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ABSTRACT 18 

Work was undertaken to investigate the potential use of house-fly (Musca domestica) larvae 19 

reared on broiler manure as a source of nutrition for poultry production in the UK. Nutritional 20 

analysis showed that larvae have a high (>45% dry wt.) protein content and a favorable 21 

amino acid profile that is rich in key amino acids such as lysine and methionine. A broiler 22 

digestibility trial was carried out to determine the apparent ileal digestibility coefficients 23 

(AIDC) and true ileal digestibility coefficients (TIDC) of amino acids (AA) from insect larval 24 

meal (ILM) from M. domestica and fishmeal (FM) in broiler chickens. This was calculated 25 

using multiple linear regression technique based upon three inclusions of each protein source 26 

in a semisynthetic diet. One hundred and forty four day-old male (Ross 308) broilers were fed 27 

from hatch on a commercial starter diet for 20 days. Experimental diets were fed from day 21 28 

to 28 and feed intakes were measured daily.  On day 28 the trial was terminated, ileal digesta 29 

was collected for the determination of AIDC and TIDC of AA and inflammatory responses 30 

(gizzard erosion and eye discharge) were measured. No significant differences were observed 31 

in digestibilities between protein sources for any AA.  Furthermore, ILM feeding did not 32 

induce gizzard erosion or eye discharge at any inclusion.  These results provide strong 33 

evidence to suggest that ILM of the common house fly can provide a successful alternative 34 

protein source to FM in broiler diets. 35 

 36 

Key words 37 

Amino Acid; ileal digestibility; Broiler; House fly; Insect meal; Musca domestica;  38 

 39 

Abbreviations 40 



Amino acid, AA; Apparent ileal digestibility, AID; Apparent ileal digestibility coefficients, 41 

AIDC; Acid hydrolysis (Oil B), AH; Body Weight Gain, BWG: Crude Protein, CP;  Feed 42 

Conversion Ratio, FCR; Feed Intake, FI: Fishmeal, FM; Insect larval meal, ILM,; True ileal 43 

digestibility, TID; True ileal digestibility coefficients, TIDC;  44 

  45 



INTRODUCTION 46 

A rising global population and growing appetite for animal products puts pressure on the 47 

supply of high quality proteins for animal production. Certain insects can be mass produced 48 

presenting an opportunity to alleviate reliance upon crop and animal products for livestock 49 

production. Whilst commercial scale production has already been achieved, relatively little is 50 

known of the nutritional value of insect meal for individual livestock species. 51 

The rearing of houseflies for livestock feed has been researched since the early 20th century 52 

(McHargue, 1917) with comparisons of quality and nutritional value being discussed in the 53 

mid 1970’s (DeFoliart, 1975) when poultry manure was evaluated as a substrate for rearing 54 

Musca. Domestica (common housefly) (Calvert et al., 1969, Calvert et al., 1970, Morgan et 55 

al., 1970, Miller et al., 1974, Teotia and Miller, 1974). More recent publications reporting the 56 

potential use of insects in poultry nutrition are based upon trials conducted in Asia, Africa, 57 

China, US and EU (Hwangbo et al., 2009, Veldkamp et al., 2012, Van Huis, 2013, Makker et 58 

al., 2014). However, the use of manure as a feeding substrate for housefly in industrialised 59 

countries has received less attention to date with exceptions of Pretorius (2011) who 60 

supported the production of insects on poultry manure for feeding to poultry as a circular 61 

economy. This is perhaps due to concerns related to their pest status and the safe use of 62 

insects reared on manures as compared to the black soldier fly (Hermetia illucens) that is able 63 

to grow on a wider range of vegetable and animal waste streams (Zheng et al., 2013).  64 

Insects for use in animal nutrition have been gaining increased commercial interest since the 65 

recent EU regulation (2017/893) which has permitted insect meal to be fed in aquatic diets. It 66 

is expected that this will then be allowed in monogastric diets from as early as 2020 67 

