ω and its derivative δη

(in)
ω ≡ ∂xφ(in)

ω at low
frequency. 4 We consider two cases:

1. as a warm-up exercise, we compute it over the homogeneous solution η(0) = 0 and determine the corresponding

effective temperature T
(0)
eff ;

2. we then turn to the case Ad 6= 0, and thus Au 6= 0, to see the effects of the undulation.

4The field φ is defined as the integral of δη over x. As is shown in appendix A.1, φ is the field appearing in the Lagrangian formulation
of the KdV equation, and the natural quantity to define normalized modes.
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Low-frequency effective temperature on the homogeneous solution η = 0:

To compute the effective temperature, one needs the structure of the incoming counter-propagating mode δη
(in)
ω ,

which corresponds to sending a wave from the left, in the low-frequency limit. We first notice that the waves with
real wave vectors in the region x > 0 are incoming, with group velocities v ± c < 0, and are thus absent in the
mode we are interested in. 5 This mode thus must be exponentially decreasing for x→∞. Second, we note that at
zero frequency any stationary mode is an infinitesimal difference between two nonlinear stationary solutions. (See
Section 2.3 and appendix B.)

In our case, the relevant stationary solution depends on the two parameters C and Ad, giving two possible
asymptotically bounded modes. However, as can be seen from Equation (44), ∂Adηd is exponentially decreasing as
x→ +∞ while ∂Cηd goes to a finite constant −1/µ+. In the low-frequency limit, we thus have

δη(in)
ω ∝

(
∂Adη

(0)
)
Ad=C=0

. (47)

Evaluating the derivative and using the matching conditions at x = 0 gives

δη(in)
ω ∝


e−kdx x > 0

cos (kux)− kd
ku

sin (kux) x < 0
. (48)

Integrating over x, one obtains:

φ(in)
ω ∝


e−kdx x > 0

1 +
k2
d

k2
u

− kd
ku

sin (kux)− k2
d

k2
u

cos (kux) x < 0
. (49)

The effective temperature can then be determined using Equation (39): the amplitude of the incoming wave, which
is uniform in the limit ω → 0, goes to 1 + k2

d/k
2
u while that of the negative-energy wave, with wave vector −ku for

ω = 0+, goes to (kd/(2ku))
√

1 + k2
d/k

2
u, giving

T
(0)
eff =

µ
3/2
−
2

(
1 +

∣∣∣∣µ−µ+

∣∣∣∣)−1

. (50)

Recalling from Equation (10) that ωmax ∝ µ3/2
− , this expression is of the same form as those found in the step-like

regime of Bogoliubov-de Gennes [37] and the quartic dispersion relation considered in [38].

Low-frequency effective temperature on a white-hole like flow with undulation:

We now consider the case Ad 6= 0, and thus Au 6= 0, keeping for simplicity C = 0 for the background flow. (This
hypothesis will be relaxed below.) The idea of the calculation is the same as above. Since the background solution

goes to zero exponentially in the limit x→ +∞, the structure of the modes in this region is unaffected and φ
(in)
0

must still be exponentially decreasing, which implies η
(in)
0 ∝ ∂Adη(0). However, the additional terms in Equation (19)

give linearly growing ones in φ
(in)
0 in the limit x → −∞, represented in Figure 5. For sufficiently large values of

−x and small amplitudes Au, the relative variations of the amplitudes of the waves over a distance 2π/ku becomes
negligible. Using a WKB approximation, the amplitudes of the incident and negative-energy waves for ω = 0+ can
thus be locally evaluated unambiguously.

An interesting point is that, when focusing on the limit x→ −∞, one does not need to know the relationship
between (Au, xu) and Ad. Indeed, assuming ∂AdAu 6= 0 (which can be verified explicitly using Equation (46)), and

keeping only the constant term (which gives a linearly growing contribution to φ
(in)
0 after integration over x) and

linearly growing one, we obtain

δη
(in)
0 ∝

(
−3Au
k2
u

+
15A2

u

2µ
3/2
−

x sin (ku (x− xu))

)
∂AdAu + ..., (51)

5Using the KdV equation, in the derivation of which the limit |v/c| → 1 is taken, v − c is not defined unambiguously and the
corresponding wave is uniform for all frequencies. Its group velocity is thus undefined. However, when using a more refined model
of water waves such as that of Appendix C.2, one finds its group velocity is negative. Here we thus choose the convention that it is
incoming, to be consistent with the behavior of waves when |v/c| 6= 1.
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Figure 5: Left panel: Plot of the homogeneous solution η = 0 (green) and of a modulated solution (blue) of the KdV equation
with variable coefficient (41). The function µ has a hyperbolic tangent profile µ(x) = A + B tanh(σx) with σ = 100 and
(A,B) ∈ R2 chosen so that µ(−∞) = 0.8 and µ(+∞) = −1.5. Right panel : Incoming, counter-propagating mode over the
modulated solution (blue) and over the homogeneous solution η = 0 (green). (The normalization is arbitrary.)

where the neglected terms give finite contributions to φ
(in)
0 in the limit x→ −∞ or grow linearly with coefficients of

higher order in Au. Integrating over x gives

φ
(in)
0 ∝ −

(
3Au
k2
u

+
15A2

u

2µ2
−

cos (ku (x− xu))

)
x∂AdAu + ... (52)

Using again Equation (39), one obtains the effective temperature:

T
(u)
eff ≈

25A2
u

8
√
µ−

. (53)

Equation (53) (along with its generalization given later in (64)) are the main results of this work. They show
that an undulation with an arbitrarily small amplitude will, if extending over a sufficiently long domain (this

condition is made more precise below), efficiently suppress the scattering, replacing the effective temperature T
(0)
eff of

Equation (50) by T
(u)
eff of Equation (53). Moreover, this new effective temperature goes to zero like A2

u for Au → 0.
Although the above calculation is done in a very specific case, it is clear from the derivation that this scaling only
depends on the properties of the periodic, stationary solutions for x→ −∞ and thus applies much more generally.
In particular, Equation (53), whose derivation invloves only the properties of the flow in the asymptotic regions
x → ±∞, remains valid when replacing the step-like profile for µ with a smooth one. Below we consider two
generalizations: in Section 3.3 we use white-hole like flows of the forced KdV equation and show that Equation (53)
is recovered up to adding a constant to µ− accounting for the different mean background flow. In Appendix C.3, we
use a more realistic model of water waves and find the same scaling between the effective temperature computed far
from the horizon and the amplitude of the undulation.

Before that, it is useful to consider the effective temperature Teff(x) obtained when doing the measurement at a
finite (negative) value of x. Redoing the above calculation while keeping the leading terms of constant amplitude in

φ
(in)
0 gives 6

Teff(x) ≈ µ
3/2
−
2

1 +
225A4

u

4µ3
−
x2(√

1− µ−
µ+

+ sgn(Ad)
3 |Au|√
µ−

x
)2 . (54)

This is represented in Figure 6. Three regimes can be distinguished:

• for 0 < −x�
√
µ− − µ2

−/µ+/(3|Au|), the terms linear in x are negligible and one recovers Teff(x) ≈ T (0)
eff ;

• for −x� 2µ
3/2
− /(15A2

u), they become dominant and the effective temperature becomes Teff(x) ≈ T (u)
eff ;

6 If Ad > 0, Equation (54) has a divergence for a finite negative value of x. This does not seem to indicate anything dramatic: it is
only the consequence of a local cancellation between the wave with low wave vector present in the absence of undulation and the linearly
growing part due to the latter, so that the amplitude of the incoming mode as measured there would vanish.
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Figure 6: Square root of the effective temperature computed numerically over a finite-length undulation with sharp cut-off
(which causes the rapid oscillations with small amplitude) with Ad = −0.03, µ+ = 1, and µ− = −1, as a function of the

cut-off position x. The temperature is adimensionalized by T
(0)
eff of Equation (50). The green curve shows the numerical result.

The blue, dotted one shows the approximation from Equation (54) and the red, dashed line its limit T
(u)
eff of Equation (53) for

x→ −∞.

• for
√
µ− − µ2

−/µ+/(3|Au|)� −x� 2µ
3/2
− /(15A2

u), one finds an intermediate regime with

Teff(x) ≈ µ
5/2
−

18A2
ux

2
. (55)

This regime is interesting as it shows how the temperature goes from the value T
(0)
eff to the (under our

hypotheses) much smaller value T
(u)
eff when increasing the length of the undulation. In particular, one sees that

the main parameter describing this transition is the product Aux of the amplitude of the undulation and the
length x separating the point where the measurement is made from the analogue horizon.

As a consistency check, we compare in the right panel of the figure results from Equation (54) to those from a
numerical calculation of the effective temperature with a cut-off undulation. This finite undulation is defined by
multiplying the background solution η(0) by θ(x− x0), where θ is Heaviside’s step function and x0 < 0, so that the
flow is asymptotically homogeneous and the scattering coefficients can be computed in the usual way [12, 27]. Apart
from small oscillations coming from higher-order effects, whose relative amplitude seems linear in Au, we observe a
good agreement between the numerical and analytical results.

