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Abstract: The direct detection and imaging of exoplanets requires the use of high-contrast
adaptive optics (AO). In these systems quasi-static aberrations need to be highly corrected and
calibrated. In order to achieve this, a high-sensitivity wavefront sensor, the pupil-modulated
point-diffraction interferometer (m-PDI), is presented. This sensor modulates and retrieves both
the phase and the amplitude of an incoming electric field. The theory behind the wavefront
reconstruction, the visibility of fringes, chromatic effects and noise propagation are developed.
Results show this interferometer has a wide chromatic bandwidth. For a bandwidth of ∆λ = 50%
in units of central wavelength, the visibility of fringes and the response of the WFS to low and
high-order aberrations are almost unaffected with respect to the monochromatic case. The WFS
is, in contrast, very sensitive to variations in the size of its pinhole. The size of the pinhole is
shown to affect the sensor’s linearity, the dynamic range and the amount of noise. Larger pinholes
make the sensor less sensitive to low-order aberrations, but in turn also decrease the effects of
misalignments.
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1. Introduction

In astronomical adaptive optics (AO) the application of high-contrast techniques, including
extreme adaptive optics (XAO), has a particular focus towards the direct detection and imaging
of exoplanets. It has been estimated that, in systems such as the Gemini Planet Imager (GPI) [1],
the non-common path aberrations (NCPA) between the imaging arm and the WFS would have to
be corrected to less than 10 nm rms, within the first 100 modes in order to achieve their targets.
Other slowly changing aberrations are produced by telescope flexures, temperature differences,
or the movement of elements such as the atmospheric dispersion corrector or the derotator. These
aberrations are at the origin of quasi-static speckles which vary in the order of minutes, hours, or
even days depending on their origin. For example, at Gemini with Altair NIRI, it was reported
the PSF evolves on timescales of 10-60 minutes [2]. Because the aberrations are long lived, they
do not average out over time and are more difficult to deal with.
In their first approach, systems like VLT-SPHERE [3] and Subaru-SCExAO [4] relied

respectively on methods such as phase-diversity [5] and speckle-nulling [6]. For the latter, it
has been estimated the converging time needs to be under 15-20 minutes to leave time for the
science acquisition (this is only a requirement and converging times can be much lower). Another
successful technique is Angular Differential Imaging [2] (ADI), which relies on the differential
motion between the sky and the pupil to distinguish speckles from astrophysical signals. This
technique is reliant on a stable PSF, being able to increase its noise attenuation by a factor of 3
when dealing with PSFs that evolve in the order of 60 minutes, rather than when they evolve in
the order of 10 minutes.
The problem of measuring small quasi-static speckles in real-time can be addressed with the

use of interferometers. Since the light of a star is not temporally coherent, such an approach
would have to produce a self-generated reference beam to exactly match the piston and the
polarisation of the test beam. If this is not done, but instead the test beam is interfered with a



beam produced by a local source, no interference would be possible. By introducing a portion of
the input light into a small pinhole, point-diffraction interferometers (PDI) are able to produce
nearly flat reference beams that do not require piston calibration. The first version of a PDI, the
Zernike phase-contrast test was introduced by Zernike [7]. The theory was further generalized
and the term coined by Smartt and Steel [8]. The difference between the Zernike phase-contrast
test and Smartt’s PDI is the first introduces a phase change in the pinhole, while the second uses
an opaque film to reduce in different amounts the amplitude of the light transmitted through
and around the pinhole. When a sensor is based on the Zernike phase-contrast test it is also
dubbed a Zernike sensor. These interferometers can be seen as common-path configurations of
Mach-Zehnder interferometers with one output. Mach-Zehnders are also a type of PDI and have
been integrated into XAO systems [9]. Although all PDIs are susceptible to residual tip-tilts,
which is discussed later in this paper, those that are common-path have fewer parts, are more
compact and more robust against external perturbations such as vibrations and air turbulence in
the optics.

ZELDA, a Zernike sensor, has successfully been demonstrated in SPHERE [10]. As standard
PDIs do, Zernike sensors encode wavefront phase directly into light intensity. The advantage of
this is, under small aberrations, the measured light intensity is proportional to the sine of the phase,
allowing for quick wavefront reconstruction. But this kind of PDI relies on the assumption that the
illumination is homogeneous across the pupil. Therefore, heterogeneous variations of intensity
in the pupil will lead to an erroneous estimate of the phase. For example, in single-conjugate
AO (SCAO) systems, uncorrected scintillation at the pupil level could register as phase. Current
XAO systems are not multi-conjugate and cannot deal with scintillation.

