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We show that relativistic magnetohydrodynamics (MHD) can be recast as a novel theory of superfluidity.
This new theory formulates MHD just in terms of conservation equations, including dissipative effects, by
introducing appropriate variables such as a magnetic scalar potential, and providing necessary and
sufficient conditions to obtain equilibrium configurations. We show that this scalar potential can be
interpreted as a Goldstone mode originating from the spontaneous breaking of a one-form symmetry, and
present the most generic constitutive relations at one derivative order for a parity-preserving plasma in this
new superfluid formulation.
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Relativistic magnetohydrodynamics (MHD) provides a
universal framework to study plasma physics in astrophysi-
cal settings as well as in laboratory experiments [1]. As an
effective theory for interactions between electromagnetic
and thermal degrees of freedom of matter, MHD describes
the coupling of Maxwell’s equations to hydrodynamics.
For most of its applications, MHD is formulated under the
assumption that the electric fields are Debye screened and
are therefore weak or short ranged, while the magnetic
fields could be arbitrary, and that the plasma is electrically
neutral at hydrodynamic length scales. Formulations of
MHD under these assumptions have been extensively
studied and have a wide range of applicability. However,
the structural foundations and transport properties of MHD
have only recently received considerable attention [2–5].
The main purpose of this Letter is to present an equivalent
formulation of dissipative MHD as a system of (higher-
form) conservation equations, which is better suited for
numerical analyses, and to resolve certain underlying
technical issues in the definition of hydrostatic equilibrium.
Traditional treatments of MHD are formulated in terms

of a stress tensor Tμν and charge current Jμ, subject to
energy-momentum conservation, Maxwell’s equations, and
Bianchi identity (e.g., see Ref. [4]),

∇μTμν ¼ FνρJρ; Jμ þ Jμext ¼ 0; ϵμνρσ∇νFρσ ¼ 0:

ð1Þ

Here, the components of Fμν are the electromagnetic fields
and Jμext is a conserved external charge source (e.g., a lattice
of ions) satisfying∇μJ

μ
ext ¼ 0. The charge current Jμ can be

split into ∇νFνμ þ Jμmatter, where Jμmatter is the contribution
from matter fields, converting Maxwell’s equations into
their better known form. The Bianchi identity is solved by
introducing the photon field such that Fμν ¼ 2∂ ½μAν�, while
the remaining 8 equations govern the dynamics of the
temperature T, chemical potential μ, fluid velocity uμ, and
gauge field Aμ. In usual MHD applications, Jμext is taken to
be zero while μ is fixed such that the electric charge
vanishes at hydrodynamic length scales.
In practice, however, for instance innumerical approaches,

Maxwell’s equations can be used to eliminate μ and Debye-
screened electric fieldsEμ ¼ Fμνuν from the system, leaving
uμ, T, and magnetic fields Bμ ¼ 1

2
ϵμνρσuνFρσ to be the only

relevant fields. The dynamics for uμ and T is governed by
energy-momentum conservation, while that for Bμ by the
Bianchi identity (see, e.g., Refs. [6,7]).
Extrapolating this line of thought, the authors of Ref. [3]

(see also Ref. [2]), inspired by the framework of general-
ized global symmetries [8], proposed a formulation of
MHD in terms of string or one-form fluids [2–5,8,9]. The
key observation is that once Maxwell’s equations in Eq. (1)
are explicitly solved by setting Jμ ¼ −Jμext, the dynamics of
MHD effectively reduces to that of a fluid with a global
one-form symmetry. To wit, by defining a two-form current
Jμν ¼ 1

2
ϵμνρσFρσ, and identifying the external charge source

as Jμext ¼ 1
6
ϵμνρσHνρσ , where Hμνρ ¼ 3∂ ½μbνρ� is the field

strength associated with a background two-form gauge
field bμν, Eq. (1) can be rewritten as