Before moving on, let us pause to summarize them qualitatively. As mentioned above, there are two resonances
at zero frequency: a first-order one involving the “hydrodynamic” root k = 0 and one dispersive root, and a
second-order one involving the two dispersive roots. The first resonance is responsible for the term linear in x. 7 The
second-order one yields the term in x cos(kux). When moving away from x = 0, in the negative-x direction, both
the hydrodynamic and dispersive waves thus have amplitudes growing linearly in |x|, with coefficients of orders Au
and A2

u, respectively. For sufficiently long undulations, these linearly-growing terms dominate over the constant ones
coming from the scattering in the region x ≈ 0, giving values of βω≈0 proportional to Au, and thus a temperature
proportional to A2

u. We briefly investigated numerically the case of a smaller slope of u near the sonic horizon and
found that: first, the qualitative behavior of Teff(x) is similar to that in Figure 6; and second, the asymptotic value
of Teff(x) as x→ −∞ is still given by Equation (53), as expected from the above analysis.

Effect of dissipation:

A more physical way to send the amplitude of the undulation to zero at spatial infinity is to add a small dissipative
term to the KdV equation. Focusing on stationary solutions, we work with the equation

∂2
xη + µη + 3η2 − ν∂xη = 0, (56)

7More precisely, it gives a finite constant to δη, which after integration yields a linear term in φ.
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where ν � kd, ku is a small positive number. This equation may be written as

∂x

(
1

2
(∂xη)

2
+
µ

2
η2 + η3

)
= ν (∂xη)

2
. (57)

To leading order, the evolution of the amplitude Au of the undulation is thus given by

∂x
(
A2
u

)
≈ 2ν sin2 (kux)A2

u. (58)

Since ν � ku, one can average this equation over a few wavelengths, leading to

Au ∝ eνx/2 (59)

for x < 0. The effects of this damping term on the scattering can be estimated as follows. Locally, if ν is sufficiently
small, the modes have the same form as above, with Au now slowly varying with x. In particular, over an interval

of length δx centered on x and such that ν |δx| � 1, the non-oscillating part of φ
(in)
0 will grow by a quantity

proportional to Au(x)δx and the oscillating part by a quantity proportional to Au(x)2δx. When computing their
ratio for x→ −∞ , Au should thus be replaced by∫ 0

−∞Au(x)2 dx∫ 0

−∞Au(x)dx
=
Au(0)

2
. (60)

For a given value of Au(0), one thus expects that the effective temperature T
(d)
eff measured at x→ −∞ over a slowly

damped undulation is 4 times smaller than the result obtained without damping:

T
(d)
eff ≈

25Au(0)2

32
√
µ−

. (61)

To illustrate this result, we show in Figure 7 the evolution of the effective temperature with ν, computed numerically
for different values of x. As expected from the above calculation, the two limits x → −∞ and ν → 0+ do not
commute:

• when sending ν to 0+ at fixed x and then x to −∞, one recovers the effective temperature T
(u)
eff computed for

ν = 0;

• when sending first x to −∞ and then ν to 0+, the effective temperature we obtain is 4 times smaller, in
accordance with Equation (61).

3.3 Low-frequency effective temperature: generalization

We now wish to generalize the main result of the above analysis, i.e., Equation (53), to a wider class of white-hole
like flows. Let us consider the forced KdV equation

∂tη + ∂x (µη) + ∂3
xη + 6η∂xη = f, (62)

where µ and f are two smooth functions of x. We assume µ has finite limits µ± as x→ ±∞ and that f is integrable
over R. We denote as h a primitive of f , and by h± its limits x → ±∞. When looking for stationary solutions,
Equation (62) can be integrated over x, giving

µη + ∂2
xη + 3η2 = h+ C, (63)

where C is an integration constant. Locally, the properties of the solutions are identical to those obtained
for f = 0, with C shifted by h. In particular, if µ and h are homogeneous we have two uniform solutions
η(x) = (−µ ±

√
µ2 + 12(C + h))/6, the one with the + sign being subcritical while that with the − sign is

supercritical.
We assume that µ and f are such that there exists a value C0 of C for which there is a white hole solution, i.e.,

a solution going to (−µ± ∓
√
µ2
± + 12(C0 + h±))/6 as x→ ±∞. 8 Stationary solutions close to this white hole flow

are given

8This hypothesis should be satisfied without the need to fine-tune the functions µ and f , as explained in [27]. Indeed, since the KdV
equation is of order 3, the general solution has 3 parameters. The condition that it is asymptotically uniform in the subcritical region
gives two constraints to linear order while the same condition in the supercritical region gives only one constraint since one of the waves
is exponentially decreasing. The number of constraints is thus equal to that of degrees of freedom, so one generally expects to find a
discrete set of solutions.
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Figure 7: Top: A damped undulation solution of Equation (56) (left) and the incoming counter-propagating mode over this
solution (right). The parameters are the same as in the right panel of Figure 5, and ν is set to 0.01. Bottom: Variation of the
effective temperature with ν, for relatively small values of this parameter. The value of −x, is multiplied by 2 between each
curve, from blue to green, with minimum value −xmax = 2000. The dashed line materializes the value 1/4.
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• in the limit x→ +∞, by Equation (44) with C replaced by C + h+,

• in the limit x→ −∞, by Eqs. (18,19) with µ replaced by
√
µ2
− + 12(C + h−) and with η0 = (k2

u − µ−)/6.

As in the previous case, they depend on the two parameters Ad and C, the quantities Au and xu being fixed by
solving Equation (62). As above also, the incoming counter-propagating mode must go to zero as x→ +∞, which

tells us that δη
(in)
0 ∝ ∂Adη at fixed C. Using Eqs. (18,19) to determine the behavior of δη

(in)
0 for x→ −∞, integrating

over x to obtain φ
(in)
0 , and extracting the effective temperature using Equation (39) gives, to leading order in Au

and assuming Au 6= 0,

T
(u)
eff ≈

25A2
u

8
(
µ2
− + 12 (C + h−)

)1/4 . (64)

The other results of the previous subsection also extend qualitatively to the present case. In particular, one still
finds the three regimes: assuming the origin of x is chosen close to the analogue horizon, and up to coefficients
depending on the profiles of µ and f ,

• for −x� A−1
u , Teff(x) is close to that computed without the undulation;

• for −x� A−2
u , Teff(x) ≈ T (u)

eff ;

• in the intermediate range A−1
u � −x� A−2

u , Teff(x) scales like 1/(A2
ux

2).

The reasoning leading to Equation (61) also remains valid up to minor modifications, showing that adding a
small dissipative term will reduce the effective temperature as measured at infinity by a factor 4 with respect to
Equation (64).

4 Conclusions

We have studied the propagation of linear waves in spatially modulated water flows. In the main text we used a
simple model based on the KdV equation, which shows the generic features in a relatively transparent way. The
same problem is addressed in a more realistic model of water waves in Appendix C. In Appendix A we focus on the
simpler case of a “detuned” undulation, whose wavelength is different from that of the low-frequency dispersive
waves and which may be understood as a modulation of some external parameter such as, for instance, the height of
an obstacle. In that case the resonance occurs when the wave number of the modulation, or an integer multiple of it,
is equal to the difference between two roots of the dispersion relation at the same frequency.

We considered waves propagating over stationary inhomogeneous solutions of the nonlinear KdV equation and
found a low-frequency resonance with peculiar features. In particular, two modes grow linearly in space, which
can be understood as the limit of the usual exponential behavior when the energy carried by each wave, and thus
the growth rate, goes to zero. We showed that the linear modes are closely related to the structure of the nearby
nonlinear solutions. Applying these results to white-hole like flows with the analogue of a Killing horizon and a
modulated free surface, we found that the latter can drastically modify the analogue Hawking emission provided it
extends far enough from the horizon. We analytically determined three regimes, depending on the length L and
amplitude A of the undulation: a regime of “short” undulation where the latter hardly affects the scattering, one
of “long” undulation where it completely fixes the effective temperature Teff ∝ A2, and an intermediate one where
Teff ∝ 1/(A2L2). These scaling laws constitute the main result of our work. Their derivation shows that they arise
directly from the structure of the solutions close to asymptotically homogeneous white-hole ones, and we thus expect
them to be fairly general. The analysis of Appendix C confirms that they also hold in the case of a more refined
model of water waves. Finally, we considered the effect of a long undulation in the presence of a dissipative term
sending its amplitude to zero at infinity. We found that, in the limit of small dissipation, the effective temperature
is divided by 4 with respect to the non-dissipative result. These results were verified numerically by solving the KdV
equation.