This paper further develops the theory for a solution first presented by Bharmal [11]. This
approach is an improved version of the phase-shifting PDI (PS-PDI) presented by Medecki [12].
This technique is not to be confused with the phase-shifting PDI later introduced by Wallace [13].
The later is similar to a Zernike sensor in that it adds a piston phase to the core of the point-spread
function (PSF) in order to produce the reference beam. In Medecki’s approach, the phase-shift
is introduced as a tilt at the pupil with a small-angle beam-splitter. Because the tilt produces a
modulation of the electric field in the pupil, we have decided instead to refer to our method as the
pupil-modulated PDI (m-PDI). An introduction to the working principle of the modified m-PDI
is then followed by the mathematical formalism. The mathematical model is used to derive the
propagation of sources of error, such as photon noise, read-out noise and chromatic effect. The
linearity and the dynamic range is then tested against variations in multiple parameters.

In Section 2 we present the concept and mathematical formalism of the improved m-PDI, later
deriving from it the propagation of photon-shot noise and read-out noise in Section 3. The effects
of Strehl and of chromatic bandwidth on the visibility of fringes is later studied in Section 4.
A sensitivity analysis of the sensor’s linearity and dynamic range are carried out in Section 5.
Finally, Section 6, the sensor is tested in a simulation of a real system and the sensitivity is
presented as the exposure time required to achieve a given signal-to-noise ratio.

2. The pupil-modulated point-diffraction interferometer

2.1. Principle

The scheme of the m-PDI is given in Fig. 1. At the entrance pupil, an aberrated wavefront goes
through a small-angle beam splitter, which in this case is a grating. The beam is then split into
modes, some of which will later be interfered at the exit pupil. The central mode (i.e. mode 0)
goes through a narrow pinhole in the focal plane filter mask. This filters out higher frequencies
leaving a flat beam which will be used as the reference beam. As shown in Section 5, the size of
the pinhole and, thus, the frequencies left in the reference beam have an important effect on the
sensor’s linearity, sensitivity and dynamic range. Mode +1 goes through a larger aperture which
filters enough frequencies to avoid aliasing. This is important to produce an unambiguous test



beam, as will be explained in Section 2.2. Both beams later interfere at the exit pupil producing
fringes. The interference fringes are an image of the line-pairs in the grating, which, as it will be
shown later, are modulated by both the phase of the electric field and its amplitude.

Plane A 
Entrance pupil

Grating

Plane C 
Exit pupil

DetectorFocal plane 
filter

Plane B 
Focal plane

Pinhole

Large 
Aperture

Fig. 1. Layout of the pupil-modulated point-diffraction interferometer. The grating splits
the beam into modes. Mode 0, shown in a solid red line, goes through a point-diffraction
pinhole in the focal plane. Mode +1 goes through a larger aperture.

In Medecki’s PDI the apertures in the focal plane filter mask are swapped. Mode 0 goes
through the large aperture while mode +1 goes through the pinhole. In this configuration, since
mode +1 carries less light than the central mode and is being filtered, the reference beam has less
light than the test beam. This reduces the visibility of the fringes. Another disadvantage is the
pinhole filters light by wavelength, letting through only a narrow bandwidth. By letting mode +1
go through a larger aperture, more wavelengths can go through. This is a necessary feature in
astronomical AO because of the limited amount of light available.

2.2. Formalism

For an aberrated wavefront, the electric field

Ψ0 = Peiϕ = P0(1 − ε)eiϕ, (1)

where P is the amplitude of the electric field, P0 is its average across the pupil, ε is a zero-mean
function describing the local scintillation and ϕ is the phase. The function P is considered to be 0
outside of the telescope pupil, hence defining the telescope’s aperture shape. In this case, the
small-angle beam splitter will be considered to be a grating. The grating is located on Plane A,
as defined in Fig. 1, and is described by a square wave function GT of period T . This function
alternates between the value 0 representing an obstruction and 1 representing full transmission.
For simplicity, the function will be considered to be even, so its description in the Fourier domain
is also even and real. The wavefront after the grating is described by

ΨA = Ψ0 · GT . (2)

Just before the focal plane filter mask on Plane B, the wavefront is described by

Ψ̂A = Ψ̂0 ⊗ ĜT , (3)

where Â is the Fourier transform of a F[A] and the ⊗ symbol represents the convolution operation.
The hat notation and F will also include the Fourier optics scaling factor 1/λ f , where λ is the



wavelength and f is the lens’ focal length. With these considerations taken into account, the
Fourier transform of GT is

ĜT (k, ζ) =
1
2
δ(k, ζ) + 1

π

∞∑
m=1,2,...

