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Abstract

A galaxy cluster acts as a cosmic telescope over background galaxies but also as a cosmic microscope magnifying
the imperfections of the lens. The diverging magnification of lensing caustics enhances the microlensing effect of
substructure present within the lensing mass. Fine-scale structure can be accessed as a moving background source
brightens and disappears when crossing these caustics. The recent discovery of a distant lensed star near the
Einstein radius of the galaxy cluster MACSJ1149.5+2223 allows a rare opportunity to reach subsolar-mass
microlensing through a supercritical column of cluster matter. Here we compare these observations with high-
resolution ray-tracing simulations that include stellar microlensing set by the observed intracluster starlight and
also primordial black holes that may be responsible for the recently observed LIGO events. We explore different
scenarios with microlenses from the intracluster medium and black holes, including primordial ones, and examine
strategies to exploit these unique alignments. We find that the best constraints on the fraction of compact dark
matter (DM) in the small-mass regime can be obtained in regions of the cluster where the intracluster medium plays
a negligible role. This new lensing phenomenon should be widespread and can be detected within modest-redshift
lensed galaxies so that the luminosity distance is not prohibitive for detecting individual magnified stars. High-
cadence Hubble Space Telescope monitoring of several such optimal arcs will be rewarded by an unprecedented
mass spectrum of compact objects that can contribute to uncovering the nature of DM.

Key words: dark matter – Galaxies – galaxies: clusters: intracluster medium – gravitational lensing: micro – stars:
black holes

Supporting material: animations

1. Introduction

(Kelly et al. 2018, hereafter K18) present the first observations
of a single high-redshift star in a background, lensed spiral galaxy
at redshift z=1.49 (Smith et al. 2009; Zitrin & Broadhurst 2009)
being magnified by a factor of several thousand by a galaxy
cluster MACSJ1149.5+2223 (hereafter MACS1149) at z=
0.544 (Ebeling et al. 2007).

This event was discovered serendipitously while monitoring a
lensed supernova (SN) behind the cluster (SN Refsdal; Kelly et al.
2015, 2016; Rodney et al. 2016). The light curve of the star shows
at least one prominent peak in the spring of 2016 that lasted
∼2 months. A first event, named Icarus or LS1/Lev2016A

by K18, produced a peak in the light curve that lasted several
weeks; after the peak, the flux returned to its original value. This
event is interpreted as a crossing of a bright background star
through a microcaustic produced by one of the stars (or star
remnant) in the intracluster medium. At a position separated by
0 26 from this initial peak, a second peak (named Iapyx, or LS1/
Lev 2016B by K18) appeared between 1 and 2 months after the
first event faded, and lasted less than 3 months. No object was
observed at this second position in the previous 10years or in the
months after it vanished. This second event is also interpreted as a
microlensing event of the same background star (and a different
microlens in the intracluster medium). However, in this case one
possible interpretation is that the low-magnification region around
a microlens was hiding the background star for >10 years with
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occasional brief periods of high magnification (see K18 for other
possible interpretations, including binary stars). A potential third
event discussed by K18, Perdix or Ls1/Lev2017A, is found 0 1
away from the second event. If confirmed, this third event could
be produced by the same network of microcaustics, but possibly
involving a different background star.

As discussed by K18, the picture described above is consistent
with the expected behavior of a background star traveling at
typical relative velocities of ∼1000 km s−1 and a lens plane
populated with a density of stars that is compatible with the
observed intracluster light (ICL) at the position of the two
events. Microlensing events are expected to be produced by the
stars responsible for the ICL (and their remnants). As shown in
earlier work, the light curve of an object being lensed by a field
of microlenses may contain high- and low-magnification
periods. This behavior has been predicted in previous papers
(see, for instance, Chang & Refsdal 1984; Kayser et al. 1986;
Paczyński 1986). In particular, Chang & Refsdal (1979, 1984)
were the first (to our knowledge) to recognize that counterimages
may have very low fluxes (disappearing below the detection
limit of a given instrument) for some periods of time, in
agreement with the observed behavior of the Iapyx event
(counterimage of the Icarus event of K18).

A massive galaxy cluster acts as a cosmic telescope that
enlarges the images of background galaxies. However, near a
critical curve (CC), small changes in the deflection field result in
large changes in the magnification. These small changes in the
deflection field can be produced by small masses in the range of
a stellar mass or below. In this situation, as we will show, the
galaxy cluster may act also as a cosmic microscope since it
effectively enlarges any imperfection in the deflection field near
the CC caused by microlenses. Microlensing near a cluster CC
has the interesting feature that the individual micro-CCs around
the microlens (and corresponding microcaustics) get enlarged by
a factor that is larger the closer they are to the main CC (see the
discussion of this effect in Section 2). This allows, in principle,
probing small-mass microlenses as we approach the cluster CC.

Earlier work has explored the behavior of counterimages
during caustic-crossing events in smooth potentials (from
galaxies to clusters). Miralda-Escude (1991) considers, as in this
work, the case of a single star crossing a caustic from a smooth
lens model. He estimates the maximum magnitude of a lensed
background star at the time of caustic crossing, as well as the rate
of events based on the surface brightness of a background galaxy
(this case is also discussed by Chang & Refsdal 1979, 1984 and
Schneider & Weiss 1986). The combined effect of overlapping
caustics from an ensemble of microlenses embedded in a stronger
gravitational field has been also studied in detail (Gott 1981;
Young 1981; Chang & Refsdal 1984; Kayser et al. 1986;
Paczyński 1986), in particular in the context of quasar (hereafter
QSO) microlensing (Chang & Refsdal 1979; Irwin et al. 1989;
Witt et al. 1995; Metcalf & Madau 2001). Kayser et al. (1986)
and Paczyński (1986) show how a large number of microlenses
embedded in a deep potential can redistribute the magnification,
producing complex light curves of a background source. For
certain configurations (see, e.g., Figures 9 and 10 of Kayser
et al. 1986), the magnification splits into compact regions of large
and low magnification. As shown in these papers, a source
traveling across this field may disappear suddenly when entering
one of the low-magnification regions, only to reappear at some
time later as a bright source.

This type of behavior resembles the observed flux in the
Icarus and Iapyx events. However, when the microlenses are
very close to the CC (a fraction of an arcsecond), the
magnification pattern exhibits features that have not yet been
studied in detail. Paczyński (1986) investigated the general case
of high optical depth of microlenses embedded in a galaxy or
cluster potential, but he ignored the effect of shear and focuses
on areas in the lens plane that are not close to the main CC.
Kayser et al. (1986) included the shear term from the large
deflector (cluster or galaxy) in their calculations, but again did
not study the particular case of short distances to the main CC.
As noted by Paczyński (1986), this regime is computationally
very expensive (owing to the very large magnifications
involved that require the mapping of a small field in the
source plane into a very large field in the image plane), and
could not be studied in detail in those early papers.
Some authors have focused their attention on the high-

magnification regime (see Wambsganss 1990; Schechter &
Wambsganss 2002, and references therein) in the context of
QSO microlensing, but these high magnifications are still
modest (a few tens at most) compared with the more extreme
values (several hundred to several thousand) considered in this
paper and do not reveal some of the properties of the lensed
images that are accentuated with extreme magnification (see
Section 3.2). The smaller magnifications found in QSO
microlensing are partially due to the larger intrinsic size of
the background source. As we will show later, the maximum
magnification attained by a background source scales as the
inverse of the square root of its radius. For QSOs, the radius is
related to the half-light radius of the accretion disk. These disks
are typically of the order of 10 light days, when observed in the
optical, and about an order of magnitude smaller when
observed in X-rays (Chartas et al. 2009; Dai et al. 2010;
Jiménez-Vicente et al. 2012) for typical supermassive black
holes. This radius is known to scale with the mass of the black
hole (Morgan et al. 2010; Jiménez-Vicente et al. 2015). When
compared with the radius of a giant luminous star, the accretion
disks around QSOs are approximately a factor 103–104 times
larger. Consequently, the maximum magnification attained by a
lensed giant star can be up to two orders of magnitude larger
than the corresponding one for QSOs. This is an important
advantage that comes with the added bonus that the smaller
stellar radii translate into shorter-lived events which are easier
to monitor (days as opposed to years). Although QSO
microlensing is not directly comparable to the work presented
in this paper, there are many similarities. Earlier papers
focusing on the interpretation of QSO microlensing contain
useful insights that are applicable to this work when
the magnifications are significantly higher. Schechter &
Wambsganss (2002) present interesting similarities with some
of the results given here, in particular when discussing the
statistics of the magnification around microminima and
microsaddle points.
In this paper, we explore for the first time the regime of very

short distances to the main CC (or, equivalently, very high
magnification), motivated by the observation of the two (or
possibly three) intriguing events discussed by K18.21

In the case of a galaxy cluster, its larger size translates into a
greater magnification of a background object. Also, if a

21 The reader will find also very interesting two recent publications that
appeared after this manuscript was originally submitted and that are very
closely related to this work (Venumadhav et al. 2017; Oguri et al. 2018).
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significant fraction of dark matter (DM) is made of compact
objects like primordial black holes (PBHs), galaxy clusters are
ideal to study microlensing by these objects since it is possible
to find CCs (with high optical depth for microlensing)
relatively far away from member galaxies and reduce the
impact of stars (or remnants) in these galaxies that could
produce similar microlensing events. The case of PBHs is
interesting since they are (still) a valid candidate for DM (or at
least a fraction of it) in some mass regimes (see, for instance,
Carr et al. 2010, 2016a; Clesse & García-Bellido 2015). The
fraction of DM that can be in the form of PBHs has been
constrained for different PBH masses. The possibility that
PBHs constitute a sizable fraction of the DM is interesting and
has been studied extensively, although PBHs are excluded as
the primary component of DM in virtually all mass ranges. Bird
et al. (2016) proposed that at around 30Me there is still a range
of masses that have not been convincingly ruled out (see also
Sasaki et al. 2016; Clesse & García-Bellido 2017, for a related
result). Interestingly, if a significant fraction of DM is in the
form of PBHs withM≈30Me, events like the collision of two
black holes with these masses would be more common,
facilitating the interpretation of the first LIGO detection
(Abbott et al. 2016). This interpretation, however, is not
supported by the second LIGO event with significantly smaller
masses. On the other hand, more recently a new LIGO event as
well as a LIGO/Virgo event imply detections of massive pairs
of BHs (MBH≈ 20–30Me), implying a higher than expected
abundance of BHs with MBH≈30Me) (Abbott et al. 2017;
The LIGO Scientific Collaboration et al. 2017).

Analyses of multiply imaged QSOs have found that the
observed microlensing signal is incompatible with the hypothesis
that ∼30Me PBHs make up most of the DM (see Mediavilla
et al. 2017, and references therein). The same work concludes
that the fraction of mass in the form of microlenses can still be as
high as 20% of the total mass, but with the most likely mass of
microlenses being below 1Me. If confirmed, this key work
leaves little room for the hypothesis that PBH with ∼30Me can
make a significant fraction of the DM (∼10%) unless extended
mass functions (instead of the monochromatic or bimodal models
considered by Mediavilla et al. 2017) can have a significant
impact on the results, or the size of accretion disks around QSOs
are an order of magnitude larger than what has been considered
so far (the latter point being an important source of uncertainty in
this and other work). Moreover, we should note that in
Mediavilla et al. (2017), the limit of high optical depth (for
microlensing) does not seem to be explored and, as we will show
later, in this regime the fluctuations in flux are smaller owing to
the constant presence of multiple overlapping microcaustics that
tend to average out the observed integrated flux. It would not be
surprising to have constraints from QSO microlensing that differ
from (or even contradict) those derived from microlensing of
background stars (this work). If one finds that tensions between
these regimes exist, some of the assumptions made in each
regime will have to be reviewed. Constraints from microlensing
in our local environment (the Magellanic Clouds) are weaker, and
recent work has shown that uncertainties in these constraints can
be as high as one order of magnitude (Green 2017).

Carr et al. (2017) review the constraints for PBHs using more
realistic extended mass functions and conclude that one could
allow for as much as 10% of the DM in the form of PBHs in the
mass range MBH≈ 25–100Me (although this work does not
include the results of Mediavilla et al. 2017). This limit of 10%

will be adopted in this paper as an upper limit for the fraction of
PBHs in this mass range. At smaller masses, constraints on the
fraction of PBHs allow for a modest fraction of DM below
M≈ 1Me (see, however, Inomata et al. 2017; Kühnel & Freese
2017, for the mass range MBH≈ 10−10

–10−8Me). These
constraints tighten at very low masses. A lower limit for the
PBHs ofM≈ 1011 kg can already be established from theoretical
grounds and observations of γ-rays (see, e.g., Kim et al. 1999).
Below this mass, no PBHs are expected to exist as they should
have evaporated by now (down to the Planck mass). This limit
can be increased a little from detailed observations of the γ-ray
background, since sufficient PBHs with masses near the above
limit would be a strong source of γ-rays in our vicinity, which is
not observed. Continuous monitoring of background galaxies
intersecting a cluster CC provides an excellent data set for
constraining the abundances of PBHs based on their lensing
signature. Combining these data with models of the full stellar
population in the lensing plane can address many of the
systematic biases inherent in past measurements.
In this paper, we explore a different technique to constrain the

fraction of compact DM, paying particular attention to the mass
range relevant for the three most significant LIGO events. We
show how microlensing events by relatively small masses can
take place thousands of years before (or thousands of years after)
a bright star in the background galaxy crosses the position of a
cluster’s main CC. Hence, the probability of observing a
microcaustic crossing event is considerably increased when
compared with earlier work that only considered the crossing of
the main cluster caustic. As mentioned earlier, as the background
star approaches the main cluster CC, the sensitivity to detect
progressively smaller microlenses grows, offering a unique
opportunity to probe masses that could not be tested otherwise.
This provides an exciting opportunity to set limits on the fraction
of DM in the form of compact objects in low-mass regimes that
are difficult to study otherwise.
This paper is organized as follows. In Section 2 we describe

the basic properties of the magnification near a CC. Section 3
presents results based on numerical simulations with a focus on
the structure of caustics in the source plane. In Section 4 we
explore in detail the disruption of the CC in the image plane
when microlenses populate the lens plane. We predict in
Section 5 the behavior of the observed flux (light curve) of a
background star traveling through a field of microcaustics. In
Section 6, we predict how events like Icarus will disappear
(or first appear) once the last (or first) microcaustic is crossed.
Section 7 considers the prospects for constraining compact DM
with this type of observation. Some of our results are discussed
in Section 8, and we conclude in Section 9.
This paper is very much related to K18. While it presents the

theoretical (lensing) and numerical (simulations) background
of K18, the reader is directed to that paper for a detailed
discussion of the particular Icarus and Iapyx events, including
their interpretation. In this paper we refer to the Icarus and
Iapyx events when appropriate or relevant for the discussion.
Throughout the paper we assume a cosmological model with
ΩM= 0.3, ΩΛ= 0.7, and H0= 70 km s−1 Mpc−1. For this
model, 1″= 6.45 kpc at the distance of the cluster MACS1149
(z= 0.544) and 1″= 8.4 kpc at the distance of the background
source (z= 1.49).
Besides CC, several terms will be used often in this paper.