These findings raise two important questions which we hope to address in future works. The first and, in principle,
most straightforward one is to consider the same problem in other analogue gravity systems such as cold atoms or
quantum fluids of light. While the similarities between the nonlinear solutions of the Gross-Pitaevskii and KdV
equations seem to indicate that similar results will hold, it would be interesting to verify this explicitly and to
determine the coefficients of the linearly-growing terms in different systems. The second question concerns their
application to experiments. Considering for instance the realization of [10], two elements prevent our results from
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being directly applicable. First, the experimental setup was slightly different from the one considered here, consisting
of a subcritical water flow over a localized obstacle (briefly discussed in Appendix D). Second, the undulation
amplitude varied significantly over a few wavelengths. It is thus not clear to what extent the present analysis,
based on the assumption of a slowly-varying amplitude, can be trusted in this regime. We expect, however, that
low-frequency resonances still play an important role. It would be of interest to obtain experimental data with
a transcritical flow to be able to compare them with our results: the former could point to physical effects not
included in the above analysis while the latter could help disentangle the contribution from the scattering on the
undulation and from the analogue Hawking effect. As they stand, the main results of this article can already be
used for estimating the parameter range in which the Hawking effect should dominate, which we hope will help
guide the design of future analogue gravity experiments.
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Appendix A. Detuned undulation

A.1 Lagrangian description of the linear KdV equation

We first look for a simple linear equation describing dispersive, small-amplitude water waves in the presence of a
bottom topography inducing a modulated background flow. We focus on counter-propagating waves and assume that
the wave vector of the modulation differs from the zero-frequency wave number ku. For definiteness, we consider a
flow from right to left. The waves we shall consider then all propagate to the right in the frame of the fluid. Yet,
because of the flow, some of them are dragged and propagate to the left in the laboratory frame.

We start from the (nonlinear) forced KdV equation [32]

[∂t + µ0 ∂x + ∂3
x + 6η(t, x) ∂x]η(t, x) = ∂xh(x), (65)

where η gives the water height measured with respect to a uniform reference solution of the fluid equations for
∂xh = 0, and where µ0 is a real constant. Denoting as v0 the fluid velocity and c0 the speed of long-wavelength
perturbations of the background solution η = 0 in the fluid frame, µ0 is equal to the group velocity v0 + c0 of
long-wavelength linear perturbations in the laboratory frame. We assume the flow is subcritical, i.e., |v0| < c0,
so that µ0 > 0. The function h describes the stationary bottom topography. We use a unit system in which the
uniform water depth of the background flow is

√
3/2 and the gravitational acceleration is 16

√
2/3. (These values

are chosen to set the coefficients of the dispersive and nonlinear terms in Equation (65) to simple values, see for
instance [33].) Let us assume we know a time-independent solution η0. We look for C3 perturbations δη of the form
η(t, x) = η0(x) + δη(t, x).

To interpret and generalize the results of the following subsections, it is useful to adopt a Lagrangian description.
To this end, we define the auxiliary field φ, akin to a velocity potential, by

φ(t, x) =

∫ x

0

δη(t, y) dy. (66)

Linearizing the forced KdV equation (65) gives

∂t∂xφ(t, x) + ∂x (µ(x) ∂xφ(t, x)) + ∂4
xφ(t, x) = 0. (67)

Notice that, using ∂xφ = δη, one recovers Equation (3). Equation (67) is the Euler-Lagrange equation obtained
from extremization of the quadratic action Sq =

∫
R2 dtdxLq with

Lq = −[(∂tφ) (∂xφ) + µ (∂xφ)
2 −

(
∂2
xφ
)2

]. (68)

In practical calculations it is convenient to work with complex solutions of Equation (67). The Lagrangian density is
then

Lq = −[Re ((∂tφ
∗) (∂xφ)) + µ |∂xφ|2 −

∣∣∂2
xφ
∣∣2]. (69)
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A straightforward calculation shows that the inner product between two arbitrary square integrable solutions φ1, φ2

of Equation (67), defined by

(φ1|φ2) =
i

2

∫ +∞

−∞
(φ2(t, x) ∂xφ

∗
1(t, x)− φ∗1(t, x) ∂xφ2(t, x)) dx, (70)

is conserved by the time evolution. As usual, this definition can be extended from L2 solutions to plane waves in the
sense of distributions. If φi : (t, x) 7→ Ai ei(kix−ω0(ki)t) for i ∈ {1, 2} with (A1, A2, k1, k2) ∈ C2 × R2, we have

(φ1|φ2) = 2πA∗1A2k1δ (k1 − k2) . (71)

In this work we focus on stationary, inhomogeneous configurations. It is then convenient to work with the normalized
waves φNω,i, where ω denotes the angular frequency and i is a discrete parameter distinguishing the different solutions
with the same frequency, satisfying ∣∣(φNω,i|φNω′,j)∣∣ = δ (ω − ω′) δi,j . (72)

In a homogeneous region, these normalized waves are given by

φNω,i(t, x) =
ei(kix−ωt)√
2π
∣∣∣ki dω

dki

∣∣∣ , (73)

where ki denotes the ith solution of the dispersion relation for the angular frequency ω.
This inner product is related to the wave energy in the following way. The Hamiltonian associated with

Equation (69) is

Hq[φ] =

∫ +∞

−∞

(
µ|∂xφ|2 −

∣∣∂2
xφ
∣∣2)dx. (74)

Assuming φ, its space derivatives up to the third, and ∂tφ are square integrable, a straightforward calculation shows
that

Hq[φ] = (φ|i∂tφ) . (75)

This equation is valid for both complex and real solutions of Equation (67). If φω is a solution with fixed angular
frequency ω ∈ R, we have

Hq[φ] = ω (φω|φω) . (76)

If φω is a plane wave with wave vector k, its energy thus has the same sign as ωk. The energy flux can be obtained
by multiplication by the group velocity.

A.2 Modes over a detuned undulation

We now determine solutions of Equation (3) in the presence of a detuned undulation. We use the notations of
Section 2.1 and work to leading nontrivial order in ε. The calculation can be done to higher orders following the same
lines. Our goal is to show on a simple example the generic features due to the undulation, which will reappear in
other contexts such as a refined description of water waves (see Appendix C.1), and which will guide the calculation
in the case of a tuned undulation, done in Section 2 and in Appendix C.3. We assume the resonance condition is

satisfied with nr = 1, i.e., there exists ωr ∈ ]0, ωmax[ and (ir, jr) ∈ {1, 2, 3}2 with ir > jr such that k
(ir)
ωr − k(jr)

ωr = kµ.
We work with values of the angular frequency ω close to ωr.

Since µ is independent of t and periodic in x with period λµ, we can look for solutions of Equation (3) of the form

δη(t, x) = e−iωt+ikxξ(x), (77)

where ω ∈ C is the angular frequency, k ∈ C is the quasi-momentum, and ξ ∈ C3 (R,C) is periodic with period λµ.
The function ξ can be expanded as

ξ : x 7→
∑
n∈Z

ξn einkµx, (78)

where, for all n ∈ Z,

ξn =
1

λµ

∫ λµ

0

e−inkµxξ(x) dx. (79)
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Plugging this form into Equation (3) gives

∀x ∈ [0, λµ[ ,
∑
n∈Z

(
−ω + µ(x) (k + nkµ)− iµ′(x)− (k + nkµ)

3
)
ξn einkµx = 0. (80)

Expanding µ using Equation (5) and taking the Fourier transform of the result gives after a few lines of algebra
(assuming ξn decreases sufficiently fast when |n| → ∞ to be able to exchange the sum and integral):

∀m ∈ Z,
∑
n∈Z

Mm,n ξn = 0, (81)

where (Mm,n)(m,n)∈Z2 is a two-dimensional sequence defined by

Mm,n =

{
ω − ω0 (k + nkµ) n = m

− (k +mkµ) µm−n n 6= m
. (82)

In the absence of resonance, the system (81) has perturbed plane wave solutions with ξ0 = 1, ξn = O
(
ε|n|
)

for
n ∈ Z \ {0}, and k such that ω0(k) ≈ ω. The modulation thus has little effect on the solutions for small values of ε.
When a resonance is present, however, such solutions in general do not exist: as we now show, there is a strong
coupling between two waves, lifting the degeneracy between the wave vectors k and k + ku.

