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We argue that the so-called maximal Odderon contribution breaks the ‘black disk’ behavior of the asymp-
totic amplitude, since the cross section of the events with Large Rapidity Gaps grows faster than the total 
cross section. That is the ‘maximal Odderon’ is not consistent with unitarity.
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1. Introduction

Recently the TOTEM collaboration at the LHC has published 
the results of the first measurements at 

√
s = 13 TeV of the 

pp total cross section σtot = 110.6 ± 3.4 mb [1] and of the ra-
tio of the real-to-imaginary parts of the forward pp-amplitude, 
ρ = Re/Im = 0.10 ± 0.01 [2]. Since the latter value appears to 
be sufficiently smaller than that predicted by the conventional 
COMPETE parametrization (ρ = 0.13–0.14) [3], it may indicate ei-
ther a slower increase of the total cross section at higher energies 
or a possible contribution of the odd-signature amplitude. (Note 
that within the COMPETE parametrization the odd-signature term 
is described by secondary Reggeons and dies out with energy.) 
Note that a C-odd amplitude, which arises from the so-called Odd-
eron, and which depends weakly on energy, is expected in per-
turbative QCD,1 see in particular [4–6] and for reviews e.g. [7,8]. 
However the naive estimates show that its contribution is rather 
small; say, �ρOdd ∼ 1 mb/σtot � 0.01 [9] at the LHC energies.

On the other hand, it is possible to introduce the Odderon phe-
nomenologically as an object which does not violate first principles 
and the axiomatic theorems. In fact it was stated in [10] that the 
new TOTEM result is a definitive confirmation of the experimental 
discovery of the Odderon in its maximal form.

Recall that the Odderon was first introduced in 1973 [11], and 
since then it has been the subject of intensive theoretical discus-
sion, in particular within the context of QCD. Indeed, there have 
been several attempts to prove its existence experimentally (see, 

* Corresponding author.
E-mail address: a .d .martin @durham .ac .uk (A.D. Martin).

1 QCD is the SU (N = 3) gauge theory which contains the spin=1 particle (gluon) 
and (for N > 2) the symmetric color tensor, dabc . Due to these facts in perturbative 
QCD there exists a colorless C -odd t-channel state (formed from three gluons) with 
intercept, αOdd, close to 1.
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for example, [7,8,12] for comprehensive reviews and references). 
While the discovery of the long-awaited, but experimentally elu-
sive, Odderon would be very welcome news for the theoretical 
community, our aim here is to try to check whether the presence 
of the maximal Odderon, with an amplitude A− ∝ ln2 s, which has 
a real part with high energy behavior similar to that of the imag-
inary part of the even-signature amplitude A+ , does not violate 
unitarity at asymptotically large c.m.s. energy 

√
s → ∞. Here we 

use the normalization ImA = σtot.

2. Multi-Reggeon processes

It was recognized already in the 1960s [13,14] that multi-
Reggeon reactions,

pp → p + X1 + X2 + ... + Xn + p, (1)

where small groups of particles (Xi ), are separated from each other 
by Large Rapidity Gaps (LRG) (see Fig. 1), may cause a prob-
lem with unitarity. Indeed, being summed over n and integrated 
over the rapidities of each group, the cross section of such quasi-
diffractive production increases faster than a power of s. This was 
termed in the literature as the Finkelstein–Kajantie disease (FK), 
see [15] for a review.

Let us explain the situation using the simple example of Cen-
tral Exclusive Production (CEP) of only one group of particles, as 
shown in Fig. 2. Here the double line denotes the amplitude, A, 
which describes the interaction across the LRG (in particular, the 
proton–proton elastic amplitude). Correspondingly, the CEP ampli-
tude for Fig. 2a reads

ACEP(y1, y2, t1, t2) = A(y1, t1) · V · A(y2 − y1, t2) , (2)

where V is the vertex factor of central production and the yi are 
the values of the rapidity.
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Fig. 1. Multi-Reggeon production.

Fig. 2. (a) Central Exclusive Production, (b) the diagram relevant when we discuss 
the survival probability of the LRG in Section 3.

The full CEP cross section is given by the integral

σ CEP = N

Y∫

0

dy1

∫
dt1dt2 |A(y1, t1) · V · A(Y − y1, t2)|2 , (3)

where N is the normalization constant and where we put the up-
per rapidity y2 = Y = ln s. In case of the maximal Odderon the real 
part of amplitude A(Y ) grows as ReA = c ln2 s = cY 2. On the other 
hand, the t-slope B ∝ R2, with the interaction radius limited by 
the Froissart [16] condition R ≤ const · Y . That is the integral

I =
∫

dt|A(Y , t)|2 ∼ Y 2 (4)

leading to

σ CEP = N

Y∫

0

dy|I(y) · V 2 · I(Y − y)| ∝ Y 5 . (5)

Thus in such a case, the CEP cross section would grow much faster 
than the total cross section σtot ∼ ln2 s = Y 2.