We refer to the CCs and caustics around microlenses as micro-
CCs and microcaustics, respectively. The cluster CC and
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caustic that would form if there were no microlenses are the
main CC and main caustic, respectively. Macro-images are the
counterimages that would have formed if there were no
microlenses and the lensing potential were sourced only by the
cluster. A macro-image in a region filled with microlenses
usually breaks up into smaller portions that we refer to as
micro-images and also as bits. Then, around a CC we expect to
find two macro-images, each composed of several smaller
micro-images or bits. When the optical depth of microlenses is
relatively small (S S < 0.01microlens crit ) and the macro-images
form very close to the main CC, the resulting group of micro-
images is usually stretched along a straight line, following the
direction of the cluster deflection field. Because of this
geometry, we refer to this group of micro-images as a train
of micro-images, or simply as a train. At low optical depth of
microlenses, a background source will form typically two trains
(or macro-images), one on each side of the CC. At higher
optical depth, a single background source can form more than
two trains, and each train can contain multiple smaller micro-
images. In this sense, we can think of Icarus and Iapyx as
unresolved macro-images which consist of even smaller bits or
micro-images. The surface mass density of microlenses, Σ, is
used in two contexts. In its broader sense we simply use Σ.
When Σ takes the value of 7Me pc−2 (as found by K18 at the
position of Icarus/Iapyx.22), we refer to it as Σo. Sometimes we
express Σ in units of Σo and use f=Σ/Σo. Toward the end of
this work we use another variable, F, that should not be
confused with f. We use F to refer to the fraction of the total
mass that is in the form of compact objects (whether this is
made of stars from the ICL, PBHs, or both). By construction,
F is always smaller than 1 while f can be larger than 1.

2. Lensing Properties near a Critical Region

A gravitational lens is characterized by the lens equation

b q a q= - ( ) ( )M, , 1

where β is the position of the background source, θ is the
observed position in the sky of the lensed image, and α(M, θ) is
the deflection angle produced by the lens with mass M. The
dependence of α(M, θ) on the position θ results in Equation (1)
being nonlinear. Consequently, for a given position β, it is
sometimes possible to find multiple solutions to Equation (1)
with each solution representing a different counterimage. Each
counterimage is magnified by a factor μ. Since lensing
preserves the surface brightness of the background source, μ
can be defined as the ratio between the observed size (i.e., area)
of the counterimage, dΩθ, and the intrinsic size of the
background source, dΩβ. For a given lens model the deflection
field α(M, θ) is known, and the magnification can be computed
in a given position from the derivatives of the deflection field.
The inverse of the magnification is defined as

m k g k g k g= = - - - + = - -- ( )( ) ( )
( )

a a 1 1 1 ,
2

1
1 2

2 2

where κ and γ are the convergence and shear (respectively),
and are combinations of the derivatives of the deflection field.
We introduce the inverse of the magnifications, a1 and a2, that

will be used later in this work. At a tangential CC, a1= 0. On
each side of the CC, a1 takes positive and negative values
(parity). The sign of a1 gives the parity of the image, so images
with negative parity have a1< 0 and images with positive
parity have a1> 0.23

Counterimages that form near a CC can be magnified by
very large factors. At the CC, the magnification diverges and
dβ/dθ= 0. We can take advantage of this property to Taylor
expand the lens equation around the CC,

b b
b
q

q q
b
q

q q= + - + - +( ) ( ) ( )d

d

d

d

1

2
.... 3o o o

2

2
2

We choose βo and θo as the origins of the reference systems in
the source and image plane, respectively, and redefine β=
β− βo and θ= θ− θo. The second term cancels out at the
position of the CC, leaving to second order

b q= Q ( ), 42

where we have defined the constant b qQ =- ( )d d1 21 2 2. At
the position of the CC (θ= 0) we satisfy the condition μ−1= 0,
and to first order m b q q= µ- d d1 . Hence, in the image plane
we obtain for the total magnification (i.e., the magnification of
the two images on each side of the CC)

m
m
q

= ( )5o

near the CC, where μo is a constant that depends on the lens
mass and geometry. This condition is satisfied for most lenses
up to θ≈ 1″ (see Figure 1). The asymptotic behavior when
θ?0 is μ= 1 in the external side of the CC (a1> 0) and
μ= 0 at the position of the lens for a point-source lens.
The magnification in Equation (5) is expressed in the image

plane. In terms of the position in the source plane, we can use
Equation (4) to obtain

m
m

b
=

Q
( ). 6o

The maximum magnification is obtained when the source
touches the caustic—that is, when the distance from the center
of the source to the caustic equals the radius of the source, R.
Then we obtain

m
m

=
Q

( )
R2

. 7o
max

Equations (4)–(6) are very useful for characterizing the
properties of the counterimages near a CC. The values of μo
and Θ can be obtained for a given lens and at a given position
after fitting several positions near the CC. For a cluster like
MACS1149 at the position of the Icarus event (and a
background source at z= 1.49), μo≈ 150″ and Θ≈ 68″ for
the model of D16. These values may change by as much as a
factor of ∼2 for alternative models that still predict the CC in
the correct position depending on the slope of the potential at
the position of the CC, but we will adopt them below as
realistic examples (see Section 8.1). For these values of μo and
Θ, if the background star is a giant star with radius R= 100 Re,
the maximum magnification can be as high as μmax≈ 106 at the

22 Although this value was recently updated by K18 to ∼12–19 Me pc−2

which we also use in parts of this work.

23 In Appendix A, the distinction between a1 > 0 and a1 < 0 becomes more
evident.
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CC near the Icarus position. If a background source is moving
in the source plane with a constant velocity b=v d dtp in a
direction perpendicular to the caustic, the apparent observed
velocity of the counterimages in the image plane is

q
m

m= =
Q ( )v

d

dt
v

2
, 8

o
pobs

where we have used Equation (4) to relate θ with β and
replaced θ with μ using Equation (5) after doing the derivative.
Hence, at total magnifications μ 1000, the counterimages
would appear to move at superluminal speeds (for this
particular configuration). This has an interesting implication,
since counterimages that move with larger apparent velocities
can cover a larger region in the lens plane, probing more
substructure as the source moves across the lens plane.
Conversely, this can be seen as the microcaustics being more
cramped in the source plane as we approach the main caustic.

If DM is clumped (like in some wave DM models), or if a
significant fraction of it is made of compact objects such as
PBHs, the probability that in a fixed period of time a given
counterimage passes behind a clump of DM or a PBH will be
higher near a CC, where counterimages probe the lens plane at a
faster rate. The most interesting scenario to constrain the fraction
of DM in compact objects is near tangential CCs. Radial CCs are
normally close to the center of the cluster, where the ICL or the
stars from the brightest cluster galaxy (BCG) can overwhelm the
possible signature from compact DM.

In this work, we will focus on the case of tangential CCs,
where the exploitation of crossing events may be most fruitful
(see, however, M. Chen et al. 2018, in preparation, where a
microlensing event near a radial CC in the same cluster,
MACS1149, is used to unveil a supermassive BH ∼10 kpc from
the center of the BCG).

Tangential CCs form when 1− κ− γ= 0 (while k- +∣1
g >∣ 0). If the lens plane is populated by small microlenses, they
will contribute to the convergence (or surface mass density) with a
small factor *k q ¯ ( ) 1, where *k q¯ ( ) is the mean surface density
of a point-like star with mass M within a radius θ; that is,

*k q pqS =¯ ( ) ( )Mcrit
2 . Near the CC, the condition for diverging

magnification becomes *k g m k q- - = =- ¯ ( )1 t
1 , where m =

m m = -( )a at r 1 2
1. Hence, we can conclude that

q
m

p
=

S
( )

M
. 9t

E
crit

The above result has profound implications. A microlens at a
position near a CC, where the magnification is μt≈ 1000, will
behave (to first order) like an isolated microlens, but will be a
thousand times more massive (see Figure 2). As shown in
Section 8.2, in the last moments before a star crosses the cluster
caustic, the magnification can become of order 106, allowing
the detection of substructures with masses comparable to a
Jupiter mass (see also Equation (23) in Paczyński 1986, where
an expression similar to Equation (9) is introduced as the
dimensionless radius).
Despite being based on some approximations, like neglect-

ing higher-order terms, the expressions above seem to match
remarkably well the results derived from detailed numerical
calculations. Figure 3 shows the change in effective radius
(defined as the perimeter divided by 2π) for a microlens that is
isolated (no external field; bottom curve) and for a microlens
that is embedded in a lensing potential with m » 100t (top
curves). All curves grow with radius as M , but in the case of
the microlens in a lensing potential, the amplitude is increased
by a factor m~ t as predicted by Equation (9).
The magnification around a microlens in a field with external

shear and convergence has previously been studied in detail
(see, e.g., Schechter & Wambsganss 2002). In Appendix A, we
present a brief and simplified description of a single microlens
in an external field at high magnification.

3. Numerical Results

The results presented in the previous section (see also
Appendix A) give us useful insights into the behavior of the
magnification around a microlens near a CC. However, in most
realistic scenarios the CC region will be populated by a number
of microlenses having, in general, different masses. In order to
explore this more realistic regime, we resort to numerical
simulations where the magnification is computed from simulated
data.24

Figure 1. Magnification along a direction perpendicular to the CC at the
position of the Icarus event. The dashed line corresponds to the model of Diego
et al. (2016, hereafter D16). The dotted line is an analytical model following
Equation (5). The left side of the curve corresponds to the inner part of the CC
(or negative parity, a1 < 0; see the text) where the magnification falls faster
than the simple analytical model. The right side of the curve is for the region
where the parity is positive, a1>0.

Figure 2. Left panel: magnification for a source at z=1.49 around a star with
M=1000 Me at z=0.55. The Einstein ring can be clearly seen as a circle.
Middle and right panels: magnification (for a source at z = 1.49) caused by two
stars with much smaller masses (M = 10Me) at z=0.55, but that are close to
a CC of a galaxy cluster also at z=0.55. The main CC (not shown) runs
perpendicular to the gray band. The middle panel is for the side of the CC
where a1<0 and the right panel for the side where a1>0. The circular
configuration of the Einstein ring transforms into a figure-eight pattern.

24 The reader can find movies based on these simulations showing the
formation and destruction of micro-images as a function of time (movies 1
through 4) at this site: https://cosmicspectator.org/2017/06/30/dark-matter-
under-the-microscope/ and also in Appendix B.
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We will assume the background source is a luminous giant
star, which have radii ranging between ∼100 and ∼1000 Re.
We adopt the value Rstar= 1000 Re. The results presented in
this paper are virtually the same for smaller stars, except for the
maximum magnification reached when a microcaustic is being
crossed (after the star touches a given microcaustic). In this
case, the maximum peak magnification would grow by a factor

R1000 star (see Equation (6)) if the microlens is at
sufficiently large distances from nearby microlenses. The
deflection field in the simulations contains a smooth component
from the large-scale cluster potential and small-scale fluctua-
tions from the microlenses. Normally, extremely luminous
(background) stars can be found in star-forming regions where
the density of stars may be relatively high. In this work
we ignore the effect of neighboring stars and consider only the
effect over one of those stars. If several background stars were
moving on the web of caustics, each star would produce a
series of peaks as they cross microcaustics. In realistic
scenarios, only the brightest stars will produce peaks that can
be measured, with the remaining stars contributing to a
stochastic background of small fluctuations in the light curve.
For instance, K18 argue that in order to explain the Icarus
event, the background star needs to be extremely luminous and
hence very rare.