The solutions exhibiting the resonance correspond to k ≈ k(ir)
ωr and k ≈ k(jr)

ωr . The two strongly coupled terms
will then be those with n = 0 and n = −1 or n = +1, respectively. Without loss of generality (up to shifting n by

one unit in Equation (78)), we can assume k ≈ k(jr)
ωr . To simplify the notation, we will write kr ≡ k(jr)

ωr . It satisfies

ω0 (kr + kµ) = ω0 (kr) . (83)

One can then look for solutions with
∀n ∈ Z, ξn = O

(
ε|n−1/2|−1/2

)
, (84)

i.e., with ξ0 and ξ1 in O (1), ξ−1 and ξ2 in O (ε), ξ−2 and ξ3 in O
(
ε2
)
, and so on. 9 Notice that this scaling is

consistent with the recursion relation (81), which gives for any n ≥ 1

ξn+1 = O (εξn) and ξ−n = O
(
εξ−(n−1)

)
. (85)

Keeping only terms of order ε in this relation, choosing m = 2 and m = −1, and using that µ−1 = µ∗1 since the
function µ is real, gives

ξ2 =
(k + 2 kµ)µ1

ω − ω0 (k + 2 kµ)
ξ1 +O

(
ε2
)

(86)

and

ξ−1 =
(k − kµ) µ∗1

ω − ω0 (k − kµ)
ξ0 +O

(
ε2
)
. (87)

Choosing m = 0 and m = 1 gives(
ω − ω0 (k + kµ) − (k + kµ) µ1

−k µ∗1 ω − ω0(k)

)(
ξ1
ξ0

)
= O

(
ε2
)
. (88)

From this matricial equation, two complementary points of view can be obtained by working at fixed angular
frequency ω or at fixed wave vector k. Working at fixed k ∈ R, and assuming k (k + kµ) µ1 6= 0, one obtains after a
few algebraic manipulations:

ω =
1

2

(
ω0(k) + ω0 (k + kµ)±

√
4k (k + kµ) |µ1|2 + (ω0(k)− ω0 (k + kµ))

2
(1 +O (ε))

)
. (89)

The evolution of the wave in time thus crucially depends on the sign of kr (kr + kµ), i.e., whether jr = 1 or jr = 2:

9The terms −1/2 in the exponent of Equation (84) allow for the coefficients of the waves with wave vectors k and k + kµ to both
have amplitudes of order 1, as required close to the resonance.
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• If jr = 2, the only possibility for ir is ir = 3. So, kr and kr + kµ are both positive and ω remains real around
the resonance. This can be understood by noting that the sign of the energy of the wave is the same as that of
the wave vector (see appendix A.1, Equation (76)). If k (k + kr) > 0, energy conservation thus prevents any
amplification as the two waves involved have energies of the same sign.

• If jr = 1, kr < 0 while kr + kµ > 0 (since the dispersion relation has only one negative root for ω0 > 0). So, in
a finite range of values of k containing kr, the argument of the square root in Equation (89) is negative. The
homogeneous solution η = 0 is thus dynamically unstable 10, some perturbations growing exponentially in
time with a maximum growth rate close to

√
|kr (kr + kµ)||µ1|. The reason is that the two waves entering the

resonance now have opposite energies. They can thus be both amplified while conserving the total energy of
the system.

To determine the transfer matrix of stationary modes, it is convenient to work at fixed ω ∈ R. A few algebraic
manipulations from Equation (88) give, assuming δω ≡ ω − ωr = O (ε):

2ω′0 (kr) ω
′
0 (kr + kµ) δk = (ω′0 (kr) + ω′0 (kr + kµ)) δω

±
√

(ω′0 (kr)− ω′0 (kr + kµ))
2
δω2 + 4ω′0 (kr) ω′0 (kr + kµ) kr (kr + kµ) |µ1|2 +O (ε3),

(90)
where δk ≡ k − kr, and ω′0 ≡ ∂kω0. Just as the frequency of Equation (89), the wave vector given by Equation (90)
can be real or complex depending on which waves are involved in the resonance. We first notice that in the limit
ε→ 0, i.e., in the absence of a resonant undulation, we recover

δk ≈ δω

ω′0 (kr)
or δk ≈ δω

ω′0 (kr + kµ)
,

as expected since the two modes we are computing then have wave vectors close to kr and kr + kµ. On the other
hand, at resonance, i.e., for δω = 0, we obtain

δk = ±
√

kr
ω′0 (kr)

kr + kµ
ω′0 (kr + kµ)

|µ1|2 +O (ε3).

The behavior of the modes at or near the resonance thus depends on the relative signs of ω′0(k) k evaluated at k = kr
and k = kr + kµ:

• If they have opposite signs (i.e., if ir = 3), δk is purely imaginary at resonance. The two modes are thus
exponentially increasing and decreasing in x, with a growth/decay rate equal to

Im (k) =

√∣∣∣∣ kr
ω′0 (kr)

kr + kµ
ω′0 (kr + kµ)

∣∣∣∣|µ1|+O
(
ε2
)

(91)

for δω = 0. More generally, k has a nonvanishing imaginary part provided |δω| < δωc, where

δωc = 2|µ1|
√
|ω′0 (kr) ω′0 (kr + kµ) kr (kr + kµ)|
|ω′0 (kr)− ω′0 (kr + kµ)| +O

(
ε2
)
. (92)

• If they have the same sign, k remains real and the two modes are bounded.

Since the wave vector gives the sign of the energy of a wave, multiplying it by the group velocity ω′0 gives the sign of
the energy flux. These results can thus also be interpreted in terms of energy conservation: when the energy fluxes
of the two waves involved in the resonance have the same sign, the sum of their squared amplitude (after proper
normalization) must be uniform in a stationary solution. When they have opposite signs, however, they can both
grow without bounds while maintaining a uniform energy flux if the growth of the wave with a negative flux exactly
compensates that of the wave with positive flux.

10The appearance of complex frequencies due to the presence of the undulation is reminiscent of the modulation instability (see
Sec. 5.1 of [39] for an analysis in nonlinear optics), also known as the Benjamin-Feir instability [40] in the context of water waves. The
modulation instability occurs due to a resonance between the sidebands kc± δk of a carrier wave, which resonate with the carrier through
the relation (kc + δk) + (kc − δk) = 2kc. It is thus of second order in the amplitude of the carrier wave.
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Figure 8: Illustrations of the two possible resonant mode behaviors over a “detuned” undulation. Only the real part is shown.
The imaginary part is similar, with a dephasing of approximately π/2. In the left plot, we show the exponentially-growing

case, with an undulation of wave vector k
(3)
ωr − k

(2)
ωr , thereby mixing modes with opposite energy fluxes (as explained in the

main text). In the right plot, the undulation wave vector is instead equal to k
(2)
ωr − k

(1)
ωr , and mixes modes with the same

energy flux. For these two plots, the angular frequency at resonance is ω = 0.8. The two undulations have the form (93) with
µ0 = 2.5, and their amplitudes are |µ1| = 0.05 for the left panel, and 0.15 for the right panel.

These two behaviors are shown in Figure 8 in the case µ1 ∈ iR+
∗ and µn = 0 for |n| ≥ 2. The undulation thus

has the form
µ(x) = µ0 + 2|µ1| sin (kµ x) . (93)

These plots are obtained by solving the linear KdV equation (3) numerically using a finite difference method. The
modes are shown at resonance ω = ωr, in the cases ir = jr + 1 = 3 (left panel) and ir = jr + 1 = 2 (right panel).
The first case thus corresponds to a dynamically stable modulation of µ with an exponentially-growing mode in x,
shown in the figure. One can verify that the growth rate agrees with Equation (91). The second case corresponds to
a dynamically unstable modulation with spatially bounded modes for ω ∈ R.

To summarize, the main results of this subsection are:

• when working at fixed real quasimomentum, a dynamical instability (presence of exponentially-growing modes
in time) is present if the waves coupled by the undulation have energies of opposite signs;

• when working at fixed real frequency, exponentially-growing mode in space are present if the waves coupled by
the undulation have energy fluxes of opposite signs.

A corollary of these observations is that the presence of exponentially-growing modes in space is equivalent to the
existence of dynamical instabilities if and only if the waves at play have group velocities with the same sign.

A.3 Transfer matrix

In this subsection, we work at fixed ω ∈ ]0, ωmax[ and compute the transfer matrix over a detuned, localized
undulation. We thus consider undulations with space-dependent amplitudes going to zero as x→ ±∞, sufficiently
fast for asymptotic modes to be well-defined. The transfer matrix then relates the amplitudes of each wave on the
left and on the right of the undulation. It encodes the effect of the undulation on the solutions of the linearized KdV
equation (3), and can be used to determine the scattering in more complicated setups. For instance, in the problem
of an obstacle followed by an undulation, in the case where there is a neat separation of scales between the two (e.g.,
if the obstacle is narrow but high while the undulation has a small amplitude but extends over a long region), the
total transfer matrix is simply the product of those of the obstacle and undulation. The scattering matrix, more
often used in analogue gravity studies, can then be obtained straightforwardly, see appendix A.4.

