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We compute the leading-color contributions to five-gluon scattering at two loops in massless QCD. The
integrands of all independent helicity amplitudes are evaluated using d-dimensional generalized unitarity
cuts and finite field reconstruction techniques. Numerical evaluation of the integral basis is performed with
sector decomposition methods to obtain the first benchmark results for all helicity configurations of a
2 → 3 scattering process in QCD.
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Introduction.—As data continue to pour in from the
LHC experiments, the precision of many theoretical pre-
dictions for high-energy scattering processes is being
challenged by experimental measurements. While there
has been remarkable progress in standard model predic-
tions for multiparticle final states at next-to-leading order
and 2 → 2 scattering processes at next-to-next-to-leading
order (NNLO), the computational complexity of 2 → 3
scattering processes at NNLO results in many important
measurements being currently (or in the near future)
limited by theoretical uncertainties. Pure gluon scattering
at two loops in QCD is a key bottleneck in making such
predictions, which have been known for gg → gg for more
than 15 yr [1,2]. The one-loop five-gluon amplitudes have
been known since 1993 [3] and were among the first results
from the on-shell methods that led to the modern unitarity
method [4,5].
In this Letter, we demonstrate how new evaluation

techniques based on generalized unitarity [6,7] and inte-
grand reduction [8–14] can offer a solution to the traditional
bottlenecks in these computations and present the first
results for a complete set of planar five-gluon helicity
amplitudes in QCD. The results extend previous results
obtained for “all-plus” helicity amplitudes [15–22]. These
on-shell techniques have also been explored in the context
of maximal unitarity [23,24] and numerical unitarity
[25–27] approaches to QCD amplitudes. Work in this area
has received considerable interest due to the phenomeno-
logical importance of precision predictions for 2 → 3
scattering. Efforts to complete the unknown two-loop

amplitudes for processes such as pp → 3 jets, pp → H þ
2 jets, or pp → γγþjet have been further motivated by
the recent analytic computations of the planar master
integrals (MIs) [18,28] using new differential equation
techniques [29,30].
Our approach exploits a parametrization of the multi-

particle kinematics with rational functions combined with a
numerical evaluation over finite fields [31] to avoid the
large intermediate algebraic expressions that traditionally
appear. The rational parametrization of the external kin-
ematics is provided by momentum twistor coordinates [32].
Integrand parametrization and reconstruction.—We

define the unrenormalized leading-color (planar) five-gluon
amplitudes using the simple trace basis:

AðLÞð1; 2; 3; 4; 5Þ ¼ nLg3s
X

σ∈S5/Z5

trðTaσð1Þ…Taσð5Þ Þ

× AðLÞ(σð1Þ; σð2Þ; σð3Þ; σð4Þ; σð5Þ);

ð1Þ

where Ta are the fundamental generators of SUðNcÞ and
S5/Z5 are all noncyclic permutations of the external
particles. The overall normalization is n ¼ mϵNcαs/ð4πÞ,
where αs ¼ g2s /ð4πÞ is the strong coupling constant and
mϵ ¼ ið4πÞϵe−ϵγE (γE is the Euler-Mascheroni constant).
The L-loop partial amplitude AðLÞ can be constructed from
color-ordered Feynman diagrams. In this Letter, we will
compute the pure gluonic contributions to these amplitudes
at two loops including the dependence on the spin
dimension ds. Results in the ’t Hooft–Veltman and four-
dimensional-helicity (FDH) schemes can be obtained by
setting ds ¼ 4 − 2ϵ and ds ¼ 4, respectively [33].
The integrand of the ordered partial amplitudes can be

parametrized in terms of irreducible numerators Δ:
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Að2Þð1; 2; 3; 4; 5Þ ¼
Z

