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Abstract In this article, we demonstrate that the inclu-
sion of right-handed neutrino superfields in the Next-to-
Minimal Supersymmetric Standard Model (NMSSM) makes
it possible to impose universality conditions on the soft
supersymmetry-breaking parameters at the Grand Unifica-
tion scale, alleviating many of the problems of the so-called
Constrained NMSSM. We have studied the renormalization
group equations of this model, showing that right-handed
neutrinos greatly contribute to driving the singlet Higgs
mass-squared parameter negative, which makes it consider-
ably easier to satisfy the conditions for radiative electroweak
symmetry breaking. The new fields also lead to larger values
of the Standard Model Higgs mass, thus making it easier to
reproduce the measured value. As a consequence, all bounds
from colliders and low-energy observables can be fulfilled in
wide areas of the parameter space. However, the relic density
in these regions is generally too high requiring some form of
late entropy production to dilute the density of the lightest
supersymmetric particle.

1 Introduction

The Next-to-Minimal Supersymmetric Standard Model
(NMSSM) is a well-motivated construction that addresses
the μ problem of the MSSM through the inclusion of an extra
singlet field, S, which mixes with the Higgs SU (2) doublets
and whose vacuum expectation value after electroweak sym-
metry breaking (EWSB) generates an effective EW scale μ

parameter [1] (see, e.g., Ref. [2] for a review). Among its
many virtues, the NMSSM possesses a very interesting phe-
nomenology, mainly due to its enlarged Higgs sector. For
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example, the mixing of the Higgs doublet with the new sin-
glet field opens the door to very light scalar and pseudoscalar
Higgs bosons with interesting prospects for collider searches.
Moreover, in the NMSSM the mass of the Higgs boson also
receives new tree-level contributions from the new terms in
the superpotential [3,4], which can make it easier to repro-
duce the observed value [5–11]. In addition, the amount in
fine-tuning of the model [12–14] is reduced, when compared
to the MSSM.

Supersymmetric (SUSY) models are characterized by
the soft supersymmetry-breaking terms. The MSSM can be
defined in terms of scalar masses, ma , gaugino masses Mi ,
and trilinear parameters, Ai j . The NMSSM also contains a
new set of couplings: a singlet trilinear superpotential cou-
pling, κ , and the strength of mixing between the singlet and
Higgs doublets, λ. In addition, there are the corresponding
supersymmetry-breaking trilinear potential terms Aλ and Aκ .
If SUSY models are understood as originating from super-
gravity theories (which in term can correspond to the low-
energy limit of superstring models), the soft parameters can
be defined at some high scale as a function of the moduli
of the supergravity theory. In this case, the renormalization
group equations (RGEs) are used to obtain the low-energy
quantities and ultimately the mass spectrum [15–17].

Although in principle the number of parameters is very
large ( >∼ 100), certain simplifying conditions can be
imposed, which rely on the nature of the underlying super-
gravity (or superstring) model. A popular choice is to con-
sider that the soft parameters are universal at the Grand
Unification (GUT) scale, i.e., ma = m0, Mi = m1/2, and
Ai j = A0 [18–27]. When applied to the MSSM, the resulting
Constrained MSSM (CMSSM) has only four free parameters
(including the ratio of the Higgs expectation values, tan β)
plus the sign of the μ parameter. The phenomenology of
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the CMSSM has been thoroughly investigated in the past
decades. Current Large Hadron Collider (LHC) constraints
set stringent lower bounds on the common scalar and gaug-
ino masses, while viable neutralino DM further restricts the
available regions of the parameter space (for an update of all
these constraints, see Refs. [28,29]).

The universality condition is much more difficult to
impose in the context of the NMSSM. The resulting con-
strained NMSSM (CNMSSM) also contains four free param-
eters which we choose as:1 m0, m1/2, λ, and A0 = Aλ =
Aκ , and its phenomenology has been discussed in detail in
Ref. [30]. It was pointed out there that recovering univer-
sal conditions for the singlet mass at the GUT scale with
the correct EW vacuum at low energy often requires a small
universal scalar mass, satisfying 3m0 ∼ −A0 � m1/2. In
order for the singlet Higgs field to develop a vacuum expec-
tation value (VEV) to fix the EW vacuum, we must require
that |A0| is large compared to m0. As a consequence, par-
ticularly due to small m0, the predicted mass range of the
SM-like Higgs boson is hard to reconcile with the observed
value of mh � 125 GeV. In addition, large |A0| (compared
to m0) is also problematic as in this case, the stau tends to
be tachyonic. In fact, this is one of the main obstacles for
obtaining the observed value for the Higgs boson mass. Fur-
thermore, in the CNMSSM, the lightest SUSY particle (LSP)
is generally either the lighter stau or the singlino-like neu-
tralino [31,32]. The stau, being a charged particle, cannot
be dark matter and the appropriate thermal relic abundance
of the singlino-like neutralino can only be realized only for
limited stau-neutralino co-annihilation regions.

In this paper, we show that these problems can be alle-
viated if the NMSSM is extended to include RH neutrino
superfields, which couple to the singlet Higgs through a new
term in the superpotential. In this construction [33,34], the
lightest RH sneutrino state can also be a viable dark matter
(DM) candidate over a wide range of masses [35,36]. First,
the extra contributions to the RGEs help achieve unification
of the soft masses for smaller values of the scalar and gaug-
ino masses. This also allows more flexibility in the choice
of the trilinear parameters. Due to the RGE running of the
soft mass of singlet Higgs field through its couplings with
RH neutrinos, the realization of the EW vacuum becomes
somewhat easier than in the NMSSM without RH neutrinos.