(ABN:AMRO, 2017). However few commercially relevant insect studies have been carried 68 

out to understand the nutritional characteristics and in vitro effects of feeding the novel 69 



ingredients. For instance, insects are relatively high in chitin which can account for up to 8% 70 

(w/w) of the total CP content when calculated by N x 6.25. Chitin is a fibrous amino 71 

polysaccharide and therefore is hypothesised to provide similar gizzard stimulation as 72 

ingestion of coarse fibres from oat hulls and sugar beet pulp which have previously been 73 

shown to increase gastric acid secretion, gizzard activity and thereby lowering the pH of 74 

gizzard contents and in some cases causing gizzard erosion (Jiminéz-Moreno et al., 2009). 75 

Gizzard scoring was thus incorporated in this study to compare the effect of feeding high 76 

levels of insect meal to broilers.  Eye discharge has also been recorded as a measure of the 77 

presence of allergenic conjunctivitis. Insects have been reported to contain similar allergenic 78 

compounds as shellfish which may stimulate an allergic reaction in both animals and humans 79 

consuming animals which have been reared on insects (EFSA Scientific committee, 2015).  80 

The aim of this study was to understand amino acid (AA) digestibility of insect larval meal 81 

(ILM), as part of a wider feasibility study in which efforts were undertaken to understand the 82 

risks and value of this novel protein in livestock feeding.  The ILM used was reared on 83 

poultry manure to understand the risks and values in this circular economy. Processing 84 

followed standards set out in European regulations and was found to be suitable to reduce 85 

microbial risks that were outlined in the risk assessment and were comparable to those 86 

outlined in the recent publication of our colleagues (Charlton et al., 2015).   87 

The value in formulating livestock diets based on digestible AA content has long since been 88 

acknowledged (Rostagno et al., 1995 and Mosenthin et al., 2000), therefore this work 89 

provides vital information that underpins the development of appropriate diet formulations 90 

and estimations of commercial value.  91 

MATERIALS AND METHODS 92 



The study was carried out at the Brackenhurst Campus of Nottingham Trent University (UK). 93 

Institutional and UK national NC3R ARRIVE guidelines and European directive 2010/63/EU 94 

for the care, use and reporting of animals in research (Kilkenny et al., 2010) were followed 95 

and all experimental procedures involving animals were approved by the University’s 96 

College of Arts and Science ethical review committee and the Food Standards Agency 97 

requirements for feeding of a non-approved feed material (ILM) to poultry.  98 

 99 

Insect Larval Meal 100 

The ILM was derived from M. domestica larvae reared on poultry manure and was produced 101 

by Grantbait Ltd., East Yorkshire, UK. It was subsequently processed using a method in 102 

alignment with the method 7 as set out in the EU processed animal proteins regulations (EC 103 

142/2011, annex IV chapter III) in which microbial limits are outlined. Larvae were separated 104 

from the growth substrate before pupation and gut cleared on sand, the kill step consisted of 105 

submersion in boiled water before being dried (air-dried at ambient temperature for 12 hours, 106 

followed by 65°C for 3 hours).  Whole larvae were then oven cooked for 40 minutes in a fan-107 

assisted oven preheated to 95°C and ground to ensure biological risks were mitigated, 108 

Salmonella spp., E. Coli and Enterobacteria including coliforms were analysed on processed 109 

ILM for animal trials and were found to be below feed material limits as set out in animal 110 

feeding regulations EU directive 2002/32/EC as were other undesirable components.  111 

Sufficient quantity was produced for a broiler digestibility study in which the ILM was 112 

compared to a commercially available fishmeal (FM) (UFI Ltd, Grimsby (UK)) in order to 113 

understand the digestible AA levels using a multiple linear regression (as described in 114 

Batterham et al., 1979) with three feeding levels of each protein source, previously shown to 115 

be sufficient for analysis (Short et al., 1999; Rodehutscord et al., 2004). 116 

Animals and housing 117 



One hundred and forty four day-old male Ross 308 broilers were obtained (PD Hook 118 

