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Abstract The partonic transverse momentum, kt , distribu-
tion plays a crucial role in driving high-energy hadron inter-
actions. If kt is limited we have old fashioned Regge theory.
If kt increases with energy the interaction may be described
by perturbative QCD. We use BFKL diffusion in ln kt , sup-
plemented by a stronger absorption of low kt partons, to esti-
mate the growth of the mean transverse momenta 〈kt 〉 with
energy. This growth reveals itself in the distribution of secon-
daries produced at the collider energies. We present a simple,
BFKL-based, model to demonstrate the possible size of the
effect. Moreover, we propose a way to evaluate experimen-
tally the shape of the parton transverse momenta distribution
by studying the spectra of the (D or B) mesons which contain
one heavy quark.

1 Introduction

Contrary to old Regge theory, where it was assumed that
the transverse momenta of all the particles are limited, QCD
is a logarithmic theory where there is a possibility that the
parton’s (quark, gluon) transverse momentum may increase
during the evolution. In particular, already in leading order
(LO) BFKL evolution there is diffusion in ln kt space [1,2].
From the experimental point of view, it is relevant to note
that the growth of the mean transverse momenta, 〈pt 〉, of
secondary hadrons with collider energy was observed at the
Tevatron and at the LHC (see e.g. [3,4]). In order to describe
this growth in DGLAP-based Monte Carlo generators [5,6]
an additional infrared cutoff, kmin, was introduced. Of course,
in any case, we need a cutoff to avoid the infrared divergence
of the amplitude of the hard (parton–parton interaction) sub-
process. However, at first sight, we would expect this cutoff
to have its origin in confinement. It should be less than 1 GeV
and should not depend on energy. On the contrary, it turns out
that to reproduce the energy dependence of the data, the value
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of kmin should increase as kmin ∝ s0.12 [5]; such that at the
Tevatron energy kmin � 2 GeV, while at the LHC kmin � 3
GeV.

In Sect. 2 we present a simple model which accounts for
BFKL ln kt diffusion, together with the absorptive effects
which additionally suppress the low kt partons, since the
absorptive cross section behaves as σ abs ∝ 1/k2

t . That is, we
now have a dynamically induced infrared cutoff.1 In Sect. 3
we use this model to obtain the expected energy and rapidity
dependence of kt distributions. In Sect. 4, we discuss the
possibility to directly study these effects experimentally by
measuring the pt spectra of D (and/or B) mesons. Due to the
strong leading particle effect (see e.g. [11–13]) the transverse
momentum of mesons which contain a heavy quark is close
to the transverse momentum of the heavy quark. Moreover,
final-state interactions and confinement do not appreciably
distort the original distribution of these heavy mesons.

2 BFKL-based model

The original BFKL equation [14–17] may be written as
an integral equation for the gluon distribution unintegrated
over kt ,

f (x, kt ) = ∂[xg(x, k2
t )]/∂[d ln k2

t ], (1)

in the form

f (x, kt ) = f0(x, kt ) + αs

2π

∫ 1

x

dz

z

∫ ∞

k0

d2k′
t

π

×K(kt , k′
t , z) f (x/z, k′

t ), (2)

1 This cutoff is very similar to the so-called ‘saturation’ momentum
scale widely discussed for PDFs at low x . It was first mentioned in [7,8],
and then considered in many papers based on the Balitsky–Kovchegov
(BK) equation, see, for example, the reviews in [9,10]. In comparison
with the calculations based on the BK equation, here we account for the
interaction of the (current) intermediate parton with both the beam and
the target protons [see Eqs. (5) and (9) below].
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(a) (b)

Fig. 1 a BFKL ladder diagram; b the ladder structure of the triple-
pomeron coupling

where the kernel is evaluated as

K(kt , k′
t , z) f (x/z, k′

t )

= 2Nc
k2

t

k
′2
t

⎡
⎣ f (x/z, k′

t ) − f (x/z, kt )

|k ′2
t − k2

t | + f (x/z, kt )√
4k

′4
t + k4

t

⎤
⎦ .