1 Note that in the CMSSM, the value of μ and the supersymmetry-
breaking bilinear term, B0, are fixed by the two conditions derived in
the minimization of the Higgs potential. In the NMSSM, we lose μ and
B0 as free parameters (the latter is replaced with Aλ, which is set equal
to A0). Thus, the two additional parameters λ and κ , can be fixed by
the three minimization conditions (which must also fix the expectation
value of the scalar component of S). In practice, as will be discussed in
more detail below, we allow λ to remain free, using the minimization
conditions to fix κ and tan β. In this sense, the CNMSSM is constructed
from the same number of free parameters as used in the CMSSM.

We find that the lightest RH sneutrino can be the LSP
in wide areas of the parameter space, where the smallest
coupling between RH neutrinos and the singlet Higgs field
needs to be as small as λN ∼ 10−4. As a result, the stau LSP
region is significantly reduced and scalar masses as large as
m0 ∼ 103 GeV are possible, making it easier to obtain a
SM-like Higgs boson with the right mass. Likewise, for the
neutralino LSP case with moderate values of λN ∼ 10−2, the
modification of the RGE of the singlet Higgs is effective and
expands (reduces) the neutralino (stau) LSP region. As the
result, in this case as well, the observed SM-like Higgs boson
mass can be obtained. In both cases the small couplings to
SM particles of either the RH sneutrino LSP or the neutralino
LSP result in a thermal relic abundance which is in excess of
the observed DM density and some kind of late-time dilution
is needed.

The structure of this article is the following. In Sect. 2, we
review the main features of the NMSSM with RH sneutri-
nos, we study the RGEs of the Higgs parameters, comparing
them to those of the usual NMSSM, and we describe our
numerical procedure. In Sect. 3, we carry out an exploration
of the parameter space of the theory, including current exper-
imental constraints, and study the viable regions with either a
neutralino or RH sneutrino LSP. We also compare our results
with the ordinary NMSSM. Finally, our conclusions are pre-
sented in Sect. 4. Relevant minimization equations and beta
functions are given in the appendix.

2 RGEs and universality condition

The NMSSM is an extension of the MSSM and includes new
superpotential terms

WNMSSM = (yu)i j Qi · H2Uj + (yd)i j Qi · H1Dj

+ (ye)i j Li · H1E j + λSH1 · H2 + 1

3
κS3,

(2.1)

where the dot is the antisymmetric product and flavour
indices, i, j = 1, 2, 3, are explicitly included. The model
discussed here consists of the full NMSSM, and is extended
by adding RH neutrino/sneutrino chiral superfields. This
model was introduced in Refs. [35,37] (based on the con-
struction in [33,34]), where it was shown that the lightest
RH sneutrino state is a viable candidate for DM. In previous
work, only one RH neutrino superfield was considered, but
here we extend the construction to include three families, Ni ,
in analogy with the rest of the SM fields and to account for
three massive active neutrinos. The NMSSM superpotential,
WNMSSM, has to be extended in order to accommodate these
new states,

W = WNMSSM + (λN )i j SNi N j + (yN )i j Li · H2N j . (2.2)
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The new terms link the new chiral superfields with the sin-
glet Higgs, S, with couplings λN . Similarly, the new Yukawa
interactions, yN , couple the RH neutrino superfields to the
second doublet Higgs, H2, and the lepton doublet, L . In addi-
tion, the total Lagrangian of the model is,

− L = −LNMSSM + (m2
Ñ

)i j Ñi Ñ
∗
j +

(
(λN )i j (AλN )i j S Ñi Ñ j

+ (yN )i j (AyN )i j L̄i H2 Ñ j + h.c.
)

, (2.3)

where LNMSSM includes the scalar mass terms and trilinear
terms of the NMSSM and L includes new 3 × 3 matrices
of trilinear parameters, AλN and AyN , and a 3 × 3 matrix of
squared soft masses for the RH sneutrino fields, m2

Ñ
. In our

analysis, we will consider that all these matrices are diagonal
at the GUT scale. As pointed out in Ref. [35], the neutrino
Yukawa parameters are small, (yN )i j � 10−6, since the neu-
trino Majorana masses generated after EWSB are naturally of
the order of the EW scale. Thus, they play no relevant role in
the RGEs of the model and can be safely neglected. The new
parameters (λN , AλN ) are chosen to be real. Finally, we will
extend the universality conditions to the new soft parameters,
thus demanding

m2
S = m2

0 ,

(m2
Ñ
)i j = diag

(
m2

0, m
2
0, m

2
0

)
,

(λN )i j = diag
(
λN1, λN2 , λN3

)
,

Aλ = Aκ = A0,

(AλN )i j = (AyN )i j = diag (A0, A0, A0) , (2.4)

at the GUT scale, which is defined as the scale where gauge
couplings of SU (2)L and U (1)Y coincide.