1
2m − 1

[
δ

(
k − λ f (2m − 1)

T
, ζ

)
+ δ

(
k +

λ f (2m − 1)
T

, ζ

)]
,

(4)
where δ(k, ζ) is a Dirac delta function, k and ζ are Cartesian position coordinates in the focal
plane in meters and the indices m = 1, 2, ... represent the modes produced by the grating. Since
the dispersion modes produced by the grating spread parallel to the axis described by k, ζ will
not be included in further equations unless necessary.
At Plane B the wavefront is multiplied by the focal plane filter mask

M = M0 + M+1, (5)

where M0 is a circular top-hat functions equal to 1 for |(k, ζ)| < DB,0/2, M+1 is a square top-hat
function equal to 1 for |k − λ0 f /T | < DB,+1/2 ∩ |ζ | < DB,+1/2, 0 elsewhere, DB,0 and DB,+1
denote their respective diameter and side, and λ0 is the central wavelength around which the
instrument is designed. The apertures’ geometry is presented in Fig. 2. The central wavelength

Pinhole
Large 

Aperture 
M+1M0

𝜁
k

DB,0 DB,+1

DB,+1

𝜆0f / T

Fig. 2. Focal plane filter mask, in Plane B and with a square large aperture M+1.

λ0 is the wavelength that goes right through the center of the large aperture M+1. When the
instrument is fed with polychromatic light, λ0 may not be the same as λc , which is the wavelength
at the center of the light’s spectrum. Contrary to M0, M+1 can be either a circle, a rectangle or
any other shape. The square aperture configuration lets through the same spatial frequencies in
both the X and the Y direction. The axes k and ζ in the focal plane are respectively parallel to X
and Y in the pupil planes.
After the mask, the electric field is

ΨB = Ψ̂AM =
1
2
Ψ̂0(k)M0 +

1
π
Ψ̂0

(
k − λ f

T

)
M+1. (6)

When DB,0 is in the vicinity of λ f /DA or smaller, where DA is the diameter of the entrance
pupil, then the first term of Eq. (6) can be considered a point-diffraction source

ΨB,0(k) =
1
2
Ψ̂0(k)M0 ' bδ(k) (7)

of amplitude b. On the other hand, in the second term of the expression, M+1 acts as a low-pass
filter on Ψ̂0, leaving Eq. (6) as

ΨB ' ΨB,0(k) +
1
π
Ψ̂LP

(
k − λ f

T

)
, (8)



where ΨLP has been low-pass filtered by M+1.
The light is then propagated into Plane C, where the detector reads the intensity function

IC = ΨCΨ∗C = Ψ̂B

(
Ψ̂B

)∗
, (9)

where ∗ notes the complex conjugate of a function. In order to retrieve the phase of the original
wavefront a Fourier transform is applied to IC , leaving

ÎC =
�̂
ΨBΨ̂

∗
B = ΨB(k) ⊗ ΨB(−k) (10)

=

(
ΨB,0(k) +

1
π
Ψ̂LP

(
k − λ f

T

))
⊗

(
ΨB,0(−k) + 1

π
Ψ̂LP

(
−k − λ f

T

))
(11)

All the terms in Eq. (11) developed and graphically represented in Fig. 3. In the figure, the lateral

−λ0f/T 0 λ0f/T

ΨLP⊗ΨB,0

ΨLP⊗ΨLP

ΨB,0⊗ΨB,0

ΨLP⊗ΨB,0

Fig. 3. Fourier transform of the wavefront intensity in Plane C, where ΨLP is Ψ0 low-pass
filtered by mask aperture M+1 and P is the point-diffraction source produced by mask
aperture M0.

sidebands contain the frequency modulated spectrum of the original phase, convolved with the
point-diffraction source ΨB,0. As a consequence, the smaller the point-diffraction source, the
higher the fidelity between the sideband and the original wavefront. It is also important to notice
that, since ΨLP has a finite bandwidth, the bandwidth of the central signal ΨLP ⊗ ΨLP is twice
as large as the those of the lateral ones. Therefore, in order to avoid aliasing

3
2

DB,+1 <
λ0 f
T
, (12)

since the bandwidth of ΨLP is set by the aperture M+1 of diameter DB,+1 in the focal plane filter
mask. Note that this means the highest spatial frequency that can be sampled in the X direction is
defined by the period of the grating T as

kmax < 1/3T . (13)