(3)

The first term in the kernel2 can be understood as the effect
of the emission of a daughter gluon with momentum (x, kt )
from a parent gluon with momentum (x ′ = x/z, k′

t ). This
generates the ladder structure of the pomeron sketched in
Fig. 1a. The remaining two terms in the kernel (depending
on f (x/z, kt )) account for the loop corrections which occur
in the trajectory of t-channel reggeised gluons.

It is important to evolve in kt (as well as x) to be able
to understand the origin and the behaviour of the dynamical
infrared cutoff—that is, to see how the kt (s, y) distribution
is generated within perturbative QCD. Here y = ln(1/x) is
the rapidity of the parton. This dynamically generated cutoff
affects (i) the pT distribution of secondary hadrons, (ii) the
slope, α′

P , of the (QCD) pomeron trajectory and (iii) the val-
ues of the triple- and multi-pomeron couplings which control
the predictions of the cross sections for diffractive dissocia-
tion.

Equation (2) can be solved numerically, starting, for exam-
ple, from an input gluon with

f0(x, kt ) = αs(kt )δ(x − x0), (4)

where we take x0 = 0.2. Since the probability to have a large
kt gluon should be suppressed by the small QCD coupling,
we have included in (4) the factor αs(kt ). We use the one-
loop running coupling αs(k2

t ) with �QCD = 0.15 GeV, and
the number of light quarks to be n f = 4. Besides this, we

2 Here we have already integrated over the azimuthal angle φ assum-
ing, similar to the DGLAP case, a flat φ dependence of f ; that is, we
consider the zero harmonic, which corresponds to the trajectory with
the rightmost intercept.

account for the simple kinematical constraint—when the par-
ton carries fraction x of the initial proton momenta, the trans-
verse momentum kt cannot exceed the value kt,max = √

xs,
where

√
s is the initial energy.

It is natural to approximate the input by taking x0 = 0.2.
The reasons are as follows. For BFKL evolution we have to
consider small x , but we would like to cover the largest pos-
sible rapidity interval. Therefore we start with x0 = 0.2,
reserving a larger x interval for the valence quarks, and
possible Good–Walker diffractive eigenstates [18], which
describe low-mass diffractive dissociation. Moreover the typ-
ical DGLAP input gluon has a (1 − x)5 type distribution
corresponding to a mean of x of about 0.2.

To include the effects of absorption (that is, the rescatter-
ing of intermediate partons along the ladder) we follow [19]
and multiply the BFKL kernel K of Eq. (3) by a canoni-
cal absorptive factor of the form exp(−λ
(y, kt )/2) which
depends on the rapidity, y = ln(1/x) and the kt of the cur-
rent parton. Here 
 is the optical density of the target gluon,
while the factor λ accounts for the value of the triple-pomeron
vertex, such that λ
 is the opacity of an incoming proton–
‘current’ parton interaction.3 However, we must account for
the absorption by both the incoming beam (a) and the tar-
get (b) protons interacting with intermediate partons. That
is, actually the absorptive factor reads

S = exp(−λ[
b(y, kt ) + 
a(y′, kt )]/2), (5)

where y (y′) is the rapidity difference between the beam (tar-
get) proton and the current, intermediate gluon in the BFKL
evolution. Denoting the rapidity separation between the beam
and the target protons by Y , we have y′ = Y − y.

The simplest absorptive effect comes from the triple-
pomeron diagram shown in Fig. 1b. As in [19], we use the
Leading Log expression for the BFKL triple-pomeron vertex,
that is [8,20,21],

λ = NcαS(kt )�(k′
t − kt ). (6)

The �-function reflects the fact that (after averaging over
the azimuthal angle) the large-size pomeron (i.e. the ladder
with small k′

t ) does not ‘see’ the small-size colourless object
described by the BFKL pomeron component with kt > k′

t .
Note that the suppression factor, written in the form (5),

includes not just the triple-pomeron diagram, but also a series
of the multi-pomeron contributions generated by the vertices,
gn

m , coupling n to m pomerons. Here we prefer to take the
simple eikonal-like expression

gn
m = 
(λ
)n+m−2, (7)

3 Recall that, in the eikonal framework, exp(−
) is the probability of
no inelastic interaction. Since we consider the amplitude, and not the
cross section, we put 
/2 in (5), rather than the full opacity 
.
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which satisfies the AGK cutting rules [22,23]. However, this
means that we have to replace the exponents exp(−λ
/2) in
(5) by the factor

1 − exp(−λ
)

λ

. (8)

So now the absorptive factor (5) becomes

S(y, y′, kt , k′
t )

= [1 − exp(−λ
b(y, kt ))]
λ
b(y, kt )

[1 − exp(−λ
a(y′, kt ))]
λ
a(y′, kt )

(9)

with the λ(k′
t , kt ) given by (6).