∇μTμν ¼ 1

2
HνρσJρσ; ∇μJμν ¼ 0: ð2Þ
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The dynamical variables of MHD in this string fluid
formulation are the string chemical potential ϖ and the
vector characterizing the direction of strings hμ (with
hμhμ ¼ 1 and uμhμ ¼ 0), in addition to uμ and T.
Heuristically, hμ corresponds to the direction of magnetic
fields, while ϖ is a chemical potential conjugate to their
strength

ϖ ¼ −2jBj ∂P∂B2
þOð∂Þ; hμ ¼ Bμ

jBj þOð∂Þ; ð3Þ

where PðT; B2Þ is the pressure of MHD. The string fluid
pressure defined later in Eq. (5) is related to MHD pressure
as pðT;ϖÞ ¼ PðT; B2Þ − 2jBj2∂P=∂B2 þOð∂Þ. These
relations admit corrections at higher derivative orders.
If we switch off the sources Hμνλ ¼ 0, Eq. (2) with the

ideal order constitutive relations (5) and equation of
state PðT; B2Þ ¼ PðTÞ − 1

2
B2 or pðT;ϖÞ ¼ PðTÞ þ 1

2
ϖ2

reduces to the system of equations given in Ref. [6]. The
first equation is the well-known energy-momentum con-
servation. The spatial components of the second equation
can be seen as the induction equation, while the time
component as the no-monopole constraint of Ref. [6].
As pointed out in Ref. [5], the string fluid variables ϖ

and hμ, while consistent, are not well suited for describing
equilibrium configurations in MHD. In particular, a generic
string fluid equilibrium configuration cannot be derived
from a hydrostatic partition function within the framework
of Ref. [3]. Such equilibrium configurations serve as initial
conditions in numerical simulations of hydrodynamics, so
it is crucial that we identify the appropriately suited degrees
of freedom. In this Letter, we introduce a more natural pair
of fields: gauge-non-invariant one-form chemical potential
μμ and “scalar Goldstone” φ such that

ϖhμ ¼ μμ − T∂μφ: ð4Þ

When coupled to a time-independent background, we find
that in equilibrium μμ=T ¼ btμ, while φ plays a role similar
to that of a “magnetic scalar potential” and is solved for
using the no-monopole constraint. Drawing a comparison
with the Goldstone phase field in typical superfluids, we
formulate a novel theory of one-form superfluidity, where
the underlying global one-form symmetry is spontaneously
broken leading to a one-formGoldstone mode φμ [8,10,11].
We show that the existence of this mode gives rise to a well-
defined hydrostatic sector for string fluids, when viewed
as a limit of one-form superfluids where only a part of the
one-form symmetry is broken, with the associated scalar
Goldstone φ ¼ uμφμ=T.
Finally, while the traditional and string fluid formula-

tions of MHD can easily be shown to be equivalent at ideal
order as described above, at higher derivative orders this
equivalence is quite nontrivial. It has only been established in
the dissipative sector for linear fluctuations (Kubo formulas)

in a state with μ ¼ 0 [4]. We show an exact correspondence
betweenMHDandour improved formulation of string fluids.
The crucial ingredients of this correspondence are presented
in this Letter, while further details are relegated to a
companion publication [12].
String fluids and equilibrium.—One-form hydrodynam-

ics is governed by the equations of motion (2) and
respective constitutive relations, that is, the most generic
expressions for ðTμν; JμνÞ in terms of ðT; uμ;ϖ; hμÞ and
ðgμν; bμνÞ allowed by symmetries and the second law of
thermodynamics. At ideal order, these relations read