As a comparison, the period of the grating sets the maximum spatial frequency in the X direction
in a similar way the size of subapertures do in a SH. For simplicity in this case M+1 has been
set to be a square so that kmax equals the maximum frequency in the Y direction ζmax . But in
principle, for an arbitrary size M+1 in the ζ direction, ζmax is independent of the grating’s size
and only depends on the size µp of the pixels sampling IC . In this case the relationship would be

ζmax < 1/2µp . (14)



After calculating the Fourier transform of IC , the next steps to demodulate the wavefront
are to filter out the undesirable terms multiplying by M+1, scaling by the amplitude of the
point-diffraction source ΨB,0, shifting by λ0 f /T and inverting the Fourier transform. Applying
these operations gives

F−1
[
π

b

(
ÎCM+1

)
⊗ δ

(
k +

λ0 f
T

)]
= F−1

[
π

b

(
ΨB,0 ⊗

1
π
Ψ̂LP

(
k − λ0 f

T

))
⊗ δ

(
k +

λ0 f
T

)]
= F−1

[
π

b
ΨB,0 ⊗

1
π
Ψ̂LP(k)

]
' F−1

[
Ψ̂LP(k)

]
= Ψ̃0, (15)

where Ψ̃0 is the estimate of Ψ0. Since the electric field Ψ0 was defined in Eq. (1) as a function of
amplitude and phase, it is in principle possible to retrieve both from the estimate Ψ̃0. In this case,
the estimated phase is not a function of the amplitude as it is in standard PDIs and in Zernike
sensors. Because of this, a non-homogeneous illumination of the pupil does not lead to errors in
the estimation of the phase. This algorithm of phase retrieval that consists of using the Fourier
transform of the interferogram to first retrieve the electric-field was introduced by Takeda [14].
The focus of this paper will be the estimation of the wavefront’s phase, rather than the estimation
of the amplitude.

3. Noise propagation

Introducing the simplification in Eq. (7) into Eq. (11), the intensity in the exit pupil becomes

IC = b2 +
1
π2 P2 +

2b
π

P cos
(

2π
T

x − ϕLP
)
, (16)

where ϕLP is ϕ low-pass filtered by M+1. On one hand this simplified expression will prove
useful to study the effects of Strehl and chromaticity in Section 4. On the other hand, it is the
starting point for the analytical derivation of noise propagation. The details of the derivation can
be found in Appendix A. It is emphasized that, as the main purpose of the m-PDI is to act as a
WFS, only the effects of noise on the retrieved phase are studied.

If the illumination of the pupil is considered to be homogeneous so that P(x, y) = P0, where
P0 is a constant value, and the intensity at the entrance pupil is I0 = P2

0 , the error contribution of
the read-out noise and the photon-shot noise is

σ2
R + σ

2
P =

2π2

9N2
Pb2I0

δS2
R +

2π2

9N2
Pb2I0

(
b2 +

1
π2 I0

)
, (17)

where NP is the number of pixels sampling a line-pair and δS2
R is the power of the read-out noise.

For the case of maximum fringe visibility, i.e. when b = P0/π, and for a small line-pair
sampling with NP = 4, the noise is

σ2
R + σ

2
P '

1.4
I2
0
δS2

R +
0.3
I0
. (18)

The noise propagation is flat across the spatial frequency spectrum, different to a Shack-Hartmann
WFS, and can be improved by increasing the number NP of pixels per line-pair.

Figure 4 shows a comparison between simulation results and the model described by Eq. (17).
The simulation is done with a pinhole diameter DB,0 = λ0/DA, which translates into b ' 0.22
Simulation results confirm noise propagation is flat across the frequency spectrum and show
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Fig. 4. Propagation of read-out and photon-shot noise as a function of sensor flux available
before the entrance pupil. Simulated data is presented for two sinusoidal wavefronts fed
into the WFS, with frequencies f = 1/DA and f = NG/3DA. Simulations are compared to
estimations using Eq. (17) for 3 values of b normalized by P0.

good agreement with the theory until the unraveling limit. The simplest form of wavefront
reconstruction for this sensor consists in reconstructing the electric field and then retrieving the
phase, as stated in Section 2.2. Because the phase produced by noise can not be unraveled, the
noise reaches a limit. After this limit reconstructed signals are meaningless.
For design purposes, it is interesting to study the dependency of read-out and photon-shot

noise to the reference beam’s amplitude b. Figure 5 shows the propagation of noise as a function
of the reference beam’s normalized amplitude b/P0, for a given sensor flux and as described
by Eq. (17). Since the noise decreases as b/P0 increases, there is an incentive to maximize the
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Fig. 5. Propagation of read-out and photon-shot noise as a function of normalized reference
beam amplitude, for a given sensor flux.

intensity of the reference beam by having the largest possible pinhole. But as it has already been
stated in this section, there is a pinhole size which maximizes visibility. As it will later be shown
in Section 5 a larger pinhole leads to a reduction in dynamic range and in accuracy to low-order
aberrations.