In terms of gluon density f (x, kt ), the ‘differential’ opac-
ity 
b(y, kt ) of hadron b (corresponding to the contribution
from the d ln(k2

t ) interval) reads4

λ
b(y, k′
t ) = Ncπ

2αs(k
′
t )

f b(y, k′
t )

16πk
′2
t Bg

, (10)

where Bg/2 is the t-slope of the initial “constituent gluon”
form factor; we take5 Bg = 1 GeV−2. To obtain the full
opacity we take the integral


(y) =
∫

k2
t


(y, k′
t )

dk
′2
t

k
′2
t

, (11)

where the lower limit reflects the �(k′
t − kt ) function in (6).

Since the opacity 
a(y, kt ) is proportional to f a(y, kt )

we may write the evolution equation in rapidity y, just in
terms of opacities. Thus, finally, we obtain a system of two
evolution equations. One equation evolving for 
b up from
the target (b) at y = 0, and one for 
a evolving down from
the beam (a) at y′ = Yk = ln(s/k

′2
t ). That is,

∂
b(y, kt )

∂y
= αs(kt )

2π

∫
dk

′2
t S(y, y′, kt , k′

t )

×K(kt , k′
t )


b(y, k′
t )

∂
a(y′, kt )

∂y′ = αs(kt )

2π

∫
dk

′2
t S(y, y′, kt , k′

t )

×K(kt , k′
t )


a(y′, k′
t ) (12)

4 This equation follows after integrating Eq. (17) of [19] over the impact
parameter, b, or from [20].
5 There are several arguments in favour of the effective slope Bg
being of the order of 1 GeV−2; that is, in favour of the small-size
‘hot-spot’ transverse area occupied by our gluon amplitude. The first
reason, is the small radius of the gluonic form factor of the pro-
ton calculated using QCD sum rules [24]. The next argument is the
small value of the effective slope of the pomeron trajectory observed
experimentally. Further evidence is the success of the additive quark
model, σ(πp)/σ (pp) � 2/3. Finally, in the explicit calculation of our
amplitude, following [25], we indeed found an almost constant slope
Bg � 0.9 GeV−2 for the present collider energy interval.

for the evolution of gluon distributions from both the tar-
get and the beam initial hadrons (protons) in the absorp-
tive (background) field of both hadrons. This system can be
solved by iteration. In fact, it converges after just a few iter-
ations.

3 The parton kt distribution

The transverse momentum distribution at rapidity y has the
form

dσ

dk2
t

∝ f b(y, kt ) f a(y′ = Y − y, kt )

k4
t

. (13)

The system of Eq. (12) was solved numerically by iteration,
introducing an infrared cutoff k0 = 0.5 GeV; that is, assum-
ing f (y, kt < k0) = 0. The resulting transverse momentum
distributions are presented in Fig. 2. The solid lines are the
predictions for the gluon distribution in the central plateau
region (with rapidity y = Y/2), while the dashed lines cor-
respond to distributions shifted to the fragmentation region
of the incoming proton (i.e. initial gluon) with y = Y/6.
The y = Y/6 curves are steeper and the corresponding
mean transverse momentum is smaller than that in the cen-
tre (y = Y/2). As expected the distributions become flatter
when the energy increases. However, at the Tevatron (thick
black curves) and even at the 8 TeV LHC (thin black curve)
we are still far from true saturation. Only at

√
s = 100 TeV

do we predict an horizontal interval for kt < 2 GeV. For

no absorption

y=Y/2 y=Y/6

√s=    2  8 100    TeV

kt (GeV)

dN/dk2
t  (arbitrary units)

