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• We present our flow-level simulation framework INRFlow.
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a b s t r a c t

This paper presents INRFlow, a mature, frugal, flow-level simulation framework for modelling large-
scale networks and computing systems. INRFlow is designed to carry out performance-related studies
of interconnection networks for both high performance computing systems and datacentres. It features
a completely modular design in which adding new topologies, routings or traffic models requires
minimum effort. Moreover, INRFlow includes two different simulation engines: a static engine that
is able to scale to tens of millions of nodes and a dynamic one that captures temporal and causal
relationships to provide more realistic simulations. We will describe the main aspects of the simulator,
including system models, traffic models and the large variety of topologies and routings implemented
so far. We conclude the paper with a case study that analyses the scalability of several typical
topologies. INRFlow has been used to conduct a variety of studies including evaluation of novel
topologies and routings (both in the context of graph theory and optimization), analysis of storage and
bandwidth allocation strategies and understanding of interferences between application and storage
traffic.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For most activities our society has come to depend on infor-
mation and computer systems as a way to improve productivity
and so, competitiveness. This has both driven forward the de-
velopment of a plethora of IT technologies and motivated the
construction of increasingly larger computing facilities. For in-
stance, in the context of business-centric computing systems,
companies require increasingly higher computing power to sup-
port operations such as mining data from service records, offering
on-line services and supporting increasingly large amounts of
data. If we look at the world’s largest companies it is speculated
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that they have hundreds of thousands of servers to sustain their
infrastructure. As examples of well-known companies, Google
may have around one million servers scattered among 13 dat-
acentres worldwide whereas Amazon may have roughly half a
million servers in 7 datacentres around the world.

An analogous trend occurs in the scientific community, where
we can see systems of similar sizes and an always increasing
greed for more computing power. In this context, the typical
application is computer simulation of various natures (molecular
dynamics, finite elements or weather modelling, to cite a few)
which are carried out using increasingly finer-grain models which
are expected to be more and more accurate but also to require of
higher and higher computing power. Recently, the introduction
of new technologies for data analytics has opened a new form of
exploitation of scientific computing sites by allowing to analyse

https://doi.org/10.1016/j.jpdc.2019.03.013
0743-7315/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2019.03.013
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.03.013&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:javier.navaridas@manchester.ac.uk
https://doi.org/10.1016/j.jpdc.2019.03.013
http://creativecommons.org/licenses/by/4.0/


J. Navaridas, J.A. Pascual, A. Erickson et al. / Journal of Parallel and Distributed Computing 130 (2019) 140–152 141

data collected from empirical experimentation. The highest expo-
nent of data analytics in science is the Large Hadron Collider at
CERN, which generates data at a stunning rate of 50 Petabytes
per year. In order to be able to analyse all the generated data
a Grid-like system with over 150 computing centres all over
the world is used (see Worldwide LHC Computing Grid web-
site1). This data generation rate will be dwarfed by the Square
Kilometer Array project which is expected to generate a mind-
blowing amount of data exceeding the Exabyte per day once it
is built by 2020 (see Square Kilometre Array website2). At any
rate, the advent of data analytics within the scientific community
has motivated the convergence of datacentre and HPC architec-
tures. Consequently, simulation tools that can cope with both
models are becoming increasingly important. As we will explain
in this paper, INRFlow offers capabilities for both data-centric
and computation-centric systems and covers the gap between
simulators specially designed for only one of these models.

The interconnection network (IN, in short), a specific-purpose
network that allows compute nodes to interchange messages
with high throughput and low latency, is a key element of
these large-scale computing platforms because its performance
has a definite impact on the overall execution time of parallel
applications, especially for those that are fine-grained and com-
munication intensive. Indeed, they have been widely acknowl-
edged (e.g., [2,17,29,35]) to be one of the limiting factors when
it comes to scaling up computing systems, essentially because
the communication and synchronization penalties suffered by
applications increase with the size of the system. Current trends
show the number of nodes used in data centre networks or super-
computers can be hundreds of thousands [3,10,20,25] and these
numbers are expected to increase over the millions in the next
decade [29]. This is the reason why we should not decide lightly
about the network that interconnects compute nodes in extreme-
scale computing sites. The evaluation of an IN is a complex
task that requires, among other concerns, deep knowledge about
how parallel applications make use of the network. Our interest
revolves exactly around this topic: the modelling, simulation and
evaluation of large-scale computing systems with special empha-
sis on the IN. This paper presents INRFlow, an Interconnection
Networks Research Flow-level simulation framework we have
been developing since 2014 to support our experimental work.

The main features of INRFlow are its flexibility, its low re-
source consumption and the modularity of its design. As will
be seen throughout the paper, INRFlow can be used to simulate
a plethora of topologies and traffic models each with different
degrees of fidelity. We believe this flexibility may tip the scale
in favour of INRFlow when it comes to select a simulation tool.
Furthermore, the requirements to build and use INRFlow, in terms
of memory and CPU speed are frugal, and therefore it may be the
environment of choice for quick deployment and fast obtaining
of results. It provides the capability to simulate, on a desktop
computer, systems composed by millions of nodes in reasonable
time. The most extreme configurations modelled used the static
engine with over 1M servers and the dynamic engine with over
64k servers, see Section 4. The main limiting factor is normally
the amount of RAM, as simulations complete quite fast (typically,
hours). The amount of required memory varies depending on the
characteristics of the simulation (number of endpoints, switches,
complexity of traffic, etc.).