The first step is to compute the modes with fixed angular frequency over the undulation. There are three of them.
Two are obtained from Eqs. (86,87,88). The possible values of their quasimomentum k are kr + δk, where δk takes
the two values of Equation (90). In the following, to simplify the notations we denote by δks the half-sum of the two
solutions (90) and by δkd their half-difference. The first one, δks, is thus always real, while δkd becomes imaginary
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close to resonance if the energy fluxes of the two waves have opposite signs. Explicitly, these two modes read

η± : (t, x) 7→ ei(kr+δk±)x−iωt

[
(kr − kµ) µ1

ω − (kr − kµ)µ0 + (kr − kµ)3
e−ikµx + 1 +

(
δω − ω′0(kr)δk± +O

(
δk2
)

krµ∗1

)
eikµx+

+
δω − ω′0(k)δk±
ω − ω0 (kr + 2kµ)

(
1 + 2

kµ
kr

)
µ1

µ∗1
e2ikµx +O

(
ε2
)]
,

(94)

where δk± ≡ δks ± δkd are the two solutions (90). The third, non-resonant mode ηnr can be obtained in a similar

way. The main difference is that there is only one term of order 0 in ε, with a wave vector equal to k
(6−ir−jr)
ω . We

obtain

ηnr : (t, x) 7→ eik(1+O(ε2))x−iωt

(
1 +

(k + kµ)µ1

ω − (k + kµ) + (k + kµ)3
e+ikµx

+
(k − kµ)µ∗1

ω − (k − kµ) + (k − kµ)3
e−ikµx +O

(
ε2
))

,

(95)

evaluated at k = k
(6−ir−jr)
ω .

When considering undulations whose amplitudes go to zero sufficiently fast as x→ ±∞, one can define two bases

of global modes
(
η

(L)
i,ω

)
i∈{1,2,3}

and
(
η

(R)
i,ω

)
i∈{1,2,3}

, defined respectively by

∀ i ∈ {1, 2, 3} , ∀ t ∈ R, η(L)
i,ω (t, x) ∼

x→−∞

√√√√√
∣∣∣∣∣∣ k

(i)
ω

2πω′0

(
k

(i)
ω

)
∣∣∣∣∣∣ ei(k(i)ω x−ωt) (96)

and

∀ i ∈ {1, 2, 3} , ∀ t ∈ R, η(R)
i,ω (t, x) ∼

x→+∞

√√√√√
∣∣∣∣∣∣ k

(i)
ω

2πω′0

(
k

(i)
ω

)
∣∣∣∣∣∣ ei(k(i)ω x−ωt). (97)

The prefactors in these expressions are chosen so that the modes are normalized, in the following sense. Defining the
canonical field φ for each value of i and ω by

φ
(L/R)
i,ω (t, x) =

∫ x

0

η
(L/R)
i,ω (t, y) dy, (98)

we impose that it satisfies

∀(i, j) ∈ [[1, 3]]2, ∀ (ω, ω′) ∈ R2
+,
∣∣∣(φ(L/R)

i,ω

∣∣∣φ(L/R)
j,ω′

)∣∣∣ = δi,j δ (ω − ω′) , (99)

where (·|·) is the inner product conserved by the linear KdV equation, see appendix A.1. There it is also shown that,
for positive values of ω, the inner product of φ with itself gives the sign of the energy of the wave.

The transfer matrix at fixed frequency, T (ω), is the 3 by 3 complex matrix defined byη
(L)
1,ω

η
(L)
2,ω

η
(L)
3,ω

 = T (ω)

η
(R)
1,ω

η
(R)
2,ω

η
(R)
3,ω

 . (100)

The ith line of T (ω) thus contains the coefficients of the expansion of η
(L)
i,ω on the basis

(
η

(R)
j,ω

)
j∈{1,2,3}

. We now

determine the leading contributions to T (ω) in two opposite limits of an undulation with sharp and slowly-varying
amplitudes. As it relates two bases of normalized modes, two of them having positive energy fluxes and one with a
negative energy flux, T (ω) is an element of SU(2, 1). It can be related to the scattering matrix Sω by identifying the
incoming and outgoing parts of each mode, see Appendix A.4.

23



Figure 9: Schematic drawings of undulations with “step-like” (left panel) and slowly-varying (right panel) amplitudes, used in
the computation of the transfer matrix. The dashed line shows the asymptotic value µ0 of µ.

A.3.1 Undulation with step-like amplitude

We first consider an undulation with an amplitude vanishing outside a finite interval [−L/2,+L/2] for some positive
number L and constant inside it. The parameter µ takes the form

µ(x) = µ0 + 2|µ1| cos (kµ (x− xµ)) θ (x− L/2) θ (x+ L/2) +O
(
ε2
)
, (101)

where xµ ∈ R. It is shown in the left panel of Figure 9. Notice that it has discontinuities at x = ±L/2 unless
kµ (±L/2− xµ) = π/2 mod π. However, if kµ L is sufficiently large the results should be only marginally affected
by a local change of µ smoothly sending the amplitude of the oscillation to 0 near x = ±L. The relation between
the two aforementioned bases can be computed straightforwardly by using the matching conditions at x = ±L/2,
i.e., continuity of η, ∂xη, and µη + ∂2

xη.
Let us first focus on the resonant case δω = 0, which gives simple expressions. For definiteness, we also assume

ir = jr + 1 = 3. (The expressions for other values of ir and jr are obtained by exchanging the corresponding lines
and columns of T (ω).) We obtain

T (ω) =

1 0 0
0 cos (δkd L) −i e−ikµxµ sin (δkd L)
0 −i eikµxµ sin (δkd L) cos (δkd L)

+O (ε) . (102)

(The next order in ε can also be obtained from Equations (94) and (95).) Since δkd ∈ iR, the four coefficients
relating two resonant waves grow exponentially with L. This is the most important effect of the undulation: even
if |µ1| � 1, the amplification of the waves across the undulation can be large provided the latter is sufficiently
long. More precisely, it remains finite in the limit ε → 0 provided L scales like ε−1. If ir = 2 or jr = 1, δkd ∈ R.
Then T (ω) is a rotation matrix up to a phase, in the sense that one can find a diagonal, real matrix Dω such that
eiDω T (ω) e−iDω ∈ SO(3).

When going slightly off-resonance, the transfer matrix can be read from the following relations between the
global modes:

η
(L)
1,ω = η

(R)
1,ω +O (ε) ,

η
(L)
2,ω = e+iδksL

(
cos (δkdL)− i

δks
δkd

sin (δkdL)

)
η

(R)
2,ω − i

µ1

δkd

√√√√√
∣∣∣∣∣∣ k

(2)
ω k

(3)
ω

ω′0

(
k

(2)
ω

)
ω′0

(
k

(3)
ω

)
∣∣∣∣∣∣e−iδksL sin (δkdL) η

(R)
3,ω +O (ε) ,

η
(L)
3,ω = −i

µ∗1
δkd

√√√√√
∣∣∣∣∣∣ k

(2)
ω k

(3)
ω

ω′0

(
k

(2)
ω

)
ω′0

(
k

(3)
ω

)
∣∣∣∣∣∣e+iδksL sin (δkdL) η

(R)
2,ω + e−iδksL

(
cos (δkdL) + i

δks
δkd

sin (δkdL)

)
η

(R)
3,ω +O (ε) .

(103)
The corresponding values for the (2, 2) coefficient of the transfer matrix are compared with results from a numerical

resolution of Equation (3) in Figure 10. (The plots are similar for the three other coefficients involving η
(L)
2 and/or
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Figure 10: Plots of the transfer coefficient T
(ω)
2,2 relating the coefficients of the plane wave of wave vector k

(2)
ω for an undulation

of the form (101), where kµ = k
(3)
ω − k(2)

ω for ω = 0.5, µ0 = 2.5, |µ1| = 0.05, and L ≈ 503. The continuous, blue line shows
results from the numerical integration of the linear KdV equation. The dashed, green line shows the analytical result from
Equation (103).

η
(L)
3 .) We observe the same exponential growth in δkd L when δkd ∈ iR. From Equation (90), one sees that δω tends

to reduce |Im (δkd)| when moving away from the resonance. The growth rate vanishes for |δω| larger than a critical
value.

A.3.2 Undulation with slowly-varying amplitude

We now consider the case where the amplitude µ1 of the undulation varies slowly with x, shown schematically on
the right panel of Figure 9. We work in the limit |∂xµ1|/(kµ µ1)� 1. The transfer matrix over some interval [x1, x2]
with x2 � 1/kµ, −x1 � 1/kµ can then be computed by dividing [x1, x2] into N � 1 subintervals over which µ1

can be approximated by a constant, multiplying the transfer matrices over each subinterval, and taking the limit

N →∞. Restricting attention to the subspace spanned by the two waves of wave vectors k
(ir)
ω and k

(jr)
ω , one obtains

the transfer matrix

T (ω) (x1, x2) ≈
(

e+iδkdxf 0
0 e−iδkdxf

)
OE

(∫ x2

x1

−i

(
δks(x) Γµ∗1
Γµ1 −δks(x)

)
dx

) (
e−iδkdxi 0

0 e+iδkdxi

)
, (104)

where OE denotes the path-ordered exponential and

Γ ≡
√

kr (kr + kµ)

ω′0 (kr) ω′0 (kr + kµ)
. (105)

In the resonant case δω = 0, this becomes

T (ω) (x1, x2) ≈

 e−ikr (xu(x2)−xu(x1))/2 cos
(∫ x2

x1
δkd dx

)
−i e−ikr (xu(x2)+xu(x1))/2 sin

(∫ x2

x1
δkd dx

)
−i e+ikr (xu(x2)+xu(x1))/2 sin

(∫ x2

x1
δkd dx

)
eikr (xu(x2)−xu(x1))/2 cos

(∫ x2

x1
δkd dx

)  . (106)

One recovers essentially the same behavior as in the case of an undulation with step-like amplitude, with δkd replaced
by its average over the segment [x1, x2].