Hatcheries Ltd, Cote, Oxford, UK) from a parent flock aged forty weeks. Ross 308 chicks 119 

were randomly allocated to wire mesh pens bedded on shavings and were housed in groups of 120 

six until day 21.  On day 21, birds of a similar weight were re-housed in groups of four; 121 

unusual weight birds (+/- 100g of the mean weight) were removed from the trial. Each 122 

treatment was fed to six replicate pens of four birds.  Pens were 0.64 m2 with feed provided in 123 

30 cm troughs and water via two nipple drinkers per pen. Prior to the trial period (day 1 to 124 

21), chicks were fed a commercial starter, wheat: soyabean meal pelleted diet (Table 1), 125 

formulated to be sufficient in energy, AA, vitamins and minerals (228 g/kg of crude protein 126 

(CP); 12.8 MJ/kg metabolizable energy).  At day 21 the birds were assigned to trial diets. 127 

Between days 21 and 28, feed intake was measured. At all times, feed and water were 128 

provided on an ad libitum basis and care was taken to ensure birds ate and drank on day 1. 129 

During the trial period the birds were kept under artificial light for twenty three hours per 130 

day, with one hour of dark on day 1 increasing by an hour of darkness each day until day 6. 131 

Six hours of darkness (22:00-24:00 and 02:00-06:00) was then maintained for the remainder 132 

of the study. The room was thermostatically controlled to produce an initial temperature of 133 

32°C on day 1 and reduced in steps of 0.5°C per day, reaching 21°C by day 14. Temperatures 134 

were recorded daily from different areas of the unit and health checks made twice daily. Prior 135 

to culling on day 28, the birds were fed fresh diet for a minimum of 30 minutes to ensure gut 136 

fill. Post weighing, birds were assessed for potential allergic response by the presence of eye 137 

discharge. Birds were then culled by cervical dislocation.  The weight of each carcass was 138 

recorded and the gizzard removed from one bird per pen, emptied and washed before scoring 139 

for erosion. The ileal region of the gut was dissected out from the Meckel’s diverticulum to 140 

the ileal-caecal junction. Ileal digesta was collected to determine the apparent ileal 141 

digestibility (AID) and thus the true ileal digestibility (TID) using the multiple linear 142 



approach as set out by Short et al., 1999).  Digesta was pooled per cage (four birds) and sent 143 

for AA analysis. Apparent ileal digestibility coefficients (AIDC) and true ileal digestibility 144 

coefficients (TIDC) are communicated in this paper for brevity.  145 

 146 

Treatment diets 147 

The six treatment diets were designed to allow determination of AA digestibility of ILM and 148 

FM by regression analysis (Batterham et al., 1979; Short et al., 1999) and to enable a 149 

comparison between these two protein sources.  All diets were semisynthetic, in mash form 150 

including 20, 40 or 60% ILM (w/w) or FM as the sole protein source, with the remaining diet 151 

made up of a 50:50 mix of corn starch and glucose. All treatments contained a vitamin and 152 

mineral premix (50 g/kg) designed for semisynthetic diets (Target Feeds, Shropshire, UK), 153 

soyabean oil (50 g/kg) to bind the diet and reduce dustiness and titanium dioxide (5 g/kg) as 154 

an indigestible marker.  All experimental diets were manufactured on site at Nottingham 155 

Trent University.  Protein ingredients were ground on a Retsch mill (Retsch-Allee, Haan, 156 