INRFlow is coded in C and can be built with any compliant
compiler in both POSIX and Microsoft Windows environments.
Most simulation parameters are given at execution-time, so that
only a few decisions have to be taken at compilation time, which,

1 Available at: http://wlcg.web.cern.ch/.
2 Available at https://www.skatelescope.org/.

in turn, greatly simplifies compilation. It currently runs single-
threaded as runtime is acceptable for our needs (a few hours for
tens of thousands of nodes in dynamic mode), but extending it
to perform parallel execution should be relatively simple. The
source code of INRFlow (released under GPL) together with the
required information for its operation (user manual) can be found
at Gitlab.3

INRFlow has been the backbone of a large part of our recent
research: In [13] we developed a novel routing for recursively-
defined server-centric networks DCell and FiConn. This was later
extended for the HCN/BCN networks [16]. In both cases, sig-
nificantly improved practical routing algorithms were obtained.
In [14] we provided a minimal-path routing for DPillar. In [15] we
established the stellar dual-port server-centric design methodol-
ogy. Any graph can be chosen as the base and judicious choices
result in networks with beneficial properties. Using generalized
hypercubes as the base graphs, we constructed GQ∗ and com-
pared it with the state-of-the-art FiConn and DPillar. In [39],
we proposed a multi-objective optimization framework to au-
tomatize the selection of topologies for a large-scale, exascalable
computing system, ExaNeSt [4]. In [43], we analyse the effect of
data-storage policies on the interferences between storage and
applications traffic and, in turn, its effect on system performance.

To highlight the capabilities of the simulator, we conclude
the paper with an example case study where we analyse the
scalability of a number of state-of-the-art topologies for HPC
systems and the effects of multipath routing on some of them.

2. Related work

The networking community has developed a large variety
of network simulation tools with different approaches and ob-
jectives. Let us review a small selection, pinpointing the main
differences with INRFlow. Note that, as explained before, the main
characteristics of INRFlow are its flexibility and its low resources
requirement, and therefore it outperforms in these two aspects
to most of the tools revised here.

INSEE [38] is a cycle-driven flexible, lightweight functional
simulator which is also being developed and maintained by our
group. INSEE models router functionality in detail and provides
a more accurate alternative for simulating mid- to large-scale
networks than INRFlow. INSEE is able to simulate a wide variety
of router models and topologies and shares part of the code base
with INRFlow.

HPC-NetSim [50] is a simulator developed to model the
Tianhe-2 supercomputer, which occupies the second place in the
Nov’17 Top500 list. They provide an accurate cycle-driven simu-
lation and show the precision of their framework by comparing
with the real system. However, their evaluation is restricted to a
32-endpoint system, so its scalability is difficult to assess.

TOPAZ [1], which was developed at the University of Cantabria,
is a cycle-accurate simulator for supercomputer INs with detailed
models of the components which allows obtaining very accurate
performance measurements. It has the ability to interface with
GEMS5 to perform full-system simulation. TOPAZ is implemented
in C++ and offers parallel execution to speed up execution.

BigNetSim [49], which was developed at the University of
Illinois at Urbana Champaign, is a trace-driven parallel discrete
event simulator. It simulates, with reasonable detail, an inte-
grated model for computation (processors) and communication
(network). The simulator allows different levels of detail to eval-
uate the IN: from simple latency models to detailed models of
the network including k-ary n-cubes and k-ary n-trees. One of
the main advantages of this system is its extreme modularity,

3 https://gitlab.com/ExaNeSt/inrflow.

http://wlcg.web.cern.ch/
https://www.skatelescope.org/
https://gitlab.com/ExaNeSt/inrflow


142 J. Navaridas, J.A. Pascual, A. Erickson et al. / Journal of Parallel and Distributed Computing 130 (2019) 140–152

with easy mechanisms to model new topologies and routing
algorithms. BigNetSim has a parallel implementation that allows
carrying out large simulations of current and future systems,
and to study the behaviour of applications developed for those
systems. In contrast with INRFlow, in which system configuration
is given as parameters at execution-time, BigNetSim is configured
at compilation time, in such a way that any change in the models
require to recompile the target modules.

MARS [11] is a simulator of parallel systems developed at IBM
and based on the OMNeT++ simulation framework. Its design is
oriented to the evaluation of parallel systems and parallel appli-
cations, and to that purpose it includes detailed models of both
the communication side and the compute nodes. MARS allows us
to use several multistage topologies, and a variety of switching
and routing functions. In addition, it supports multi-core configu-
rations in which each processing core has its own MPI stack. The
main strength of MARS is its conformity to MPI semantics and
their ability to run in parallel. However, its scalability seems to
be limited to a few thousand endpoints.

MINSimulate [48], developed at the Technical University of
Berlin, is a simulator designed to evaluate multistage INs. It
implements Clos and Delta networks and supports both worm-
hole and store and forward switching. Note that currently INR-
Flow does not support this kind of networks but their inclusion
would require insignificant efforts as it would simply require
implementing connection and routing functions.