2.1 Radiative EW symmetry breaking and the singlet soft
mass

Using the values of the soft terms, defined at the GUT scale,
the RGEs can be numerically integrated down to the EW
scale. After EWSB, the minimization conditions of the scalar
potential leave three tadpole equations for the VEVs of the
three Higgs fields. At tree level, these are

∂V

∂φd
= vsvuλ

2
(−√

2Aλ − κvs) − (g2
1 + g2

2)

8
vd (v2

u − v2
d )

+m2
Hd

vd + λ2

2
(v2

s + v2
u)vd , (2.5)

∂V

∂φu
= vsvdλ

2
(−√

2Aλ − κvs) + (g2
1 + g2

2)

8
vu(v2

u − v2
d )

+m2
Hu

vu + λ2

2
(v2

s + v2
d )vu , (2.6)

∂V

∂φs
= vs

2
(
√

2Aκκvs + 2m2
S + λ2(v2

d + v2
u)

− 2κλvuvd + 2κ2v2
s ) − Aλλ√

2
vuvd . (2.7)

As noted earlier, using the measured value of the mass of the
Z boson, MZ , and its relation to the Higgs doublet VEVs, vu
and vd , the conditions for correct EWSB allow us to deter-
mine the combination tan β ≡ vu/vd , and vs , as well as
one additional parameter which we take as κ . Thus, the con-
strained version of the NMSSM can be defined in terms of
four universal input parameters,

m0, m1/2, λ, A0 = Aλ = Aκ . (2.8)

In practice, however, solving the system of tadpole equations
is in general easier if one fixes the value of tan β and uses the
tadpole conditions to determine the soft mass of the singlet
Higgs,m2

S . Although this generally results in a non-universal
mass for mS , it is then possible to iteratively find the value
of tan β such that mS = m0.

More specifically, using the above tree-level expressions
(for illustrative purposes), a combination of Eqs. (2.5) and
(2.6) leads to

μ2
eff ≡ 1

2
(λvs)

2 = −1

2
M2

Z − m2
Hu

tan β2 − m2
Hd

tan β2 − 1
. (2.9)

Since λ is an input free parameter, we can use it to define vs
as

vs = ±
√

2μ2
eff

λ2 . (2.10)

The sign of vs plays the role of the sign of μ-term in the
CMSSM. From another combination of Eqs. (2.5) and (2.6)
we obtain

(Bμ)eff≡λvs√
2
(Aλ+ 1√

2
κvs) = sin 2β

2
(m2

Hu
+m2

Hd
+2μ2

eff),

(2.11)

which allows us to solve for κ ,

κ =
√

2

vs

(
−Aλ + (Bμ)eff

sgn(μeff)μeff

)
. (2.12)

For the last parameter, m2
S , we can use Eq. (2.7) in the form

of

m2
S = −

(
1√
2
Aκκvs + 1

2
λ2(v2

d + v2
u) − κλvuvd + κ2v2

s

)

+ 1√
2vs

Aλλvuvd . (2.13)

The one-loop expressions can be found in Appendix A. The
above procedure assumes tan β is free, but in our analysis
we add one extra step: for each point in the parameter space,
we vary the value of tan β in order to impose m2

S(GUT) =
m2

0 (within a certain tolerance (∼ 1 %)). If this universality
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condition cannot be achieved, the point is discarded. This
procedure was outlined in Ref. [38]. Thus, at the end of this
iterative process, the free parameters are those in Eq. (2.8).

This prescription has been applied in the literature to study
the phenomenology of the CNMSSM. A first thing to point
out is that the resulting value of m2

S at the EW scale from
Eq. (2.13) is often negative [39], and this makes it difficult to
satisfy the universality condition. In particular, it was found
in [30] that the resulting value of tan β in the CNMSSM is in
general large and that, in general, the value of the universal
gaugino mass is also large. As a result, the lightest stau is
the LSP in the remaining viable areas of the parameter space
(which poses a problem to incorporate DM in this scenario).
In order to alleviate this, a semi-constrained version of the
NMSSM was explored in Ref. [39], allowing for m2

S �= m2
0

and Aκ �= A0 at the GUT sale.
In our extended model, the solution of the tadpole equa-

tions proceeds in the same way as in the CNMSSM. However,
as we will argue in Sect. 3, the RH sneutrino contributes to
the RGEs of the singlet and singlino and opens up the param-
eter space allowing us to restore full universality. However,
our extended model potentially induces spontaneous R-parity
breaking minimum by the condensation of RH sneutrinos,
which was originally discussed in Ref. [33]. Since the left–
right mixings of sneutrinos are proportional to yN (the com-
plete expression can be found in Ref. [37]) and negligibly
small, the mass of RH sneutrinos is given by

m2
Ñ1

= m2
Ñi

+ |2λNi vs |2 + |yNi v
2 cos2 β|2

± 2λNi

(
AλNi

vs + κv2
s − λv2 sin β cos β

)
, (2.14)

where the plus sign corresponds to the real component of
Ni and the minus sign to its imaginary component. Large
values of the trilinear couplings can therefore easily lead
to tachyonic sneutrinos, indicative of a false vacuum. In our
analysis we have identified those points and considered them
unrealistic vacua.

In particular, the new terms in the superpotential and the
soft breaking parameters enter the one-loop beta function for
the scalar mass of the singlet Higgs, m2

S , which is now given
by

β
(1)

m2
S

= 4
(

3m2
S |κ|2 + |Tκ |2 + |Tλ|2 +

(
m2

Hd
+ m2

Hu
+ m2

S

)
|λ|2

+m2
STr (λNλN ) + 2Tr

(
m2
Ñ

λNλN

)
+ Tr

(
TλN TλN

) )
.