Germany) fitted with a 3mm screen and diets were then mixed using a commercial ribbon 157 

mixer (Rigal-Bennett, UK) for 8 minutes to ensure homogeneity.  All diets were stored at 158 

ambient temperature.   159 

 160 

Inflammatory assessment 161 

Eye discharge assessment was carried out at day 28 by a single competent individual who 162 

assessed presence or absence of discharge. Gizzards were removed from one bird per pen, 163 

emptied and washed with distilled water before scoring for erosion of the lining on a 5 point 164 

scale, amended slightly from that used by Okazaki et al. (1983) to increase the scoring range, 165 

as detailed below: 166 



1 No erosion 167 

2 Light erosion (roughness of koilin layer) 168 

3 Modest erosion (roughness and gaps) 169 

4 Severe erosion (roughness, gaps and ulcers on stomach wall showing slight haemorrhaging) 170 

5 Extreme erosion (roughness, gaps and haemorrhagic ulcers on stomach wall and separation 171 

of epithelia from stomach wall) 172 

 173 

Chemical analyses and calculations 174 

For samples of diets, dry matter (DM) was determined in triplicate by weighing 175 

approximately 500 mg samples that were dried to a constant weight at 100 C in a forced air 176 

convection oven.  Due to their small sample size and collection directly into plastic 177 

containers, digesta samples were frozen and then freeze-dried to a constant weight when 178 

determining dry matter.  The concentration of titanium dioxide (employed as an inert marker) 179 

in diet and digesta samples was determined using the spectrophotometric method described 180 

by Short et al. (1996). Crude protein was calculated as N x 6.25. AA analysis was conducted 181 

as follows: briefly, diet and digesta samples (~500 mg) were freeze-dried before being 182 

milled, and hydrolysed in duplicate using both 6N HCl and 4M NaOH at 110 ºC under 183 

vacuum for 22 hours. After hydrolysis the samples were allowed to cool before extraction 184 

with 1 ml of de-ionized water. Extracts were filtered through 0.22 µm PTFE filters before a 185 

10-fold dilution with water and analysis by liquid chromatography – UV detection (LC-UV).  186 

A known protein (lysozyme) and a known reference sample (fishmeal) were concurrently 187 

hydrolyzed and analyzed with each batch as quality controls. Detection by LC-UV used the 188 

“Aracus” fully automatic AA analyser (MembraPure GmbH, Berlin, Germany) with an ion 189 



exchange chromatography column (125 mm x 3 mm) to separate each AA before post 190 

column derivatization with ninhydrin. Detection of acids by UV was monitored at 570 nm 191 

and 440 nm. Total chromatographic run time was 2.5 hours per sample. Each AA was 192 

quantified using a certified standard mix of AA (Sigma-Aldrich, Gillingham, UK) injected 193 

alongside the analysis. Tryptophan concentration was calculated from the base hydrolysis; all 194 

other concentrations were calculated from the acid hydrolysis.  195 

Using the titanium dioxide measurements, the AA results were used to calculate AID using 196 

the following equation: 197 

1-(aadig * marker feed) / (aa feed * marker dig) 198 

Where: 199 

 aadig represents the AA content of the digesta 200 

markerfeed represents the titanium concentration in the diet 201 

aafeed represents the AA concentration in the diet 202 

markerdig represents the titanium dioxide concentration in the digesta 203 

The AA content of protein sources and digesta was evaluated following methods set out in 204 

EC 98/64/EC. The AID content of the diets was regressed against the rate of inclusion of the 205 

ILM and FM. The linear regression was then extrapolated to a rate of inclusion of 100% (or 206 

1000 g/kg) protein (Rodehutscord et al., 2004). This gave a figure for AID of the protein 207 

sources for each AA measured. Dividing this figure by the total content of the specific AA in 208 

the protein gave an AIDC. TID was then calculated by addition of the intercept of the 209 

extrapolation to the AID values for each AA to account for endogenous losses as previously 210 

described by Short et al. (1996; 1999). The figure for TID was then divided by the total 211 

content to provide TIDC values.  212 



 213 

Statistical Analysis 214 

All data were exported to SPSS v.22 (IBM statistics, 2012) and after KS testing to confirm 215 

normality.  The mean values for the AIDC and TIDC for each protein source were separated 216 

by paired t-test and were considered significant at P<0.05. 217 

 218 

RESULTS 219 

Diet formulation  220 

The starter diet was fed prior to the study period, ingredients and calculated analysis is shown 221 

in Table 1. Experimental diets were formulated following triplicate analysis of the ILM and 222 