The NS-2 simulator [30], from the University of Southern Cal-
ifornia, is designed to research on wired and wireless TCP-based
communication networks. Although high performance computing
systems used to rely on high performance interconnects such
as InfiniBand or proprietary interconnects for parallel computing
workloads, Ethernet is getting a significant share of the Top 500
list, as new versions of 10 G Ethernet or 100 G Ethernet are
leveraged as low-cost INs. However, TCP-based networks are not
a good alternative for HPC, so most of them are relegated to the
lower positions of that list.

The COTSon Infrastructure for system-level simulation by HP
Labs [5] provides a full-system simulation environment based on
AMD’s SimNow.4 The tool was open sourced in January 2010
and is able to simulate clusters of many-core processing systems
using a functional simulator of a network switch. However, this
way of modelling the network is extremely simplistic and inca-
pable of modelling the complexity of traffic interaction within a
full-fledged network.

Dimemas [6], developed and maintained at the Barcelona Su-
percomputing Center, was designed with the evaluation of ap-
plications behaviour in mind. It can reconstruct the execution
of a parallel application in any supported architecture using a
trace of that application. Dimemas models computing elements
with accuracy but models the INs in a rather simplistic way:
a collection of buses. The workloads used with Dimemas are
modelled in detail, with lots of significant states available for each
application thread. A drawback of this workload’s complexity is
that obtaining traces with sufficient level of detail requires an in-
strumented kernel. Dimemas is designed to search for bottlenecks
and/or unbalances that may harm the performance of parallel
applications, however the basic network model cannot identify
bottlenecks occurring at the network-level.

3. INRFlow design

INRFlow is a flexible, lightweight flow-level simulator focused
on modelling large interconnects. To extend scalability it models

4 Manual available at: http://developer.amd.com/wordpress/media/2013/03/
SimNowUsersManual.pdf.

the network at a link level without a detailed model of router
architecture. In addition to the interconnect, INRFlow models
several subsystems of a supercomputer or datacenter such as
the scheduling of applications, the allocation of resources and
the mapping of tasks and data sources to computing nodes. It
is also able to simulate both the novel storage network of Ex-
aNeSt in which the storage devices are attached to computing
elements and more classical approaches that rely on a Storage
Area Network (SAN). Extending INRFlow is very easy because all
the subsystems are independent.

3.1. Simulation engines

INRFlow works at flow-level. This high level of abstraction
was decided in order to be able to scale to the system sizes
we are targeting. Note, however, that raising abstraction also
reduces the accuracy of the results because the particularities of
the components and fine-grain interactions between them are
not covered by the model. For us, a workload is a set of pairs
of source and destination nodes. INRFlow constructs the network
topology and workload at runtime, routes the flows specified by
the workload, using the specified routing algorithm, and, finally,
reports statistics.

INRFlow implements two different simulation engines: static
and dynamic. In static mode, flows are routed simultaneously
and a link’s capacity is assumed to be shared among all the
flows routed through it. Static mode can handle very large net-
works and serves to report on raw performance metrics where
the causal relationships between flows are not important, such
as the mean hop-length of a routing algorithm or preliminary
estimations of the throughput.

While the static engine works similarly to most simulators
used by the datacentre networks community [23,24,33,34], we ar-
gue that static analysis does not always accurately reflect network
performance due to its lack of temporal and causal modelling.
For this reason, INRFlow features a dynamic engine that is able
to deal with temporal and causal aspects of the execution. In
dynamic mode, the links of the network have capacities and each
flow is specified with a weight reflecting the data that must be
routed. In addition, the workloads prescribe computing phases
and causal relationships among flows, so that some flows must
finish before others begin. Dynamic mode provides a more re-
alistic, flow-level simulation of general real-world workloads, as
well as a good estimation of the completion times of a collection
of application-inspired workloads.

INRFlow has also the ability of incorporating failures into
the description of the system. This is useful to ascertain the
fault tolerance of a system. When failures are present, INRFlow
randomly disconnects a number of network links that is given
as the percentage of the total number of link or as an absolute
number of failures. This can be used to measure the connectivity
of the network after the failures occur counting the number of
flows that the network is able to deliver to their destination, see,
e.g., [15]. This is particularly useful to evaluate routing algorithms
and the effectiveness of multipath policies. To employ this mode,
fault-tolerant routing functions would be needed, but INRFlow
will keep operating by simply dropping flows that can not be
routed, if such a facility is not implemented.

INRFlow dynamic engine also supports using flow priorities
at the link level. Currently, we consider two priority levels, App
(high) and I/O (low) and have implemented the following policies
(depicted in Fig. 1) and analysed in detail in [43].

• No priorities (NP): This is the baseline policy in which all
the flows have the same priority. As we can see in Fig. 1a,
link bandwidth is shared fairly among the flows.

http://developer.amd.com/wordpress/media/2013/03/SimNowUsersManual.pdf
http://developer.amd.com/wordpress/media/2013/03/SimNowUsersManual.pdf
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Fig. 1. Examples of traffic prioritization policies. Time flows left-to-right and bandwidth is represented vertically.

Fig. 2. Examples of some of the topologies supported by INRFlow.