(2.15)

We have defined Tgi = Agi , where A is the soft trilinear
term and gi is the corresponding coupling constant, gi =
yi , λ, κ, λN . The first line corresponds to the usual NMSSM
result, and the second line contains the new contribution from
the coupling of the singlet to the right-handed neutrino. For
completeness, the two-loop expression is given in Eq. (B.1).

We show in Fig. 1 the running of the Higgs mass-squared
parameters as a function of the renormalization scale. We
have chosen an example where the soft terms unify at the
GUT scale in the standard NMSSM (left) and in the extended
NMSSM with RH neutrinos (right). As the RGE running in
the two models differs, we require slightly different values
of tan β to achieve mS = m0. Enforcing the unification of
the scalar singlet mass tends to be problematic for radiative
EWSB in models without the right-handed neutrino, as m2

S

Fig. 1 Two-loop RGE running of the soft Higgs mass parameters,m2
Hd

,

m2
Hu

, and m2
S , imposing the universality condition m0 = 1000 GeV

at the GUT scale, with A0 = −3.5m0, m1/2 = 4500 GeV, and
λ = 0.01 (the latter is input at the weak scale). The plot on the left

corresponds to the standard NMSSM (i.e., with λN = 0). The plot on
the right corresponds to the extended NMSSM with RH neutrinos for
λN = (0.0002, 0.6, 0.6), defined at the GUT scale. The value of tan β

has been fixed separately in each example in order to achieve univer-
sality
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remains positive down to the weak scale. As we can observe,
the effect of the RH sneutrino fields in the running of the
m2

S parameter is remarkable. In this example, it can drive the
positive singlet mass-squared term negative. This alleviates
some tension in the choice of initial parameters.

2.2 Details on the numerical code

We have modified the supersymmetric spectrum calculator
SSARD [40] by adding the necessary RGEs to include addi-
tional terms needed in our extension of the NMSSM. The
code numerically integrates the RGEs between the weak
and GUT scales and solves the tadpole equations used to
determine κ , vs and m2

S as outlined above. The output
of this program is then passed through the public pack-
ages NMSSMTools 4.9.2 [39,41,42] and Micromegas
4.3 [43] in order to get the physical particle spectrum and
the thermal component to the DM relic abundance.

SSARD implements an iterative procedure to solve the
RGEs as follows. Using weak scale inputs for the gauge and
Yukawa couplings, the GUT scale is defined as the renormal-
ization scale where the SU (2)L and U (1)Y gauge couplings
coincide. At this GUT scale, universal boundary conditions
are imposed for all gaugino masses, m1/2, trilinear terms,
Ai = Aλ = Aκ = A0, and scalar masses, m2

i = m2
0, but we

leave m2
S(GUT) as a free parameter. The couplings λN are

also input at the GUT scale. We then run the RGEs from the
GUT to the SUSY scale, where we solve the tadpole equa-
tions (now including the tadpole condition for S) with the
resulting values of the parameters. The coupling λ is input
at the weak scale. Using these low-scale values, we then run
the RGEs upwards, recalculating the GUT scale, and we iter-
ate this procedure until a good stable solution is found. As
a final step, this procedure is repeated for different values of
tan β, searching for points in which the unification condition
|1 − m2

S(GUT)/m2
0| < 10−2 is satisfied.

Once the tadpole equations are solved for the points that
fulfill the universality conditions, we collect all the param-
eters at EW scale and compute the SUSY spectrum using
the public package NMSSMTools 4.9.2 [39,41,42]. The
code checks the scalar potential, looking for tachyonic states,
the correct EW vacuum, divergences of the coupling at some
scale between the SUSY and GUT scales, as well as collider
constraints from LEP and LHC, and low-energy observables.
In particular, R-parity breaking vacua may appear in this
model for large values of the trilinear couplings, as they can
trigger non/vanishing vevs for the sneutrino, as mentioned
below Eq. (2.14). If a point is allowed, the program computes
the SUSY spectrum for the given set of parameter values as
well as the SM-like Higgs mass with full one-loop contribu-
tions and the two-loop corrections from the top and bottom
Yukawa couplings.

In order to test our procedure, we have also implemented
our model inSARAH [44–48], which produces the model files
for SPheno [49,50] to perform the running from the GUT to
the EW scale. We notice that even a “small” variation (within
10%) of the parameters given as input to the numerical codes
(such as λ, A0, m0, m1/2) can lead to very different values
of the outputs—in particular of Aλ, κ and m2

S . On the other
hand, vs turns out not to be affected much by these vari-
ations, since its tadpole equation depends mostly on tanβ,
when tanβ is large. In particular, Aλ is the most numerically
unstable parameter. This instability may induce differences
in the soft mass of the singlet Higgs m2

S , although its RGE is
rather stable and its low-scale value is only affected through
the stationary conditions. Eventually, tanβ is the most sensi-
tive parameter to change outputs significantly. However, its
value is finally fixed by imposing the universality condition
m2

S = m2
0 and therefore all the eventual differences in the

parameters get reabsorbed. We have carried out several tests
and we have found an agreement within a 10% between both
codes. Moreover, we have also tested the codes in the pure
NMSSM limit and we have found an agreement within a 10%
between SSARD and NMSSMTools.

3 Results

In this section, we provide some numerical examples that
illustrate the effect of adding RH sneutrinos in the four-
dimensional NMSSM parameter space with universal condi-
tions. Rather than performing a full numerical scan on all the
parameters, we have selected some representative (m1/2,m0)
slices, and fixed λ = 0.01, A0 = −3.5m0. The condition
3m0 ∼ −A0 � m1/2 is required to get the correct EW vac-
uum [30], as already stated in the Introduction. In agreement
with observed values, we have also fixed mtop = 173.2 GeV,
mbottom = 4.2 GeV.