Tμν ¼ ðϵþ pÞuμuν þ pgμν −ϖρhμhν þOð∂Þ;
Jμν ¼ 2ρu½μhν� þOð∂Þ; ð5Þ

where pðT;ϖÞ is an arbitrary function, while ϵðT;ϖÞ and
ρðT;ϖÞ are determined by the thermodynamic relations
ϵþ p ¼ Tsþϖρ and dp ¼ sdT þ ρdϖ. The associated
entropy current Sμ ¼ suμ is trivially conserved (see Ref. [3]
for more details).
Hydrodynamics is the study of small fluctuations of a

quantum system around thermodynamic equilibrium and
hence it is important to understand how to describe
equilibrium configurations. As usual, one assumes the
existence of an arbitrary time coordinate t such that
gtt < 0; ∂tgμν ¼ ∂tbμν ¼ 0, and uμ=T ¼ δμt . However, this
is not sufficient to attain equilibrium in string fluids since
the conservation of string charge ∇μðTρhμÞ ¼ 0, arising
from the no-monopole constraint in Eq. (2), is not satisfied.
To circumvent this issue, the authors of Ref. [3] specialized
to backgrounds that further admit a spatial coordinate z
such that ∂zgμν ¼ ∂zbμν ¼ 0 with gtz ¼ 0 and obtained an
equilibrium solution by setting hμ ¼ δμz=

ffiffiffiffiffiffi
gzz

p
and

ϖ=T ¼ btz=
ffiffiffiffiffiffi
gzz

p
. However, this “equilibrium solution,”

besides being only a subset of the solutions to
∇μðTρhμÞ ¼ 0, generically contributes to entropy produc-
tion [5], which an equilibrium fluid configuration, by
definition, cannot. For example, consider a particular
dissipative correction to Jμν obtained in Ref. [3],

δJμνð1Þ ∋ −rjjΔμρΔνσ

�
2T∇½ρ

�
ϖ

T
hσ�

�
þ uλHλ

ρσ

�
: ð6Þ

Here, rk ≥ 0 is a dissipative transport coefficient and
Δμν ¼ gμν þ uμuν − hμhν. It may be explicitly checked
that this term does not vanish when evaluated on the
equilibrium solution of Ref. [3]. Therefore, it must be
imposed to vanish by hand as an ad hoc constraint on
equilibrium backgrounds, in addition to requiring an
isometry along the coordinate z. An infinite cascade of
similar conditions show up at every derivative order [5].
Thus, in contrast to the case of typical charged fluids, the
hydrostatic sector of string fluids is ill defined. We show
that there is a first-principles derivation of equilibrium
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configurations that do not require ad hoc constraints nor
existence of a preferred coordinate z.
Revisiting string fluids.—Some of the issues mentioned

have an analogue in superfluid dynamics. In this context,
had we considered the components of the superfluid
velocity ξμ as fundamental degrees of freedom, ignorant
of its definition ξμ ¼ ∂μϕþ Aμ in terms of the Goldstone
mode ϕ, we could be tempted to introduce a preferred z
coordinate in equilibrium to align ξμ with. However, it is
precisely ϕ that leads to well-defined equilibrium configu-
rations for superfluids [13].
These considerations lead us to reevaluate whether the

string fluid variables ðT; uμ;ϖ; hμÞ describe a symmetry-
unbroken phase or if the underlying one-form symmetry is
spontaneously broken. In order to identify the correct
hydrodynamic fields in a symmetry-unbroken phase, we
follow the approach of Ref. [14] for usual charged fluids. In
this setting, the fields ðT; uμ; μÞ can be exchanged by a set
of symmetry parameters B ¼ ðβμ;ΛβÞ, where βμ ¼ uμ=T
and Λβ ¼ μ=T − βμAμ. Under the action of an infinitesimal
symmetry transformation X ¼ ðχμ;ΛχÞ, with χμ being
a diffeomorphism and Λχ a gauge transformation, they
transform according to δXβ

μ ¼ £χβμ and δXΛβ ¼
£χΛβ − £βΛχ . It may be explicitly checked that δXμ ¼
£χμ and therefore that μ is gauge invariant. Motivated by
this, in the symmetry-unbroken phase of string fluids we
consider the fields B ¼ ðβμ;Λβ