FM for DM, CP, crude fibre (CF), acid hydrolysis (AH), ash and total AA composition. This 223 

analysis is shown in Table 2 and experimental diet formulation and analysis shown in Table 224 

3. ILM analysed higher in DM, CF, AH but lower in CP and ash as compared to FM. AA 225 

compositions were similar between the two protein sources with ILM higher in key AA such 226 

as Cys, Try and Tyr but lower in Lys, Met and Val on an as fed basis.   227 

 228 

Bird Performance 229 

Bird performance was comparable to other digestibility trials at this facility. There were no 230 

significant differences for the two protein sources in any performance parameters measured 231 

over the study period (Table 4); initial body weight (BW) (day 21), final BW (day 28), body 232 

weight gain (BWG) or feed intake (FI). No eye discharge of any kind was recorded for any 233 

bird at any point during the trial. Gizzard erosion was higher in birds fed ILM (P<0.05; Table 234 

4) compared to FM but no severe or extreme erosion was seen in any inclusion for either 235 

protein source.  236 



 237 

Amino acid digestibility  238 

The determined values for AIDC of the AA are shown in Table 5. There were no significant 239 

differences seen between protein sources (P=0.119) (Table 5). FM values were similar to 240 

those previously recorded in the facility for this age of bird. Lys, Met, Try and Cys are all 241 

numerically higher for ILM with respective values of 0.87, 0.88, 0.81 and 0.82 versus 242 

respective values of 0.86, 0.86, 0.55 and 0.79 for FM. Other AIDC values for the different 243 

protein sources were either identical, or very similar.  244 

The TIDC values for each protein source are shown in Table 5. The TIDC values for ILM 245 

and FM did not significantly differ for any AA (P=0.385).  246 

 247 

DISCUSSION 248 

Proximate analysis of the protein sources showed the full fat ILM had a higher AH and lower 249 

CP than FM, as the oil has not been removed from the ILM through further processing. The 250 

removal of fats would result in a higher CP content and lower AH potentially providing an 251 

even better replacement for high protein FM than full fat ILM. Defatting is suggested for the 252 

meal obtained from housefly and other species as a way to improve their quality Henry et al. 253 

(2015). This would be especially relevant for diet formulation as the oil content would limit 254 

the inclusion of ILM for diet production constraints. 255 

Nutritional composition of the protein sources was comparable to publically available sources 256 

such as feedipedia, supported by INRA (Heuzé and Tran, 2015; Heuzé et al., 2015) and 257 

recent FAO publications (Makkar et al., 2014). This would suggest that the method for 258 

production and processing of ILM used in this study is suitable to produce a representable 259 



sample for evaluation.  The nutritional information on house fly larvae in the feedipedia data 260 

sheet is compiled from more than 80 sources by Heuzé and Tran (2015). Differences in 261 

reported nutritional profiles of M. domestica are potentially due to rearing conditions and 262 

substrate used; this has not been evaluated for this study. However the authors have other 263 

experiments due to be published which discuss the effect of rearing environment and diet on 264 

nutritional profile of M. domestica (Fitches et al, personal communication).  265 

The values for AIDC and TIDC were similar to those expected for FM in this trial facility for 266 

the same age of birds. Values were also close to those published in literature reviews (Lemme 267 

et al., 2004; Kim et al., 2012) although Cys and Try AID values were different in Ravindran 268 

et al., (2005) with 0.57 and 0.77 for Cys and Try respectively versus 0.79 and 0.55 in this 269 

study. This may be due to differences in AA analysis, digestibility methodology and 270 

difficulties in accurately analysing these AA. It is well known that digestibility values 271 

obtained for a raw material will depend on the specific method used (Kong and Adeola, 2013; 272 

Masey O’Neill et al., 2014). Digestibility coefficients for larval meal were slightly lower than 273 

those reported by Hwangbo et al., (2009) for broiler chickens fed on house fly meal. This 274 

may be due to the processing that was used, a slow drying process of 55°c over 24 hours 275 