• Bandwidth Apportion (BA): This policy establishes the pro-
portion of the link bandwidth that will be used for each type
of traffic. The number of flow types can vary as shown in
Fig. 1b where we have assigned 50% of bandwidth to inter-
process traffic and 50% for storage traffic. In this case, half
of the bandwidth will be shared by App flows and the rest
by I/O flows. When only flows of one kind are present, they
occupy the full bandwidth.

• Full Priority (FP): App traffic has full priority over I/O traffic.
Thus I/O traffic will only use the network resources that
are not employed by applications. An example of this policy
is depicted in Fig. 1c where all the bandwidth is used to
transmit application flows. When these finish, storage flows
are transmitted.

3.2. Topologies

INRFlow implements a large variety of network topologies, see
Fig. 2 for a few examples, both from the datacentre and the HPC
communities. In particular it is able to simulate server-centric
networks in which nodes and switches have the role of routing
elements, and switch-centric networks in which the nodes do not
perform any kind of routing. Examples of some of the datacenter
topologies implemented in INRFlow are:

• DPillar: It is a server-centric data centre network some-
what inspired by the classic butterfly topology [32]. DPillar
provides several nice properties such as scalability, network
performance, and cost efficiency, which make it suitable for
building large scale future data centres.

• Bcube: Another server-centric network architecture, spe-
cifically designed for shipping-container based modular
datacenters [24]. BCube has a nice property: graceful perfor-
mance degradation as the server and/or switch failure rate
increases.

• Gdcficonn: This is the generalization of DCell [22] and Fi-
conn [31], a family of recursive topologies which eliminates
the requirement of any switches other than the lowest-
level commodity ones. It is highly scalable to encompass
hundreds of thousands of servers, while at the same time
keeping low diameter.

• HCN/BCN: is a recursively-defined family of networks, where
the BCN construct is built using (copies of) HCNs by includ-
ing an additional layer of interconnecting links [21].

• Jellyfish: This is a random network designed to provide high
connectivity in datacenters. One of its main characteristics
is that it is incrementally expandable as opposed to most
common topologies [45].

INRFlow also includes more HPC-focused networks such as the
following:

• The torus is a well-known topology that has been histor-
ically used to interconnect massively parallel processors.
Nodes in a torus are arranged in a d-dimensional grid with
wrap-around links.

• Many Tree-like topologies such as the k-ary n-tree topology
(fattree): [44], the k:k′-ary n-tree topology (thintree) or the
generalized tree topology (gtree).
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• Dragonfly is a large-radix, low-diameter, recursive family
of topologies that uses a group of high-radix routers (a
network group) as a virtual router to increase the effective
radix of the network. Then interconnects large numbers
of these network groups in an all-to-all fashion using a
given connection rule [28]. Currently, we have 5 different
connection rules implemented.

• General Graph-based topology: Sometimes we do not have
the mathematical description of a topology (connection
rules). For this reason we have implemented a loader that
is able to load the definition of the topology from a file.
This file contains the number of nodes and switches and
how they are interconnected. This was developed for our
topological optimization framework [39].

The definition of a topology in INRFlow normally involves
implementing routing algorithms that can be used with it. There
are many algorithms already implemented and it is very easy to
add new ones. INRFlow supports both single-path, where given a
source and a destination node the same path is used all the time,
and multi-path, where many parallel paths can be used. When
INRFlow needs to perform the routing of a flow it will use all the
paths provided by the routing algorithm. The design of INRFlow
is very flexible allowing the implementation of different kinds
of routing policies. In particular, we can implement arithmetic
routings that calculate the path when they are requested or pre-
computed routings in which all the path between pairs of nodes
are calculated before the simulation starts. However, implement-
ing a new routing algorithm is not required for every topology
since we have implemented generic routing algorithms that can
work with arbitrary topologies:

• Breadth-first search (BFS) routing: This is single-path rout-
ing policy that looks for one of the possible shortest paths
between each pair of nodes.

• Equal Cost Multiple Paths (ECMP) routing: This is a multi-
path routing algorithm that balances loads among all short-
est paths between each pair of nodes.

• K -Shortest Path (KSP) routing: This is a multi-path routing
algorithm that looks for the K (arbitrary) shortest paths
between each pair of nodes.

• AllPath-d (AP) routing: This is a multi-path routing algo-
rithm that balances load over paths which are equal of
shorter than the shortest path plus an arbitrary parameter,
d. It aims to increase path diversity.

These are very useful when we want to evaluate new topolo-
gies or routing functions, since they can be used as baseline
to compare with. However, they involve a relatively high cost
in terms of computing time and memory consumption, so for
consolidated topologies it is advisable to provide specific routing
algorithms.

3.3. Workload generator

In INRFlow, nodes are modelled in a rather simplistic way: a
traffic generator/consumer. However they can use a large vari-
ety of types of traffic generators. From purely synthetic traffic
patterns to traces extracted from real applications as well as
realistic traffic generators developed from analysing real traces
from applications.

3.3.1. Synthetic traffic patterns
INRFlow provides a broad range of synthetic traffic patterns

that can be used to measure the performance of the communica-
tion infrastructure and only consider spatial distribution of traffic.
The following are some of the traffic types that can be generated
by INRFlow:

• Random: When a packet is generated at a node (the source),
the destination is randomly selected following a given prob-
ability distribution. The built-in modes are uniform, in which
all the nodes have the same probability of being selected
as destination, and the non-uniform hot spot and hot region,
where a given node or group of nodes, respectively, have
higher probability of being selected as destination, increas-
ing the risk of generating congestion in some regions of
the network. Finally, with local traffic, the probability of
selecting destination nodes decreases with the distance (so
that most packets are sent to nearby nodes).