μÞ and introduce the one-
form chemical potential μμ via the relation

μμ
T

¼ Λβ
μ þ βνbνμ: ð7Þ

Given the transformation property δXΛ
β
μ ¼ £χΛ

β
μ − £βΛ

χ
μ

under the action of X ¼ ðχμ;Λχ
μÞ, it is straightforward to

check that δXμμ ¼ £χμμ − T∂μðβνΛχ
νÞ. Hence, unlike usual

charged fluids, μμ is not gauge invariant and cannot
correspond to ðϖ; hμÞ of string fluids. Specifically, we
cannot construct a gauge-invariant vector that would
replace hμ in Eq. (5) using just μμ.
In order to construct a gauge-invariant vector, we need to

introduce a scalar field φ that transforms in the nontrivial
manner δXφ ¼ χμ∂μφ − βμΛχ

μ. This allows for the defini-
tion of the gauge-invariant combination given in Eq. (4).
The scalar φ is accompanied by its own equation of motion,
which, following Ref. [15], reads δBφ ¼ Oð∂Þ implying
that uμhμ ¼ Oð∂Þ. Using a part of the redefinition freedom
in μμ, one may set uμhμ ¼ 0 exactly, thus reproducing the
variables of string fluids. We learn that instead of treatingϖ
and hμ as fundamental hydrodynamic variables in string
fluids, we should instead work with μμ and φ. This also
leads to well-defined equilibrium configurations given
by uμ=T ¼ δμt and μμ=T ¼ btμ along with φ ¼ φ0 which
solves the expected ideal order Poisson’s equation
∇μðTρhμÞ ¼ 0, i.e., the no-monopole constraint of [6]

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p ρT2

ϖ
gμνðbtν − ∂νφ0Þ

�
¼ Oð∂2Þ: ð8Þ

On this solution, the term in Eq. (6) vanishes. The intro-
duction of φ through Eq. (4) provides an improved version
of the string fluids formulated in Ref. [3].
The transformation of φ under the action of X involves

the hydrodynamic field βμ, suggesting that, unlike usual
superfluids, φ is not a fundamental variable. In fact, in
equilibrium, under a gauge transformation the scalar field
transforms as φ → φ − Λχ

t , hinting that φ might be better
understood as the time component of a vector Goldstone
mode φμ, embedded into a larger theory in which the one-
form symmetry is spontaneously broken.
One-form superfluids.—As pointed out inRefs. [8,10,11],

the Goldstone mode corresponding to the spontaneous
breaking of a one-form symmetry is a dynamical U(1) gauge
field φμ. Under the action of the set of one-form symmetry
parameters X , the Goldstone φμ transforms analogous to its
zero-form counterpart

δXφμ ¼ £χφμ − Λχ
μ: ð9Þ

Thus, the scalar φ appearing in Eq. (4) is in fact given by
φ ¼ βμφμ. We can define the gauge-invariant covariant
derivative of φμ,

ξμν ¼ 2∂ ½μφν� þ bμν; ð10Þ

which is a higher-form analogue of the superfluid velocity
and transforms simply as δXξμν ¼ £χξμν.
The dynamics of one-form superfluids is also governed

by Eq. (2) with constitutive relations written in terms of
the hydrodynamic fields T; uμ; ξμν, and ϖhμ defined in
Eq. (4), supplemented with the equation of motion for φμ.
Formulating the off-shell second law of thermodynamics
analogous to zero-form superfluids [15], one can straight-
forwardly derive this equation at ideal order

uμξμν ¼ ϖhν þOð∂Þ: ð11Þ

This is a higher-form analogue of the Josephson equation
for superfluids. Note that the condition uμhμ ¼ Oð∂Þ of
string fluids follows from here. Using Eq. (11), we can
remove ϖhμ from the independent set of hydrodynamic
variables in favor of ζμ ¼ ξμνuν. Hence, the dynamics of
one-form superfluids is governed by Eq. (2) alone, along
with the off-shell second law of thermodynamics

∇μNμ ¼ 1

2
TμνδBgμν þ

1

2
JμνδBξμν þ Δ; Δ ≥ 0: ð12Þ

Here, Nμ ¼ Sμ þ ð1=TÞTμνuν − ð1=TÞJμνζν is the free
energy current and
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δBgμν ¼ 2∇ðμβνÞ; δBξμν ¼ −2∇½μðζν�=TÞ þ βρHρμν: ð13Þ