(Hwangbo et al., 2009). Our process followed the EU requirements for processed animal 276 

proteins and so a minimum temperature was maintained for 20 minutes to ensure microbial 277 

parameters were met. This process would have likely resulted in more maillard reactions and 278 

therefore reduced protein digestibility. Reported apparent digestibility coefficients for 279 

essential AA were 0.976, 0.956, 0.956 and 0.945 for Lys, Met, Arg and Val respectively 280 

compared to AIDC values of 0.87, 0.88, 0.88 and 0.81 documented from our study. These 281 

differences may also be partly due to methodology used and the age of bird at time of 282 

collection. Hwangbo et al. also used adult birds at 28- 35 days of age compared to our trial 283 

which terminated at 28 days of age. 284 



Gizzard erosion was higher in ILM treatments than FM and this may be due to the presence 285 

of chitin in the ILM especially at the higher inclusion levels. Alternatively this may be as a 286 

result of the presence of biogenic amines, as the heating of histidine and lysine can produce 287 

gizzorosine which stimulates the secretion of acid and can increase gizzard lesions (Gjevre et 288 

al., 2013). However, in commercial practice it is unlikely that inclusion of ILM would go 289 

above 10%. Even the highest inclusion of ILM in this study (60%) did not produce a gizzard 290 

score above light erosion only (score less than 2), so a 10% inclusion level is very unlikely to 291 

lead to a detrimental effect in practice. However, this should be monitored in further studies. 292 

Hossain and Blair (2007) found no negative impacts upon the performance of broilers fed on 293 

diets containing up to 7.5% (w/w) of crustacean derived chitin, reporting true chitin 294 

digestibility to be 0.87.  295 

Although some insect meals have been shown to include tropomyosin which has allergenic 296 

properties similar to shellfish (Charlton et al. 2015), there were no observed allergenic 297 

reactions observed in this study, which suggests that either this molecule is not present in this 298 

meal, or at levels which are not deleterious to the bird. 299 

M. domestica larvae have been proven to be suitable ingredients in the diets of poultry 300 

(Zuidhof et al., 2003) when used to replace up to 50% of FM or soyabean meal (Akpodiete 301 

and Inoni, 2000; Hwangbo et al., 2009; Okah and Onwujiariri, 2012). Rearing insects on 302 

poultry manure for animal feeding has been previously reviewed as a means to convert 303 

nitrogenous waste into high value protein for livestock (Calvert, et al., 1970; El Boushy et al., 304 

1985; El Boushy, 1991; Hwangbo et al., 2009; Pretorius, 2011). However, as a feed material 305 

the substrate used in this study may be of higher risk as compared to conventional protein 306 

sources. The EFSA committee report published in 2015 ‘insects as food and feed’ highlighted 307 

the need for further research where manures and wastes are utilised as substrates for insect 308 

production. Consumer perception was also discussed in the EFSA review as a potential 309 



barrier in western countries and many studies including those supported by the FAO and 310 

Wageningen University (Van Huis et al., 2013) are working towards improved global protein 311 

sustainability and consumer awareness. In a recent study, two thirds of both stakeholders and 312 

members of the general public questioned were generally favourable towards the use of 313 

insects to feed production animals (Verbeke et al., 2012). 314 

 As the world population nears 9 billion it will become increasingly more costly to produce 315 

animal protein such as poultry, pork and fish as feed protein resources become more in-316 

demand and production of vegetable proteins and fishmeal cannot fulfil the requirement. The 317 

use of insects in these diets can therefore be of benefit and housefly meal has been shown to 318 

have the potential to reduce the cost of poultry production by as much as 75% in Africa 319 

(Akpodiete and Inoni, 2000) and to significantly improve performance (P<0.05) when it 320 

replaced fishmeal by up to 50% (Okah and Onwujiariri, 2012).  321 

Previously, M. domestica has been given a nutritive value between that of FM and soyabean 322 

meal when fed to broiler chicks (Ocio and Rey, 1979). Teotia and Miller (1974) suggested 323 

that for growing chicks, house fly pupae are a good source of limiting AA, particularly Arg, 324 

