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Abstract Sets of parton distribution functions (PDFs) of
the proton are reported for the leading (LO), next-to-leading
(NLO) and next-to-next-to-leading-order (NNLO) QCD cal-
culations. The parton distribution functions are determined
with the HERAFitter program using the data from the HERA
experiments and preserving correlations between uncertain-
ties for the LO, NLO and NNLO PDF sets. The sets are used
to study cross-section ratios and their uncertainties when cal-
culated at different orders in QCD. A reduction of the overall
theoretical uncertainty is observed if correlations between the
PDF sets are taken into account for the ratio of W W di-boson
to Z boson production cross sections at the LHC.

1 Introduction

Accurate knowledge of the parton distribution functions
(PDFs) of the proton is required for precision physics at the

a e-mail: herafitter-help@desy.de
b e-mail: alexandre.glazov@desy.de
c e-mail: pirumov@mail.desy.de
d e-mail: ringaile@mail.desy.de
e e-mail: voica@mail.desy.de
f e-mail: mlisovyi@mail.desy.de

LHC. PDF sets are now available as determined by several
groups [1–6] at leading-order (LO), next-to-leading-order
(NLO) and next-to-next-to-leading-order (NNLO) accuracy
in QCD. To obtain the cross-section predictions, the PDF sets
should be paired with calculations of the coefficient functions
at the matching order of the accuracy. Theoretical uncer-
tainties for the predictions arise from both the PDF and the
coefficient-function uncertainties.

Most of the Standard Model processes at the LHC are cal-
culated to NLO accuracy. The uncertainties due to missing
higher orders for the coefficient functions are typically deter-
mined by varying factorisation and renormalisation scales.
This leads to large uncertainties often as large as 10 % of
predicted cross sections, which usually exceed uncertainties
due to the PDFs determination. For a handful of processes
known at NNLO, the PDF uncertainties often exceed uncer-
tainties due to missing higher orders in coefficient-function
calculations.

The experimental precision achieved by the LHC experi-
ments often exceeds the precision of theoretical calculations.
Ultimately a more complete set of NNLO calculations should
remedy the situation in future. At present, special meth-
ods are employed to reduce theoretical uncertainties. One
such method is to measure ratios of observables which are
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expected to have similar higher-order corrections. For exam-
ple, the W boson charge-asymmetry measurements [7,8]
employ almost full cancellation of the scale uncertainties for
W + compared to W − production. However, this cancellation
is not always possible. For example, the measurement of the
W W di-boson to Z boson production cross-section ratio per-
formed by the CMS collaboration using

√
s = 7 TeV data [9]

benefits from cancellation of the PDF uncertainties, but the
scale uncertainties for the NLO calculation dominate the the-
oretical uncertainty. While there is no complete NNLO cal-
culation of the W W production available at present1, a reduc-
tion of the scale uncertainty for this ratio could be achieved by
using NNLO calculations for the Z boson production cross
section. To benefit from cancellation of the PDF uncertain-
ties, correlated sets at NLO and NNLO are required in this
case.

Several Monte Carlo (MC) simulation programs such as
Powheg [10], MC@NLO [11] and aMC@NLO [12] use
NLO matrix-element calculations which are matched to par-
ton showers. The parton-shower simulations are limited to
leading-log accuracy at the moment requiring LO PDFs for
consistency. Coherently determined, correlated LO and NLO
PDF sets may be exploited for the determination of PDF
uncertainties for the experimental processes which are sen-
sitive to the interplay of the hard-scattering matrix elements,
soft resummation and PDF content of the proton. An exam-
ple of such process is the W boson mass measurement using
the charged-lepton transverse-momentum distribution from
the W ± → �±ν decay.

This paper reports a determination of the PDFs with cor-
related uncertainties for LO, NLO and NNLO sets. The
sets are determined using the data from the HERA experi-
ments [5] and the HERAFitter analysis framework [5,13,14].
The experimental uncertainties are estimated using the MC
method [15] and then transformed to eigenvector PDF
sets [16,17]. The new PDF sets are used to study correla-
tions of the Z boson production cross section calculated at
NLO and NNLO and to determine theoretical uncertainties
for the W W di-boson over Z boson production cross-section
ratio. An overall reduction of the theoretical uncertainty is
observed.

2 PDF analysis

The PDF analysis reported in this paper uses the combined
HERA data [5]. These input data are accurate measure-
ments of the inclusive deep-inelastic scattering (DIS) neutral-
and charged-current cross sections combined by the H1 and
ZEUS collaborations. The neutral-current data cover a wide
range in Bjorken x and absolute four-momentum transfer

1 During review of the paper the first NNLO calculation of the WW
di-boson production cross section has become available [50].

squared, Q2, sufficient to cover the LHC kinematics, while
the charged-current data provide information to disentangle
contributions from u-type and d-type quarks and anti-quarks
at x > 0.01.