We have investigated three different scenarios. First, for
comparison, we consider the Constrained NMSSM case, and
then we study two scenarios of the extended model with RH
sneutrinos. In particular, we consider one scenario with λN =
(0.0002, 0.6, 0.6) (“small λN ”) and another one with λN =
(0.01, 0.6, 0.6) (“large λN ”). The “small λN ” scenario is
motivated by the fact that the RH sneutrino can be the LSP
whereas in the “large λN ” the lightest neutralino can be the
LSP.

CNMSSM: Let us first focus on the pure CNMSSM case
without RH neutrino fields. In Fig. 2, we show the results of
a numerical scan in the plane (m1/2,m0). We have imposed
consistency with all experimental results, including ATLAS
scalar searches [51], bounds on low-energy observables,
such as Bs → μ+μ− [52,53] and b → s + γ [53,54]
by NMSSMTools, and collider constraints on the masses
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Fig. 2 Higgs mass contour plot in the plane (m1/2-m0) for the
CNMSSM scenario. We depict in magenta the region of the parameter
space excluded by any of the following reasons: existence of another
vacuum deeper than the EW one; the presence of a tachyonic parti-
cle; experimental constraints from LEP, LHC and others (see text for
a detailed description). In the brown shaded area the stau is the LSP
while in the white area the neutralino is the LSP. Red dashed contours
account for the Higgs mass (in GeV), while the black lines represent
the value of tan β

of SUSY particles. In Fig. 2, the magenta area for large
m0 corresponds to parameter values which lead to a tachy-
onic stau, whereas for small m0 it is due to the ATLAS
h0/H0/A0 → γ γ searches [51], which can be used as a con-
straint on searches of a light Higgs boson that often appears
in the general NMSSM (this essentially rules out the region
of the parameter space with mh < 122 GeV). Notably, given
a solution with a scalar lighter than 122 GeV, we estimate
the signal strength (i.e. cross section × branching ratio) of
the light scalar resonance and we compare it with the above-
mentioned ATLAS experimental bound, although we do not
apply the constraints on the mass and signal rates of the SM-
like Higgs.

Since the purpose of this paper is not to explain anoma-
lies such as those observed in the measurement of the muon
anomalous magnetic moment, (g − 2)μ, or the B+ → τ+ντ

branching ratio, we do not restrict our interest to such
a parameter region. The magenta area also represents an
unavailable or excluded region where either the universal
conditions are not realized, there are deeper vacua than the
EW one, a sfermion or any Higgs boson is tachyonic, or
any experimental bound is not fulfilled according to the con-
straints described in Sect. 2.2.

The brown shaded area corresponds to the solutions where
the universal conditions are fulfilled but the stau is the LSP,
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Fig. 3 Higgs mass contour plot in the plane (m1/2-m0) for the “small
λN ” scenario with λN = (0.0002, 0.6, 0.6). The colour code is the same
as in Fig. 2, except in the white region that represents the case where
the sneutrino is the LSP in this case. Red dashed contours account for
the Higgs mass (in GeV), while the black lines represent the value of
tan β

whereas in the remaining white area, the neutralino is the
LSP. The black contours represent the values of tan β neces-
sary to achieve the universal conditions (seen here to lie in the
range of tan β ∼ 40−50), while the red dot-dashed contours
show the SM-like Higgs mass. We notice that the experimen-
tally observed Higgs mass is not achieved in the allowed
region. Indeed, the highest value for the SM-like Higgs
mass is around 124 GeV for large values of tan β (∼ 50),
although this region remains acceptable if we consider a ±3
GeV uncertainty in the calculation of the Higgs mass. It has
been pointed out in Ref. [30] that the stau-neutralino co-
annihilation strip in the CNMSSM extends only up to values
ofm1/2 of the order of a few TeV, which roughly corresponds
to m τ̃1 � 1 TeV. In this plot, this region is excluded due to
constraints in the Higgs sector, as explained above.

Small λN scenario Next, we concentrate on our extended
model, when the RH sneutrino field is added to the particle
content of the NMSSM. In Fig. 3, we show the results of a
scan in the (m1/2,m0) plane, for the “small λN ” scenario,
λN = (0.0002, 0.6, 0.6). The colour code in this figure is
the same as in Fig. 2. The excluded magenta areas are due
to tachyonic staus (for large m0), tachyonic RH sneutrino
(for a portion of small m0 and large m1/2) where R-parity
spontaneously breaks down at the resultant vacuum, and due
to the ATLAS bound on h0/H0/A0 → γ γ (for the small
m0 region). The allowed parameter space differs from that
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Fig. 4 Higgs mass contour plot in the plane (m1/2-m0) for the “large
λN ” scenario with λN = (0.01, 0.6, 0.6). The colour code is the same
as in Fig. 2. In this scenario a light neutralino is the LSP in the white
areas. Red dashed contours account for the Higgs mass (in GeV), while
the black lines represent the value of tan β

obtained in the CNMSSM. In particular, greater values of
m0 are allowed. Interestingly, this leads to larger values of
the Higgs mass and the correct value (∼ 125 GeV) can be
achieved for 0.9 � m0 � 1 TeV, m1/2 � 4.5 TeV and
tan β � 40. In the allowed area of this scenario, the RH
sneutrino is the LSP. Since the RH neutrino Majorana mass
term is proportional to λN , and this is also the leading contri-
bution to the RH sneutrino mass, small values λN ∼ 10−4,
are favoured to obtain a RH sneutrino LSP. Notice, however,
that, for such a small value of the coupling, the annihila-
tion rate of the RH sneutrino into SM particles is in general
very small and the resulting thermal relic density is too large.
Thus, the viability of this model would entail some sort of
dilution mechanism at late times.