4. Visibility loss from chromatic bandwidth and a decrease in Strehl

A simple way of including the effects of Strehl into the analytical model is to consider b = b0
√

S
where b0 is the highest possible value of b produced with a flat non aberrated wavefront and S is
Strehl.
For a rectangular chromatic bandwidth ∆λ around a central wavelength λ0 and P = P0, the

intensity in the exit pupil is

IC(x, y,∆λ, λ0) =
1
∆λ

λ0+∆λ/2∫
λ0−∆λ/2

IC(x, y, λ)dλ

' Sb2
0 +

P2
0
π2 +

2
√

Sb0P0
π

sinc
(
∆λϕ0,LP

2λ0

)
cos

(
2π
T

x − ϕ0,LP

)
, (19)

where sinc(x) = sin(x)/x and ϕ0,LP is the low-pass filtered phase for λ0. The first thing to notice
about the equation is the modulation of the fringes only depends on the phase of the central
wavelength. The effects of the chromatic bandwidth are all wrapped inside the sinc function.
Combined, the effects of the Strehl and of the chromatic bandwidth are given by

V(x, y) =
√

S sinc
(
∆λϕ0,LP(x, y)

2λ0

)
, (20)

where 0 < V < 1 will be considered a proxy of visibility.
It is important to note that V depends both in general on S and locally on ϕ0,LP(x, y). In other

words, on the one hand a decrease in Strehl produces a general visibility loss across the pupil, and
on the other aberrations also introduce local visibility losses proportional to the bandwidth. But
local effects are so small they can be neglected. For example, for ∆λ = 0.2 and ϕ0,LP = 0.25 both
in units of λ0, then sinc

(
∆λϕ0,LP(x, y)/2λ0

)
= 0.996. In contrast, for a sinusoidal aberration

with an amplitude equal to the previous value, then the general term is
√

S = 0.11, which produces
a strong loss of visibility.

To test Eq. (20), a sinusoidal aberration perpendicular to the fringes is put across the input pupil
as shown in Fig. 6. This input allows the measurement the visibility V for known values of ϕ0,LP .

(a) (b)

Fig. 6. (a) Input wavefront at entrance pupil A. The sinusoidal input is perpendicular to the
grating’s line-pairs and to the resulting fringes on the exit pupil. (b) Intensity at exit pupil C

Figure 7 shows a comparison between the theoretical visibility loss in the monochromatic case
against three polychromatic simulated cases. As expected from the model, the effect of the
chromatic bandwidth is negligible when contained under 50%. The biggest mismatch between
the simulation and the analytical model is close to 15% and takes place in the low Strehl regime
around S ' 0.16, as shown in Fig. 7. This disagreement lies outside of most of the scientific cases
for this WFS.
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Fig. 7. Loss of visibility as a function of wavefront phase RMS in units of wavelength,
for a sinusoidal aberration, perpendicular to the grating’s line-pairs. Solid lines represent
simulated polychromatic cases and the dashed line represents the theoretical monochromatic
prediction. Visibility is measured in the place of maximum aberration ϕ0,LP . The vertical
line marks the largest disagreement between the theoretical model and the simulation.

5. Accuracy and dynamic range

The design of the m-PDI involves several parameters of which are here considered the number of
line-pairs or grooves in the pupil NG , the number of pixels sampling the interference fringes NP ,
the chromatic bandwidth ∆λ in units of the central wavelength λ0 and the focal plane pinhole’s
diameter DB,0. The values these parameters take will determine the accuracy, linearity and
dynamic range of the resulting WFS. Figure 8 shows how the response of the WFS concept
changes when these parameters take on different values. Results for different central wavelengths
are not presented since all plots remain the same as long as the axes are in units of λ0.
In the initial configuration, as well as in most configurations, our sensor remains linear for

twice the range of the Zernike sensor [15]. The figure shows the linearity and the dynamic range
are very insensitive to changes in the number of pixels per interference fringe NP and to the
chromatic bandwidth. As a consequence the m-PDI has a large chromatic bandwidth which
compensates for the loss of light on the grating and on the spatial filter. The sensor’s throughput,
given perfect optics, is given by