• Permutations: Given a source node, the destination node is
always the same, and is computed as a permutation of the
source node identifier (generally a bit permutations). INR-
Flow supports classical permutations such as Perfect Shuffle,
Bit Reversal, Bit Transpose and Bit Complement.

• Bisection: The network is split uniformly at random into
two halves and every server in each half sends a flow to
every server in the other half.

• All-to-one: A unique root server is chosen, uniformly at
random, and every server sends a flow to the root.

• All-to-all: every server sends a flow to every other server.
• Many-all-to-all: For a given size s, the network is parti-

tioned uniformly at random into g = N/s groups of servers,
each of size at most s. Each server sends a flow to all other
servers in its group.

3.3.2. Real applications traces
Synthetic traffic sources provide very useful insights into a

network’s potential. However, obtained performance metrics can
be unrealistic as applications use more sophisticated communi-
cation patterns than synthetic models. For this reason INRFlow
can also use traces from applications to perform trace-driven
simulation. To reproduce the causal relationships between events
in the trace files, INRFlow requires a special data structure to
store past and future events, shown in Fig. 3. Each node of the
simulated applications has an event queue, which is fed from
the trace file. A packet is sent through the network when an S
(send) event is in the queue’s head. If an R (receive) event is in
the head, it is necessary to access the pending notifications queue
to check if the expected event has happened already; otherwise,
processing of events is blocked until the network notifies the
awaited reception. The pending notifications queue at each node,
thus, stores reception events that arrive before the application
requests them, and it is a crucial element to keep event causality.
The complete process of trace-driven simulation is akin to the one
we presented in [36] and works as follows:

1. Enqueue in each node’s event queue all the events it has to
execute.

2. Initialize the pending notifications list as an empty list.
Nodes sequentially execute the events in their event queue.

3. If the first event is a send, remove the event and inject the
corresponding message into the network.

4. If it is a reception, check if a corresponding message (match-
ing origin, destination, tag and size) is in the pending
notification list. If it is there, remove both entries. Oth-
erwise, keep in this state until the required message is
received by the node and is accordingly found in such list.

5. If it is a computation event, put the node on hold for the
required period of time, using a selected CPU-scale factor.

6. When the network delivers a message, put it in the pending
notifications list.

An example of this procedure is depicted in Fig. 3. In the
figure, nodes 0 and 15 are waiting for a message from node
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Fig. 3. Diagram of the data structures needed to support trace-driven simulation.

1. Node 0 has received a message from node 15 whereas node
15 has received a message from node 2. These are stored in
the corresponding notification lists. This mechanism reproduces
the actual way messages were interleaved when running the
application, complying with the causal order between a reception
and the subsequent sends it may trigger, see [36].

3.3.3. Pseudo-applications traffic
INRFlow is also able to generate many application-inspired

workloads. These workloads cover some representative network
traffic scenarios that can be found in existing datacentres and
HPC systems and use the same data structures as the trace-based
simulations. A non-exhaustive list of these workloads includes:

• Scientific applications: Inside this group we include models
that mimic scientific code traditionally used by the HPC
community. In particular, 2D and 3D stencil and sweep codes,
i.e., applications that communicate following 2D and 3D grid
patterns (similar to what we found in many scientific codes).
In addition, we also incorporated a n-body application, code
used to solve the n-body problem that involves the predic-
tion of individual motions of a group of objects interacting
with each other.

• Datacentre applications: This group of applications in-
cludes models that mimic the traffic that appears in data-
centres, including the popular Mapreduce in which after a
phase of scatter data, the tasks of the application commu-
nicate using an all-to-all traffic pattern and finishing with
a gather phase. We also emulate unstructured applications
such as graph analytics using causal random traffic and a
model that we call dcntraffic in which all the nodes of the
network communicate with each other using an 80% of short
flows and a 20% of long flows as reported in [27]. This latest
model emulates, not only the traffic of the applications, but
also the management traffic present in datacentres.

• Benchmarking patterns: This group contains causality-
enhanced versions of the traffic patterns traditionally used
in the evaluation of network topologies (similar to the ones
in Section 3.3.1). To enforce causality, flows are generated
into phases. Each phase has a fixed number of flows and
requires all the flows from the previous phases to be deliv-
ered before beginning. The smaller the phase size, the more
tightly-coupled the application, i.e., the higher the causality.

3.3.4. Markov-chain-based application model
Given the wide variety of applications that we need to con-

sider (HPC from several scientific domains, big data analytics for

Fig. 4. Representation of the Markov chain used to generate synthetic
applications and parameters used to generate traffic in our experiments.

scientific, engineering and commercial purposes, and business-
intelligence applications) and their different needs in terms of
communication and storage, INRFlow also supports a generic
model based on Markov chains which can be fine-tuned to model
different flavours of application by changing the transition prob-
abilities between the different states. Fig. 4 shows the model we
constructed based on an analysis of a number of applications we
had access to within our projects. An interested reader can look at
some utilization examples of how this application model in [43].
The model is composed of 6 states each of them representing
the different types of operations that can go on during the ex-
ecution of an application. Storage is split into two states to be
able to model applications with varying I/O needs (e.g. read- or
write-intensive, or more balanced access to storage).