Fig. 2 The intermediate gluon distribution d N/dk2
t in the centre of

plateau, y = Y/2, (solid lines) and near the edge of plateau at y = Y/6
(dashed lines, shown for 2 and 100 TeV). The dot-dashed (blue) line
shows the distribution at

√
s = 100 GeV generated if we neglect the

absorptive effects
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√s=2 8 100 TeV

< kt >  (GeV)

η

Fig. 3 The mean transverse momentum, 〈kt 〉, of the gluon versus the
pseudorapidity, η, of the intermediate gluons

comparison we present (by a dot-dashed blue line) the distri-
bution expected at

√
s = 100 TeV if one neglects the absorp-

tive effects, that is, we have the case when the survival factor
S ≡ 1 in (12). The distribution then decreases approximately
linearly with increasing kt .

Next in Fig. 3 the rapidity dependence of mean transverse
momenta, 〈kt 〉 is shown for the Tevatron (

√
s = 2 TeV) and

the LHC (
√

s = 8 TeV), and for
√

s = 100 TeV. The value
of mean 〈kt 〉 increases with energy, and it decreases as the
rapidity approaches the position of the initial hadron.

4 How to measure the kt distribution

Note that the predicted values of 〈kt 〉 are of the same ‘order
of magnitude’, but smaller than, the value of the kmin cutoff
used in the PYTHIA Monte Carlo, which is based on DGLAP
evolution. However, we have to recall that (a) these are not
exactly the same quantities and (b) here we have used a sim-
plified model based on the LO BFKL kernel.6 The advantage
of this model is that it is sufficiently transparent and practi-
cally has no free parameters. The only exceptions are the
starting values of x0 = 0.2 and k0 = 0.5 GeV and the slope
Bg = 1 GeV−2 of the initial ‘constituent’ gluon. The param-
eters are not chosen to describe the data, but simply taken to
have physically reasonable values. Besides this, there may

6 Surprisingly, with the same parameters, LO BFKL (supplemented by
the simple kinematic constraint and absorptive multi-pomeron effects)
leads to an effective gluon–gluon (hot-spot) interaction that increases
like s0.15 in the present collider energy interval, which is in reasonable
agreement with the intercept needed to describe the experimental data.

be some ‘intrinsic’ transverse momentum of the initial gluon
which will enlarge the final value of 〈kt 〉.

We should emphasise that the partonic kt distribution,
although not directly observable, drives all soft high-energy
interactions. Clearly it would be interesting to measure the
gluon’s 〈kg,t 〉 experimentally. Can this be done? The problem
is that actually we never observe partons, but only the final
secondary hadrons, which are mainly pions. Unfortunately
the distributions of light hadrons (such as pions, kaons) are
strongly affected by final-state interactions: that is, by hadro-
nisation, confinement and the decay of resonances. In partic-
ular, the pt distribution of secondary pions strongly depends
on the possible colour re-connection. Therefore it appears
better to study the distributions of mesons which contain one
heavy quark. Due to the strong leading particle effect [11–
13], the pt distribution of these mesons is close to that of the
heavy quark. Since heavy quarks are mainly produced by the
gg → Q Q̄ subprocess, we may expect that (modulo some
smearing due to hadronisation when the heavy quark picks
up a light antiquark) the mean momentum of such a meson
should carry the momentum of the parent gluon. Final-state
interactions and resonance decays do not appreciably distort
the pt distributions of these heavy mesons.

On one hand, it might be the best to measure the pt distri-
butions of heavy B-mesons, where the leading particle effect
is more pronounced. On the other hand, the b-quark already
receives a rather large

kt = kbackground ∼ mb (14)

from the hard gg → bb̄ subprocess and it may be hard to
observe the variation of the incoming gluon 〈kg,t 〉 on the top
of this large ‘background’, kbackground. Therefore, it seems
better to detect D-mesons where the value of kbackground ∼ mc

is comparable with the expected gluon’s 〈kg,t 〉. We would
hope to observe the growth of 〈pD,t 〉 with energy at fixed
rapidity, and a decrease of 〈pD,t 〉 with pseudorapidity7 at a
fixed energy. The last effect can be observed by a comparison
of the CMS/ATLAS data at η = 0 with the LHCb data at
η = 3–4.