η =
b2

P2
0
+

1
π2 , (21)

which for DB,0 = λ/DA gives η = 0.15. This means that with a bandwidth of ∆λ = 50 %,
the sensor takes in as much light as another sensor with a throughput of 1 and a bandwidth
∆λ = 7.5 %

In a middle ground, changes to the number of line-pairs across the pupil NG produce a small
reduction of 16% in the response to spherical aberrations. Since the maximum spatial resolution
is proportional to NG and that both NG and NP can easily be changed without much effect on
the linearity and dynamic range, the number of pixels can be kept low, all while having a high
resolution.

Finally, the size of the pinhole is the variable with the greatest effect on the accuracy. Indeed,
in Fig. 8 panel (v-a) and for DB,0 = 2λ0/DA the response to tip (or tilt) is reduced by 50% as
most of the PSF’s core is well inside the pinhole. This is balanced by an increase in the amplitude
of the reference beam b and a subsequent decrease in photon-shot and read-out noise as shown
in Fig.5. Doubling the size of the pinhole increases b by a factor of 1.9 up to 0.41, which in
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(ii)   NG=16
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(v-a)   DB,0 = 2𝜆0 /DA
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(v-b)   DB,0 = 2.5𝜆0 /DA
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(iii)   NP=20
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(iv)   ∆𝜆=50%
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(i)   Initial configuration
𝜆0 =557nm, ∆𝜆=0%, DB,0 = 𝜆0 /DA, NG=30, NP=8

Fig. 8. Response of the m-PDI to wavefront errors for different low-order aberrations and in
different configurations. Each configuration is produced by changing one parameter from (i)
the initial configuration. The 4 parameters that are changed are: (ii) the number of line-pairs
in the pupil NG , (iii) the number of pixels sampling an interference fringe NP , (iv) the
chromatic bandwidth ∆λ in units of λ0 and (v) the focal plane pinhole’s diameter DB,0.

turn decreases noise by 42%. This configuration could be desirable in cases where the WFS
does not have to measure tip and tilt but the greatest possible value for b is required to minimize
photon-shot and read-out noise. As the pinhole’s diameter becomes greater than 2.5λ0/DA, one
by one and almost from the lowest to the highest order, the responses to different aberrations start
to decrease. This can be seen in Fig. 8 panel (v-b). Here b = 0.42, leading to a reduction of 43%
on the noise compared with the initial configuration. It is also possible to notice there is sharp
decline in accuracy to coma, abruptly restricting the dynamic range for this mode. The origin of
this phenomenon as well as its observability in the fringe pattern is to be the subject of further
study. Larger pinholes are not desirable as all the accuracy is be lost with no noise reduction. For



increasingly higher pinhole diameters, b converges to 0.45, which at most produces a decrease of
46% with respect to the initial configuration.

The effects of spatial filtering on the WFS’s accuracy to different spatial modes are better
explored in Fig. 9. The figure shows the transfer function relative to spatial frequency for different
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(ii)   DB,0 =𝜆0 /DA, Tilt=0.5𝜆0 /DA (v)   DB,0 = 2.5𝜆0 /DA, Tilt=0.5𝜆0 /DA

(vi)   DB,0 = 2.5𝜆0 /DA, Tilt=𝜆0 /DA(iii)   DB,0 =𝜆0 /DA, Tilt=𝜆0 /DA

(iv)   DB,0 = 2.5𝜆0 /DA, Tilt=0
(i)   Initial configuration

DB,0 = 𝜆0 /DA, Tilt=0, NG=30, 𝜆0 =557nm

Fig. 9. Transfer function with respect to spatial frequency for different aberration amplitude
and in different configurations. Columns have different pinhole sizes and rows have different
preexisting tilts.

pinhole sizes and different pre-existent tilts. Tilts can be caused by pointing errors or other
sources of misalignments. The transfer function spans all the spatial frequencies that can be
measured with NG = 30, as described by Eq. (13). As can be observed in all the panels, the
transfer functions suffers from a sharp decline as it approaches the maximum frequency kmax . It
is also important to notice that the maximum sensitivity to low order aberrations is given by the
shape of the pupil. In this case, a circular pupil has a poor transfer function for frequencies with a
spatial scale in the vicinity of its diameter.