½dk1�½dk2�
X
T

ΔTðfkg; fpgÞQ
α∈TDα

; ð2Þ

where fkg ¼ fk1; k2g are the ðd ¼ 4 − 2ϵÞ-dimensional
loop momenta, T are the set of independent topologies, and
fpg ¼ f1; 2; 3; 4; 5g are the ordered external momenta.
The measure is ½dki� ¼ −iπ−d/2eϵγEd4−2ϵki, and the index α
runs over the set of propagators associated with the top-
ology T. Our planar five-gluon amplitudes are built from 57
distinct topologies, giving 425 irreducible numerators
when including permutations of the external legs. 18 of
these 57 topologies can be extracted from the ðone-loopÞ2
cut configurations as shown in Fig. 1. This means that all
topologies with an additional propagator including k1 þ k2
are computed simultaneously with the ðone-loopÞ2 cuts.
This is more efficient, since the parametrizations of the cut
loop momentum solutions are much simpler. The remain-
ing 39 can be extracted from a further 31 configurations
shown in Fig. 2. The eight topologies shown in Fig. 3 have
divergent maximal cuts and are extracted simultaneously
with subtopologies within the set of 31 two-loop cuts.
The construction of an integrand basis has been dis-

cussed before using the language of computational

algebraic geometry through polynomial division over a
Gröbner basis [10,14]. In this work, we took a simpler
approach, which did not rely on the computation of a
Gröbner basis, instead relying on the inversion of a linear
system which can be performed efficiently with finite field
reconstruction methods. We begin by expanding the loop
momenta around a basis of external momenta and trans-
verse directions (similarly to the methods of van Neerven
and Vermaseren [34]):

kμi ¼ kμk;i þ kμ⊥;i; ð3Þ

where kk lives in the physical space spanned by the external
momenta of the topology and k⊥ lives in the transverse
space. We further decompose the transverse space into
four-dimensional and ð−2ϵÞ-dimensional spaces, k⊥;i ¼
k½4�⊥;i þ k½−2ϵ�⊥;i . The size of the 4D transverse space (which
we will call the spurious space) has dimension d⊥;½4� ¼
4 − dk, where dk is equal to the number of independent
momenta entering the vertices of the topology, up to a
maximum value of four. We choose a spanning basis v for

the physical space of each topology kμk;i ¼
Pdk

j¼1 aijv
μ
j and

a basis w for the spurious space kμ;½4�⊥;i ¼ Pd⊥;½4�
j¼1 bijw

μ
j ,

with vi · wj ¼ 0.
The coefficients in the physical space kk are functions of

the aijðkiÞ≡ aijðfDg; fk · qgÞ, where D are the inverse
propagators and ki · qj are the physical space irreducible
scalar products (ISPs) for a given topology, where qj are
suitable linear combinations of external momenta. The
coefficients in the spurious and ð−2ϵÞ-dimensional spaces

are functions of additional ISPs ki:wj and μij ¼ −k½−2ϵ�⊥;i ·

k½−2ϵ�⊥;j . Having completed this decomposition, we find
relations between monomials in the ISPs by expanding
Eq. (3):

μij ¼ ki · kj − kk;i · kk;j − k½4�⊥;i · k
½4�
⊥;j: ð4Þ

From this equation, it is easy to obtain a valid basis of
monomials for each irreducible numerator of a dimension-
ally regulated amplitude by using Eq. (4) to remove
dependence on the extra dimensional ISPs. This basis is
just the most general polynomial in the ISPs ki · qj and

FIG. 1. The 18 distinct topologies extractable from ðone-loopÞ2
cuts.

FIG. 2. The 31 distinct topologies extractable from two-loop
cuts.

FIG. 3. The eight distinct topologies with divergent cuts that
must be computed simultaneously with subtopologies.