Large λN scenario An interesting alternative is to work in
the “large λN ” regime. In Fig. 4 we show the scan result in
the (m1/2,m0), now taking λN = (0.01, 0.6, 0.6). With a
larger λN , the resulting mass of the lightest RH sneutrino as
well as that of the RH neutrino increase and hence the LSP
is found to be either the singlino-like neutralino or stau. In
the allowed area of Fig. 4 the lightest neutralino is the LSP
while the brown area shows where the stau is the LSP as in
previous figures. We notice also that in this scenario a larger
value of m1/2 >∼ 900 GeV is required in order to reproduce
the observed Higgs mass.

Table 1 Mass spectra for some benchmark points. All dimensionful
quantities except for the SM-like Higgs boson mass mH1 is shown in
units of TeV

Scenario pure CNMSSM small λN large λN

m1/2 16 5 10

m0 1.1 1 1

A0 −3.85 −3.5 −3.5

Prediction

tan β 51.8 43.1 46.1

mH1 124.7 GeV 125.1 GeV 125.0 GeV

mH2 1.86 1.64 1.65

mA1 4.20 2.08 2.11

mH± 7.68 3.62 6.16

mg̃ 29.2 9.88 19.0

mÑ1
– 0.698 14.2

mÑ2
– 1.26 17.2

mχ̃0
1

3.06 2.03 2.06

mχ̃0
2

7.76 2.29 4.70

mχ̃0
3

13.5 4.16 8.37

mχ̃0
4

13.5 5.40 9.27

mχ̃0
5

13.6 5.40 9.27

mχ̃±
1

13.5 4.16 8.37

mχ̃±
2

13.6 5.40 9.27

(mt̃1 , mt̃2 ) (20.3, 22.9) (6.67, 7.72) (13.0, 14.9)

(m τ̃1 , m τ̃2 ) (3.15, 9.19) (0.90, 3.04) (2.14, 5.92)

Mass spectrum for some benchmark points In Table 1 we
show typical mass spectra for a selected number of bench-
mark points in our model. The points are taken from: the
pure CNMSSM, the small λN and large λN scenarios used in
above corresponding plots. Notice that in the pure CNMSSM
case it is hard to obtain the observed Higgs boson mass, thus
we use a reference point which predicts a slightly smaller
result,mh � 124 GeV. In the scenarios with RH (s)neutrinos,
we have selected the points with the smallest value of m1/2

that satisfy mh � 125 GeV.

Dark matter As we demonstrated in the previous examples,
the inclusion of RH neutrinos expands the parameter region
of the neutral LSP compared with the CNMSSM case, how-
ever, the difficulty of achieving the thermal relic abundance
of DM is not improved. The reason is the same as in the pure
CNMSSM mentioned above. The nature of the neutralino
LSP within the large λN scenario is always singlino-like,
in full analogy to the pure CNMSSM case (see for instance
Refs. [31,38]). The mass of the neutralino LSP within this
scenario is O(1) TeV in the whole parameter space that
we have considered in Fig. 4. Given the results shown in
Fig. 4, we have considered the possible enhancement of DM
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annihilation via an s-channel resonance with a Higgs state.
However, we checked numerically that this resonance is not
large enough to sizeably increase the annihilation cross sec-
tion, hence there is no available Higgs funnel region. The
lower bound on the Higgs boson mass, mh > 122 GeV,
sets bounds on the soft masses that are m1/2 >∼ a few TeV
and m0(m τ̃1) � 1 TeV, where the annihilation cross section
of τ̃ is smaller than about 1 pb. Hence, even with strong co-
annihilation with staus, the resultant thermal relic abundance
of the neutralino LSP is too large leaving � h2 > 0.12. For
the RH sneutrino LSP in the “small λN ” scenario, the main
annihilation modes are Ñ Ñ → W+W−, Z0Z0, ... through
Higgs boson exchange, with a cross section that is also sup-
pressed by small λN , ending up with a huge thermal relic
abundance. One may then search for possible co-annihilation
effects with stau NLSP in the parameter region where Ñ is
quasi-degenerate with τ̃1. However, unfortunately this is not
the case. In addition to the fact that annihilation cross sec-
tion of stau is smaller than 1 pb for m τ̃1 � 1 TeV as men-
tioned above, the co-annihilating particles Ñ and τ̃ are actu-
ally decoupled from each other, because the reaction rates of
all processes between Ñ and τ̃ such as τ̃ , Ñ → X,Y and
τ̃ , X → Ñ ,Y , with X,Y being possible SM particles, are
negligible due to small λN of the order of 10−4 with heavy
mediating neutralinos. Hence, in both scenarios with “large
λN ” and “small λN ”, if the LSP is DM, its final abundance
has to be explained by nonthermal mechanisms. However,
in fact, within the framework of supergravity or superstring,
it is possible that our Universe has undergone nonstandard
thermal history because many supergravity models predict
moduli fields and hidden sector fields, which affect the evo-
lution of the early Universe. Scenarios of nonthermal DM
production include, for example, (i) scenarios with thermal
abundance regulated by late-time entropy production from
moduli decay [55–57], thermal inflation [58–60] or defect
decay [61,62], (ii) scenarios generated by the decay of late
decaying objects such as moduli [57,63,64] or Q-balls [65],
and (iii) scenarios with nonthermal scatterings and decays as
studied in Refs. [66–68].