• Init: This state represents the moment in which an ap-
plication gets scheduled into the system and the required
resources (i.e. processing nodes) are assigned to it, including
all source data preparation (caching).

• End: When this state is reached the application will final-
ize. Transitioning to this state will free all the computing
resources of the application and will also trigger updating
the data origins with the results of the application.

• Comp: A computation-intensive phase without any data
moving. It is the first one after Init and the last one before
End to model the creation/destruction of application’s data
structures.

• Comm: A communication-intensive phase in which com-
puting nodes will communicate and/or synchronize with
each other. This phase can model different patterns, in par-
ticular any of the ones discussed above.

• Read: During this phase, the processing nodes will read data
from storage according to the storage policies implemented
in INRFLow.

• Write: During this phase the application writes data to stor-
age, covering for storage of execution results, updating of
data, snapshots of the application status or check-pointing
of the application.

The transition between phases is performed using a probabil-
ities transition matrix. The value of each element of the matrix,
M[a][b], indicates the probability of a transition from phases a to
phase b. Therefore, the sum of each row and column has to be
1. These probabilities are fully configurable and allow to emulate
several types of applications such as I/O-intensive, computation-
intensive, communication-intensive or mixes of them. Addition-
ally, there are many other parameters that can be configured,
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Fig. 5. Examples of the different stages of the scheduling process.

such as the application size, the communication pattern during
the Comm phase, the lambda parameter for the duration (expo-
nential) of the Comp phase, or the storage servers and transfer
sizes for storage traffic.

3.4. Scheduling model

In large-scale multi-tenant systems, applications need to fol-
low several steps upon submission before they are actually ex-
ecuted. The piece of software in charge of that is called the
scheduler and performs the following stages: Job Selection, Re-
source Allocation and Task Mapping (see Fig. 5). Because most
large-scale computing systems are reliant on this kind of tools,
we have implemented a model of the scheduler in INRflow to be
used in our research [43].

First, the Job Selection stage in which the next application to
be executed is selected. At the moment the following policies are
implemented:

• The simplest and most common policy is the First-Come
First-Serve policy (FCFS) [18], which imposes a strict order
in the execution of jobs. These are arranged by their ar-
rival time and order violations are not allowed. The main
drawback of this policy is that it severely reduces system
utilization. When the job at the head of the queue cannot be
put to run because the required resources are not available,
all the jobs in the queue must wait due to the sequentially
ordered execution of jobs. As a result, many processors could
remain idle, even when other waiting jobs could be eligible
to use them.

• Aggressive Backfilling (BF) [18] tries to overcome this draw-
back of FCFS by allowing the head job to be overtaken and
allowing to schedule other application(s) which fit in the
available resources. BF is a variant of FCFS, based on the
idea of advancing jobs through the queue. If the job at
the head cannot be launched due to resource constraints,
a reservation time for it is calculated using the estimated
termination time of currently running jobs. Using this policy,
the system utilization is improved because more jobs can
be put to run without delaying the expected starting time
of other jobs. Note that there exists an alternative called
conservative Backfilling in which all the jobs at the queue
receive a reservation but it is too strict and is barely used in
practice, so it is not yet implemented in INRFlow.

• Shortest Job First (SJF) [18] selects the jobs in order, with
the shortest (in terms of estimated execution time) being
executed first. The idea behind this policy is to avoid short

jobs having to wait for much longer jobs in order to reduce
the average waiting time of the jobs at the queue. The jobs
are ordered using the expected value of the runtimes of each
job.

Note that the use of both BF and SJF policies requires the
expected runtime of the jobs being scheduled. As this depends on
many variables such as the problem to solve, the type of hardware
assigned or the status of the network it is impossible to provide
an accurate value. For this reason these times are, either predicted
using simple models based on the history of the execution of
similar jobs [47] or, more recently developed models based on
machine learning techniques [19]. However, in real production
systems these times are provided by the users when submitting
the jobs [46]. This is the approach that we use in INRFlow, so the
estimated runtime needs to be provided for each application or if
it is not, then it will not be able to overtake previous jobs.

Once the application is selected, the Resource allocation stage
selects the physical resources (servers) to execute it. This stage
tends to be guided by applications requirements such as memory,
storage capacity, processor architecture, OS, etc. However, many
authors argue that exploiting application locality by placing appli-
cations in a set of nodes which maintain some form of contiguity
provides a more efficient utilization by reducing network latency
and interference between jobs [26,37,42].

Finally, the Task mapping stage assigns each task of the appli-
cation to the allocated servers. This stage can have a high impact
on the performance of the applications [41] and to be effective
it should be done considering specifics of the communication
patterns used, amount of data exchanged, etc. For this reason,
there is a large body of research and many approaches on how
to improve this stage of the scheduling process [7–9,12,40]. INR-
Flow implements two simple strategies which are valid for any
network: (1) consecutive which assigns the task to the set of
reserved nodes in sequential order and (2) random which assigns
the tasks to the nodes randomly.