The same result can be obtained in impact parameter, b, space. 
Now

σ CEP = N ′
Y∫

0

dy

∫
d2b1d2b2|A(y1,b1) · V · A(Y − y,b2 − b1)|2

∝ Y 5 . (6)

Recall that in b space the amplitude is limited2 to |A(Y , b)| ≤ 2 by 
the unitarity equation

2ImA(Y ,b) = |A(Y ,b)|2 + G inel(Y ,b) (7)

where G inel denotes the total contribution of all the inelastic chan-
nels. On the other hand the area where the amplitude is large 

2 This is illustrated in Fig. 4 below in terms of the partial wave amplitude al(s). 
The plot shows |al| ≤ 2.
Fig. 3. Diagrams for the amplitude (left) and the cross section (right) of pp̄ exclusive 
production generated by t-channel unitarity.

(A ∼ O (1)), that is the value of 
∫

d2b ∼ π R2 ∝ Y 2, increases as 
R2 ∼ Y 2.

Summing up the analogous cross sections for processes with a 
larger number of LRGs (i.e. a larger number, n, of hadron groups 
Xi in Fig. 1) we obtain the cross section which increases faster 
than the power of s. Indeed, each additional gap brings a factor 
ln s arising from the integral over the gap size (times the ‘elastic’ 
cross section which in the Froissart limit increases as ln2 si,i+1). 
The sum of these ln s factors leads to the power behavior.

Note that by working in b space we have a stronger constraint 
since for each value of b, that is for each partial wave l = b

√
s/2 of 

the incoming proton pair, the ‘total’ cross section, σ(b)tot must be 
less than the corresponding CEP contribution.

Actually one will face this FK problem in any model where the 
elastic cross section does not decrease with energy.

At first sight the simplest way to avoid the FK problem is to 
say that the production vertex (V in Fig. 1) vanishes, at least as 
ti → 0. However this cannot be true. Indeed, as far as we have a 
non-vanishing high-energy elastic proton–proton cross section, we 
can build the diagram on the right side of Fig. 3 from a lower part 
which is just elastic pp-scattering and an upper part which corre-
sponds to the proton–antiproton elastic interaction. Such a diagram 
is generated by the t-channel two-particle unitarity equation for 
the amplitude,

disct A12 =
∑

j

A∗
1 j| j〉〈 j|A j2 , (8)

where in our case | j〉 is the t-channel pp̄ state. Note that the con-
tribution of this diagram is singular at t = m2

p (where mp is the 
proton mass). There are no other similar terms corresponding to 
the central exclusive production of a pp̄ pair with the same pole 
singularity. That is, in the vertex V of Fig. 2a, there exists at least 
one subprocess (pp̄ CEP), which cannot be canceled identically.

It is useful to clarify the above argument, since it is a little sub-
tle. We have to distinguish between the momenta transfer squared, 
t1 and t2, incoming to the vertex V in Fig. 2a, and the momentum 
transferred squared inside the vertex V , denoted by t in Fig. 3(left).
The value of the t is driven by the transverse momentum, pt , 
of the antiproton. Even if, due to a subtraction in dispersion re-
lation in t that reconstructs the amplitude, we find at some pt

point that V = 0, this will not insure that the total vertex contri-
bution vanishes. We will have V �= 0 at other pt values. Now, to 
calculate the total CEP cross section, we have to integrate over all 
available pt , so finally we obtain a non-zero contribution of this 
particular pp̄ subprocess.

3. The solution of the FK problem

The only known solution of this multi-Reggeon problem comes 
from ‘black disk’ asymptotics of the high energy cross sections. In 
such a case the (gap) survival probability, S2, of the events with 
a LRG, tends to zero at s → ∞, and the value of σ CEP does not 
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Fig. 4. The partial wave amplitude, al = i(1 −e2iδl ), is constrained to lie in the ‘uni-
tarity circle’ centered on (0, i). At low energy, for a resonance of orbital momentum 
l appearing only in the elastic channel, the energy dependence of the amplitude 
al follows a counter-clockwise circle of radius ηl = 1 with maximum amplitude 
at δl = π/2. However, for high energy scattering, black disk asymptotics requires 
Re	(b) → ∞ (see (19)), so 2Imδl → ∞ and ηl → 0, and hence the amplitude be-
comes pure imaginary.

exceed σtot (for a review of diffractive processes at the LHC see 
e.g. [17]).