In the results of the analysis performed in this model and
shown in Figs. 2, 3 and 4 we have fixed the trilinear term
A0 = −3.5 m0. We have numerically checked the effect of
changing this relation. We found that a smaller ratio −A0/m0

would require larger values of m0, m1/2 and tan β to repro-
duce the observed Higgs mass. For instance, in the scenario
with “small λN ”, if A0 = −2.6m0 the Higgs mass (∼ 125
GeV) is obtained for m0 ∼ 1.5 TeV, m1/2 ∼6–8 TeV and
tan β � 47. A larger value of −A0/m0 ratio, generally leads
to Landau poles in the RGEs (as the value of tan β needed to
obtain mS(GUT) = m0 becomes too large). Finally, for the
opposite sign of the trilinear parameter, A0, the correct EW
vacuum cannot be realized and tachyons in the Higgs sector
appear.

4 Conclusions

In this paper we have studied an extended version of the
NMSSM in which RH neutrino superfields are included
through a coupling with the singlet Higgs. We have observed
that the contributions of the new terms to the RGEs make it
possible to impose universality conditions on the soft param-
eters, thus considerably opening up the parameter space of
the constrained NMSSM.

We have computed the two-loop RGEs of this model
and solved them numerically, using the spectrum calcula-
tor SSARD. The RH sneutrino coupling to the singlet Higgs
leads to a contribution to the RGE of the singlet Higgs mass-
squared parameter that helps driving it negative, thus making
it easier to satisfy the conditions for EWSB, while imposing
universality conditions at the GUT scale. This significantly
alleviates the tension in the choice of initial parameters and
opens up the parameter space considerably. Moreover, the
RH sneutrino contribution also leads to slightly larger values
of the resulting SM Higgs mass, which further eases finding
viable regions of the parameter space.

We have studied two possible benchmark scenarios in
which the LSP is neutral: either the lightest RH sneutrino
or the lightest neutralino. In these examples, we have imple-
mented all the recent experimental constraints on the masses
of SUSY particles and on low-energy observables. Finally,
we have also computed the resulting thermal dark matter
relic density, but we have not imposed any constraint on this
quantity.

The RH sneutrino can be the LSP, but only when its cou-
pling to the singlet Higgs is very small (λN ∼ 10−4). This
leads to very large values of the thermal relic abundance.
Although there are regions in which the stau NLSP is very
close in mass, co-annihilation effects are negligible (since the
RH sneutrino-stau annihilation diagrams are also suppressed
by λN .) On the other hand, for large values of λN ∼ 10−2,
the lightest neutralino can be the LSP. The remaining areas
feature in general smaller values of the soft scalar mass than
in the NMSSM, however, the neutralino relic abundance is
also too large requiring some form of late-time dilution.
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A One-loop corrected minimization equations

In our calculation, we have imposed the minimization condi-
tion to the effective potential V = V tree +�V one loop, includ-
ing one-loop corrections �V one loop. We have three tadpole
equations for one-loop effective potential V , namely

∂V

∂φd
= 0, (A.1)

∂V

∂φu
= 0, (A.2)

∂V

∂φs
= 0. (A.3)

One combination of Eqs. (A.1) and (A.2) gives a formula of
the effective μ parameter as

μ2
eff ≡ 1

2
(λvs)

2

= − 1
2 M

2
Z (tan β2 − 1) − m2

Hu
tan β2 + m2

Hd
+ �1

tan β2 − 1 + �2
,

(A.4)

�1 = − 3y2
t

16π2 tan β2

(
F(mt̃1, Q) + F(mt̃2 , Q)

−2F(mt , Q) − A2
t

F(mt̃1, Q) − F(mt̃2 , Q)

m2
t̃2

− m2
t̃1

)

+ 3y2
b

16π2

(
F(mb̃1

, Q) + F(mb̃2
, Q) − 2F(mb, Q)

−A2
b

F(mb̃1
, Q) − F(mb̃2

, Q)

m2
b̃2

− m2
b̃1

⎞
⎠

+ y2
τ

16π2

(
F(m τ̃1 , Q) + F(m τ̃2 , Q) − 2F(mτ , Q)

−A2
τ

F(m τ̃1 , Q) − F(m τ̃2 , Q)

m2
τ̃2

− m2
τ̃1

)
, (A.5)

�2 = 3y2
t

16π2

F(mt̃1, Q) − F(mt̃2 , Q)

m2
t̃2

− m2
t̃1

− 3y2
b

16π2 tan β2

×F(mb̃1
, Q) − F(mb̃2

, Q)

m2
b̃2

− m2
b̃1

− y2
τ

16π2 tan β2 F(m τ̃1, Q) − F(m τ̃2 , Q)

m2
τ̃2

− m2
τ̃1

. (A.6)

Here,

F(m, Q) = m2
(

log

(
m2

Q2

)
− 1

)
(A.7)

is an auxiliary function.
Another combination of Eqs. (A.1) and (A.2) gives a for-

mula of the effective Bμ as

(Bμ)eff ≡ λvs√
2
(Aλ + 1√

2
κvs)