In INRFlow we have implemented each of the stages as in-
dependent modules. This way it is very easy to implement new
policies for any of the three stages. In the following pictures we
have depicted a scheduling example for one application, from its
arrival to the queue to their execution.

The quality of the scheduling process is typically measured
using a set of specific metrics which are implemented in INRFlow:

• Waiting time: It is the time that a job spend in the queue,
that is, the time since it is submitted to the system until it
is selected to be executed.

• Runtime: It is the time required by a job to be executed.
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Fig. 6. Visual representation of the ExaNeSt storage architecture. The local NVMs are attached to the computing nodes sharing the main IN (solid). An Ethernet
network is provided for central data storage (dashed).

• Total time: This time is the combination of the waiting
time and the runtime. It represents the time since a job is
submitted until it finishes.

• System Utilization: This metric represents the proportion of
computing resources that is used during a time period.

• Throughput: This is the number of jobs that finish per unit
time.

• Makespan: This is the total time required to process the
whole sequence of jobs since the first is submitted to the
queue until all of them finish.

3.5. Storage subsystem model

INRFlow also incorporates a full model of the storage subsys-
tem (see Fig. 6 for a detailed diagram and [43] for a concrete
use case). In the current model there is local storage attached to
each computing element as well a central storage accessible via
a storage network (SAN). Local storage can be cached in memory.
Based on these two storage models, there are many data access
mechanisms available in INRFlow:

• Data mapped locally in memory is accessed immediately.
• Read and writes into the local storage device is limited by

the PCI-e controller or the device (configurable indepen-
dently).

• Access to data mapped in remote nodes is limited by the IN.
• Data in the centralized storage requires using the SAN net-

work.

Once an application has been selected to be run, the allocator
will select a set of computing nodes to place the tasks of the
application. In that moment, the application will request access
to the required data. We have currently three possible policies to
perform storage assignment in the local-devices.

• Local: All the local storage devices are available to load the
data for the application. This is the ideal scenario where
all the storage traffic remains local within the computing
elements. As a consequence there is no interference with
other traffic.

• Internal: In this case only some of the local storage de-
vices are available. This situation could happen if other
applications have requested some of these storage devices
previously.

• External: In this case all (or part thereof) the storage devices
are outside of the partition assigned to the application. Now,
all the accesses to the data will be remote, generating intra-
and inter-applications interference.

4. Case study: Scalability analysis of HPC topologies

In order to showcase the capabilities of INRFlow, we have
conducted a simple experiment to assess the scalability of a few

different topologies, as well as their performance when dealing
with realistic application models. Note that the objective of the
experiment is not to perform a thorough, detailed evaluation of
the networks but, simply, to give a taste of the kind of studies
INRFlow can support. The experiments performed here are two-
fold. First we show some results produced with INRFlow static
engine using random uniform and hot-region traffic patterns as
a measurement of raw performance when handling balanced and
unbalanced loads. In this first analysis we look into systems with
up to 1 million of endpoints and consider the following figures of
merit:

• Aggregate Restricted Throughput: measures the throughput
when all flows are routed at the speed of the (slowest)
bottleneck flow; this simulates applications that are tightly
coupled and so must wait for the completion of all flows
before being able to advance.

• Aggregate Non-restricted Throughput: measures the
throughput in applications that are loosely coupled, where
each flow can be processed as it arrives and so no slowdown
is introduced by the slowest flows.

• Overall Throughput per Port: is calculated from the two
previous taking into consideration the number of switch
ports (links), so to ascertain how efficiently resources are
used.

Afterwards, we use INRFlow’s dynamic engine to analyse in-
stances of the topologies of around 64k-node handling some
realistic workloads. In this set of experiments the figure of in-
terest is the execution time of the applications and they focus on
assessing how the above raw gains are translated into applica-
tions speed-up. We consider a broad range of application models
as explained in Section 3.3.3.

4.1. Scalability results

Fig. 7a and 7b show, respectively, the Non-Restricted and
Restricted Throughput of the different topologies as the number
of endpoints is increased. First, we can see that the 6D torus
provides the highest throughput for relatively small networks.
However, it does not scale as nicely as the other topologies,
indeed, it eventually gets outperformed by the fattree as the sys-
tems scale up and the best dragonfly (1:2) would also outperform
it if we extended our experimental space a little further. It can be
noted as well that all the topologies within a family of topologies
have similar trends (gradient in the plots) with the tori showing
the lowest slope. The trees and the dragonflies have similarly
good trends, with the dragonflies having a slightly higher one.
Jellyfish requires special consideration as it behaves differently
in terms of restricted and non-restricted throughputs. In the
unrestricted case, it follows a trend similar to the trees whereas in
the restricted case, it scales poorly like the torus. This is because
of the random nature of the topology generates quite a lot of
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Fig. 7. Scalability analysis with Uniform (left) and Hotregion (right) traffic.

bottlenecks when static routing is used. This is a known limitation
of the topology, but can be alleviated by means of multipath
routing, we will explore this issue later. With regards to the
Overall Throughput per Port, shown in Fig. 7c, we can see how all
of the topologies, except for the tori, have a very nice, nearly flat,
scalability in terms of throughput per port. While there is little
difference among the topologies, it is worth highlighting that the
Jellyfish is the one with the best relation between throughput and
links. This motivated our study in less structured topologies, such
as the optimization framework proposed in [39].