In other words, besides the contribution of Fig. 2a, we have to 
consider the diagram of Fig. 2b, where the double-dotted line de-
notes an additional proton–proton (incoming hadron) interaction. 
This diagram describes the absorptive correction to the original 
CEP process, and has a negative sign with respect to the ampli-
tude Aa of Fig. 2a. Therefore to calculate the CEP cross section we 
have to square the full amplitude

|Afull(b)|2 = |Aa(b) − Ab(b)|2 = S2(b) · |Aa(b)|2 , (9)

where

S2(b) = |e−	(b)| , with Re	 ≥ 0 . (10)

Indeed, in terms of S-matrix, the elastic component Sl = 1 + i A(b), 
and the unitarity equation (7) reflects the probability conservation 
condition
∑

n

S∗
l |n〉〈n|Sl = 1 (11)

for the partial wave l = b
√

s/2. The solution of unitarity equation 
(7) reads

A(b) = i(1 − e−	(b)/2) , (12)

or in terms of the partial wave amplitude with orbital moment 
l = b

√
s/2

al = i(1 − e2iδl ) = i(1 − ηle
2iReδl ) (13)

where

ηl = e−2Imδl with 0 ≤ ηl ≤ 1. (14)

The unitarity circle bounding the partial wave amplitude is shown 
in Fig. 4.

The above discussion shows that −	(b)/2 plays the role of 2iδl . 
The elastic component of S matrix Sl = exp(2iδl). Correspondingly, 
the probability of inelastic interaction (with all the intermediate 
states n′ except of the incoming, elastic, state)

G inel =
∑

n′
S∗

l |n′〉〈n′|Sl (15)

takes the form
G inel(b) = 1 − S∗
l Sl = 1 − e−Re	(b) . (16)

Within the eikonal model 	(b) is described by the sum of single 
Reggeon exchanges while the decomposition of the exponent gen-
erates the multi-Reggeon diagrams.

The gap survival factor, S2, is the probability to observe a pure 
CEP event, where the LRG is not populated by secondaries pro-
duced in an additional inelastic interaction shown by the dotted 
lines in Fig. 2b. That is according to (16)

S2(b) = 1 − G inel(b) = e−Re	(b) . (17)

Equation (17) can be rewritten as (see (12), (16))

S2(b) = |1 + i A(b)|2 = |Sl|2 . (18)

In the case of black disk asymptotics3

Re	(b) → ∞ and A(b) → i, (19)

for b < R . That is, we get S2(b) → 0. The decrease of the gap sur-
vival probability S2 overcompensates the growth of the original 
CEP cross section (Fig. 2a), so that finally we have no problem with 
unitarity.

Recall that this solution of the FK problem was actually real-
ized by Cardy in [18], where the reggeon diagrams (generated by 
Pomerons with intercept αP (0) > 1) were considered by assum-
ing analyticity in the number of Pomerons; and also by Marchesini 
and Rabinovici in [19], where diffractive production processes were 
discussed for the case of αP (0) > 1.

Note that at the moment we deal with a one-channel eikonal. 
In other words, in Fig. 2 and in the unitarity equation (7), we only 
account for the pure elastic intermediate states (that is the proton, 
for the case of pp collisions). In general, there may be p → N∗
excitations shown by the black blobs in Fig. 2b. The possibility of 
such excitations can be included by the Good–Walker [20] formal-
ism in terms of G-W eigenstates, |φi〉, which diagonalize the high 
energy scattering process; that is 〈φk|A|φi〉 = Akδki . In this case we 
encounter the FK problem for each state |φi〉, and we then solve it 
for the individual eigenstates.

3.1. Edge of the disk

This subsection is not crucial for our final result, but it should 
be mentioned in order to demonstrate the self-consistency of the 
whole picture.

While the survival factor S2 solves the FK problem for the cen-
tral part of the black disk, we still have to address the question 
of what happens at the edge of the disk, where the optical den-
sity is not large? That is, when Re	(b) ∼ O (1). For large partial 
waves, which occur in this domain, we still may have CEP (and 
other diffractive LRG) cross sections larger than the total cross sec-
tion corresponding to such l-waves.

The solution is provided by the fact that actually the constraint 
on the interaction radius R is a bit stronger than just R ≤ c ln s. 
It was shown in [21,22] that we have to account for the ‘ln ln s’ 
correction

R = c ln s − β ln ln s = cY − β ln Y . (20)

In this case, the radius of the CEP interaction shown in Fig. 2a, 
(that is, before we account for the screening effects of Fig. 2b),

3 Recall that the word ‘black’ means the complete absorption of the incoming 
state (up to power of s suppressed corrections). That is, Re	(s, b) → ∞. ‘Black disk’ 
means that in some region of impact parameter space, b < R , the whole initial wave 
function is absorbed. That is, the value of S(b) = 1 + i A(b) = Sl → 0, i.e. A(b) → i.
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RCEP = R(y) + R(Y − y) = cY − β [ln y + ln(Y − y)]

< R(Y ) = cY − β ln Y , (21)

turns out to be smaller than that corresponding to elastic scatter-
ing. That is the multi-Reggeon amplitude is placed inside the black 
disk, and its contribution is strongly suppressed by the S2(b) fac-
tor.