Equation (12) requires that for a given set of constitutive
relations ðTμν; JμνÞ in terms of ðT; uμ; ξμν; gμνÞ, there must
exist a free energy current Nμ and a positive semidefinite
quadratic form Δ such that Eq. (12) is satisfied.
In order to discuss the constitutive relations of a

one-form superfluid in four spacetime dimensions, we
decompose ξμν ¼ 2u½μζν� − ϵμνρσuρζ̄σ. A generic one-form
superfluid can depend on both ζμ and ζ̄μ arbitrarily but here
we mention two special cases that find a direct application
in plasma physics. The “string fluid limit” is the case in
which the constitutive relations depend on ζμ ¼ −ϖhμ but
not on ζ̄μ, which, as we show below, is dual to MHD.
Formally, removing ζ̄μ from the constitutive relations
means that the one-form symmetry is only broken along
the timelike direction βμ while the spatial part of the
symmetry is left intact. This gives rise to the improved
string fluid theory described earlier where φ ¼ βμφμ is
introduced according to Eq. (4). Another interesting case
is the “electric limit,” in which the hierarchy of gradients
ζμ ¼ Oð1Þ and ζ̄μ ¼ Oð∂Þ is assumed. This latter case,
where the full one-form symmetry is broken, can be shown
to be equivalent to plasma in the absence of free charges
[12]. Focusing on the former string fluid limit, we note that
there are two Lorentz and gauge invariant scalars at ideal
order, namely, T andϖ ¼ ffiffiffiffiffiffiffiffiffi

ζμζ
μ

p
, on which the free energy

current Nμ ¼ NðT;ϖÞβμ can depend. Using Eq. (12) we
find the ideal order constitutive relations Eq. (5). Thus, at
ideal order, one-form superfluids in this limit reduce to
string fluid dynamics, which continues to be the case at
higher orders.
One-derivative string fluids.—We parametrize the non-

hydrostatic corrections to the one-form superfluid constit-
utive relations as

δTμν
ð1Þ ¼ δfΔμν þ δτhμhν þ 2lðμhνÞ þ tμν;

δJμνð1Þ ¼ 2m½μhν� þ sμν: ð14Þ

All the tensor structures appearing here are transverse to uμ

and hμ. Recall that we had used part of the redefinition
freedom in μμ around Eq. (4) to set uμhμ ¼ 0. In writing
Eq. (14), we also used the residual freedom in μμ along with
that in uμ and T to work in an analogue of the “Landau
frame” and set uμδT

μν
ð1Þ ¼ uμδJ

μν
ð1Þ ¼ 0. When working with

full one-form superfluids, we can instead choose to use the
redefinition of μμ to make Eq. (11) exact, at the expense of
having uμδJ

μν
ð1Þ ≠ 0 [12].

Restring ourselves to derivative corrections that respect
CP invariance [16], in the nonhydrostatic sector we find

δf ¼ −T=2ðζ⊥Δμν þ ζ×hμhνÞδBgμν;
δτ ¼ −T=2ðζ0×Δμν þ ζkhμhνÞδBgμν;
lμ ¼ −TðηkΔμσ þ η̃kϵμσÞhνδBgσν;
mμ ¼ −Tðr⊥Δμσ þ r̃⊥ϵμσÞhνδBξσν;
tμν ¼ −Tðη⊥ΔρhμδBgρσ − η̃⊥ϵρhμÞΔνiσδBgρσ;

sμν ¼ −TrkΔμλΔνσδBξλσ; ð15Þ

where ϵμν ¼ ϵμνρσuρhσ. Using Eqs. (12), we obtain exactly
the same constraints and number of dissipative transport
coefficients as for string fluids I in Refs. [3,4].
The hydrostatic sector of the theory has not been

considered in Refs. [3,4]. This sector is described by a
hydrostatic effective action for the Goldstone mode.
Aligning the fluid velocity with a timelike Killing vector,
up to first order in derivatives, this action is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
p −