This analysis is based on the open-source QCD fit frame-
work as implemented in the HERAFitter program using the
QCDNUM evolution code [18] for DGLAP evolution at LO,
NLO and NNLO [19–24]. To compute DIS cross sections,
the light-quark coefficient functions are calculated using
QCDNUM in the M S scheme [25] with the renormalisation
and factorisation scales set to Q2.

The heavy quarks are dynamically generated and the
heavy-quark coefficient functions for the neutral-current γ ∗
exchange process are calculated in the general-mass variable-
flavour-number scheme (VFNS) of [26–28] with up to five
active quark flavours. For the charged-current process, pure Z
exchange and γ ∗/Z interference contributions to the neutral-
current process, the heavy quarks are treated as massless. The
NLO QCD analysis of the combined Fcc

2 data, performed
by the H1 and ZEUS collaborations [29], demonstrated that
the preferred value of the charm-quark-mass parameter, Mc,
used in VFNS (related to the charm-quark pole mass) is
strongly scheme dependent. This analysis is repeated here
to determine the preferred value for the NNLO heavy-quark
coefficient functions. As a cross check, an NLO analysis
is repeated first and found to reproduce the H1 and ZEUS
results. The preferred mass-parameter value at NLO (NNLO)
is Mc = 1.38 GeV (Mc = 1.32 GeV) and it is used for the
results reported in this paper. For the LO fit, the charm mass
is set to Mc = 1.38 GeV. The bottom-quark-mass parameter
is set to 4.75 GeV for fits at all orders.

The strong coupling constant is set at the Z boson mass
MZ to αS(MZ ) = 0.1184 [30] for both NLO and NNLO fits.
The LO fit uses αS(MZ ) = 0.130, similar to the values used
in CTEQ6L [31], HERAPDF1.5LO [32], MSTW08LO [3]
and NNPDF2.1LO [33] PDF sets.

The data included in the fit are required to satisfy the Q2 >

Q2
min = 7.5 GeV2 condition in order to stay in the kinematic

domain where perturbative QCD calculations can be applied.
Variations of these choices are considered as model PDF
uncertainties.

The PDFs for the gluon and quark densities are parame-
terised at the input scale Q2

0 = 1.7 GeV2 as follows:

xg(x) = Agx Bg (1 − x)Cg − A′
gx B′

g (1 − x)C ′
g ; (1)

xŪ (x) = AŪ x BŪ (1 − x)CŪ (1 + DŪ x + EŪ x2); (2)

x D̄(x) = AD̄x BD̄ (1 − x)CD̄ ; (3)

xuv(x) = Auv x Buv (1 − x)Cuv (1 + Euv x2); (4)

xdv(x) = Adv x Bdv (1 − x)Cdv (1 + Ddv x). (5)

Here the decomposition of the quark densities follows the one
from [14] with xŪ (x) = xū(x) and x D̄(x) = xd̄(x)+xs̄(x).
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The contribution of the s-quark density is coupled to the d-
quark density as xs̄(x) = rs xd̄(x) with rs = 1.0, for fits at all
orders, as suggested by [34], and xs̄(x) = xs(x) is assumed.
The extra polynomial parameters Ddv , DŪ , EŪ are set to
zero for the central fit; however, they are allowed to vary to
estimate the parameterisation uncertainty. The normalisation
of the xuv (xdv) valence-quark density, Auv (Adv ), is given
by the quark-counting sum rule. The normalisation of the
gluon density, Ag , is determined by the momentum sum rule.
The x → 0 behaviour of the u- and d-sea-quark density is
assumed to be the same leading to two additional constraints
BŪ = BD̄ and AŪ = AD̄/(1 + rs). The negative term for
the gluon density is suppressed at high x by setting C ′

g = 25.
After application of these constraints, the central fit has 13
free parameters.

The fit uses the χ2 definition from [5] with an additional
penalty term described in [35]. The statistical uncertainties
use expected instead of observed number of events. The data
contain 114 correlated systematic uncertainty sources as well
as bin-to-bin uncorrelated systematic uncertainties. All sys-
tematic uncertainties are treated as multiplicative. The min-
imisation with respect to the correlated systematic uncer-
tainty sources is performed analytically while the minimi-
sation with respect to PDF parameters uses the MINUIT
program [36]. The central fit result is comparable to the
HERAPDF1.0 set [5]. The χ2 per degree of freedom val-
ues, χ2/Ndof , for the LO, NLO and NNLO fits are 523/537,
500/537 and 498/537, respectively.