PHYSICAL REVIEW LETTERS 120, 092001 (2018)

092001-2



ki · wj where the power counting is restricted by the
renormalizability constraints [35].
This simple basis, without dependence on μij mono-

mials, is trivial to obtain without polynomial division but
results in high-rank tensor integrals with a complicated
infrared (IR) pole structure. Instead, we prefer to map to a
new basis which prefers to keep monomials in μij in the
numerator and make the ϵ → 0 limit easier to perform. The
map to the new basis is performed in four steps: (i) Write
down an overcomplete set of monomials in ki · qj, ki · wj,
and μij obeying the power counting restrictions; (ii) choose
a set of criteria to order the overcomplete set of monomials
(for example, prefer lower-rank monomials or prefer
monomials proportional to μij); (iii) map each monomial
containing μij from the set of step (i) onto a linear
combination of monomials of the simple basis using
Eq. (4), to obtain a system of linear relations between
monomials in the overcomplete set; (iv) solve for the
independent monomials of this linear system to find the
new basis. The result of this procedure is a process-
independent basis of monomials whose coefficients can
be fixed from unitarity cuts in six dimensions. We take a
top-down, OPP-like approach (i.e. following the method of
Ref. [8] by Ossola, Papadopoulos and Pittau) to solving the
complete system using information from previously com-
puted cuts to remove known poles from the factorized
product of tree amplitudes using the six-dimensional
spinor-helicity formalism [36]. The product of tree ampli-
tudes is efficiently evaluated by sewing together Berends-
Giele currents [37] as described in Ref. [31].
After completing the integrand level reconstruction, the

remaining transverse integration must be performed to
obtain a form compatible with traditional integration-by-
parts (IBP) relations. Following a recent approach [38], we
have two options in order to achieve this: (i) to integrate the
full transverse space to remove ki · wj and μij, introducing
dependence in ϵ into the integral coefficients, or (ii) to
integrate only over the spurious space, retaining μij
dependence which can subsequently be removed through
dimension-shifting identities. In this work, we have taken
the second approach, since it turned out to have better
numerical stability to use dimension-shifted integrals
instead of high-rank tensor integrals.
In either case, the tensor structure in the transverse space

can involve only the metric tensor gμν⊥ (or gμν⊥;½4�; g
μν
⊥;½−2ϵ�

depending on the particular transverse space being inte-
grated out). This makes the tensor decomposition for
nonvanishing integrals in the spurious space rather
simple. Further examples of this technique can be found
in Ref. [38].
As a final alteration of the integrand basis, we replace

some monomials with spurious integrands by building in
integration identities and symmetry relations (such as k1 ↔
k2 in the three-propagator sunrise topology). For example,
rather than fitting the coefficient of ðk1 · w2Þ2, we replace it
with the function

ðk1 · w2Þ2 → ðk1 · w2Þ2 −
w2
2

d⊥;½4�
k½4�⊥;1 · k

½4�
⊥;1; ð5Þ

which will integrate to zero. In Table I, we summarize the
result of our fit to unitarity cuts listing the number of
nonzero coefficients at the integrand level before and after
performing the integration over the spurious space. Cuts
with scalar loops are required for the reduction from six to
4 − 2ϵ dimensions. We perform the fit taking into account
the individual contribution of these scalar loops in order to
reconstruct the dependence of the numerator on the spin
dimension ds. Setting ds ¼ 2 gives a supersymmetric limit
in which the highest-rank tensor integrals do not appear in
the amplitudes. We use a polynomial expansion of the
integrand in ðds − 2Þ to separate the coefficients into terms
of increasing complexity. The fit can be performed effi-
ciently using rational numerics for each phase-space point,
and in most cases it was possible to obtain completely
analytic expressions for the integrands of the helicity
amplitudes using modest computing resources.
Numerical evaluation.—The unitarity-based method out-

lined above has been complemented by an approach based
on a numerical evaluation of Feynman diagrams to deter-
mine the coefficients of independent monomial bases. Both
of these methods use a momentum twistor [32] para-
metrization of the external kinematics to obtain a rational
numerical phase-space point. This is extremely important,
since in order to make use of the finite field reconstruction
methods our numerical algorithm must be free of all square
roots [39–42]. The parametrization in this case was chosen
(somewhat arbitrarily) to be