= sin 2β

2
(m2

Hu
+ m2

Hd
+ 2μ2

eff) + �3, (A.8)

�3 = sin 2β

2

3y2
t

16π2

(
F(mt̃1, Q) + F(mt̃2 , Q)

−2F(mt , Q)

−
(
A2
t + μ2

eff − Atμeff
tan β2 + 1

tan β

)

× F(mt̃1, Q) − F(mt̃2 , Q)

m2
t̃2

− m2
t̃1

)

+ sin 2β

2

3y2
b

16π2

(
F(mb̃1

, Q) + F(mb̃2
, Q)

−2F(mb, Q)

−
(
A2
b + μ2

eff − Abμeff
tan β2 + 1

tan β

)

× F(mb̃1
, Q) − F(mb̃2

, Q)

m2
b̃2

− m2
b̃1

⎞
⎠

+ sin 2β

2

y2
τ

16π2

(
F(m τ̃1, Q) + F(m τ̃2 , Q)

−2F(mτ , Q)

−
(
A2

τ + μ2
eff − Aτμeff

tan β2 + 1

tan β

)

× F(m τ̃1, Q) − F(m τ̃2 , Q)

m2
τ̃2

− m2
τ̃1

)
, (A.9)

or alternatively

(Bμ)eff ≡ λvs√
2
(Aλ + 1√

2
κvs)

= sin β cos β
λ2v2

2
− sin β cos βM2

Z

−(m2
Hu

− m2
Hd

)
tan β

tan β2 − 1
+ �4, (A.10)

�4 = − 3y2
t

16π2

(
tan β

tan β2 − 1

(F(mt̃1, Q) + F(mt̃2 , Q)

−2F(mt , Q))

+ (μeff tan β + At )(μeff − At tan β)

tan β2 − 1
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× F(mt̃1, Q) − F(mt̃2 , Q)

m2
t̃2

− m2
t̃1

)

+ 3y2
b

16π2

⎛
⎝ tan β

tan β2 − 1

(
F(mb̃1

, Q) + F(mb̃2
, Q)

−2F(mb, Q))

+ (μeff + Ab tan β)(μeff tan β − Ab)

tan β2 − 1

×F(mb̃1
, Q) − F(mb̃2

, Q)

m2
b̃2

− m2
b̃1

⎞
⎠

+ y2
τ

16π2

(
tan β

tan β2 − 1

(F(m τ̃1 , Q)

+F(m τ̃2 , Q) − 2F(mτ , Q)
)

+ (μeff + Aτ tan β)(μeff tan β − Aτ )

tan β2 − 1

× F(m τ̃1, Q) − F(m τ̃2 , Q)

m2
τ̃2

− m2
τ̃1

)

+ 1

16π2

λλNi

2

(
F(mÑi 1

, Q)F(mÑi 2
, Q)

)
.

(A.11)

The one-loop corrected formula of Eq. (2.13) is

m2
S = −

(
Aκ√

2
κvs + λ2v2

2
− κλv2 sin β cos β + κ2v2

s

)

+ Aλλv2

√
2vs

sin β cos β − �S, (A.12)

�S = − 3y2
t

16π2

μeffv
2 cos β

v2
s

(μeff cos β − At sin β)

×F(mt̃1, Q) − F(mt̃2 , Q)

m2
t̃2

− m2
t̃1

− 3y2
b

16π2

μeffv
2 sin β

v2
s

(μeff sin β − Ab cos β)

×F(mb̃1
, Q) − F(mb̃2

, Q)

m2
b̃2

− m2
b̃1

− y2
τ

16π2

μeffv
2 sin β

v2
s

(μeff sin β − Aτ cos β)

×F(m τ̃1, Q) − F(m τ̃2 , Q)

m2
τ̃2

− m2
τ̃1

+ λNi

16π2vs

[
2λNi vs

(
F(mÑi 1

, Q) + F(mÑi 2
, Q)

−2F(mNi , Q)
) − (κvs + 1√

2
AλNi

)

×
(
F(mÑi 1

, Q) − F(mÑi 2
, Q)

)]
. (A.13)

B Two-loop β function for the singlet Higgs soft mass

We include here the two-loop β function for m2
S with all

Yukawa and trilinear couplings being complex:

β
(2)

m2
S

= −4

5
(−3g2

1 |Tλ|2 − 15g2
2 |Tλ|2 + 120m2

Sκ
2κ∗2

+20(m2
Hd

+ m2
Hu

+ m2
S)λ

2λ∗2 + 3g2
1M1λT ∗

λ

+15g2
2M2λT ∗

λ + 15|Tλ|2Tr(yd y
†
d ) + 5|Tλ|2Tr(ye y

†
e )

+15|Tλ|2Tr(yu y
†
u )

+5|Tλ|2Tr(yν y
†
ν ) + 20|Tκ |2Tr(λNλ∗

N )
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λ Tr(y†

dTd ) + 5λT ∗
λ Tr(y†

e Te)

+15λT ∗
λ Tr(y†
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λ Tr(y†

νTyν ) + 20κT ∗
κ Tr(λ∗

N TλN )
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2
Hd
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2
Hd
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2
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2
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where Ti stands for the trilinear parameter Ai times the cor-
responding coupling i , where i = yi , λ, κ, λN .
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