For the smooth-scale potential we assume a realistic lens
model, in particular the lens model of D16 for the cluster
MACS1149 in the region of the Icarus and Iapyx events;
see K18, where the same model was also used to interpret the
observations. The model produces a CC (for a background
source at z= 1.55) that falls in between the positions of Icarus
and Iapyx. Following K18, in this work we assume that the CC
is exactly between Icarus and Iapyx as predicted by various
models (Richard et al. 2014; Oguri 2015; D16; Kawamata et al.
2016). However, the reader should note that other interpreta-
tions are also possible where, for instance, the CC is closer to
Icarus than to Iapyx, in which case the two events would be
produced by two different background stars (see K18 for a
more detailed discussion of this and other alternative
interpretations). The hypothesis that there are multiple bright
stars in the background moving between microcaustics would

also be supported if the third event of K18 is confirmed as an
additional microlensing event. In this case, since this new
image does not appear aligned with the direction where
counterimages of the same star are expected to form, a second
background star would be needed.
Alternatively, when a fast computation is needed over a large

area (for instance, in Figure 1), we use the analytical model
from Blandford & Kochanek (1987) for the smooth component,
where we tune the lens parameters to produce a magnification
pattern similar to the model above. In Section 3.2, some of the
results computed in the source plane come from a small region
at very high resolution. For this particular case, we use a
simplified model for the macromodel that is given by just two
parameters—the surface mass density (κsmooth) and shear
(γsmooth). These two parameters are considered constant, which
is a valid assumption given the small area being simulated.
Tuning κsmooth and γsmooth to the desired values allows us to
quickly produce simulations with a variety of magnifications
from the macrolens model.
The microlenses are assumed to be point masses and are

randomly distributed. Unless otherwise noted, the masses of the
microlenses are drawn from a Spera et al. (2015) initial–final
mass function where the only surviving stars in the intracluster
medium are less massive than 1.5Me (above this mass, the
remnants of more massive stars are also included in the
simulation). The same model is also discussed by K18 together
with other alternative models. The mass function is normalized
to match the inferred stellar surface mass density at the Icarus
position (as estimated by Morishita et al. 2017).
We place stars in a region (or extended region, hereafter)

which is slightly bigger than the final simulation region (or
target region, hereafter). This is done in order to minimize edge
effects. The extended region contains the target region plus
buffer zones around it, of 0.2 mas width each extending in the
vertical direction. (The left and right edges of the simulation are
not used for the computation of the light curves, so we do not
add an extra buffer on these two edges.) This buffer zone is
sufficiently large to account for the individual effect of the
largest microlenses that could be found beyond (but near) the
edge of the target simulated region. The target region is a band
of width 1 mas and length 10 mas, aligned in the direction
where counterimages form and it is contained in the extended
region of width 1.4 mas and length 10 mas. The total number of
microlenses included in this extended region is 18,686, and
they are placed randomly within the extended region. The total
mass of the microlenses in the extended region is ∼4000Me.
When PBHs are included in the simulation, we use the same
distribution of stars and add the effect of randomly placed
PBHs. The number of PBHs is determined by the fraction of
total mass that is in the form of PBHs. This number scales as
NPBH≈ 30 FPBH per mas2, where FPBH is the fraction (in
percent) of mass in the form of 30Me PBHs. This results in
420 FPBH PBHs (of 30Me each) in the extended region.
Finally, we subtract from this extended region the contribution
to the deflection field from a smooth mass distribution with the
same surface mass density as the microlenses (stars plus
remnants, or stars plus remnants plus PBHs), so the total
surface mass density remains constant.
The simulations are made at a resolution of 1 μas in the image

plane. As mentioned earlier, the target region is a band of width
1000 pixels and length 10,000 pixels in the direction where
counterimages are expected to form (i.e., at an angle αc≈−40°).

Figure 3. Change in size of the micro-CC as a function of mass. The black
solid line is for an isolated star (not in a strong-lensing deflection field) and
gives the standard Einstein radius. The red and blue curves correspond to the
cases where the star is located ∼0 13 from the CC on either side of it (see
Section 2 for the definition of a1). The CC radius is defined as the perimeter of
the CC divided by 2π. The red and blue curves are roughly a factor
m » =100 10t times higher than the black curve.
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The length of the simulated box (∼10mas/cos(αc)) maps into a
corresponding length in the source plane of ∼100 μas. This is
enough to follow a moving background source at z≈ 1.5 with
v≈ 1000 km s−1 over ∼1000 yr. This resolution is sufficient to
resolve the elongated arcs that form when a background star
crosses a microcaustic, if the background star is at least a few
tens of solar radii.

We assume that the source is moving perpendicular to the
main caustic of the cluster. The simulated light curves have a
weak dependence on this angle, since the microcaustics are
stretched by a large factor in the direction of the main caustic of
the cluster. Only if the background sources are moving in a
direction very close to the main axis of the microcaustics would
the simulated light curves be significantly different—but this is
unlikely since the probability of moving in this narrow range of
angles is small. If the source is not moving perpendicular to the
main axis of the caustics but at a different angle, the simulated
light curves would still be very similar to those presented in this
work, except that the time it takes for a source to cross a
microcaustic would be stretched by a factor cos(αsc)

−1, where
αsc is the angle between the main axis of the microcaustic and
the direction of motion of the source. The reader can find videos
at https://cosmicspectator.org/2017/06/30/dark-matter-under-
the-microscope/ (movies 5 and 6) extracted from the simulations
and showing the effect of the motion of a source as it travels
through a web of caustics that is moving parallel to, or at an
angle with, the main axis of the microcaustics. A source moving
parallel to the caustics may be interpreted as moving in a region
with a small surface density of microlenses (see also Section 3.2).
Also, if the velocity is very small, it may be erroneously
interpreted in a similar way.

When the lensed images form farther from a micro-CC,
the dimension of the micro-images is typically smaller than the
pixel size of the simulation. In this case (but also when the
micro-image is resolved), the real dimension of the micro-
image is computed at the subpixel level (making use of
approximations that allow resolving scales much smaller than
the simulation pixel). This is achieved by interpolating the
deflection field so any position in the source plane can be
mapped into the corresponding interpolated position in the
image plane, effectively achieving infinite resolution. Simple,
fast interpolations are sufficient because the deflection field is
extremely smooth. The smoothness of the deflection field is
guaranteed since it is simply the superposition of the deflection
field from the cluster and that from the microlenses. The former
is orders of magnitude larger than the latter, so the small
perturbations from the microlenses do not break the smooth
condition needed for the simple interpolations. The only place
where the simple interpolation may break down is when one is
looking for counterimages very close to the microlens, since in
this case the deflection field diverges. Luckily, these positions
correspond to the lowest magnification regions, so those
counterimages can never be observed.

The magnification is computed as the ratio of the total area in
the image plane divided by the area of the background star in
the source plane (i.e., pRstar

2 ), and we neglect limb-darkening
effects (this would add a small correction during a caustic
crossing event that is most important in its last moments). We
also neglect interference effects, since both the background
stars and the microlenses are sufficiently large.

3.1. Multiple Microlenses with the Same Mass

The large magnifying power of a galaxy cluster near its CC
can allow for detailed study of both the background objects and
the substructure in the lens plane itself. A point-like microlens
with mass M (like a star or a BH) in the lens plane will behave
like a lens with effective mass μM (see Equation (9)). In the
simple scenario where the microlens is isolated (i.e., no other
microlenses nearby), the magnification μ of a cluster at a
distance less than 0 1 from the CC can easily reach values
above μ= 1000 for a point-like background source. At this
magnification, a background compact bright object such as a
giant star will be boosted by ∼7.5 mag. This boost factor may
be sufficient to make luminous stars at z> 1 detectable with
deep observations. In this situation, a microlens with mass
M= 10−2Me in or near the line of sight to the background star
and close to the cluster CC will behave (in terms of its lensing
effect) like a microlens with mass M> 1Me. This makes it
possible to detect the microlens in the light curve of the
background source.
If no microlenses are present in the lens plane, on small

scales (less than 0 1) the cluster CC can be approximated by a
straight line (see the left panel in Figure 4), and the
magnification grows as the inverse of the distance to the CC
(Figure 1). The corresponding caustic is equally well described
by a straight line, but the magnification grows as the inverse of
the square root of the distance to the caustic. Hence, a large
magnification of several thousand requires an incredibly small
separation between the background star and the caustic, making
this type of configuration very rare, and observing a caustic
crossing very unlikely (see the middle panel in Figure 4, where
we show the incredibly narrow region in the source plane that
maps on the image plane in the left panel).
A cluster caustic crossing event is expected to be very short

lived (several hours or a few days, depending on relative
velocity and star radius) and involves very large magnifications
when the lens plane contains no microlenses. The dependence
on the square root of the separation between the star and the
caustic means that the precise moment of the caustic crossing
event can be predicted, since the observed flux evolves as

-t t1 o , where t is time and to is the time of crossing. When
microlenses are included in the lens plane, the situation can be
very different since microlenses can significantly disrupt the
CC (see Figure 5). The disruption is most prominent near
the CC and decreases with the distance to it (see Figure 4). In
the source plane, the corresponding caustic region gets
expanded by a factor that depends on the number of
microlenses and their masses. A larger caustic region means
that observing a microlensing event becomes more likely, since
a moving background star may intersect multiple microcaustics
in a given period of time (as opposed to intersecting just the
main CC of the cluster). One of these microcaustics can also be
intersected many years before the source crosses the position of
the main caustic. This translates into a dramatic increase in the
probability of seeing caustic events before (but also after)
crossing the position of the main caustic.

3.2. Source Plane Interpretation

The plots in the previous section show the magnification
pattern in the image plane. However, the magnification in the
image plane for individual micro-images is normally not
observed (unless the number density of microlenses is very
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small). To better understand how the magnification of the
multiple images works, it is more useful to represent it in the
source plane. The mapping between the image and lens planes
is done through the lens equation.

In this subsection we present a small portion of the source
plane computed at higher resolution than the simulations used
in the bulk of this work. The higher resolution is attained by
interpolating the deflection field from the main simulation to
smaller scales. Figure 6 shows the image plane, source plane,
and a cross-section of the magnification in the source plane for
both sides with negative and positive parities. The image planes
display the characteristic hourglass shapes discussed in
previous sections. The source plane shows the familiar

overlapping and stretched diamond shapes. The side having
negative parity clearly reveals the gap with low magnification
in the central region of the diamond-shape caustics. This is a
familiar result found in earlier work (see, for instance, Chang &
Refsdal 1984; Schechter & Wambsganss 2002). This gap of
low magnification results in periods of low flux in the observed
light curves, on the side with negative parity. The bottom plot
in each panel shows the cross section along the diagonal line in
the source plane.
The circles in the source plane represent a source with a radius

of ∼1.5 μarcsec. That source would simultaneously see the
caustics from the negative and positive parity sides, but we have
separated them here for clarity. The corresponding amplified
image is shown as an ellipse (with small distortions) in the image
plane. A source of this size would produce only one counter-
image on the side with negative parity, and another one on the
side with positive parity (i.e., only two macro-images and no
micro-images) since the size of the source is significantly larger
than the characteristic scale of the microcaustics. Also, the
counterimage on the side with negative parity could not be
hidden by microlenses with masses similar to those in the
simulation, since portions of the source would always overlap
with regions of high magnification in the source plane.
Note how a source that is significantly larger than the width of

the microcaustics produces counterimages that are notably less
magnified on the side with negative parity. This phenomenon
would not take place if there where no microlenses, since in that
case the magnification within the circular region would be very
similar for both parities. This can be understood if we integrate
the total magnification within the circle in the source plane. The
gap between the caustics results in a smaller total magnification
in the enclosed area. Consequently, relatively small regions in
the source plane, of angular size a few times the typical size of
the caustics (like the circular regions in Figure 6 or
R≈ 1.5 μas≈0.01 pc at z≈ 1.5), could show a ratio in the
flux between the two counterimages (positive/negative parity) of
∼1.3 (although the exact value depends on multiple factors like
source size, mass of microlenses, distance to the macro-CC,
etc.). A similar property has been exploited in the context of
QSO microlensing, as for instance by Mediavilla et al. (2017).
An explanation of this phenomenon is given by Schechter &
Wambsganss (2002), where the authors demonstrate with a

Figure 4. Left panel: a close-up region (0.8 × 0.8 mas2) around the main CC for a galaxy cluster (MACS1149). Middle panel: the corresponding caustic region with
the same scale. Right panel: the disrupted CC when 25 microlenses are added in the image plane. The mass of each microlens is 0.01 Me. Note how the microlenses
increase their associated micro-CCs as they approach the cluster main CC. The orientation is determined by the sign of the quantity μt

−1=1−κ−γ. By definition,
m =- 0t

1 at the cluster main CC.

Figure 5. Diagonal band at ∼−40° shows the magnification pattern when
microlenses are added in the lens plane around the position of the main CC.
The light-gray broken line close to the middle of the band is the lensed image
of a background source (or train of micro-images). The rest of the image shows
the magnification of the smooth lens model. For illustration purposes, the
background source (R ≈ 0.01 pc) is much larger than a typical giant star
(R ≈ 10−5 pc).
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simple toy model how macrominima and macrosaddle points
can have their magnifications affected significantly in the
presence of microlenses.

Finally, movies 7 and 8 athttps://cosmicspectator.org/
2017/06/30/dark-matter-under-the-microscope/ show how
the observed magnification depends on the point where the
trajectory of the background star intersects the microcaustics.

In order to get a better view of the source plane in the
different scenarios, we make an ensemble of alternative
simulations at even higher resolution where we vary both the
magnification of the macromodel and the surface mass density
of microlenses. We adopt the same redshift for the cluster lens
and background source as in the Icarus and Iapyx events. For
this particular set of simulations, we adopt a simplified model
where the surface mass density from the macromodel (κm) and
the shear (γm) are fixed, instead of adopting the model from
D16 used in the main simulations. This is a valid approx-
imation since the simulated region is very small. By varying κm
and γm, we can easily simulate a given region of the lens plane
with the desired magnification from the macromodel. For
simplicity, we also assume that the component of the shear in
the vertical direction is zero (that is, g g g g= + =m 1

2
2
2

1), so
the deflection field has its main component in the horizontal
direction. Since both κm and γm can be expressed in terms of
the derivatives of the deflection field (α), these relations can be
reversed, and we can also express the derivatives of the
potential as a function of κm and γm,

a k g= +( ) ( )1

2
, 10x

x
m m

a k g= -( ) ( )1

2
, 11y

y
m m

a a g= = = ( )0, 12x
y

y
x

2

where ai
j is the derivative of the i component of α with respect

the coordinate j.
With these equations we can describe the deflection field

(except for an irrelevant constant) of the macromodel. The
deflection field from a population of microlenses is added
linearly. When considering microlenses, instead of κm one
needs to use *k k–m , with κ* the convergence from the surface
mass density of microlenses. This guarantees that the total
convergence (cluster plus microlenses) is equal to the target κm.
The specific values of κm and γm are determined by the value of

the magnification to be simulated, μm= μt×μr. One can easily
find that for the side with negative parity g m m= +- -( ) 2m r t

1 1

and k g m= - + -1m m r
1, while for the side with positive parity

we have the condition g m m= -- -( ) 2m t r
1 1 and k = -1m

g m- -
m r

1. We vary μr, μt, and κ*, producing a set of simulations
for the cases with positive and negative parities. The simulations
consider a large circle of radius 0.465 mas where we place the
microlenses randomly. The pixel scale is 31 nas and we compute
the total deflection field in a narrow horizontal band of width
744μas and height 93 μas. By construction, this area maps into an
area a factor μ= μr× μt times smaller in the source plane.
Without loss of generality, we fix μt= 1.5, so in the source plane
and to first order, the simulated region maps into an area of
dimension 93/1.5× 744μ/1.5 arcsec2. As discussed below, at
high optical depth, the effective magnification is smaller than that
for the macromodel, so the simulated region can be larger than
that inferred from the values above.
By inverse ray tracing, we compute the magnification in the

source plane after interpolating the original deflection field to
achieve effective resolutions of ∼3 nas per pixel (or ∼1000
solar radii at z= 1.5). A small area of the source plane is shown
in Figure 7 for each simulation. The results in this plot are
divided into two groups. On the right side we show the source
plane at fixed κ* but varying magnification. On the left we

Figure 6. Image and source plane for a small region. The left panel corresponds to an area on the side with negative parity, while the right panel is for an area on the
side with positive parity. In each panel, the top-left region shows the image plane and the top-right a zoomed region in the image plane. A source with a geometry
similar to the circle in the source plane would map into the marked elongated ellipse in the image plane. The diagonal line in the source plane marks the track shown in
the bottom part of each panel where the maximum magnification per pixel is represented.
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show the simulated source plane at fixed magnification but
varying κ*. The magnification considered for this example is
moderate (μ= 30), but it serves our purpose as it better shows
the structure of the caustics in the source plane. For larger
magnifications the behavior would be qualitatively similar to
what is shown on the left block of Figure 7. Since we have the
sides with opposite parity projecting back into the same region
in the source plane, at a given pixel in the source plane one
would get a bundle of rays (from the inverse ray tracing
method) coming from the side with positive parity and a
different bundle coming from the side with negative parity. The
mapping between the image plane and the source plane around
a CC can be visualized as a sheet of paper being folded by its
middle point (CC). In the source plane, the fold represents the
caustic, with the two halves of the sheet forming two
overlapping planes. A source will project into these two
planes; when unfolded (i.e., the image plane), the sheet of
paper will show two images which are symmetric with respect
to the folding line.