α

6
ϵμνλσuμHνλσ − βϵμν∂μuν

�
; ð16Þ

where αðT;ϖÞ and βðT;ϖÞ are hydrostatic transport
coefficients. Contrary to Refs. [3,5], no assumptions
regarding the presence of spatial isometries in the back-
ground are necessary. Extremizing Eq. (16) with respect
to φ yields its equation of motion in equilibrium, which
improves Eq. (8) due to the α and β. Equation (16)
characterizes all equilibrium configurations of MHD and
guarantees that all nonhydrostatic contributions in Eq. (15)
vanish. We will now show that one-form superfluidity in
the string fluid limit is exactly equivalent to MHD.
MHD/string fluid correspondence.—The dynamics of

MHD is determined by the equations of motion (1) where
Aμ is a dynamical gauge field. In this setting, Bμ is treated
as Oð1Þ while Eμ as Oð∂Þ. The constitutive relations of
MHD are solutions of the off-shell second law of thermo-
dynamics

∇μN
μ
MHD ¼ 1

2
TμνδBgμν þ JμδBAμ þ Δ; Δ ≥ 0: ð17Þ

Recalling that Jμν ¼ 1
2
ϵμνρσFρσ and Jμext ¼ 1

6
ϵμνρσHνρσ

together with

Nμ ¼ Nμ
MHD −

1

T
Jμνζν þ

μ

T
Jμext; ð18Þ

it follows that Eq. (17) in MHD is equivalent to Eq. (12),
provided that Maxwell’s equations, Jμ þ Jμext ¼ 0, are
taken on shell. Formally, this requires solving for μ and
Eμ using Maxwell’s equations, after which the remaining
fields uμ, T, and Bμ can be mapped to uμ, T, ϖ, and hμ of
string fluids, modulo hydrodynamic frame transformations
[12]. Given that identification of Eqs. (17) and (12), the
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equivalence between the most generic constitutive relations
allowed by it also follows.
As an example, we consider the first order charge current

Jμ in parity-invariant MHD [4]

Jμ ¼
�
qþ ∂MΩ

∂μ ϵλνρσBλuν∂ρuσ

�
uμ − ϵμνρσ∂ρðϖuνB̂σÞ

þ ðσ⊥Bμν þ σkB̂μB̂ν þ σ̃ϵμνρσuρB̂σÞVν þOð∂2Þ;
ð19Þ

where MΩ is a hydrostatic transport coefficient while σ⊥,
σk, and σ̃ are dissipative ones. The remaining parameters
obey the thermodynamic relations dP ¼ sdT þ qdμ−
ϖdjBj, where P is the fluid pressure in MHD. We have
also defined B̂μ ¼ Bμ=jBj, Bμν ¼ gμν þ uμuν − B̂μB̂ν, and
Vμ ¼ Eμ − TPμν∂νðμ=TÞ. Projecting Eq. (19) along uμ, we
have that qðT; μ; B2Þ ¼ Oð∂Þ, which can be formally
solved by μ ¼ μ0ðT; B2Þ þOð∂Þ [17]. In turn, one can
determine Eμ by projecting Eq. (19) transverse to uμ.
Comparing this result with Fμν ¼ − 1

2
ϵμνρσJρσ together with

Eq. (15), we can identify Bμ ¼ ρhμ þOð∂Þ and the trans-
port coefficients

α¼ μ0; β ¼ ρMΩ þϖα; r⊥ ¼ σ⊥
σ2⊥ þ σ̃2

�
sT

ϵþp

�
2

;

r̃⊥ ¼
�

sT
ϵþp

�
2
�

−σ̃
σ2⊥ þ σ̃2

þ 2ρα

sT

�
; rk ¼

1

σk
; ð20Þ

where p ¼ Pþϖρ. The remaining transport coefficients
in Eq. (15) can be identified by comparing the stress tensor
Tμν in the two formulations. Using the results of Ref. [4],
explicitly, we find