The first thing to notice is the difference between the left panels, which all have a small pinhole
size DB,0 = λ0/DA, and the right panels, with a larger pinhole size DB,0 = 2.5λ0/DA. With a
bigger pinhole size the WFS looses sensitivity to small aberrations. This happens because all
aberrations that are not filtered by the pinhole are present in the test beam and therefore become
invisible to the sensor.
The disadvantage of a small pinhole though are aberrations can more easily drain it of the

light necessary to produce the test beam. Figure 9 shows, from top to bottom, how the transfer
function changes with an increasingly larger preexisting tilt. At first, the effects go unnoticed, but
in panel (iii) there is clear loss of dynamic range. This doesn’t happen in the panel to the right,
panel (vi), where the same tilt is applied but the pinhole is larger. The advantage of the larger
pinhole is to keep more light into the reference beam despite aberrations.
Finally, the transfer function acts as a good indicator of the shape of the signal-to-noise

ratio (SNR) as a function of spatial frequency. This is the case since, as Fig. 4 shows, noise is
flat across the spectrum. The sensitivity of the m-PDI in terms of SNR is better discussed in the
following section.

6. Application to a real system

Here, the application of the sensor to a real system is considered. The sensor will get a 5%
share of light from a beam-splitter, so other operations can be performed in parallel (like science
observations). It is worth noticing the sensor could also be fed the entirety of an unused chromatic
band by a dichroic. This alternative is not presented here. The system will be similar to other
XAO systems that have been developed [16, 17], but with a lower read-out noise to consider
newer detector technology. These systems are optimized to work around λ = 1.6 µm. In the case
of GPI, for its first light the system was able to close the AO loop for stars I < 8 mag, but was
expected to operate down to I ' 10 mag under better seeing conditions [18]. Table 1 shows the
parameters of the simulation.

Table 1. Parameters used for simulating the exposure time.
Parameters Values
Central wavelength λ0 1.625 µm
Bandwidth ∆λ 20%, 50%
Zero mag. flux density 1080 Jy
Apparent star magnitude 10
Telescope diameter 8m
Telescope transmission Ttel 40%
Beamsplitter transmission TBS 5%
Line-pairs across pupil NG 60, 185
Pixels per line-pair NP 4
Read-out noise 1 e−

Figure 10 shows the sensor’s sensitivity to the order and amplitude of aberrations, represented
as the exposure time needed to achieve SNR = 1. The simulation is performed for two different
bandwidths, ∆λ = 20 % and ∆λ = 50 %. In the results, the exposure time is inversely proportional
to the chromatic bandwidth. This expands upon previous results showing the sensor’s achromaticity
for all orders.

As mentioned, the transfer function shapes the curves of exposure time. The exposure time is
also inversely proportional to the transfer function. This means higher amplitude aberrations will
present curves that are less flat around the center than lower amplitude ones.
The simulation was also performed for a low-order case with NG = 60, and a high-order
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Fig. 10. Exposure time required to achieve SNR = 1 as a function of aberration spatial scale.
(left) NG = 60, (right) NG = 180. The exposure time is presented for different amplitudes
of aberration and for different chromatic bandwidths. The parameters of the simulation can
be found in Table 1.

case, with NG = 185. In the low-order case, the exposure times required are in the order of
milliseconds and tens of milliseconds, meaning the sensor can operate at frequencies of up to
hundreds of Hz. This is not fast enough to act as the main sensor of an XAO loop operating
at frequencies that exceed 1 kHz, but would be enough for real-time quasi-static aberrations
measurements. In the high-order case the sensor operate at frequencies of a few Hz. This is still
enough to measure quasi-static aberrations down to the deformable mirror’s scale, with actuators
with a 13 cm separation.

7. Conclusions

The principle for a m-PDI has been presented. Later an analytical model was developed. The
model allows for electric field reconstruction, i.e. to retrieve both the phase and the amplitude
of an incoming electric field. The propagation of photon-shot noise and detector read-out were
derived. The model was also extended to quantify chromatic effects and the influence of Strehl
on the visibility of fringes. Both sets of predictions, on the propagation of noise and on the loss
of visibility were tested against simulations built on first principles. The analytical models show
good agreement with the simulations, showing the WFS is well understood.