4.2. Applications execution time

Let us analyse now the results for the different groups of
applications using the dynamic engine of INRFlow. For simplicity
we assume all links run at 10 Gbps, but mixed link bandwidths
are supported. Fig. 8 summarizes the results with the realistic
workloads. Given the wide range of execution times, the results
are normalized, so to show how many times slower execution
could be if an inadequate network is chosen. The first group
of workloads is formed by these traditionally used in HPC en-
vironments. The Stencil workloads are executed much faster in

the tori because the topology matches perfectly the communica-
tion pattern, hence there is no contention at the network level.
Among the rest of the topologies the best results are achieved
by the fattree and the thintree with 1:2 oversubscription ratio.
As expected, the worst results were obtained using Jellyfish due
to the use of an unstructured topology to execute a completely
structured workload. In the case of n-body, the high causality
of its communication pattern minimizes the differences between
topologies.

The second group of workloads mimics the behaviour of ap-
plications in datacentres. If we look at the Unstructured workload
the best performance is achieved using the Torus 6D. The rest
of the topologies perform similarly except the thintree with a
1:4 ratio in which the reduced bandwidth in the upper tiers
severely affects the performance of the application. Special at-
tention should be paid to the good performance achieved by
the dragonflies and the jellyfish topologies due to the fact that
both have a random component: valiant routing and the random
construction respectively. Regarding MapReduce, the best perfor-
mance is achieved using the 3D- and 6D-tori with the remaining
topologies performing similarly. Finally, dcntraffic works best
with the torus 6D and the fattree and worst, again, with the
thintree with a 1:4 ratio.
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Fig. 8. Execution time of the realistic workloads.

Fig. 9. Effects of multipath routing.
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The third group evaluates the topologies using more tradi-
tional patterns. In this case the patterns running in the torus 6D
and the fattree require the lowest execution time. Let us remark
that the worst topology is again, in all cases except Shift, the
thintree with an oversubscription ratio of 1:4.

Overall it is worth noticing the effect that the topology may
have on the execution time of applications is considerable, with
up to one order of magnitude slower execution if run in an inad-
equate topology. In the results, we observe the great potential of
torus-like and tree-like. Although high oversubscription in thin-
trees affects negatively the performance of the applications, these
kind of networks are still strong candidates in larger networks
when locality can be achieved. This will be studied thoroughly
in future works. As occurred with the static experiments above,
the low performance achieved by Jellyfish requires extra consid-
eration. Again, the culprit is that the single path routing cannot
take advantage of the high connectivity of the network. In order
to assess how much of the low performance can be attributed to
that reason, we next evaluate both type of topologies, tree-like
and jellyfish, using multi path routing.

Fig. 9 shows how the availability of multipath routing affects
the performance of the fattree, the Jellyfish and the thintree. We
can see that in the case of the fattree, the multipath schemes
not only do not help greatly to improve the performance but,
in fact they can actually harm it significantly for adversarial
traffic patterns. This is because the large interconnection resource
provided by the topology can be shared evenly with a static,
single-path routing, whereas the use of multipath can actually
generate some areas of contention that would not appear other-
wise. With Jellyfish, on the other hand, we can see that applying
multipath routing algorithms can be considerably beneficial (up
to 2 − 3× faster) with KSP being generally better than ECMP.

Note that, although the fattree cannot really benefit from
multipath routing in many cases, oversubscribed trees are able
to benefit from it up to a certain level. There we can see that
the slightly oversubscribed thintree 2:1, can achieve speed-ups in
the range of 2 − 4× for many of the workloads considered here.
This is because with relatively small oversubscription ratios, it is
more likely to generate contention in the topology, but there is
still a large variety of paths that can be exploited by the multipath
algorithm to distribute the traffic more evenly across the higher
levels of the topology. On the other hand, the more aggressively
oversubscribed topology, thintree 4:1, extracts little benefit from
the multipath scheme because the low availability of paths means
that there are not many occasions in which the traffic can be
spread more evenly across the great bottleneck that is the last
level of the interconnect.

5. Conclusions

This paper has described exhaustively the design of the INR-
Flow simulation framework for large-scale networks and comput-
ing systems. INRFlow is a mature, flexible and frugal tool that has
shown its capabilities in a wide range of previous research work
within the areas of interconnection networks for datacentres
and HPC computing systems. It models many aspects of such
systems, including the scheduling process, the storage subsystem,
the interconnection network and the application traffic. Our de-
scription includes the large number of topologies and routings
implemented already, the wide variety of traffic generators and
the different subsystems included in our models.

In top of that description we complete the paper with a case
study in which we investigate the scalability of typical intercon-
nection networks with up to one million nodes. There we see that
high-dimensionality torus can offer the best raw performance, as
well as exploit it appropriately to obtain the fastest execution

times of applications. We also show some examples of topologies
where multipath routing can be necessary in order to speed up
the execution of applications.

Finally, we want to remark that INRFlow is an open source
platform and we would like to invite all researchers in the area
of interconnection networks and related ones, to try it and use it
for their own purposes as well as to contribute to its design and
development.
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