These results can be used to determine the relations between the asymptotic modes and the scattering matrix
using the formulas of Appendix A.4. In particular, in the case ir = 3, one sees from Equation (111) that the 4
coefficients of the scattering matrix relating “resonating” modes show the same exponential growth in L as those of
the transfer matrix.

A.4 Relation between the transfer matrix and the scattering matrix

In Appendix A.3 we focused on the transfer matrix of stationary modes in the presence of an undulation, which can
be straightforwardly combined with that of other sources of inhomogeneities of the flow, e.g. a localized obstacle.
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However, experiments using one-dimensional setups like the one we are considering (see for instance [10, 22, 23,
31]) usually measure the scattering matrix instead, which is more directly related to physical observables. To
bridge the gap between these two descriptions, we here give the expression of the scattering matrix in terms of the
transfer matrix. For definiteness we assume that, for the frequencies we are interested in, the dispersion relation is
similar to that of the linear KdV equation (see Figure 1) for ω ∈ ]−ωmax, ωmax[, i.e., that it has three real roots

k
(1)
ω < k

(2)
ω < k

(3)
ω at fixed ω, such that

dk
(1)
ω

dω
< 0,

dk
(2)
ω

dω
> 0,

dk
(3)
ω

dω
< 0. (107)

The reasoning detailed below can be extended to more intricate dispersion relations, for instance to the one used in
Appendix C.1.

Let us first recall that the transfer matrix T (ω) and the scattering matrix S(ω) each represent a change of basis
in the same (in the present case, three-dimensional) vector space, made of the modes with fixed angular frequency
ω. The “left” and “right” bases are defined in Equations (96) and (97). The transfer matrix T (ω) is then defined

by Equation (100). Similarly, one defines the “in” and “out” bases by the condition that η
(in)
i,ω (respectively η

(out)
i,ω )

contains asymptotically only one plane wave with a group velocity oriented toward (respectively, away from) x = 0,

with the wave vector k
(i)
ω and with the same normalization as in Equations (96) and (97). The scattering matrix is

then defined by η
(in)
1,ω

η
(in)
2,ω

η
(in)
3,ω

 = S(ω)

η
(out)
1,ω

η
(out)
2,ω

η
(out)
3,ω

 . (108)

The coefficients of S(ω) can be related to those of T (ω) by expanding the “in” and “out” modes in η
(L)
i and η

(R)
i ,

i ∈ {1, 2, 3}, then the former in terms of the latter using Equation (100). We obtain:

S
(ω)
1,1 =

T
(ω)
3,3

T
(ω)
1,1 T

(ω)
3,3 − T

(ω)
1,3 T

(ω)
3,1

, S
(ω)
1,3 =

−T (ω)
1,3

T
(ω)
1,1 T

(ω)
3,3 − T

(ω)
1,3 T

(ω)
3,1

, S
(ω)
1,2 =

T
(ω)
1,2 T

(ω)
3,3 − T

(ω)
3,2 T

(ω)
1,3

T
(ω)
1,1 T

(ω)
3,3 − T

(ω)
1,3 T

(ω)
3,1

,

S
(ω)
3,3 =

T
(ω)
1,1

T
(ω)
1,1 T

(ω)
3,3 − T

(ω)
1,3 T

(ω)
3,1

, S
(ω)
3,1 =

−T (ω)
3,1

T
(ω)
1,1 T

(ω)
3,3 − T

(ω)
1,3 T

(ω)
3,1

, S
(ω)
3,2 =

T
(ω)
3,2 T

(ω)
1,1 − T

(ω)
1,2 T

(ω)
3,1

T
(ω)
1,1 T

(ω)
3,3 − T

(ω)
1,3 T

(ω)
3,1

,

S
(ω)
2,1 =

T
(ω)
2,3 T

(ω)
3,1 − T

(ω)
2,1 T

(ω)
3,3

T
(ω)
1,1 T

(ω)
3,3 − T

(ω)
1,3 T

(ω)
3,1

, S
(ω)
2,3 =

T
(ω)
2,1 T

(ω)
1,3 − T

(ω)
2,3 T

(ω)
1,1

T
(ω)
1,1 T

(ω)
3,3 − T

(ω)
1,3 T

(ω)
3,1

,

S
(ω)
2,2 = T

(ω)
2,2 +

T
(ω)
1,2

(
T

(ω)
2,3 T

(ω)
3,1 − T

(ω)
2,1 T

(ω)
3,3

)
+ T

(ω)
3,2

(
T

(ω)
2,1 T

(ω)
1,3 − T

(ω)
2,3 T

(ω)
1,1

)
T

(ω)
1,1 T

(ω)
3,3 − T

(ω)
1,3 T

(ω)
3,1

.

(109)

In the case of a detuned undulation with step-like amplitude (see appendix A.3.1), using Equation (103) (or its
generalization to the case ir 6= 2), we obtain three different expressions depending on kµ to leading order in ε:

• if ir = 3 and jr = 2,

S(ω) ≈ 1

T
(ω)
3,3

T
(ω)
3,3 0 0

0 1 −T (ω)
2,3

0 T
(ω)
3,2 1

 ; (110)

• if ir = 3 and jr = 1,

S(ω) ≈

 T
(ω)
3,3 0 −T (ω)

1,3

0 1 0

−T (ω)
3,1 0 T

(ω)
1,1

 ; (111)

• if ir = 2 and jr = 1,

S(ω) ≈ 1

T
(ω)
1,1

 1 T
(ω)
1,2 0

−T (ω)
2,1 1 0

0 0 T
(ω)
1,1

 . (112)
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Appendix B. Linearly-growing modes over tuned undulations

In this appendix we provide a more general viewpoint on linearly-growing modes and show their relations with
nonlinear solutions. The nonlinear solutions of the KdV equation have been extensively studied, see for instance [34,
41] and references therein. A powerful tool to study their evolution is Whitham’s modulation theory, which can
be used to construct (approximate) scale-invariant solutions. As an example of application to a related subject,
in [42] Whitham’s modulation theory was used to motivate the nonlinear stability of analogue black hole flows. In
the present case, however, the solutions we are interested in can be obtained by an elementary calculation, which
can more directly be extended to other models such as that of Appendix C. It would be interesting to see if they can
be recovered using Whitham’s modulation theory. 11

Modes growing in space:

Let us first explain on general grounds why linearly-growing modes are expected in models where, as for the KdV
equation, the wave vector depends on some parameters describing the solution. Let us consider a nonlinear, stationary
equation which admits a n-dimensional space of periodic solutions (n ∈ N∗), labeled by the parameters µ1, µ2, ...,
µn taking values in some real intervals I1, I2, ..., In. These solutions may be written as

x 7→ fµ1,µ2,...,µn (kµ1,µ2,...,µn x) , (113)

where, for each choice of the parameters, fµ1,µ2,...,µn is a periodic, differentiable function with period 2π, and
kµ1,µ2,...,µn ∈ R. We further assume that fµ1,µ2,...,µn and kµ1,µ2,...,µn are differentiable in the parameters. 12 Let
i ∈ [[1, n]]. Let us fix the values of µj for all j ∈ [[1, n]] \ {i} and define the function

gi :

(
Ii × R→ C
(µi, x) 7→ fµ1,µ2,...,µn (kµ1,µ2,...,µn x)

)
. (114)

For all µi ∈ Ii, the function x 7→ gi(µi, x) is a solution of the nonlinear equation under consideration. Let µ
(0)
i ∈ Ii.

Considering nearby values of µi, we have to linear order:

∀x ∈ R, gi
(
µ

(0)
i + δµi, x

)
= gi

(
µ

(0)
i , x

)
+ δµi ∂µigi

(
µ

(0)
i , x

)
+O

(
δµ2

i

)
. (115)

This means that x 7→ ∂µigi

(
µ

(0)
i , x

)
is, up to a constant factor, the difference between two infinitesimally close

nonlinear solutions. It is thus a solution of the linear field equation over the background solution x 7→ gi

(
µ

(0)
i , x

)
.

Using Equation (114), it is equal to

∂µigi

(
µ

(0)
i , x

)
= [(∂µifµ1,µ2,...,µn) (y) + x (∂µikµ1,µ2,...,µn) ∂yfµ1,µ2,...,µn (y)]y=kµ1,µ2,...,µn x

. (116)

The first term in the right-hand side is periodic in x, and thus bounded. However, the second one grows linearly
with x provided (∂µikµ1,µ2,...,µn) ∂yfµ1,µ2,...,µn does not identically vanish. The linear equation thus has a mode
with a term whose amplitude grows linearly with x. Moreover, this mode can be obtained simply by differentiating
the nonlinear solution with respect to one of its parameters.