Lys, and Met when compared to soyabean meal. In our study we have shown that processed 325 

insect meal has comparable amino acid digestibility coefficients to that of commercial 326 

fishmeal providing further evidence that insects offer significant potential for exploitation by 327 

the animal feed industry 328 

Processed insect meal is now allowed to be used in feeds for aquaculture (EU regulation 329 

2017/893) and has been shown to provide an alternative to the use of fishmeal (Henry et al., 330 

2015), with Dipteran (fly species) reportedly having an AA content closest to FM (Barroso et 331 

al., 2014). With this change to legislation it is expected that insect meal will be permitted into 332 



the diets of non-ruminants in the near future. Providing the industry continues to carry out 333 

research to help understand this novel material.  334 
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Table 1. Starter feed diet formulation, g/kg except where stated 473 

Ingredients   Calculated composition (of diet, all expressed as total)   

Wheat 541.0 ME, MJ/kg 12.8 

Soyabean meal  260.0 Crude Protein 228.0 

Fishmeal 50.0 Crude Ash 50.0 

Extruded horse beans  40.0 Crude Fibre  30.0 

Extruded rapeseed 35.0 Crude Oil & Fats 55.0 

Soyabean oil 30.0 Calcium 8.0 

Maize gluten 15.0 Lysine 14.5 

Dicalcium phosphate  12.0 Methionine 4.7 

Limestone 10.2 Methionine eq. value 7.0 

Sodium bicarbonate 1.9 Phosphorus 6.0 

Sodium chloride 1.8 Sodium 1.5 

Vitamin and mineral premix1 3.0   

Maxiban2 0.1 

          

Vitamin and mineral premix1: Vitamin: A, 10,000 IU; Vitamin D3, 2,000 IU; vitamin D 25-HY-D 2000 IU 474 
vitamin E 75 IU, Zinc sulphate, monohydrate (E6−Zinc) 277.78 mg. Manganous oxide (E5−Manganese) 161.29 475 
mg. Ferrous sulphate, monohydrate (E1−Iron) 133.34 mg. Cupric sulphate, pentahydrate (E4−Copper) 60.00 476 
mg. Calcium iodate, anhydrous (E2−Iodine) 3.23 mg. Sodium selenite (E8−Selenium) 0.67 mg. 477 

2Supplied 50.00 mg of Narasin and 50.00 mg of Nicarbazin per kg of diet. 478 

  479 



Table 2. The analysed proximate and total amino acid content of the experimental protein sources  480 

 Protein sources1 

Proximate analysis (g/kg as fed) Fishmeal Insect meal 

Dry Matter  908 920 

Crude Protein  645 533 

Crude Fibre 4.5 59 

Acid Hydrolysis (Oil B) 97 203 

Ash 162 65 

   

Amino acids (g/kg as fed)   

Alanine 46.61 34.73 

Arginine 42.11 30.16 

Aspartic 65.88 62.08 

Cysteine 14.83 17.38 

Glutamic acid 92.99 84.41 

Glycine 53.54 28.43 

Histidine 16.91 18.17 

Isoleucine 31.51 22.62 

Leucine 54.44 38.30 

Lysine 56.94 44.92 

Methionine 22.59 15.77 

Phenylalanine 27.60 37.80 

Proline 31.79 23.82 

Serine 16.78 15.82 

Threonine 39.49 33.20 

Tryptophan 23.90 41.00 

Tyrosine 24.23 40.74 

Valine 33.31 26.97 

   

1 Fishmeal, commercial Fishmeal; Insect meal, ground full fat Musca domestica  481 



Table 3. Experiment diet formulations (g/kg diet) 482 

  Dietary treatments  

 

20% 

Fishmeal 

40% 

Fishmeal 

60% 

Fishmeal 

20% Insect 

meal 

40% Insect 

meal 

60% Insect 

meal 

Fishmeal 200 400 600 
  

 