An important result shows this interferometer has a wide chromatic bandwidth. Not only is the
visibility of fringes unaffected by a wider bandwidth, but neither is the accuracy of the WFS
to low nor high order aberrations. When ∆λ = 50% the high accuracy of the monochromatic
case is conserved. A wide chromatic bandwidth allows to compensate the loss of light at the
grating and at the spatial filter. The trade-off of a wider chromatic bandwidth is a reduced range
of measurable aberrations.
The WFS model is also shown to be sensitive to the size of the pinhole. While doubling the

pinhole’s diameter from λ0/DA to 2λ0/DA reduces the sensitivity to tip and tilt by 50%, it also
decreases photon-shot and read-out noise by 42%. Increasing the size of the pinhole beyond this
point is ill-advised as the noise can only decrease a further 4% while loosing all the sensitivity to
low-order aberrations.



Finally, the exposure times required are in the order of milliseconds in a low-order case,
meaning in this system the sensor can operate at frequencies of up to hundreds of Hz. This is not
fast enough to act as the main sensor of an XAO loop operating at frequencies that exceed 1 kHz,
but would be enough for real-time quasi-static aberrations measurements.
The exposure time required to achieve a given SNR was shown to be mostly flat across

the spatial spectrum. This time is inversely proportional to the chromatic bandwidth and the
aberration’s amplitude, and is in the order of milliseconds for low-order aberrations, and tenths of
a second for high-order aberrations. Such timescales are reasonable for the real-time measurement
of quasi-static aberrations.

Appendix A: Analytical derivation for the propagation of photon-shot and read-
out noise

As presented in Section 3, the intensity in the exit pupil can be described as

IC = b2 +
1
π2 P2 +

2b
π

P cos
(

2π
T

x − ϕLP
)
, (22)

where ϕLP is ϕ low-pass filtered by M+1. For a small ϕLP the expression can be approximated as

IC = b2 +
1
π2 P2 +

2b
π

P cos
(

2π
T

x
)
+

2b
π

P sin
(

2π
T

x
)
ϕLP . (23)

Back in the Fourier domain and considering P ' P0, the demodulated phase is

ϕ̂LP =
π

2bP0

(
ÎC ⊗

[
−iδ

(
k − λ0 f

T

)
+ iδ

(
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λ0 f
T
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(
k +

λ0 f
T

)
, (24)

where the mask M+1 has been centered around the origin.
When white noise nw of mean value n̄w = 0 and power δS2

w is added to the detected signal IC
and put through the demodulation the result is

π

2bP0
i
(
−n̂w

(
k − λ0 f

T

)
+ n̂w

(
k +

λ0 f
T

))
M+1

(
k +

λ0 f
T

)
, (25)

where n̂w
(
k − λ0 f

T

)
and n̂w

(
k + λ0 f

T

)
are uncorrelated. This means the sum of both results in a

white noise nw′ where δS2
w′ = 2δS2

w . The resulting noise is then filtered by M+1. Using Parseval’s
theorem the power of the filtered noise can be computed as

δS2
w′ =

〈 λ0 f /2µp∫
−λ0 f /2µp

λ0 f /2µp∫
−λ0 f /2µp

|n̂w′ |2 dkdζ

〉
=

λ0 f /2µp∫
−λ0 f /2µp

λ0 f /2µp∫
−λ0 f /2µp

〈|n̂w′ |2〉dkdζ, (26)

For a square filter
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)
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)
, (27)

the power of the filtered noise is
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Let the number of pixels sampling one line-pair of period T be NP = T/µp, then the noise’s
variance induced by white noise is

σ2
w =

(
π

2bP0

)2
δS2

w′,M+1
=

(
π

2bP0

)2 4
9N2

P

δS2
w′ =

2π2

9N2
Pb2P2

0
δS2

w . (29)

This equation can be directly applied to read-out noise nR. With respect to photon-shot noise
nP it is important first to notice the noise between two pixels is uncorrelated. Formally, this is

Cov(nP(x), nP(x + ξ)) =
{

IC(x), ξ = 0
0, ∀ξ , 0

(30)

where Cov() is the covariance between to functions and ξ is the distance between any pair of
pixels of coordinates x and x + ξ. For such a correlation the power spectral density is flat and
equal to the average power of the noise

δS2
P =

1
NGT

NGT∫
0

ICdx, (31)

where NG is the number of line-pairs in the pupil. If the average phase ϕ̄ = 0 across the pupil,
then the above can be approximated to

δS2
P = b2 +

1
π2 P2

0 . (32)

Then, if the intensity at the entrance pupil is I0 = P2
0 , the error contribution of the read-out noise

and the photon-shot noise is

σ2
R + σ

2
P =

2π2

9N2
Pb2I0

δS2
R +

2π2

9N2
Pb2I0

(
b2 +

1
π2 I0

)
. (33)
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