Moreover, note that it possible to do better. We could sup-
press the kbackground contribution generated into the ’hard’
gg → Q Q̄ subprocess if the transverse momenta of both
heavy mesons (D and D̄ or B and B̄) are measured. In such
a case the transverse momentum of the Q Q̄ pair is simply
equal to the momentum of the parent gluon pair. Of course,
we cannot avoid the smearing due to hadronisation, but it is
not so large since it is controlled by the confinement scale and
not by the heavy quark mass. So it would be good to measure
the vector sum of the momenta of the two heavy mesons,
or just the coplanarity between the two heavy mesons.

7 Measured in the laboratory frame (η = − ln tan(θlab/2)).
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Non-complanarity should increase with energy, but decrease
with η.

Another attractive measurement is to compare the pt

of the secondaries produced in the diffractive dissociation
with those from non-diffractive inelastic events. It is usually
expected (see, for example, [26,27]), that the spectra of par-
ticles produced in proton diffractive dissociation into a high-
mass (MX ) state, are similar to that in normal inelastic events
taken at an energy

√
s = MX . That is in the situation when

the energies of the final states are the same. On the contrary, in
the picture described above, even in the case of dissociation,
the pt distribution of secondaries should be driven by the par-
ton’s kt formed by the whole initial energy

√
s � MX . That

is, it does not matter whether the events have a large rapidity
gap (LRG) or not. One consequence (see, also, [28]) is that
in proton diffractive dissociation to a large MX system (but
still MX  √

s) the dissociation events, especially near the
edge of the LRG, are expected to have a larger pt than those
in a normal inelastic pp-collision at

√
s = MX ; modulo to

possible hadronisation effects. Moreover, the rapidity depen-
dence of the pt spectra in LRG events are also similar to that
in the inelastic interaction at full proton–proton energy

√
s,

and not to the inelastic events with the proton–proton energy
equal to MX . Again, to reduce the effects of hadronisation,
it would be better to make the comparison by measuring the
distributions of D-mesons both in inelastic and high-mass
dissociation events.

5 Conclusions

The transverse momentum distribution of partons plays a
pivotal underlying role both in the spectral shape of sec-
ondaries and in the asymptotic behaviour of high-energy
proton–proton collisions. At first sight, just from dimensional
arguments, we expect dσ/dk2

t ∝ 1/k4
t . That is, the major

contribution should come from low kt , close to the cutoff
(�0.3 GeV) provided by confinement. On the contrary, to
describe the data, it was necessary to introduce a much higher
cutoff, kmin, in the hard matrix element of the order of a few
GeV, with a value that increases with collider energy, like
s0.12. Actually such a kmin was obtained by tuning the Monte
Carlo generators [5,6], but clearly it should be of theoretical
origin. Moreover, kmin of the order of a few GeV should be
explained in terms of perturbative QCD.

Here, we use a model based on the LO BFKL equation,
supplemented by absorptive multi-pomeron corrections. The
original BFKL equation includes diffusion in logkt , with, at
each step of the evolution, the possibility that kt may increase
or decrease with equal probabilities. However, strong absorp-
tion of low kt partons leads to a growth of 〈kt 〉 with collider
energy. We demonstrate that this effect naturally explains the
observed energy behaviour of the effective cutoff, kmin.

We did not perform a fit to the data, but show, at a qual-
itative level, that a simplified model based on leading order
perturbative QCD with a few physically motivated parame-
ters, produces a reasonable kt distribution of the partons. We
present the expected kt distributions at different collider ener-
gies and the dependence of 〈kt 〉 on the energy and rapidity
of the parton.

Although the kt of the parton is not directly observable, we
discuss the possibility to experimentally verify these predic-
tions. One way, is to measure the pt distributions of mesons
containing a heavy c or b quark, or better to measure DD̄
or B B̄ meson pairs. Another possibility is to compare the pt

spectra of diffractive dissociation events with those of non-
diffractive inelastic scattering.
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