Z ¼

0
BBBBB@

1 0 1
x1

1þx2
x1x2

1þx3ð1þx2Þ
x1x2x3

0 1 1 1 1

0 0 0 x4
x2

1

0 0 1 1 x4−x5
x4

1
CCCCCA
; ð6Þ

where the columns give the four-component momentum
twistors of the five external particles (see, for example,
Appendix A of Ref. [15] for more details). These methods
have been implemented using a combination of tools
including QGRAF [43], FORM [44,45], Mathematica, and
a private implementation of the finite field reconstruction
method [31].
We have validated our setup on a number of known

cases. First, we have reproduced integrand level expres-
sions for the all-plus helicity sector [15] and against the
known integrands in the N ¼ 4 super-Yang-Mills theory
[46]. The latter check was obtained by computing all
fermion and (complex)-scalar loop contributions and sub-
sequently setting nf ¼ N and ns ¼ N − 1. We also have
performed gauge invariance checks at the integrand level
using the Feynman diagram setup.

PHYSICAL REVIEW LETTERS 120, 092001 (2018)

092001-3



To obtain a numerical value for the complete amplitude
after integration, we perform a sector decomposition of the
basis integrals combined with a Monte Carlo integration.
After applying dimension-shifting relations [2,47,48] to
rewrite the extra dimensional ISPs as standard integrals, we
processed the full set of integrals using both FIESTA [49]
and PYSECDEC [50] packages. This setup was validated
with the four-gluon helicity amplitudes and cross-checked
against results in the literature [25]. Simple topologies with
2 → 2 kinematics were reduced to the known MIs of
Ref. [51] using IBPs from FIRE5 [52] and REDUZE2 [53]
and dimensional recurrence relations from LITERED [54].
This gave a substantial improvement in the numerical
accuracy.
The results for evaluation at a specific phase-space point

are given in Tables II and III for the amplitudes

Âð2Þ;½i�
λ1λ2λ3λ4λ5

¼ Að2Þ;½i�ð1λ1 ; 2λ2 ; 3λ3 ; 4λ4 ; 5λ5Þ
ALOð1λ1 ; 2λ2 ; 3λ3 ; 4λ4 ; 5λ5Þ ; ð7Þ

with helicities λi and Að2Þ ¼ P
2
i¼0ðds − 2ÞiAð2Þ;½i�. The

leading-order amplitudes ALO are the tree level for the − −
þþþ and −þ −þþ and rational one-loop amplitudes
for the þþþþþ and −þþþþ. The finite ðone-loopÞ2
configuration Að2Þ;½2� is presented in Table IV. Numerical
accuracy is not an issue here, since the integrand level
reduction already leads to a basis of one-loop MIs. In
addition, we find complete agreement with the finite part of
the known integrated all-plus amplitude [18].
In cases where the ϵ pole structure of the amplitudes is

nontrivial, we compared with the known universal IR
structure [55–58] including the dependence on ds extracted
from the FDH scheme results [59]. The leading pole in 1/ϵ4

was verified analytically and is therefore quoted exactly in
Tables II and III. By comparing the agreement in the poles
between the ðds − 2Þ0 and ðds − 2Þ1, we clearly see the

TABLE I. The number of nonzero coefficients found at the integrand level both before (“nonzero”) and after
(“nonspurious”) removing monomials which integrate to zero. The last column [“contributions @Oðϵ0Þ”] gives the
number of coefficients contributing to the finite part. Each helicity amplitude is split into the components of ds − 2.

Helicity Flavor Nonzero coefficients Nonspurious coefficients Contributions @ Oðϵ0Þ
þ þ þ þþ ðds − 2Þ0 50 50 0

ðds − 2Þ1 175 165 50
ðds − 2Þ2 320 90 60

−þþþþ ðds − 2Þ0 1153 761 405
ðds − 2Þ1 8745 4020 3436
ðds − 2Þ2 1037 100 68

− −þþþ ðds − 2Þ0 2234 1267 976
ðds − 2Þ1 11844 5342 4659
ðds − 2Þ2 1641 71 48

−þ −þþ ðds − 2Þ0 3137 1732 1335
ðds − 2Þ1 15282 6654 5734
ðds − 2Þ2 3639 47 32

TABLE II. The numerical evaluation of Âð2Þ;½0�ð1; 2; 3; 4; 5Þ
using fx1 ¼−1;x2 ¼ 79/90;x3 ¼ 16/61;x4 ¼ 37/78;x5 ¼ 83/102g
in Eq. (6). The comparison with the universal pole structure P is
shown. The þþþþþ and −þþþþ amplitudes vanish to
OðϵÞ for this ðds − 2Þ0 component.