Let us now apply this argument to the KdV equation (1). The solution (19) depends on three parameters: xu,
Au, and η0. The first one does not give a linear growth since ku does not depend on xu. One obtains

∂xuηu(x) = Au sin (ku (x− xu)) +
A2
uku
µ

sin (2ku (x− xu)) +O
(
A3
u

)
. (117)

In the following, to simplify the expressions we choose xu = 0. Differentiation with respect to η0 gives

∂η0ηu(x) = 1− 3Au√
µ̄
x sin (kux)− 3A2

u

µ̄2
cos (2kux)− 3A2

u

µ̄3/2
x sin (2kux) +O

(
A3
u

)
. (118)

11We thank Roger Grimshaw for mentioning the usefulness of this approach.
12By this, we mean that:

• the function (µ1, µ2, ..., µn) 7→ kµ1,µ2,...,µn is differentiable,

• for all y ∈ R, the function (µ1, µ2, ..., µn) 7→ fµ1,µ2,...,µn (y) is differentiable.
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Figure 11: Left panel: A nonlinear, stationary solution of the KdV equation (1) for µ = 1 and η0 = 0. Right panel: Solution
of the linearized KdV equation (2) over the undulation shown in the left panel, showing a linearly-growing mode. The black,
dashed line is a rescaled difference between two undulation solutions of the KdV equation with slightly different amplitudes.

Finally, differentiation with respect to Au gives

∂Auηu(x) = cos (kux) +
Au
µ̄

cos (kux)− 3Au
µ̄

+
9A2

u

16µ̄2
cos (3kux) +

15A2
u

2µ̄3/2
x sin (kux) +O

(
A3
u

)
. (119)

These are the three linearly independent, zero-frequency solutions of the linearized KdV equation over the background
solution ηu. Their most remarkable property is the presence of terms growing linearly in x. As explained in Section 2.3,
these terms give the dominant contribution to the transfer matrix over long undulations. We show in Section 3 that
they also determine the effective temperature in white hole flows followed by a long undulation. The linear growth
of the modes is illustrated in Figure 11. The right panel displays such a mode, solution of Equation (2) over the
undulation shown in the left one, and the plot of a function proportional to ∂Auηu. The close agreement between the
curves illustrates that the linear growth of the mode is due to the variation of the wave vector with the amplitude.

Let us emphasize that the existence of these modes does not indicate the presence of unbounded solutions of
the KdV equation (1). Instead, they signal the breakdown of the linear description for the difference between two
solutions with slightly different parameters at large values of |x|. Indeed, the background solution η(0) and perturbed
one have phases differing by π for values of |x| of the order of 1/|δku|, where δku denotes the difference between
their wave vectors, so that they are point-wise not close to each other. Nonlinear terms thus become important for
large values of |x|.

However, Equation (2) remains valid for describing small-amplitude perturbations in a finite domain with
extension L ∈ R+. Indeed, since δku is linear in the amplitude ap of the perturbation close to x = 0, the amplitude
of the oscillations due to the linearly-growing terms scales like ap L, and can be made arbitrarily small by lowering
|ap|. In the following, we assume that |ap| (1 + L)� Au � 1, so that Equation (19) is a good approximation of the
background solution and perturbations can be described by the linear equation (2).

Modes growing in time:

As explained in appendix A.2, modes unbounded in space and time have a similar origin, namely that the opposite
signs of the energies or energy fluxes carried by two waves allows for an unbounded growth in their amplitudes
without violation of energy conservation. In the present case, the waves of interest have vanishing energies. One can
thus expect that there exist growing modes in time as well as in space. This is indeed the case: assuming η(0) has
the form (19), a straightforward calculation shows that there exists a solution of Equation (2) given by

δηt : (t, x) 7→ 1 + 6tkuAu sin (kux) +O
(
A2
u

)
. (120)

One should notice, however, that this does not indicate an instability of the solution in the usual sense, but
simply comes from the Galilean invariance of the KdV equation. Indeed, looking for solutions of the form

ηv : (t, x) 7→ ξ(x− v t) (121)
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where v ∈ R, one obtains the equation on ξ:

(µ− v) ∂xξ + ∂3
xξ + 6 ξ ∂xξ = 0. (122)

This is exactly the stationary KdV equation with µ replaced by µ− v. The periodic solutions in ξ are thus given
by Equation (19), where ku is still given by Equation (18) and µ̄ ≡ µ− v + 6 η0. Working to first order in Au for
simplicity, one obtains

ηv(t, x) = η0 +Au cos (ku (x− vt− xu)) +O
(
A2
u

)
. (123)

Differentiating with respect to v at fixed µ so that ku is unchanged, one obtains

∂vηv(t, x) =
1

6
+Au t ku sin (ku (x− v t− xu)) +O

(
A2
u

)
. (124)

Up to a global factor, one recovers Equation (120). As in the case of a spatially-growing mode the growth in time
signals that the linear approximation breaks down at late times, since the “unperturbed” solution with vanishing
velocity differs significantly from the “perturbed” one with velocity v when |vt| becomes close to half the wavelength.

Appendix C. A more realistic model of water waves

In the main text we used the KdV equation to approximate the dynamics of shallow-water waves. The aim of the
present appendix is to sketch an extension of the main results to the more realistic 2D model used, e.g., in [43]. Since
the reasoning is very similar we only give the main steps required to transpose the above calculations to this model.

C.1 Gravity waves on a detuned undulation

We consider the flow of an ideal fluid in a flume in two dimensions. The background flow is assumed to be stationary,
and we denote by φ and ψ the velocity potential and stream function, respectively. The latter is uniform along
streamlines. It is defined up to a constant, which we choose so that ψ = 0 at the bottom of the flume. Let us call
ψs its value at the free surface. We denote by φ0 the velocity potential of the background flow. The unperturbed
velocity is thus v = ∇φ0. Looking for perturbed solutions of the form φ = φ0 + δφ, to first order in δφ, the wave
equation reads [9, 43](

1

v2
∂t + ∂φ0

)[
vx

g + 1
2∂yv

2

(
∂t + v2 ∂φ0

)
δφ

]
+ i∂φ0

tanh (iψs∂φ0
) δφ = 0, (125)

where all quantities are evaluated along the line defined by ψ = ψs, g is the gravitational acceleration, and (x, y) are
Cartesian coordinates, x in the direction of the flume and y in the vertical direction.

In this subsection we are interested in the effect of a “detuned” undulation, i.e., a periodic modulation of the
velocity with a wavelength different from that of the zero-frequency dispersive modes. To simplify the notations, it
is convenient to define the rescaled variables X ≡ φ0/ψs and T ≡ t/ψs, as well as the functions

V ≡ v2, G ≡ ψs
vx/v

2

g + 1
2 ∂yv

2
, and f(x) = x tanh(x). (126)

Equation (125) becomes (
1

V
∂T + ∂X

)
[V G (∂T + V ∂X) δφ] + f (−i∂X) δφ = 0. (127)

Let us consider an undulation of the form

V (X) = V0 + V1 eiKuX + V ∗1 e−iKuX +O
(
V0 ε

2
)
,

G(X) = G0 +G1 eiKuX +G∗1 e−iKuX +O
(
G0 ε

2
)
,

(128)

where ε is a small parameter, (V0, G0,Ku) ∈
(
R∗+
)3

(Ku is the wave vector of the undulation in our coordinate
system), and (V1, G1) ∈ C2 are of order εV0 and εG0, respectively. To zeroth order in ε, looking for solutions of the
form δφ : (T,X) 7→ exp (i (KX − ΩT )), one obtains the dispersion relation between K and Ω:

G0 (Ω− V0K)
2

= f(K). (129)
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Let us assume there exists (Ωr,Kr) ∈ R2 such that K = Kr and K = Kr +Ku are both solutions of Equation (129)
for Ω = Ωr. We also assume for simplicity that for any n ∈ Z, K = Kr + nKu is not a solution of the dispersion
relation unless n = 0 or n = 1. The effects of the undulation on the spectrum for angular frequencies close to Ωr and
the scattering matrix can be derived using the same procedure as in appendix A.2. As the expressions we obtain are
slightly cumbersome and do not show fundamentally new features, here we only sketch the important results:

• First, we find that the undulation is dynamically unstable, in that modes with real wave vectors close to Kr

have a complex frequency (with imaginary part of order ε), if the waves of angular frequency Ωr and wave
vectors Kr and Kr +Ku have energies (now given by Ω (Ω− V K)) of opposite signs. If they have energies of
the same sign, then the frequencies remain real.

• Second, when considering modes with real angular frequencies close to Ωr, we find that their quasimomenta
are complex (again, with imaginary part of order ε) if the energy fluxes of these waves have opposite signs. If
they have the same sign, quasimomenta over the undulation remain real.

One thus obtains the same properties as for the KdV equation, namely, that the relative signs of the energies of the
resonant waves determines the dynamical stability of the undulation, while that of the energy fluxes determines the
existence of exponentially-growing modes in space.