To better illustrate the differences between the sides with
positive and negative parities, we show the source plane for
each of the two planes within it, described at the end of the
previous paragraph, and also compute the statistics of each
plane separately. This makes sense when comparing with
observations, since the statistics of the observed lensed
image depends on the parity, as we show later, and has
been demonstrated in earlier work (e.g., Schechter &
Wambsganss 2002). The top row shows the plane with positive
parity while the bottom row shows the plane with negative

parity, where the characteristic microsaddle points with low
magnification can be appreciated clearly. The two columns
with κ*/κ= 0.05 and κ*/κ= 0.15 in the left block contain a
stellar component consistent with the upper limit in K18 (that
is, with 19Me pc−2 or κ*/κ= 0.012 and a Salpeter spectrum
in the low-mass regime) plus microlenses with 30Me,
mimicking a monochromatic population of PBHs. As men-
tioned above, the value 19Me pc−2 is motivated by the
updated estimate in K18. This is almost three times more mass
than the value of Σo= 7 Me pc−2 used in the rest of this work,
but the careful reader will notice that κ*/κ is instead a factor of
four larger than the value of 3% corresponding to Σo. This is
due to the fact that for this set of high-resolution simulations
with 19Me pc−2, the value of κ considered is 0.66 instead of
the value from the model in D16 (κ= 0.9) used in the rest of
this work. κ≈ 0.66 is the value required by μ once μt is fixed
to 1.5 and μr?1 as described above. The left panel with
κ*/κ= 0.004 has approximately four times fewer microlenses
than the model with κ*/κ= 0.012 and no PBHs (of 30Me).
The last column with κ*/κ= 0.37 represents a population of
PBHs but with a power-law spectrum (for the mass function)
similar to that used to simulate the stellar component from
the ICL.
On the right side of Figure 7 we show similar plots, but this

time the surface mass density of microlenses is fixed (to a value
consistent with the upper limit on κ* in Kelly et al. 2018;
κ*/κ= 0.012 and no PBHs) and we vary the magnification.
The case with μ= 30 can be compared directly with the cases
presented in the left block.

Figure 7. Zoom-in of the source plane at high resolution. The left block (with eight panels) shows a small region in the source plane at constant magnification from the
macromodel and varying surface mass density of microlenses. The upper row shows the plane with positive parity and the bottom row shows the corresponding plane
with negative parity. Both planes overlap in the source plane but are displayed separately here for clarity. The right block with eight panels shows the source plane at
constant surface mass density of microlenses and varying magnification from the macromodel. The upper and bottom rows correspond to the planes with positive and
negative parity, respectively. Note how the source plane has been compressed in the y direction by factors ranging from 8 at μ=30 to 32 at μ=2400. At very high
magnification, both planes with negative and positive parity resemble each other. A source at z=1.5 traveling at 1000 km s−1 with respect to the caustics would move
∼1 μas every 10 years.
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Figure 7 makes the degeneracy between κ* and μ evident.
When κ* is sufficiently high, the source plane saturates with
overlapping caustics. The same is also true for moderate values
of κ* but at large magnifications. In this case the overlapping
of the caustics is produced by the high magnification. In order
to quantify the differences, we compute the probability
distribution function (PDF) of the magnification in the source
plane from these simulations.

The result is shown in Figure 8. The left plot shows the PDF
for the case with fixed magnification and varying κ*. For small
values of κ*, the PDF shows a clear peak near the
magnification of the macromodel, μm. The side with positive
parity peaks at slightly smaller values than μm while the side
with negative parity peaks at values very close to μm. At high
magnification, both sides behave very similarly, with the tail of
the PDF falling like μ−3, typical of isolated lenses. At low
magnifications, the differences are significant between the two
parities. When κ* is increased, we observe that the differences
between the two parities grow as well. The peaks of the PDF
separate more, with the one from positive parity clearly below
and that from the negative parity clearly above μm. At high
magnifications, there seems to be an excess of probability on
the side with negative parity with respect to the side with
positive parity. Also, the probabilities of having high and low
magnification increase as κ*.

As we increase κ*, the peaks in the PDF disappear, and for
sufficiently large values of κ*, the PDFs of both parity sides
start to resemble each other. This is the saturation regime at
which the notion of sides with positive and negative parity
loses its meaning (the sign of a1= 1− κ− γ can adopt positive
and negative values on both sides of the main CC). The right
plot in Figure 8 shows the case of fixed κ* and varying
magnification. The model with μm= 30 (black curves) is the
same as the black curve model in the left plot. We observe a
similar trend, but now the excess of probability at high
magnification in the side with negative parity is more evident
(specially at μ= 150 and μ= 600). Also, for μm= 2400, the
PDF of the sides with negative and positive parity are almost
similar and deviate from μ−3 at high magnification. Instead, the
PDF resembles a log-normal distribution, which typically
appears in multiplicative processes. This is attained by the

combined effect of multiple overlapping caustics and the high
magnification of the macromodel. Finally, we note that,
similarly to what happens in the left panel, when we increase
the magnification of the macromodel, the average magnifica-
tion in the simulated region deviates from the one we would
have obtained from the macromodel (i.e., with no microlenses).
In particular, we find that in the presence of microlenses with
κ*/κ= 0.012 and in the side with positive (negative) parity,
the averages of the magnifications are 29.9 (30.2), 150.4
(144.5), 564.8 (566.3), and 1455.7 (1345.3) for macromodel
magnifications of 30, 150, 600, and 2400, respectively.
From results like those shown in Figure 8, one can extract

important properties of the magification, but they do not
contain all the information. The magnification is highly non-
Gaussian, as shown in this figure, and hence the PDF alone
gives an incomplete picture of the problem. For instance, the
PDF plots shown in Figure 8 do not account for the correlations
that are evident in Figure 7. Higher-order statistics like the
correlation function or power spectrum are useful discrimina-
tors in this type of situation.

4. Disruption of the Cluster CC by Microlenses

In this section we study in more detail the effects
of microlenses at the position of, or very close to, the CC.
For the microlenses we adopt as a reference the Spera et al.
(2015) model normalized to S » M7o pc−2 (similar to the
surface mass density in surviving stars inferred at the position
of Icarus).
When microlenses are present in the vicinity of the CC, the

infinitesimally narrow CC widens, with overlapping critical
lines that form a complex network (see, e.g., Figure 5). This
network extends up to a maximum range that depends on the
total number and masses of the microlenses. In the case of
Figure 5, this network extends well beyond the displayed field
of view. The change in the network when the amount of
microlenses is varied is made more evident in Figure 9. The
magnification pattern gets shifted around, with regions of high
magnification becoming regions of low magnification, and
vice versa. When the amount of microlenses is small (i.e., small
fraction f=Σ/Σo), the main CC becomes sharper by trading

Figure 8. Left panel: probability of magnification extracted from the simulations shown in Figure 7 (left block). All models have the same magnification from the
macromodel (μ = 30) marked with a vertical dashed line. For each curve we vary the surface mass density of microlenses and the parity. Positive parity is shown with
solid lines and negative parity with dotted lines. At low optical depths, the probability of high (and low) magnification grows as the surface mass density of
microlenses. The tail at high magnification falls as the expected μ−3. At high optical depth of microlenses this scaling breaks down and reverses at the saturation
regime for the tail at high magnification. Right panel: similar to the left panel but the surface mass density of microlenses is fixed and we vary the magnification of the
macromodel. Note how at high magnification the probability converges toward a low-normal and starts to look similar for both planes with positive and negative
parities. Also, the side with negative parity has a higher probability of having extreme magnifications.
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high magnification for lower magnification with the surround-
ing area in the lens plane. As more microlenses are added, the
disruption becomes more serious, and at some point between
f= 0.003 and f= 0.01 in Figure 9 the CC itself transforms into
a network of micro-CCs. The extension of this network around
the main CC marks the region where microlensing events are
more likely to be observed. An interesting consequence is that
the typical magnification one would expect is changed by the
addition of microlenses. In Figure 10 we show the median of
the distribution of magnifications (of individual micro-images)
computed at different distances from the position of the main
CC. For each distance, the distribution of magnifications and its
median are computed in an area of 1.9× 0.5 mas2. Adding
microlenses thus results in a reduction of the typical
magnification of micro-images that one would have obtained
without them. This median magnification, however, cannot be
normally observed, since the lensed image forms (typically) an
unresolved train of micro-images and what we observe is the
total flux of all micro-images (an exception being at low optical
depth, where the the total flux is usually given by one micro-
image). We show later, however, that if the lens plane is
populated by massive microlenses (a few tens of solar masses),
the separation between micro-images can reach a few
milliarcseconds, opening the door to future high-resolution
observations of the individual micro-images.

This change in the magnification is also evident in Figure 5,
where we display a small region around the main CC in the
case of the smooth lens compared with the magnification
pattern when microlenses are added (diagonal band). The figure
also shows a lensed background object (with ∼0.01 pc radius),
or train of micro-images, at the moment of maximum
magnification. The lensed image breaks up into multiple
smaller components. For smaller background sources (such as a

large star), the lensed image would break up into even more
smaller pieces.
When f is sufficiently small, the effect of the microlenses is

small and the magnification behaves like in the smooth lens
model case, except when we approach the CC. At short
distances from the CC, even small microlenses can have a
significant impact on the magnification pattern. As f grows, the
range at which the CC gets disrupted grows as well. For values
of f≈ 0.001 the disruption is still significant up to scales of a
few milliarcseconds. In this situation, if macro-images are
being formed on both sides of the main CC at a distance of a
few milliarcseconds, a telescope like the Hubble Space
Telescope (HST) observing the unresolved macro-images

Figure 9. Disruption of the CC as a function of microlens surface mass density. Each panel shows the CC region when a population of microlenses with Σ=fΣo is
present. The case f=1 corresponds to the model of Spera et al. (2015) at the position of Icarus. The yellow lines show the approximation in Equation (15). The last
panel at bottom does not show the yellow line since it extends beyond the boundaries of the plot. The total surface mass density (i.e., smooth plus microlens) is the
same in all panels.

Figure 10.Median of the magnification (of micro-images in the lens plane) as a
function of distance from the main CC (negative distances mean they are
measured toward the left of the CC and positive toward the right). The black
line corresponds to the smooth model (no microlenses) and the red line is for
the case when microlenses are added (with S » M7 pc−2).
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would start to see not only a change in flux over time but also a
change in the observed position of the peak, since the observed
images would appear to be jumping back and forth between the
two sides with opposite parity. For values of f≈ 1 it is
impossible to determine the exact location of the main CC and
the magnification pattern is completely disrupted over a scale
of hundreds of milliarcseconds. If f?1 the disruption can
extend to scales of an arcsecond and these types of
microlensing events would be much more common. The fact
that no similar microlens event has ever been reported before
Icarus/Iapyx is a simple indirect indication that the optical
depth of microlenses cannot be much higher than that from the
stellar component (with κ≈ 10−3

–10−2).

5. Light Curves

The results presented in the previous section show examples
of the magnification pattern near the main CC and in a narrow
region of the source plane when microlenses are present.
However, observations can only sample the magnification in
the source plane (unless micro-images are resolved). Through
observations we can measure the total flux as a function of
time—that is, the light curve.

To simulate the light curves, we place a background star in
the source plane moving with a relative velocity of
1000 km s−1 toward the main caustic. The results presented
in this section can easily be rescaled (stretched or compressed)
to any velocity (v) by the factor v/1000. A relative velocity of
1000 km s−1 is a reasonable assumption given the redshifts of
the lens and source. Figure 11 shows a small segment of the
simulated light curves for Icarus (blue) and Iapyx (red). We
assume the Spera model (left panel) and the Spera+PBH(10%)
model (right panel). In the case when microlenses are only ICL
stars (left panel), the light curves for Icarus and Iapyx can be
very different when microlenses populate both sides of the
main CC. Macro-images on the Iapyx side (a1< 0) can
disappear for periods of 10 years or more.

This is a consequence of the low-magnification regions
present between the semi-diamond-shape caustics discussed in
Section 3.2, on this side of the main CC.

As shown by Schechter & Wambsganss (2002), macrosaddle
points (like those on the side with a1< 0) can be fainter
because they can lack microminima, while macrominima must
have at least one microminimum.