It was shown in [21,23] that the same condition (20) provides 
the possibility to satisfy the t-channel unitarity.

4. Maximal Odderon

Now let us consider the situation with the maximal Odderon, 
where at very high energies the real part of elastic amplitude A is 
comparable with its imaginary part, in the sense that the ratio4

ReA/ImA → constant �= 0. (22)

In such a case the elastic amplitude A(b) has a non-zero real part, 
which violates the condition A → i at s → ∞. Now the survival 
factor (18)

S2 = |1 + i A|2 ≥ |ReA|2 �= 0 (23)

tends to some non-zero constant. That is we loose the possibility 
to compensate the growth of the multi-Reggeon (CEP) cross sec-
tions by the S2 factor. Thus these cross sections, which increase 
faster than the total cross section, will violate unitarity.

Let us consider a dynamical model. Note that the expression 
for the elastic amplitude (12) is an exact solution of the s-channel 
two-particle unitarity equation (7), where 	 is the two-particle-
irreducible amplitude which includes all possible inelastic interac-
tions. That is, in terms of Regge theory, the Odderon contribution 
must be included into the opacity, and the opacity 	(b) (i.e. the 
‘phase’ δl) should be written at high energies as the sum of the 
even-signature (Pomeron) and the odd-signature (Odderon) terms

	(b) = − i [Pomeron(b) + Odderon(b)] , (24)

where the Pomeron term is mainly imaginary while the Odderon 
contribution is mainly real. If αP (0) = 1 +� > 1, then the Pomeron 
term increases as the s� . That is the exponent exp(−	/2) → 0
and the second term in elastic amplitude (12) vanishes together 
with the Odderon contribution. In other words, in the black disk 
limit when the value of Re	 increases and exp(−	/2) → 0 the 
Odderon contribution dies out. The only chance to have a sizeable 
Odderon as s → ∞ is to collect the contribution from the edge 
of black disk where the opacity Re	(b) ∼ O (1) is not large. From 
this region one may get an Odderon contribution to the forward 
elastic amplitude AOdd(t = 0) ∝ ln s; that is ReAOdd could grow as 
the area of the ring around the black disk, but certainly it cannot 
increase as ln2 s.

However even the ln s asymptotic behavior is questionable. The 
point is that the radius of the Odderon induced interaction is most 
probably smaller than the radius of black disk, generated by the 
even-signature bare Pomeron. Indeed, the nearest t-channel singu-
larity of the even-signature amplitude is t = 4m2

π , while for the 
Odderon the nearest singularity is at t = 9m2

π . We cannot build 
the Odderon state from two pions. The most reasonable appropri-
ate hadron state in the Odderon channel is the ω meson. Therefore 
the growth of the Odderon radius with energy is expected to be 

4 Recall that the dotted lines in Fig. 2b denote just the elastic amplitude of 
proton–proton, or G-W eigenstate, scattering.
less than the growth of the black disk radius driven by the even-
signature amplitude, and the whole Odderon contribution will be 
‘absorbed’ (i.e. power of s suppressed) by the black disk.

Thus in this section we have demonstrated that
a) the maximal Odderon violates multiparticle s-channel unitar-

ity,
b) the Odderon contribution disappears in the black disk limit 

when Re	 → ∞.5

5. Reflective scattering

The same argument can be used to reject the so-called ‘reflec-
tive scattering’ asymptotics proposed in [25]. Indeed, in this regime 
it is assumed that the high energy interaction becomes pure elastic 
and the amplitude

A(b < R) → 2i as s → ∞, (25)

(with our normalization fixed by eq. (7)). This means that at very 
high energies we will have an almost pure elastic interaction with 
G inel → 0. In such a case S2 = 1 (see (18)).

On the other hand, t-channel unitarity generates the inelastic 
CEP diagram Fig. 2b with a cross section which increases faster 
than the elastic cross section. The contribution of such a diagram 
cannot be suppressed by absorptive effects since now we have 
S2 = 1. That is again we face the FK problem – the cross section of 
multi-Reggeon processes (in particular CEP) violates the unitarity 
constraint.

We emphasize that black disk absorption is the only cure of the 
FK disease. Thus any asymptotic behavior of a high energy cross 
section, increasing with energy, which does not lead to complete 
absorption, is not consistent with multi-particle unitarity. In partic-
ular, the amplitudes considered in [26–28], should be abandoned, 
since they do not satisfy the black disk condition.
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