Insect Meal  
   

200 400 600 

Corn Starch 347.5 247.5 147.5 347.5 247.5 147.5 

Glucose 347.5 247.5 147.5 347.5 247.5 147.5 

Soyabean Oil 50 50 50 50 50 50 

Vitamin and Mineral 

Premix1 50 50 50 50 50 50 

Ti02 5 5 5 5 5 5 

      
 

Analysed diet composition 
     

 

Dry Matter 927.18 937.05 939.46 931.48 945.98 960.79 

Crude Protein* 141.56 282.14 433.10 118.76 223.31 355.18 

Fat 67.17 67.98 66.32 67.7 66.49 66.83 

Gross Energy (MJ/kg)** 17.94 18.30 18.92 18.95 20.29 22.05 

Ash 70.37 103.58 143.69 45.08 60.70 79.29 

       

      

 

1Vitamin and mineral pre-mix provided the following (per kg of diet): phosphorus, 5 g; magnesium, 90 mg; 483 
calcium, 7.5 g; sodium, 1.5 g; copper, 0.6 mg (as copper sulphate); selenium, 160 µg (as selenium BCP); 484 
vitamin A, 7500 IU; vitamin D3, 1500 IU; vitamin E, 10 IU (as α-tocopherol acetate); vitamin B1, 5 mg; 485 
vitamin B2, 4 mg; vitamin B6, 4 mg; vitamin B12, 10 µg; pantothenic acid, 9 mg; folic acid, 1.5 mg; biotin, 150  486 
µg; choline, 1500 mg. 487 

*Analysed by DMS ** Analysed by PAS  488 



Table 4. Performance results of broilers fed experimental protein sources measured from 21 to 28 days 489 

  Protein sources1  

 

Fishmeal Insect meal P-Value 

D 21 BW (g) 1109 1083 0.801 

D28 BW (g) 1475 1453 0.528 

BWG D21-28 (g/d) 366 371 0.844 

FI/bird (g/bird) 

Gizzard score2 

681 

1.06 

650 

1.56 

0.228 

0.006 

 1 Fishmeal, commercial Fishmeal; Insect meal, ground full fat Musca domestica 490 

2 Gizzard scoring on a 5 point scale adapted from Okazaki et al., 1983 491 

D, days; BW, Body weight; BWG, body weight gain; FI, feed intake  492 



Table 5. The coefficient of apparent ileal digestibility (AIDC) and true ileal digestibility (TIDC) of amino acids 493 

in the experimental protein sources determined in 28 day old broilers 494 

 AIDC Protein sources 1 TIDC Protein sources1 

Amino acids (g/kg) Fishmeal Insect meal Fishmeal Insect meal 

Alanine 0.83 0.85 0.92 0.89 

Arginine 0.90 0.88 0.98 0.92 

Aspartic 0.74 0.86 0.87 0.90 

Cysteine 0.79 0.82 0.97 0.95 

Glutamic acid 0.82 0.86 0.90 0.90 

Glycine 0.76 0.77 0.83 0.83 

Histidine 0.82 0.85 0.91 0.89 

Isoleucine 0.81 0.80 0.91 0.85 

Leucine 0.84 0.83 0.94 0.88 

Lysine 0.86 0.87 0.93 0.90 

Methionine 0.86 0.88 0.93 0.91 

Phenylalanine 0.78 0.88 0.88 0.92 

Proline 0.73 0.69 0.83 0.79 

Serine 0.79 0.82 0.93 0.91 

Threonine 0.78 0.78 0.90 0.87 

Tryptophan 0.55 0.81 0.74 0.91 

Tyrosine 0.88 0.91 0.99 0.95 

Valine 0.81 0.81 0.91 0.87 

     

1 Fishmeal, commercial Fishmeal; Insect meal, ground full fat Musca domestica 495 

No significant difference between protein sources for AIDC (P=0.119) or TIDC (P=0.385) 496 

 497 