Another interesting difference is the amplitude of the peaks,
which can be higher on the Iapyx side (see Section 3.2, where
the same effect is observed in the PDF). This tradeoff between
low-magnification periods and higher peaks conserves the total
integrated flux when integrating over long periods of time.
We find that for surface mass densities of microlenses
comparable to Σo, the average of a light curve converges
(both on the side with positive and negative parities) toward the
value of the macromodel when averaging the light curve over a
few hundred years. The right panel of Figure 11 shows the
corresponding light curve when 10% of the mass in the lens
plane is substituted by PBHs with a mass of 30Me each (this
case also includes the microlenses from the ICL). In this case,
the light curves on both sides of the main CC are more similar,
and we do not observe periods of low magnification on the side
with a1< 0. We also note that when the fraction of PBHs is
high, the clustering of PBHs introduces large-scale temporal
and spatial correlations in the magnification pattern that can
result in long periods of relatively low or high magnification, as
shown in the right panel of Figure 11. As we show below in
Section 7, when the optical depth of microlenses is sufficiently
high (for instance, when 10% of all mass is in microlenses), we
are in the saturation regime and the properties of the light
curves must be similar. We also notice that the peaks on both
sides are also smaller as a consequence of the reduction in
Einstein radius. The associated Einstein radius of the micro-
lenses no longer scales like m( )M ;t

1 2 more precisely, the
effective μt is smaller when we reach the saturation regime.
This is an interesting result since it implies that an event like
Icarus would require, on average, a brighter star if a significant
fraction of the DM in the lens plane is made of PBHs. At the
same time, hiding Iapyx for at least 10 years seems unlikely in
this scenario and would require the presence of a second (and
fainter) star in the source plane to explain Iapyx.
This argument is in agreement with the probabilities

estimated by K18, which show that a scenario where a sizable
fraction (more than a few percent) of the DM is in the form of
compact lenses is less agreeable with the data than a scenario
where the microlenses are just the ICL stars. Also, K18 found
that simulations suggest that the existing data have sensitivity
to the mass function of stars and remnants (given the
assumptions made about the magnification and stellar mass
density). However, the observed light curve presented by K18
does not have as many data points as one would desire to
achieve good constraining power. A clear discrimination

Figure 11. Left panel: fragments of the simulated light curves for Icarus (a1 > 0) and Iapyx (a1 < 0) based on the Spera model for the ICL. Right panel: similar to the
left panel, but when 10% of DM is substituted by PBHs with 30Me each. The right panel also includes the ICL microlenses, and the total surface mass density is the
same in both cases.
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between different models (other than a preference for models
with a low fraction of PBHs or microlenses forming binary
systems as discussed by K18) is not yet possible. More data are
needed (more peaks, better cadence, smaller photometric
errors) in order to clearly distinguish between the different
possible scenarios. We hope that regular monitoring of this
cluster will provide such data in the near future.

If we imagine we can monitor Icarus and Iapyx for
∼10,000 yr, we would witness the moment where both events
merge and disappear as the background star crosses the last
microcaustic (see Section 6). If the deflection field were
perfectly smooth (without microlenses), the light curves of
Icarus and Iapyx would be featureless and the flux would
increase as -t t1 o , as the background star approaches the
main caustic, and would reach a magnification of ∼106 in the
last moments before disappearing. Conversely, if the lens plane
near the CC is populated with microlenses from the ICL stars,
PBHs, or both, the light curves will be rich in features like
those shown in Figure 11. In this scenario, we will observe
hundreds or thousands of peaks, each having a magnification
between ∼103 and ∼104. The total flux integrated over the
10,000 yr will be the same, but the light curves will be very
different.

It is also interesting to track the fluxes of the individual
micro-images. In Figure 12 we compare a fragment of the
simulated light curve (for Icarus) with the magnification in the
lens plane at the position where the brightest micro-image is
formed. During the valley periods, both magnifications
coincide because there is only one dominant micro-image
(there are other counterimages but with significantly smaller
fluxes), so the total flux of the macro-image is basically given
by the flux of the dominant micro-image. During a peak, new
bright micro-images form around the micro-CC. The total flux
is then typically larger by a factor 2 or 3 than the flux of the
brightest micro-image. The result shown in Figure 12
demonstrates how, at moderate optical depth, during most of
the time the train of micro-images is very compact in size (only
one dominant micro-image during the more frequent valley
periods). However, during a peak event, it may be possible that
the separation between different portions of the train may be
large enough so the overall size of the train of micro-images
could be distinguished from that of a point source. This will be
explored in more detail later in this paper.

5.1. Estimating Rates

The simulated light curves provide a detailed picture of the
number of peaks expected over a time period, but they are
computationally expensive to obtain. The rate of peaks can be
estimated after doing some simple approximations and taking
advantage of the scalings presented in this work. First we
assume that most of the events are produced by microlenses in
the range between 0.5 and 2.0Me. This assumption is
reasonable since more-massive microlenses are rare (especially
for realistic models where the heaviest stars are short lived,
leaving remnants with low to moderate masses) and less-
massive microlenses have a smaller impact parameter (or
Einstein radius) for strong lensing (we should also add that the
abundance of low-mass stars is not as well constrained, either).

We assume the Spera model with the properties of the lens
model of D16 and the surface mass density estimated at the
Icarus position (just for convenience, but the arguments given
below extend to any surface mass density). For this

configuration we expect 3.8 stars per projected pc2 in the
assumed mass range. The typical separation between these stars
is then 0.5 pc or dθ= 0.08 mas. Taking advantage of
Equation (4), we can compute the corresponding typical
separation in the source plane between microcaustics corresp-
onding to microlenses at the position of Icarus (θ= 0 13),
dβ≈ 2θ dθ/Θ= 3.1× 10−7 arcsec, where we have ignored the
term q Qd 2 since dθ�Θ. A background star traveling with a
velocity of v= 1000 km s−1 would take ∼2.6 yr to cover the
angular distance dβ, so we should expect 1 microlensing event
every 2.6 yr on average. This number is in reasonable
agreement with both the rate estimated from the light curves
and the observed rate estimated for Icarus (see K18).
This estimate does not take into account the size of the

microcaustics, which would grow as we approach the main
caustic or would be smaller as we move away from it. A more
accurate estimate of the rate should take into account this filling
factor, or optical depth. Since the optical depth of microlenses
depends on the distance to the main CC, at large distances
(smaller optical depths) the rate of events should decrease
significantly as the separation between microcaustics gets
larger. For the microlenses assumed at the beginning of this
subsection, the Einstein radius ranges between 1.3 and 2.5 μas
before we account for the magnification effect of the cluster.
Once the magnifying power of the cluster is taken into

account, we have seen how these Einstein radii can be enlarged
by 1 order of magnitude when the distance to the main CC is
0 13 (μT≈ 100; see Equation (9)), bringing the Einstein radii
to ∼20 μas. Since the typical separation between microlenses
in the lens plane is ∼80 μas (see above in this subsection), it
means that an average of 3 out of 4 microlenses will be missed
by the moving macro-image. Thus, we should expect a ratio of
1 event every ∼10 years instead of 1 event every 2.6 yr for
microlenses with masses between 0.5×Me and 2.0×Me.
This is in excellent agreement with the observed light curve for
the Icarus event, where the observed light curve in Figure 3 of
K18 suggests one major microlensing event over a period of
∼12 yr (although we should note that the observed light curve
has large gaps). The arguments presented above are based on
the simplifying assumption that all microlenses have a mass in
a relatively narrow range. More realistic scenarios, like those
presented in the simulations, will introduce additional

Figure 12. Fragment of the simulated light curve for Icarus (blue line)
compared with the underlying magnification in the pixel of the simulation that
contains the largest magnification (dotted line). The dotted line is generally
above the solid line because it does not account for the extended nature of the
micro-image (which smooths out the observed magnification).
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variability and even long-scale temporal correlations (not
considered above) in the presence of clustered massive
microlenses.

6. The Death of Icarus

Based on our current understanding of the Icarus/Iapyx
events, we should expect to see more peaks in the future at the
position of these events. Assuming the source is heading
toward the main caustic, for transverse velocities on the order
of 1000 km s−1, it might take ∼10,000 yr for the source to cross
the main caustic and become unobservable. Conversely, if the
background source is moving away from the main caustic, we
are witnessing the lensed source ∼10,000 yr after it first
crossed the position of the main caustic. Based on our model
for the underlying microlenses and the cluster potential, we can
predict how the last moments (or first moments) of the multiply
lensed images will take (or took) place. For simplicity we
assume that the source is heading toward the main caustic from
now on. The results presented in this section can be reversed to
describe the situation where the background source is moving
in the opposite direction—that is, away from the main caustic.

Figure 13 shows the light curve moments before and after
the background source crosses the main caustic. When
approaching the last moments, the macro-images are broken
into multiple groups or trains. Each train comprises a bright
micro-image surrounded by smaller ones, usually aligned in the
direction of the cluster deflection field. The last moments in the
light curve show how the individual trains of micro-images
disappear at different moments. When one of the trains
vanishes the total flux drops by a large fraction. The last
surviving micro-images have small fluxes and roam close to the
largest microlenses (that is, in regions with low magnification).
In principle, every single microlens (assuming they are truly
point sources) would have a small micro-image near its center
since the deflection angle of a point source diverges at the
position of the microlens (there is a nice visual demonstration
of this effect by Lewis et al. 1993 and Witt 1993). These small
micro-images can survive a much longer time than the trains.

However, these low-magnification images have such small
fluxes that they can be neglected in terms of their contribution
to the observed flux.
Figure 13 also shows the maximum extension, or size, of the

set formed by all micro-images. We compute this size based on
the micro-images that have magnification larger than 50. At
time ∼50 yr in the left plot, there is only one surviving micro-
image with magnification above 50 and the apparent size of the
train drops to zero (a second micro-image appears and vanishes
quickly at times ∼58 and ∼65 yr). The size evolves as

-∣ ∣t to , which is inversely proportional to the apparent
velocity of the macro-images. Although not shown in the plot,
there is a long tail past 100 yr where micro-images with small
magnification survive for a long period close to the largest
microlenses (with μ≈ 1 or below). This tail and the evolution
of the size can be better appreciated when the contribution from
microlenses is smaller.
In the right panel of Figure 13 we show a similar plot, but

this time the masses of all the microlenses are divided by a
factor 30. Even though this may not represent a realistic
scenario, it does mimic a situation where the optical depth of
the microlenses is a factor 30 times smaller than in the left
panel of Figure 13. (The deflection field scales as the mass;
hence, rescaling the masses is a much faster way of producing
multiple realizations with different lensing optical depths). A
more realistic simulation corresponding to a factor 30 times
smaller surface mass density would contain fewer (but heavier)
stars and the right panel in Figure 13 would have fewer (but
more pronounced) peaks.
At low optical depth (right panel of Figure 13), the light

curve in the last moments starts to resemble the expected
behavior of the classic caustic crossing event with a smooth
model (see, for instance, Miralda-Escude 1991), with the
typical -∣ ∣t t1 o change in flux (red solid line). In this case
the relative separation between the two trains of micro-images
follows closely the -∣ ∣t to law and could be extrapolated to
earlier times to predict the crossing time from real observations
or constrain the relative velocity between the background
source and the caustic. A background source close to the time

Figure 13. Left panel: magnification during the last years before the disappearance of Icarus. The dashed line shows the maximum separation between all micro-
images on both sides of the CC (or the size of the combined train of micro-images). This separation can be seen as the maximum extension of the set of micro-images
that could be resolved by a telescope with microarcsecond resolution. The dotted line shows the expected theoretical behavior for the change in size in the smooth lens
model, µ -∣ ∣t tSize o , where to is the caustic crossing time. The exact crossing time is undetermined since there is not a single caustic, but a reasonable choice
would be the point where the magnification is maximum. The microlenses are consistent with the ICL constraints at the position of Icarus and assuming a Spera model
( f = 1 in Figure 9). Right panel: similar to the left panel, but with a smaller contribution from microlenses (30 times smaller, or f = 0.03 in Figure 9). Note how owing
to the increase in magnification the separation between the two trains of micro-images evolves more quickly. The red smooth line is the expected magnification for a
smooth model (µ -∣ ∣ )t t1 o .
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of caustic crossing will produce two macro-images separated
by a distance that is proportional to -∣ ∣t to . The proportion-
ality constant involves the relative velocity between the source
and the caustic. Future high-resolution observations (for
instance, with the Extremely Large Telescope and a maximum
expected resolution of ∼1 mas) may be able to discriminate
between point sources and extended sources with sizes larger
than a few milliarcseconds. Monitoring the change in the size
of the unresolved pair of macro-images can be used to constrain
the relative velocity between the source and caustic. Similarly,
the rise in observed flux in the last moments exhibits a similar
dependency with the relative velocity between the source and
the caustic. From Figure 13, the period of flux decline after the
peak is sensitive to the number and type of microlenses.
Nevertheless, in the presence of microlenses, a caustic-crossing
event needs to be monitored regularly for several decades to
produce light curves that capture the rise and decline of the flux
as the caustic network is being crossed. This will require an
effort similar to the production of light curves for QSOs and
other variable objects.

7. Prospects for Constraints on the Fraction of
Compact DM

A popular candidate for DM is PBHs (see, e.g., Carr
et al. 2016a, for a recent discussion). They are formed in the
first moments of the universe and, other than through
gravitational interactions, they do not play any significant role
in nucleosynthesis or baryonic physics after inflation (with the
exception of very small PBHs that can evaporate quickly and
inject energy into the universe, or the very massive ones that
can transform mass into energy through their associated
accretion disks). Other than in these extremely low- and
high-mass regimes, PBHs would be very elusive, interacting
only through gravity with the surrounding matter. A wide range
of masses has been excluded for PBHs as a significant
contributor to the DM. PBHs below a certain mass (∼1011 kg)
would have evaporated by now (Hawking 1974). PBHs with
slightly higher masses would be strong sources of γ-rays.