ζ⊥ ¼ ζ1 −
2

3
η1; ζ× ¼ ζ1 þ ζ2 −

2

3
η1 −

2

3
η2;

ζ0× ¼ ζ1 þ
4

3
η1; ζk ¼ ζ1 þ ζ2 þ

4

3
η1 þ

4

3
η2; ð21Þ

where ζ1, ζ2, η1, and η2 have been defined in Ref. [4].
The other four coefficients η⊥, ηk, η̃⊥, and η̃k map one-to-
one with those denoted by the same symbols in Ref. [4].
Hence, we see that at one-derivative order, MHD is entirely
equivalent to one-form superfluids in the string fluid limit.
Note that the equivalence between the two formulations,

even just in the dissipative sector, required the presence of
the hydrostatic coefficient α in one-form superfluids, which
captures a nonzero μ ¼ μ0 in an MHD configuration. This
coefficient was absent in all the previous discussions on
string fluids [2–4], thereby the equivalence only holding
in a state with μ0 ¼ 0 of MHD. Furthermore, the authors
of Ref. [4] focused only on the dissipative sector and
considered this equivalence at the linearized level [18].
However, here we have provided the exact nonlinear map

between transport coefficients, including the hydrostatic
sector which had not been previously analyzed.
Outlook.—In this Letter we have formulated a theory of

one-form superfluidity and illustrated how MHD can be
understood as a particular sector of this theory. This dual
formulation is in many ways a better and cleaner descrip-
tion of MHD as it makes all the global symmetries of MHD
manifest, eliminates the nonpropagating fields μ and Eμ,
and the electric fields being Oð∂Þ becomes a consequence
rather than an assumption. Most importantly, unlike the
conventional formulation, in the superfluid formulation, the
constitutive relations are directly obtained for the physi-
cally observable electromagnetic fields, which consider-
ably simplifies the computation of correlation functions.
This description of MHD as superfluidity is entirely

based on conservation equations, even when including
dissipation effects. Together with the understanding of the
necessary conditions for equilibrium, it can provide initial
configurations for obtaining interesting insights in the
context of astrophysical phenomena using numerical sim-
ulations (e.g., Ref. [19]). As a proof of concept, we obtain
an equilibrium configuration (i.e., without dissipation) of a
slowly rotating magnetized star on a flat background
gμν ¼ ημν, bμν ¼ 0. The equilibrium configuration corre-
sponds to uμ=T ¼ δμt þ ωðyδμx − xδμyÞ and μμ=T ¼ 0, where
ω is a small angular velocity along the z axis. Assuming an
equation of state p ¼ pmðTÞ − ð1=2χÞϖ2 with constant
magnetic susceptibility χ, we can find a solution of Eq. (8)
for the scalar Goldstone as φ0 ¼ −z cos αþ ðx − ωtyÞ
sin αþOðω2Þ, leading to ϖhμ ¼ cos αδzμ − sin αðδxμ−
ωyδtμ − ωtδyμÞ þOðω2Þ. The angle α parametrizes the
misalignment of the magnetic axis (direction of strings)
with the rotational axis of the star. For a nonzero α, the
vector hμ is not aligned along a spacelike isometry neither
with a linear combination of isometries as in Refs. [3,9],
and hence necessitates the new theory that we have
presented in this Letter. We also note that in the traditional
formulation of MHD, one would be required to solve
Maxwell’s equations for equilibrium configurations of
Aμ, and typically simplifications such as working within
the force-free electrodynamics (FFE) regime are imposed.
On the other hand, using the framework proposed here,
we have reduced the problem of finding equilibrium
configurations to the problem of finding solutions to a
scalar Poisson’s equation (8). This is a considerable leap
forward towards providing appropriate initial conditions for
numerical simulations in arbitrary spacetime backgrounds.
More generally, we expect this theory to be useful for
obtaining new analytic equilibrium solutions for accretion
disks surrounding Kerr black holes or magnetised stars
such as pulsars, and to probe mechanisms of energy
transport therein by studying fluctuations around such
solutions including the effects of dissipation.
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