ϵ−4 ϵ−3 ϵ−2 ϵ−1 ϵ0

Âð2Þ;½0�
−−þþþ 12.5 27.7526 −23.773 −168.117 −175.207� 0.004

Pð2Þ;½0�
−−þþþ 12.5 27.7526 −23.773 −168.116 � � �

Âð2Þ;½0�
−þ−þþ 12.5 27.7526 2.5029 −35.8094 69.661� 0.009

Pð2Þ;½0�
−þ−þþ 12.5 27.7526 2.5028 −35.8086 � � �

TABLE III. The numerical evaluation of Âð2Þ;½1�ð1; 2; 3; 4; 5Þ
and comparison with the universal pole structure P at the same
kinematic point of Table II.

ϵ−4 ϵ−3 ϵ−2 ϵ−1 ϵ0

Âð2Þ;½1�
þþþþþ 0 0.0000 −2.5000 −6.4324 −5.311� 0.000

Pð2Þ;½1�
þþþþþ 0 0 −2.5000 −6.4324 � � �

Âð2Þ;½1�
−þþþþ 0 0.0000 −2.5000 −12.749 −22.098� 0.030

Pð2Þ;½1�
−þþþþ 0 0 −2.5000 −12.749 � � �

Âð2Þ;½1�
−−þþþ 0 −0.6250 −1.8175 −0.4871 3.127� 0.030

Pð2Þ;½1�
−−þþþ 0 −0.6250 −1.8175 −0.4869 � � �

Âð2Þ;½1�
−þ−þþ 0 −0.6249 −2.7761 −5.0017 0.172� 0.030

Pð2Þ;½1�
−þ−þþ 0 −0.6250 −2.7759 −5.0018 � � �
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effect of the highest-rank tensor integrals which appear
only in the latter case. We find a convincing agreement
between the poles and our amplitudes within the numerical
integration error [60]. Since the full amplitude is the sum of
all three parts, we see in this case that the simple ðds − 2Þ0
part dominates and the complete amplitude is evaluated
with subpercent level accuracy. This feature is probably not
generic for the whole phase-space, however.
Conclusions.—The techniques presented in this Letter

have allowed the first look at a set of five-point two-loop
helicity amplitudes with phenomenological relevance for
LHC experiments. We have found that unitarity cutting
methods in six dimensions can be combined with finite
field reconstruction techniques to compute multiscale
dimensionally regulated two-loop amplitudes in QCD. In
many cases, it was possible to obtain completely analytic
expressions for the integrands of the helicity amplitudes.
While a lot of effort was taken to find manageable

expressions, the final integrand form was still extremely
large and significantly more challenging than the previ-
ously known all-plus helicity configuration. One obvious
next step is to include a full set of integration-by-parts
identities and reduce the amplitude onto a basis of
analytically computed MIs. Promising new approaches
that use finite field reconstruction [61] or algebraic geom-
etry analyses [27,62–65] could make this possible in the
near future. We expect there will be other ways to improve
the integrand form by using canonical bases [29] and local
integrand representations [66–68], though at the present
time more work is needed to investigate these approaches.
While there clearly remains a long list of tasks to be

completed before predictions of 2 → 3 scattering at NNLO
in QCD become a reality, the work presented here is the
first example of the evaluation of one of the key ingre-
dients. We hope that the techniques and benchmark results
presented here will provide a platform towards this
final goal.
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þþþþþ Âð2Þ;½2�

−þþþþ Âð2Þ;½2�
−−þþþ Âð2Þ;½2�
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