Current γ-ray observations have ruled out this mass range
(Barnacka et al. 2012; Carr et al. 2016b). At the other extreme,
a large number of massive PBHs (M> 100Me) would disrupt
globular clusters or impact the baryonic physics in the early
universe. At intermediate masses, there are constraints of
varying strengths from pulsar timing or microlensing
(Kashiyama & Seto 2012; Niikura et al. 2017). A window
where the constraints on the fraction of PBHs still need to be
improved is » M M30 . Bird et al. (2016) made the
interesting suggestion that the first LIGO event (that involved
two BHs with masses in this range) could have been the
coalescence of two PBHs in this mass regime (see also Sasaki
et al. 2016; Clesse & García-Bellido 2017). If true, this would
offer a natural explanation for the extreme BH masses
measured by LIGO (Abbott et al. 2017; The LIGO Scientific
Collaboration et al. 2017).

In this section we explore the possibility of constraining the
fraction of PBHs with a caustic crossing event. If PBHs make
up a significant fraction of the DM, they would disrupt the
caustic. As seen in Figure 9, the disruption is proportional to
the optical depth of microlenses. This scaling can be easily
derived from basic principles (for simplicity, we assume all
microlenses have similar masses). The optical depth, τ, can be
estimated as the number of microlenses, N, times the area of

their associated Einstein ring (pqE
2 ) per unit area, A, as
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If we introduce the surface mass density of microlenses with
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where we remind the reader that a2 is the inverse of the
magnification in the direction parallel to the main CC.
As expected, τ scales with Σ and is independent of the

masses of the microlenses. If enough PBHs are present near the
main CC, at some point their CCs start to overlap (or, similarly,
the microcaustics overlap in the source plane). This corre-
sponds to τ=1. From Equation (14), we can infer the width of
the saturation region around the main CC. Since Equation (5)
gives the total magnification and each train of micro-images
carries half the magnification, after accounting for this factor of
2 the width of the saturation region is simply

mDQ = ´ S- -
( ) ( ) ( )M a4.2 10 pc . 15o

4 2
2

This simple approximation works remarkably well when tested
with the simulated data (see Figure 9, where the length of the
yellow lines is derived from Equation (15) for the model
of D16, a2μo≈ 0.2× 150″=30″). Despite the assumption of
similar masses made to derive Equation (14), we find that when
the optical depth is computed exactly for a realistic distribution
of masses (by integrating the areas within the Einstein ring for
each microlens), the disagreement is approximately only a
factor of 2 or 3. In particular, Equation (14) predicts τ=0.7 at
the position of Icarus (assuming the model of D16 with
a2μo≈ 30″) and for S » -

M7 pc 2, while the integration of a
realization of the Spera model between = M M0.01 and the
maximum mass in the realization (M≈ 70Me) renders
τ=0.3. For alternative models like those of Woosley et al.
(2002) and Fryer et al. (2012), we obtain similar values of 0.26
and 0.28, respectively. From Equation (15) and for the model
of D16, we obtain ΔΘ≈0 1.
Interestingly, this distance is smaller than (but comparable

to) the separation found between Icarus and Iapyx
(ΔΘ≈ 0 26). This suggests that the adopted Σ may actually
be close to its real value. Much higher values of Σ would result
in a larger disruption of the main CC and would make it very
difficult to observe a nearly constant flux for a period of ∼10 yr
at the position of Icarus. Conversely, significantly smaller
values of Σ would translate into very small probabilities of
observing a peak like that witnessed for Icarus in 2016 May.
We can define the effective surface mass density of

microlenses m qS = Sa oeff 2 (see Equation (14)), which is
inversely proportional to the distance to the CC. Hence, at large
separations from the CC, both Σeff and τ tend to zero and the
observed light curve should be featureless (i.e., no microlen-
sing events and just a slowly varying flux). On the other hand, a
given area in the image plane at ΔΘ/2 from the main CC maps
into a larger area in the source plane than the same area in the
image plane would if it were at a smaller distance from the
main CC (i.e., smaller θ). Thus, one would naively expect
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the probability of seeing microlensing events to be maximized
at the point where we reach the saturation regime. Future
observations of similar events should be found at comparable
distances, or that scale with the estimated surface mass density
of microlenses as shown in Equation (15).

This argument can be used to indirectly infer that the fraction
of DM in the form of compact objects (like PBHs) must be low
(independently of their masses). The value of Σ≈7Me pc−2

corresponds to a fraction of the total mass of ∼0.3%. The
relatively smooth behavior of the Icarus light curve (1–3 minor
peaks in the last ∼10 yr) suggests that the fraction of DM in
microlenses cannot be significantly higher than 3% (or the mass
of the PBH is orders of magnitude smaller than 1Me). If the
fraction of DM were much higher, the width of the saturation
region would extend to farther distances. According to
Equation (14), a 3% fraction would saturate a region of ∼1″
around the CC. Current observatories have the resolution and
sensitivity to witness such events but none has been reported
prior to Icarus/Iapyx. If we assume that the spiral arm
extending all the way to the CC in MACS1149 contains a
nearly constant surface density of stars (as suggested by its
nearly constant surface brightness), during the last ∼10 yr we
would have expected to see additional peaks farther away from
the CC. The fact that both Icarus and Iapyx (but also Perdix,
also called LS1/Lev 2017A; see K18 for more details) appear
at distances ∼0 1 from the CC points to a low fraction of DM
(<1%) in the form of microlenses. This conclusion is, in
principle, independent of the microlens mass. However, this is
not entirely true at sufficiently low microlens masses since in
this case the microlenses start to behave as a smooth
distribution of DM (their associated Einstein rings would be
too small compared with the dimension of the macro-images).
Even if individual events cannot be resolved, deep observations
around the CC can reveal fluctuations that are not observed at
larger distances from the CC. The strength and extension of
these fluctuations can be used to constrain Σeff and hence the
fraction of compact objects.

In the low-mass microlens regime, the sensitivity to the mass
of the microlens depends on two variables: (i) the surface mass
density of massive microlenses, Σ, and (ii) the underlying
magnification. If massive microlenses (like, for instance, stars
and remnants from the ICL) have a large Σ, small microlenses
play a negligible role (the magnification pattern is entirely
dominated by the massive ones). Only when the contribution
from massive microlenses is small, can the signature of small
microlenses (like PBHs with planet-like masses) be detected.
As shown in Section 2, the Einstein ring associated with a
small microlens can be highly amplified when it lies very close
to a cluster CC. In the source plane, larger microcaustics from
massive microlenses would overlap on top of the smaller
microcaustics, overwhelming them. A clear illustration of this
effect was shown in the right panel of Figure 4, where
M=0.01Me microlenses can disrupt the main CC in a way
that could be quantified during a caustic crossing event. The
ideal scenario for constraining compact DM in the low-mass
regime is to monitor a background galaxy that lies behind a
caustic that is itself far away from any member galaxy or with
minimal ICL. This will minimize the effect of more massive
microlenses (like stars) offering a clean view of the structure of
DM in the small-mass regime. The same argument can be
applied to PBHs with higher masses. If a caustic crossing event
is found in a region where the contribution from the ICL is

known to be negligible and the event shows signatures of
microlensing, PBHs could be constrained more easily than in a
region where the ICL produces microlensing events.
Giant arcs are ideal candidates, since the exact location of the

CC can be estimated with great accuracy owing to symmetry
principles. Knowing the exact location of the CC is very
important to break the degeneracy between the microlens mass
and the magnification (see Equation (9)). In particular, elongated
thin blue arcs tend to form in regions where κ≈γ≈0.5, since
then a1=1−κ−γ≈0 and a2=1−κ+γ≈1. The first
(a1≈ 0) condition produces arcs with very large tangential
magnification while the second condition (a2≈ 1) is needed to
produce very thin arcs (small radial magnification). Thin giant
arcs are normally found in elliptical potentials in regions
relatively far away from the central BCG and where the ICL is
moderate or small, reducing the negative impact of microlenses
from the ICL that could be mistaken for PBHs. Blue arcs are also
more likely to contain younger giant stars that can be very
luminous and make ideal background sources.
From the observational point of view, having data with a

high cadence (one data point every week or two weeks and
daily when the flux aproaches the maximum) is important for
constraining the shape of the peaks. The width of the peak
depends most strongly on the ratio R/v, where R is the radius of
the background source and v the relative velocity between the
source and the caustic. Deep observations of the event are also
useful for improving the photometry and ruling out (or
confirming) smaller peaks that could be hidden between the
most prominent ones. Also, if the background source consists
of a binary system, different events would have a similar
pattern with two consecutive peaks.

7.1. PDF of the Light Curves

The PDF of the observed magnification (extracted from light
curves spanning ∼400 yr) is shown in Figure 14. Clearly, a
compensating effect is taking place when F is higher. The
PDFs look remarkably similar independent of the value of F.
The situation is very similar to the result presented in Figure 8.
When F is higher, the PDF shown in Figure 14 shifts toward
lower magnifications. However, in the observed light curve,
moderate magnifications (μ≈ 103) have similar probabilities.
This is a consequence of the trains breaking up into smaller bits
as F grows. Perhaps the most interesting difference is the trend
observed at very low magnifications (μ≈ 10) and very high
magnifications (μ≈ 104). When F is high, it is more difficult to
hide an entire macro-image from the observer (i.e., the total
flux of the macro-image is very low) on the side where a1<0.
This is a consequence of the overlapping caustics in the source
plane, as we have seen earlier. For high magnifications,
Figure 14 also shows a deficit of bright peaks when F is higher.
When F is higher, the side with negative parity (a1< 0) and the
side with positive parity (a1> 0) behave similarly, as shown in
Figure 14. The fact that the observed light curves from Icarus
and Iapyx look very distinctive suggests indirectly that F must
be 1%.

7.2. Power Spectrum

The distribution of peaks and valleys depends on the optical
depth of the microlenses. A correlation function, or power
spectrum, of the light curves can highlight hidden features in
the light curve such as correlations that are not easily identified
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in the PDF. Correlations between peaks are expected, for
instance, when a single microlens produces a double peak. The
separation between the peaks is, in this case, generally
proportional to the square root of the mass of the microlens.
We compute the power spectrum of the light curves and show
the result in Figure 15 for the models with only ICL stars
(Spera) and for models where we add to the Spera model a
fraction of the total mass in the form of compact DM
(or PBHs).

The power spectrum seems to be more sensitive to the
optical depth of microlenses on the side where a1<0. This
behavior is also found in the PDF of the light curves. Similarly
to Schechter & Wambsganss (2002), we find that fluctuations
are accentuated when the fraction of microlenses relative to the
smooth component is smaller. Interestingly, on the side with
a1<0 and for the cases with higher F (PBH=3.3% and
PBH=10%), the power spectrum behaves like pink noise (or
1/f noise) on large scales, a behavior which is found in many
situations in nature. One of these situations is relevant for this
work and refers to self-organized criticality25 systems intro-
duced by Bak et al. (1987; see Jensen 1998; Christensen &
Moloney 2005, for more detailed descriptions of these
systems).

The 1/f nature of the power spectrum on large timescales
(more than a few months) indicates that there is no
characteristic timescale on the side where a1<0.

A similar argument could have been used for the PDF of the
magnification or the light curves, which also exhibit power-law
behaviors typical of systems where self-organization is
involved. In this case, it is the magnification itself that is
redistributed across the image plane, owing to the constraint
that the total magnification (or observed flux) remains constant
when integrating over long periods of time independent of the
substructure in the lens plane. When F is large (PBH=10%),
the properties of the power spectrum resemble those of time
series that fall in the categories of stationary fractals
(Rodríguez 2014), which can be linked to renewal processes
(a generalization of a Poissonian process) in which the time

intervals between events are not correlated. This is the expected
behavior for the separation between events when the distribu-
tion of projected microlenses is random.
The energy spectral density (ESD) can be used to measure

the total amount of signal contained in the power spectrum,

ò m= ∣ ( )∣ ( )E t dt, 162

which by Parseval’s theorem is equivalent to the integral of the
square of the power spectrum. Figure 16 shows the ESD for the
Icarus and Iapyx simulated light curves and for the models
shown in Figure 15. A clearer trend is observed on the side
where a1<0, suggesting that ESD of the fluctuations on this
side of the main CC may be more capable of discriminating
between different optical depths of microlenses.
To produce accurate power spectra that can discriminate

among different models it will be necessary to monitor these
events for decades, similarly to what is being done for QSOs
and other variable objects. With smaller samples, the two-point
correlation function offers an interesting alternative.

8. Discussion

Earlier work suggests that, from a statistical point of view, it
is very difficult to distinguish the mass distribution of the
microlenses for a fixed surface mass density and shear (Wyithe
& Turner 2001). In contrast, Schechter et al. (2004) show how
the PDF of magnifications is sensitive to the mass distribution
of microlenses. Our results partially support this. Some
differences exist for similar optical depths, but the differences
are relatively small. Interestingly, these differences seem to be
more accentuated on the inner part of the main CC (a1< 0).
One of the most striking features in the light curves, and

which is also sensitive to the optical depth of microlenses, is
the “hiding” periods when the flux of a macro-image falls
below the detection limit. These low-magnification periods
observed in our simulated light curves are similar to those
found by Kayser et al. (1986) or Paczyński (1986) when the
dimensionless surface mass density of stars, σ=Σs/(1−Σc),
is negative (here Σs is the surface mass density of stars and Σc

is the surface mass density of the smooth distribution of
matter). The counterintuitive results of Schechter & Wambs-
ganss (2002) can be also interpreted in light of our own results.
They find that “contrary to naive expectation, diluting the
stellar component of the lensing galaxy in a highly magnified
system with smoothly distributed DM increases rather than
decreases the microlensing fluctuations caused by the remain-
ing stars.” Our simulations show that increasing the fraction of
mass in compact objects results in lowering the typical
magnification and consequently the fluctuations. Also, over-
lapping caustics smooth out large fluctuations.
Although in our simulations, σ is always positive (Σs> 0

and Σc< 1), making the masses of the microlenses negative in
the simulation changes the magnification pattern of the a1>0
side into a pattern similar to the a1<0 side and vice versa.
That is, it would be equivalent to the cases discussed by
Kayser et al. (1986) and Paczyński (1986) with σ<0. When
comparing the histograms of intensities (or magnifications) in
Paczyński (1986) with our results, we find a similar trend.
Negative values of σ (or negative optical depth following
Paczyński’s argument) reproduce our results for a1<0.
The work of Paczyński (1986) also presents another

interesting result relative to the extension of the train of

Figure 14. Histogram of the magnification computed from the simulated light
curves (at 0 13 distance from the main CC). Similarly to what is observed in
Figure 8, the distinction between different models is not obvious at high
magnification. Note how, for the case with 10% DM microlenses, both sides of
the main CC (a1 > 0 and a1 < 0) behave similarly, as this case has already
reached the saturation level (τ > 1). Finally, note also how the probability still
scales as μ−3 at high magnifications.