C.2 Second-order undulation

To compute the resonant modes over a solution of the hydrodynamic equations, we need to know the shape of the
undulation to second order in its amplitude, as well as the first variations of its wave vector. To this end, we look for
stationary solutions for the velocity potential φ in the Cartesian coordinates (x, y). We set y = 0 at the bottom
of the flume and denote the vertical position of the free surface at the abscissa x by ys(x). We then have four
hydrodynamic equations to satisfy:

• The continuity equation gives: ∆φ = 0;

• The boundary condition at the bottom of the flume is: ∀x ∈ R, ∂yφ(x, 0) = 0;

• Since the free surface must be a streamline, we have: ∀x ∈ R, y′s(x) (∂xφ(x, y))y=ys(x) = (∂yφ(x, y))y=ys(x);

• The Bernoulli equation evaluated at the free surface gives

∀x ∈ R,
1

2
(∇φ(x, ys(x)))

2
+ gys(x) = C0, (130)

where C0 is a real constant.

We look for solutions describing small perturbations over a homogeneous flow with velocity v0 in the x direction.
Writing φ = v0x + δφ and expanding the four equations to second order in δφ, one obtains after some algebraic
manipulations:

v2
0

g

(
∂2
xδφ
)

+ (∂yδφ) ≈
y=ys,0

v3
0

2g2
∂x∂y (∂xδφ)

2 − v0

g

(
(∂yδφ) (∂y∂xδφ) + 3 (∂xδφ)

(
∂2
xδφ
))
, (131)

where all quantities are evaluated along the unperturbed free surface y = ys,0. Moreover, integrating the Laplace
equation over y gives (see for instance the appendix A of Ref. [9])

∂yδφ(x, y) = i∂x tanh (iy∂x) δφ(x, y). (132)

Using Equation (132) to express ∂yδφ in terms of ∂xδφ in Equation (131) gives

v2
0

g
∂2
xδφ+i∂x tanh(iys,0∂x)δφ ≈

y=ys,0

v3
0

g2
∂x
(
(∂xδφ)

(
i∂2
x tanh(iys,0∂x)δφ

))
− v0

2g
∂x

(
(i∂x tanh(iys,0∂x)δφ)

2
+ 3 (∂xδφ)

2
)
.

(133)
A straightforward calculation shows that, assuming the flow is subcritical (v2

0 < gys,0),

δφ(A,C)
u (x, y) = A cos (k0x)

cosh (k0y)

cosh (k0ys,0)
+B sin (2k0x)

cosh (2k0y)

cosh (2k0ys,0)
+ Cx (134)
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is a solution, where A and C are free real parameters, k0 is the unique strictly positive solution of the equation:
g tanh(k0ys,0) = v2

0 k0, and

B =
3
(
1− F 8ξ4

)
8F 4ξys,0v0

A2, (135)

where F ≡ v0/
√
gys,0 is the Froude number of the unperturbed solution and ξ ≡ k0ys,0. The value of C can be

fixed by imposing that the water current be independent of A, as will be the case, for instance, for an undulation
produced by an immersed obstacle as the current should, under the above approximations, be the same upstream
and downstream. We obtain:

C = A2 k2
0 v0

4gys,0

3− F 4ξ2

1− F 2
. (136)

The last information we will need concerning these nonlinear solutions is the variation of their wave vector (or,
equivalently, their wavelength) with A. One way to obtain it would be to redo the above calculation to next order,
keeping cubic terms in δφ. However, there is a simpler method. The idea is to make use of translation invariance of
the problem: translating the undulation Equation (134) in x by a constant quantity ∆x gives another solution of
the fluid equations. Its derivative with respect to ∆x is thus a solution of the linearized equation (125) over the
undulation. By definition, it has a vanishing angular frequency and the same periodicity as the undulation. We thus
know that Equation (125) will have a solution with vanishing frequency and quasi-momentum. This equation can be
solved perturbatively in A using the techniques of Section 2. Going to second order in A, we find the difference
between the wave vector ku of the undulation and k0 contributes to the dispersion relation at small frequencies.
Imposing that Ω = K = 0 be a solution gives

ku = k0

1 +

A2 g2

8v60

(
9− 6F 4ξ2 + 5F 8ξ4

)
− 3 Cv0

1− F−2 + F 2ξ2
+O

(
A3g3

v9
0

) . (137)

C.3 Gravity waves on a tuned undulation and effective temperature

One can now solve Equation (125) in the background (134) in the zero-frequency limit. The calculation follows the
same lines as in Section 2.3: expanding the quantities appearing in Equation (125) in powers of A, one obtains a
recursion relation between the Fourier components of the perturbation, which can be solved to second order in A.
As in the case of the KdV equation, one obtains two linearly-growing modes in φ0. One of them, with a coefficient
of order A, is related to the change in the undulation shape under variations of the mean water depth. The other
one, with a coefficient of order A2, is related to the change of wave vector of the undulation with its amplitude.

Their precise form is not particularly enlightening. However, a useful information one can extract from them is
the low-frequency effective temperature measured over a long undulation in a white-hole like flow. The reasoning is
similar to that of Section 3: the condition that the mode be counter-propagating and incoming on a white-hole
like flow selects its asymptotic content, from which the scattering coefficients can be extracted. One difference,
however, is that there are now two “hydrodynamic” modes whose wave vectors go to zero in the zero-frequency limit
and which thus become indistinguishable. As we have performed the explicit calculation at a vanishing frequency
only, this introduces an uncertainty about the relative amplitudes of the counter-propagating wave and that of the
reflected, co-propagating one. We thus define a parameter Λvu equal to the fraction of the constant term due to the
counter-propagating, incoming wave. In the absence of coupling between co- and counter-propagating modes in
the rest frame of the background flow, one would have Λvu = 1. As it was shown (see for instance [12]) that this
coupling is generally small in similar setups, we expect Λvu to be of order 1. Up to this ambiguity, the effective
temperature Teff(∞) determined over undulations much longer than v2

0 y
3
s,0A

−2 can be computed following the
reasoning of Section 3.2 with minor modifications. We obtain

Teff(∞) =
A2

g1/2y
7/2
s,0

[
9− 9F 2 − 12F 4ξ2 − 6F 6ξ2 + 13F 8ξ4 − F 10ξ4 − 2F 12ξ6

]2
32Λ2

vuF
10ξ (3− F 4ξ2)

2
(F 2 − 1 + F 4ξ2)

(1 +O (ε)) . (138)

In particular, we observe the same scaling in the amplitude A of the undulation as for the KdV equation (see
Equation (64)).

It is for the moment unclear to us whether Equation (138) is relevant for water waves experiments. Indeed, in
practice dissipative effects due to viscosity, for instance, may become important for a wave propagating over the
undulation before reaching the lengths where Equation (138) becomes valid. However, it shows that the scaling
obtained in Section 3 is not an artifact from the specific approximations leading to the KdV equation, but also arises
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in a model taking the full dispersion relation of water waves (in the absence of surface tension and dissipation) into
account. We expect that other non-dissipative effects like the surface tension can be included following the same
reasoning, and will lead to the same qualitative results.

Appendix D. Low-frequency effective temperature in a subcritical flow

While a precise study of the scattering in a subcritical flow is beyond the scope of the present article, in this appendix
we briefly comment on the main differences with respect to the white-hole like case studied in Section 3. We again
focus on the zero-frequency limit of the effective temperature (see Refs. [27–30] for previous analyses of the spectrum
in subcritical flows). A more detailed study, including a calculation of the scattering coefficients for ω 6= 0 and their
behavior for ω → 0, will be presented in a future work.

As was explained in Section 3.2, the zero-frequency limit of the effective temperature can be determined by first
differentiating the (nonlinear) general solution of the KdV equation with given asymptotic conditions with respect
to its parameters, giving a set of modes at ω = 0. One then has to select the linear combination of these modes
which is incoming from the left. In the transcritical case of Section 3.2, one of the three modes is exponentially
growing for x→∞, one goes to a finite constant, and one goes to zero exponentially. We argued that only the third
one could contribute to the right-moving incoming mode. This condition fully determines the low-frequency effective
temperature.

In the subcritical case, where w+ and w− are both positive, the dispersion relation is qualitatively the same in the
two asymptotic regions (see Fig. 1), and the exponentially growing and decaying modes are replaced by propagating
waves with a negative group velocity. Neither of these waves can contribute to the right-moving incoming mode. The
constant mode cannot either, for the same reason as in the transcritical case. This means that, in the limit ω → 0,
the right-moving incoming mode must correspond to δη = 0, i.e., to a homogeneous φ =

∫
δηdx. (Conversely, one

can check that this mode is indeed incoming and right-moving if µ−, µ+ > 0.) The amplitude of the oscillating part
of the mode thus vanishes, i.e., Aneg = 0. From Equation (39), we thus find Teff = 0, whether or not an undulation
is present in the region x < 0. However, we expect that the presence of an undulation may strongly modify the
behavior of the scattering coefficients at low but finite frequencies. This will be studied in a future work.
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