25 Note, however, that the original claim between the 1/f noise and the self-
organized criticality is not formally correct, as discussed by Jensen (1998).
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micro-images, or the halo in Paczyński’s terms. As σ increases,
the size of the halo of micro-images grows as well. In our case,
we observe the same phenomenon with the trains extending
over larger distances along the direction where micro-images
form (i.e., in the direction of the deflection field). When Σs is
sufficiently large, micro-images start to form in a more
complex pattern, breaking the straight line found when Σs is
low and adopting a configuration that more resembles the halo
described by Paczyński (1986).

Perhaps the most interesting practical application of caustic
crossing events is their ability to constrain the fraction of
compact DM. For a given surface mass density of microlenses,
Σ, the optical depth scales linearly with Σ. One can use this
fact to set limits on Σ by observing the slow rise (or decline) in
flux of a magnified background star as it approaches (or departs
from) the cluster caustic. If Σ is sufficiently large and the
position of the caustic or CC can be determined with relative
precision, microlensing events should become ubiquitous
thousands of years before (or after) the star crosses the cluster
caustic. This can be visualized easily in the source plane for the
case of high Σ.

The rate of observed events like Icarus at the position of
background arcs known to cross caustics gives us indirect
information about the level of disruption of cluster caustics

and/or about the luminosity function of the background object.
This is easier to see in the ideal case where the caustic is not
disrupted. If the mass–luminosity relation follows analytical
models (L∝M3 in normal stars where gas pressure and gravity
are balanced, and L∝M in heavy stars where radiation
pressure overwhelms gas pressure), we should expect a classic
IMF that falls like µ -dN dM M 2.3 to translate into luminosity
functions µ adN dL L with −2.3<α<−1.1 depending on
the mass (or luminosity) of the star. As discussed by K18,
owing to the 1/μ2 probability of being magnified by a factor
larger than μ, if µ -dN dL L 2, the smaller probability of being
magnified by a larger factor μ gets exactly compensated by the
larger abundance of lower-luminosity stars, making all
unlensed luminosities have the same probability of being
observed. A stellar luminosity function, dN/dL, that is steeper
than L−2 results in lower-luminosity stars being more likely to
be observed above a certain flux limit in caustic crossing events
than higher-luminosity stars. In contrast, if dN/dL is shallower
than L−2, brighter stars will be more likely to be observed than
the less luminous ones. When the cluster caustic is disrupted by
microlenses, the argument above remains the same, since the
probability of being magnified by a factor larger than μ still
retains its fundamental form at high magnifications, μ−2 (see
Figure 14), except that now the normalization of the probability
is smaller and very rare extremely luminous stars may be
required to produce the observed flux.

8.1. Uncertainties in the Lens Model

Despite the high quality and excellent agreement between
the different lens models that have been published for clusters
like MACS1149, there are still significant uncertainties in the
lens models that limit the capability of using CC crossing
events as probes of DM (or substructure in general). For the
work presented here, one of the most relevant systematics is the
uncertainty in the magnification near the CC. Meneghetti et al.
(2017) and Priewe et al. (2017) show how discrepancies of
order 50% in the magnification are typically found between
state-of-the-art lens models that are otherwise considered
accurate. Here we compare the predictions made by two of
these models derived under very different assumptions.
The first one is the free-form model from D16 derived using

the WSLAP+ free-form code (Diego et al. 2005, 2007). The
second is from Kawamata et al. (2016) derived using the

Figure 15. Power spectrum of simulated light curves. The prominent oscillations or peaks on small scales in the red curve for the a1<0 case in the right panel are due
to the low-magnification periods (the reader can think of the Fourier transform of a top-hat). Similar, but more modest, oscillations can be appreciated in other cases
as well.

Figure 16. Energy spectral density of the light curves as a function of the
fraction of mass in the form of microlenses, F. In both cases, the curves are
normalized to 1 to better show their relative change with F. Note how the side
with a1<0 shows a more consistent trend.
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parametric code GLAFIC (Oguri 2010). The two models
correctly predict the position of the CC between Icarus and
Iapyx, and have successfully anticipated the position and time
of reappearance of SN Refsdal. However, as shown in
Figure 17, the two models disagree by a factor ∼2 in the
predicted magnification at Icarus and Iapyx. (A third model, by
Richard et al. 2014, predicts a magnification similar to the D16
model with μo= 150± 10). The reason for this disagreement
can be found in the small differences in the deflection field near
the critical region. The condition for a CC to occur is that a
certain combination of derivatives of the deflection field cancel
out. In particular, the inverse of the magnification is given by

m a a a a a a= - - + -- ( )1 , 17x
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where αx and αy are the deflection field in the x and y directions
and ai

j is the partial derivative of αi with respect to the
coordinate j ( =i j x y, , ). From the expression above, it is clear
that small changes in the deflection field near the point where
the inverse of the magnification is zero can have a significant
impact on the delicate balance between the derivatives in
Equation (17). The magnification is then more sensitive to the
small differences in α near the CCs, where in relative terms
these differences are larger.

Small differences in the inferred deflection field between
different lens models are expected. For instance, each method
assumes different profiles for the halos around member
galaxies or for the cluster halo(s), which results in potentials
that are more or less shallow.26 Also, the inferred positions of
the background sources used to constrain the lens models differ
from model to model. These unknown positions are treated as
variables that need to be determined together with the mass
distribution (or potential) of the galaxy cluster. By comparing
the models of D16 and Kawamata et al. (2016), we find that CC
positions, κ, and γ generally agree to within percent levels
(except in the surroundings of small member galaxies
considered in one model but not in the other). However, at
the position of Icarus and Iapyx, the deflection angle disagrees
by a factor of ∼40%. In absolute terms, the difference between
deflection angles is small (only ∼3″), but since both deflection
angles are relatively small in this part of the lens plane, it
translates into a large relative difference. The ∼3″ difference in

the deflection field originates in the different predicted
positions of the background source used to constrain this part
of the lens plane. The small differences in the derivatives of the
deflection field around the CC translate into a factor of ∼2 in
the magnification.
The uncertainty in the magnification has direct implications

on our ability to constrain the masses of the microlenses. As
shown in Section 2, the effective lensing mass of the microlens
scales as m . A factor of 2 uncertainty in the magnification
then translates into a factor of 2 uncertainty in the mass of the
microlenses. Future observations may need to rely on
independent calibrators of the magnification. One such
calibrator could be an SNIa in a background galaxy and that
happens to be near the CC. For instance, in Rodney et al.
(2015), SN HFF14Tom is used to compare the observed
magnification with the one predicted by several lens models,
finding in general good consistency but also a small systematic
bias in many of the lens models that tend to overpredict the
observed magnification by ∼10%–20%.

8.2. Exploring the Small-mass Compact DM Regime

The best constraints on the compact DM when Σ is small
should be obtained in a portion of the CC where the
contribution from ICL stars (and remnants) is negligible. If
ICL stars are populating the lens plane at the position of the
CC, they will limit the ability to constrain the amount of
compact DM. The ideal situation is to monitor a blue arc (to
maximize the number of luminous stars) known to cross a CC
and located far from the ICL or member galaxies. Ideally, such
an arc contains a very bright star that is, on average, visible
when magnified with the macromodel magnification in order to
construct its light curve to probe DM (in contrast, it will be
difficult to distinguish if different events correspond to different
stars). In such situations, the possibilities of detecting small-
size microlenses increase significantly. Moreover, as discussed
earlier in the paper, monitoring arcs behind a galaxy cluster CC
has the added advantage of probing a wide area in the lens
plane for a fixed amount of time. This is a consequence of the
increase in density of microcaustics at high magnifications. The
reader can find an interesting discussion on this subject in
Oguri et al. (2018).
If the contribution from ICL stars is very small, the light

curve should contain very few peaks and the main caustic
would be minimally disrupted, allowing the approach to the
caustic to have maximal magnification. As shown earlier in
Figure 13, at optical depths of microlensing which are a factor
of 30 smaller than the value found at Icarus/Iapyx (i.e.,
Σ=Σo/30), the fluctuations in the light curve may still be
significant, and the microlenses from the ICL may overwhelm
the signature of an unknown population of microlenses with
low mass (for instance, PBHs with masses smaller than 1Me).
However, the results shown in the right panel of Figure 13 may
not be the most realistic representation of a population of ICL
microlenses with a small optical depth from the ICL.
Estimating the precise amount of ICL that minimally disturbs
the CC (needed to explore the low-mass regime of a hidden
population of microlenses) is not trivial, but we can make some
approximations.
First, and for the sake of simplicity, we assume that all the stars

in the ICL have 1Me. (This is not a bad approximation, since we
want to estimate the number density of objects which, for most
IMF models, is dominated by stars with masses close to 1Me).

Figure 17. Comparison of the predicted magnification between the models of
D16 (red) and Kawamata et al. (2016) (blue) along a line that crosses the CC in
an orthogonal direction and at the position between Icarus and Iapyx.

26 The deflection field is related to the lensing potential through partial
derivatives.
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Then, we make use of the scaling for the effective Einstein radius
of the microlens, q me t (Q= 1) (see Appendix A). Since from
Equation (5), m m m m m q= = ( )t r o r , we can find the value of θ
for which the effective Einstein radius of the microlens is equal to
θ, the distance to the CC. We can require that the separation
between microlenses be at least twice this angle in order for the
CC not to be completely disrupted.

For the values in the D16 model, we then infer that the
surface mass density of stars must be ~ M10 arcsec6 2 , or
roughly two orders of magnitude smaller than the value found
at the position of Icarus and Iapyx. Even though this may seem
like a big difference, we have to realize that Icarus and Iapyx
are found relatively close to the cluster center (∼7″ from the
BCG), where the contribution from the ICL is still important. A
simple fit to the total observed light around the BCG of
MACS1149 (in the F160W band) shows how the unresolved
flux around the BCG falls as d1 2 (up to ∼30″ from the BCG),
where d is the distance to the BCG. This is also the expected
behavior if the ICL traces the DM, which from simulations (but
also observations) falls as ρ(r)∝r−3 in the outer regions of a
cluster (with r ( )r the three-dimensional mass density). Hence,
in order for this unresolved flux to fall two orders of magnitude
with respect to the ICL found at 7″, one should move a factor of
∼10 (that is, ∼1′) from the BCG (less if the ICL falls faster
than the assumed d1 2 at larger radii, since there are fewer
galaxies that can lose stars to the ICL). The CC of clusters at
z≈1.5 does not reach these distances, but at higher redshifts
(z> 3) it can extend up to ∼1′ along the main axis of the
cluster. However, at these redshifts, the flux of a background
star is a factor ∼5.5 times smaller than at z=1.5 (or ∼1.8 mag
fainter for z= 3). One would need extremely luminous stars at
high redshift and a powerful telescope capable of observing
their redshifted emission. Luckily, such combinations will exist
in the near future. The James Webb Space Telescope (JWST)
may be able to observe the first Population III stars through
caustic crossing events (see Windhorst et al. 2018, where this
scenario is studied in detail). Population III stars crossing a
caustic far from the projected center of the cluster (to avoid the
contamination from ICL microlenses) can then be used to
constrain the fraction of compact DM to unprecedented levels.

This scenario offers the possibility of constraining PBHs in
the less explored low-mass regime (M< 0.1Me). If we
consider the ideal situation of a smooth deflection field with
negligible contribution from the ICL stars, a microlens with
small mass, M, close enough to the CC will behave as a larger
microlens with mass μM, and will produce a peak before the
maximum flux is reached. If the background star is large, this
peak may merge with the primary peak, making the identifica-
tion of the microlens harder (see Figure 18). However, if the
background star is sufficiently small (few tens of solar radii),
the peaks may be distinguished and the relative height of the
peak due to the microlens can be used to constrain the mass of
the microlens. Figure 18 shows how a microlens with a Jupiter
mass at z=0.55 can produce a change in flux of almost half a
magnitude for a period of ∼1 day.

Finally, as discussed in the previous subsection, the ideal
target area would contain a magnification calibrator such as an
SN Ia near a CC, which can be used to directly estimate the
magnification in that part of the lens plane and reduce the
uncertainty in the lens model magnification. SN Refsdal
is relatively close to Icarus, but it is also too close to a

medium-size member galaxy which overwhelms the cluster
contribution.

9. Conclusions

This work studies the particular case of microlenses very
close to a cluster CC. As one approaches the CC, the
magnification changes rapidly, affecting the way microlenses
disrupt the magnification pattern. The main results are
summarized below.
1.Superluminal substructure probe. We have shown how

the observed velocity of the macro-images is proportional to
the magnification. Consequently, the apparent transverse
motion of the observed macro-images becomes superluminal
when the distance to the CC is sufficiently small and the
magnification is sufficiently large. Under these circumstances,
moving macro-images probe more substructure in the lens
plane than a classic microlensing event.
2.Distinctive light curves. As found in previous work, the

light curves on each side of the CC look quite different (at low
optical depths and magnifications smaller than 1000), with
periods of very low flux on the side where a1<0 not present
on the a1>0 side. This deficit in flux on the side with a1<0
is compensated by brighter peaks when a micro-CC is
intersected by the background star. At high optical depth
(τ> 1) or extreme magnifications (from the macromodel) of
several thousands, there is little distinction between the positive
and negative parity sides.
3.Reduced maximum magnification. Macro-images of a

small background source, like a bright star, crossing a cluster
CC can be magnified by factors of ∼106, provided there is no
substructure that disrupts the CC. When microlenses populate
the lens plane, the maximum magnification is reduced, but it
can still reach values of several thousands.
4.Flux borrowing. Microlenses can borrow photons from

the main caustic thousands of years before the background star
crosses the position of the main caustic, making the observation
of these events much more likely than previously thought. This
produces peaks in the light curve with magnification factors of
several thousands. If microlenses are ubiquitous, multiple
peaks are expected hundreds or thousands of years before the

Figure 18. Light curve for the ideal situation of a smooth model plus a small
microlens near the CC. The microlens has one Jupiter mass and the background
star is moving at v=1000 km s−1 relative to the caustic and has a radius of
20 Re (solid line). The dashed and dotted lines show the light curves for
background stars with radii of 100 Re and 500 Re, respectively. The ordinate
shows the relative change in flux expressed in magnitudes.
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background star crosses the main caustic. The number of peaks
(and their intensity) depends on the density of microlenses and
their masses. The constraint on flux conservation implies that,
during the crossing of the main caustic, the magnification is
orders of magnitude smaller than for the smooth DM model
when microlenses are disrupting the main caustic. Moderate
disruption of cluster caustics increases the probability of
detecting microlensing events of fainter background stars,
while significant disruption produces microlensing events
much farther away from the main CC that can be observed
only when the background star is extremely luminous.

5.Saturation and 1/f noise. When microlenses populate the
lens plane, there is a region around the main CC where the
optical depth exceeds the critical value of 1. The width of this
region depends on the surface mass density of microlenses and
the properties of the cluster deflection field. Within this region,
the microcaustics overlap in the source plane and the
magnification pattern is changed substantially. The power
spectrum of the light curves shows features on larger timescales
that resemble the ubiquitous 1/f noise present in self-organized
criticality or renewal processes studied in other fields.

6.Constraints on PBHs. The condition required for the
interior macro-image (a1< 0) to disappear during an extended
period is that there exist low-magnification areas in the source
plane. This effect was also predicted in earlier work, and it was
shown to be important for low contributions from microlenses
(see, e.g., Schechter & Wambsganss 2002). When enough
massive microlenses are added in the lens plane, for instance if
PBHs make up a significant fraction of the DM (larger than a
few percent), it becomes harder to satisfy this condition since
the microcaustics start to overlap on top of the low-
magnification regions. Thus, the lack of extended periods
where one of the macro-images vanishes can be used to set a
limit on the fraction of DM in the form of microlenses (like
PBHs). So far, the data provided by Icarus seem too sparse to
place strong constraints on the fraction of DM that can be in a
compact form (although they appear to favor a low fraction of
DM as PBHs). Continuous monitoring of both Icarus and Iapyx
in the near future will allow us to derive such strong constraints
after the identification of additional peaks and the precise
modeling of these peaks together with the extended periods
between peaks. Interestingly, K18 report a possible nearby
third event (Perdix, or LS1/Lev 2017A) that could correspond
to a different background star being lensed by the same web of
caustics.

7.Complementary to QSO microlensing. An obvious
advantage of this type of observation when compared with
QSO microlensing is that, owing to the smaller intrinsic size of
the background source (a few solar radii as opposed to
∼0.01 pc (∼0.001 pc) for optical (X-ray) accretion disk) and
the larger apparent motion of the macro-images, the timescale
of a microlensing event is much shorter (by 3 or 4 orders of
magnitude) and the magnifications during maxima are larger
(by 1.5 or 2 orders of magnitude). Light curves spanning
several years can intersect several microlenses and can be used
to determine a census of microlenses. The constraints derived
in this way on the population of microlenses are then affected
mostly by local substructure and less by projection effects
acting on larger scales.

8.Cosmic microscopes. When the optical depth of micro-
lenses is very small, a caustic crossing event can be used to

probe very small masses near the CC. A microlens at cosmic
distance with a mass similar to that of Jupiter can produce
features in the light curve that can be observed with current
technology provided the radius of the background star is
sufficiently small. This opens the exciting possibility of
probing compact DM in the low-mass regime, unreachable
by other means, where at extreme magnifications of order 106,
a Jupiter-like microlens would behave as a microlens with a
mass ∼1000Me. Monitoring (with JWST) of high-redshift
galaxies rich in luminous PopIII stars that are intersecting a
CC far away from the ICL would be valuable, since these are
ideal targets for this kind of study (Windhorst et al. 2018).
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Appendix A

This appendix presents the basic formalism for a single
microlens near a CC. We consider the simple scenario where
the deflection field from the cluster is oriented in the vertical
direction (y axis in the equations below). In this configuration,
the CC from the cluster will be a horizontal line, the tangential
magnification will be that in the vertical direction, and the
radial magnification will be in the horizontal direction. A reader
familiar with lensing models may find this definition of
tangential and radial magnifications counterintuitive, since we
are assigning the radial magnification to a direction that is
tangential with respect to the source of the deflection field.
This, however, is the case for some tangential arcs that stretch
in directions perpendicular to the CC, like for instance the arc
containing the Icarus event discussed by K18.
If we place a microlens (point source) with Einstein radius re

at a position (xo, yo), the deflection field around the point source
is a = xr rx e

2 2 and a = yr ry e
2 2, where = +r x y2 2 2 and

locations (x, y) have their origin at ( )x y,o o . The mapping
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between the image plane and the source plane is no longer
given by Equation (4) (in the main text); instead, it can be
described by

b
m
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+ -
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where the first term accounts for the deflection field from the
cluster ( = QrE and y=θ in Equation (4)) and the second term
corresponds to the deflection field from the point source. We
have assumed that the deflection field of the cluster is such that
it stretches the images in the y direction by some large factor
m = a1t 1 and in the x direction by a smaller factor m = a1r 2

(i.e., μ= μtμr). The constant μr is the small eigenvalue (for a
tangential CC) of the magnification (i.e., m= =-a r2

1

k g- +1 ). Similarly, m k g= = - --a 1t1
1 . The inverse

of the magnification, μ−1, can be computed as the determinant
of the Jacobian between the source-plane positions and the
image-plane positions:

b
q

=
+ -

+
- -

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

( )

( )
( )

( )

d

d

a x y
r

r
xy

r

r

xy
r

r

y y

r
x y

r

r

2

2 2

.

19

e e

e o e

2
2 2

2

4

2

4

2

4
E

2 2
2

4

Computing the determinant of the expression above results in

m = - -
-
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-- ( ) ( )a a a a
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where = +( )a y y r2 o1 E. When there is no microlens (re= 0),
μ−1 is equal to the original m m m= =- - - a at r

1 1 1
1 2. The term

- +( ) ( )x y x y2 2 2 2 is equal to d =( ) Qcos 2 , where d =( )tan
y x. Q changes sign in different quadrants as shown in
Figure 19.
Approximate solutions to Equation (20) can be found after

a few simple assumptions are made. Analytical solutions,
even though approximate, are very useful for unveiling
scalings with the microlens mass or distance to the CC of the
cluster that can be exploited later in statistical analyses. To
find an analytical solution of Equation (20), we assume that

= + » =( )a y y r y r2 2 constanto o1 E E . This approximation is
valid when yo?y, which corresponds to a distance from the
cluster CC much larger than the Einstein radius of the
microlens. A simple solution (CCs) can be found after setting
this equation to zero, multiplying by r4, and making the
variable change =x r re

2 2. This results in the following
general solution,

=
-

 +
-

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )r r
a a Q

a a

a a

a a Q2
1 1

4
. 21e
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Figure 19.Magnification expected for a microlens near a CC. The inverse of the magnification is given by Equation (20). The left panel corresponds to the case where
the microlens is on the a1>0 side (Icarus) discussed in the text, while the right panel is for the case where the microlens is on the side with a1<0 (Iapyx). In both
panels, the CC from the cluster is shown as the (nearly) horizontal line.
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Depending on the values of a1, a2, and Q, the quantity r
2 can be

positive or negative. If r2 is negative there is no real solution.
On each side of the CC, k g= - -a 11 changes sign (and
equals zero on the CC). The solutions of Equation (20) can be
divided into two sets, one having a1>0 and the second with
a1<0. Below we discuss these solutions based on simple
approximations.

For simplicity we assume that mr is constant and positive.
Near a tangential CC, μr (or similarly a2) changes very slowly
around a given point, so this is a good approximation for our
purposes. Also, in our case (microlenses near a tangential CC),
m mt r (or a2?a1) and the term (a2−a1) is always positive.
For convenience we define

=  + -(( ) ) ( )F a a a a Q1 1 4 , 221 2 2 1
2

and in particular,

= + +
-

+ ( )
( )F

a a

a a Q
1 1

4
231 2

2 1
2 2

and

= - +
-

- ( )
( )F

a a

a a Q
1 1

4
. 241 2

2 1
2 2

Since a a2 1, we can approximate »+F 2 and »-F
- ( )a a Q2 1 2

2 . The term d= ( )Q cos 2 can be either positive
or negative depending on the quadrant: Q<0 in π/
4<δ<3π/4 (hereafter quadrant 1) and 5π/4<δ<7π/4
(hereafter quadrant 3), and Q>0 in −π/4<δ<π/4 (here-
after quadrant 4) and 3π/4<δ<5π/4 (hereafter quadrant 2).
For clarity we mark these quadrants in Figure 19.

A.1. Solutions for a1>0

If a1>0, then Q and F must be the same sign in order to
have r2>0. If a1>0, then F+>0 and F−<0. In quadrants
1 and 3, Q<0 and only the solution with F− is real. The
corresponding solution is m» »∣ ∣r r Q re r e for Q≈−1.
These solutions can be used to estimate the size of the CCs, and
the caustics, associated with the microlenses and by extension
to estimate the cross-section for microlensing (see Oguri
et al. 2018). In quadrants 2 and 4, Q>0 and only the solution
with F+ is real. The corresponding solution is »r

m ∣ ∣r Q re t e for Q≈1.
When a1>0, the micro-CC reaches a maximum distance

much larger than re when Q=1 (horizontal direction or δ≈ 0,
δ≈ π) and decreases toward a distance comparable to re at
Q=−1 (vertical direction or δ≈±π/2). For smaller values
of ∣ ∣Q , r moves between these two extreme values. The CC in
this case resembles an hourglass on its side.

A.2. Solutions for a1<0

If a1<0, both F+ and F− are positive, so if Q>0 there is
no real solution since r2<0. A solution exists only in
quadrants 1 and 3 where Q<0. In this case (Q< 0) there are

two solutions, one for F+ and one for F−. The solutions have
magnitudes similar to the case a1>0 discussed above—that is,

m» »+ ∣ ∣r r Q re r e and m»- ∣ ∣r r Q re t e (for Q≈−1).
When a1<0, there are no CCs in quadrants 2 and 4, and

the CC is oriented in the direction of the deflection field (i.e.,
in the vertical direction in our configuration). In quadrants 3
and 4 there are two solutions, and for Q≈−1 the smallest
solution is close to the position of the microlens (r≈ re)
while the larger solution extends much farther (r?re). For
smaller values of ∣ ∣Q there are still two solutions, but the
separation between them is smaller. The CC in this case
resembles an hourglass standing up. The hourglass config-
uration is also found in earlier work; see Chang & Refsdal
(1984), Mao & Schneider (1998), and also Figure 8.8 of
Schneider et al. (1999). The same early work shows how the
caustics are different for each parity. Caustics for a microlens
on the side with positive party (a1> 0) resemble the usual
diamond shape but significantly stretched in the direction
of the main caustic. On the side with negative parity, the
caustics develop a gap in the central region of the diamond
shape. This gap is responsible for the low-magnification
periods observed in the counterimage with negative parity
(Iapyx).
The approximate solutions shown above can be tested by

solving Equation (20) numerically, and without any approx-
imations. The magnification μ (Equation (20)) is visualized
graphically in Figure 19 for a configuration where μt=5
and =r r 5000eE . The two hourglass shapes are evident,
as well as the lack of solutions in quadrants 1 and 3
when a1<0.
It is interesting to highlight the scaling of the solutions above

with the magnification. The maximum dimension of the CC is
m»r re t . This is the same result we found in Section 2 (see

Equation (9)), where we showed how a microlens with mass M
behaves like an microlens with mass mM t.
As noted by Saha & Williams (2011), the minima in the

arrival-time surface cannot be demagnified, while this is
possible in a saddle point (i.e., on the side where a1< 0).
Even though the magnification pattern can be very complex
when the CCs, or caustics, of microlenses start to overlap, the
properties and scalings presented above for a single microlens
are still accurate provided the optical depth for lensing is not
very high. We find that at optical depths similar to those found
in the Icarus and Iapyx events, the single-microlens formalism
presented above is still accurate for describing individual
events.

Appendix B
Animations

This section includes various animations of a background star
moving between the network of caustics. Figures 21 and 20 show
how counterimages are being formed and destroyed as a very large
background star moves with 1000 km s−1 relative velocity toward
the main caustic. The radius of the star is very large (70,000 Re) in
order to better visualize the counterimages that otherwise would
be unresolved at this resolution. This large radius is comparable to
the X-ray emitting region of a QSO so the movies are useful also to
see how these QSO regions would form and disappear if they could
be resolved. Figure 20 is for a case where the microlenses are the
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stars and remnants from the intracluster medium. Figure 21 adds to
these microlenses PBH with 30 Me. The surface mass density of
the PBH makes up to 1% of the total surface mass density of the
cluster. In both cases, the top panel shows counterimages in the
side with positive parity and the bottom panel is for counterimages

in the side with negative parity. Note how in the case where PBHs
are present counterimages can form relatively far away from each
other. Future observations with milliarcsecond or sub-milliarcse-
cond resolution can potentially resolve the different locations and
set strong limits on the fraction of PBHs.

Figure 20. Formation and destruction of counterimages (and corresponding magnification) produced by a moving star behind a field of micolenses near the CC of the
cluster. The top two panels (a and b) correspond to counterimages on the side with positive parity. The bottom two panels (c and d) are for counterimages in the side
with negative parity. The microlenses are stars and remnants from the intracluster medium. In order to better visualize the counterimages, the size of the background
star has a very large radius of 7×104 Re. The star is moving toward the cluster main caustic at a relative velocity of 1000 km s−1. The animation runs from 0 to
190 yr and has a duration of 1 min 7 s.

(An animation of this figure is available).
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