The PDF uncertainties arising from the experimental
uncertainties are estimated using the MC method [15]. The
method consists in preparing a number of Nr replicas of the
data by fluctuating the central values of the cross sections
randomly within their statistical and systematic uncertain-
ties taking into account correlations. The uncorrelated and
correlated experimental uncertainties are assumed to follow
the Gaussian distribution. A set of 1500 replicas is prepared
and used as input for the LO, NLO and NNLO QCD fit.
The fits are inspected to ensure that the minimisation has
converged for fits at all three orders. Replicas where one
of the fits has failed are discarded. To check that this pro-
cedure does not introduce any bias, a study in which the
non-converged fits are included has been performed. It is
found that the non-converged fits have negligible impact.
A total of Nr = 1337 replicas remain for which fits at
all orders have converged and they are used for the further
analysis.

A test of the fit results is done by investigating the χ2 dis-
tribution. For the MC method, the χ2 distribution is expected
to have a mean value of 2Ndof since it is given by the com-
bination of fluctuations in the data plus random fluctuations
for each MC replica. Figure 1a shows the observed χ2 distri-
butions for the fits at LO, NLO and NNLO. The distributions
follow the expected χ2 distribution. Figure 1b shows the cor-
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Fig. 1 Distribution of χ2/Ndof for fits to 1337 data replicas at LO,
NLO and NNLO (a). Correlation of χ2/Ndof between NLO and NNLO
fits (b). The vertical line in a indicates the expected mean value of the χ2

distribution for the fits to the data replicas in the MC method (2× Ndof )

relation of the χ2/Ndof values for the fits at NLO and NNLO.
A high degree of correlation is observed.

The central values, μ, and uncertainties, �, of the predic-
tions, based on MC PDF sets, are estimated using the mean
values and standard deviations over the predictions for each
replica, σi . The predictions can be cross sections calculated at
different orders or PDFs determined at given x, Q2 values.
The correlation due to experimental uncertainties between
NLO and NNLO predictions is determined as

ρNLO−NNLO = 1

Nr

∑Nr
i=1(σ

NLO
i − μNLO)(σ NNLO

i − μNNLO)

�NLO�NNLO .

For many applications, the eigenvector representation of
the PDF uncertainties [16,17] is more convenient than the
MC representation. The eigenvector representation typically
requires fewer PDF sets to describe the PDF uncertainties. A
procedure suggested in [37] is adapted here to determine the
eigenvector representation for the correlated LO and NLO as
well as NLO and NNLO MC PDF sets.
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The procedure makes use of the ability of the QCDNUM
program to perform PDF evolution based on a tabulated input.
An x-grid of Nx = 97 points xl with variable spacing2 is used
to determine the N f = 5 average PDFs x f (xl). The PDFs
are represented by Eqs. 1–5 including correlations between
PDFs at the No = 2 orders, LO-NLO and NLO-NNLO.
The correlated uncertainties are described by the dimension
N = Nx × N f × No = 97 × 5 × 2 covariance matrix C
which is represented as

Ci j =
N∑

k=1

Vik Vjk,

where the matrix V is built using eigenvectors of C times
the square root of the corresponding eigenvalues. For each
vector Vk , a symmetric PDF error set is defined at the starting
scale as

x f k(xl) = x f (xl) + Vik .

Here the index i is determined by the x-grid index l, PDF
flavour index f and order index o as i = l+( f −1)Nx +(o−
1)Nx N f . The resulting error sets are evolved from the start-
ing scale to other scales using QCDNUM. Since the eigen-
values are found to be strongly ordered in magnitude, only
39 (45) eigenvectors corresponding to leading eigenvalues
can approximate the matrix C for NLO-NNLO (LO-NLO)
sets with high precision, as demonstrated in the following
discussion.

The NLO PDFs with their uncertainties determined using
the MC method and its eigenvector representation, using
39 sets, are shown in Fig. 2. Very good agreement is
observed between the two representations. A similar pic-
ture is observed for the LO and NNLO PDFs. The corre-
lation among PDF values at different x is shown in Fig. 3.
The eigenvector representation reproduces all the correla-
tions very well with small deviations at high x (x > 0.7).
All PDFs show high degree of correlation for neighbouring
x values which can be explained by intrinsic smoothness of
the PDF parameterisation, which has few parameters, and the
fact that the PDFs at comparable x are constrained by sim-
ilar input data. There is a sizeable anti-correlation between
PDFs at small and large x values caused by sum rules. The
correlation patterns as a function of x are similar for PDFs
determined at NLO and NNLO and, with the exception of the
gluon density at high x , there is a strong correlation between

2 The grid for the central fit uses 199 grid points spanning in x from 10−6

to 1 with four anchor points at 0.01, 0.1, 0.4 and 0.7 and logarithmic
spacing between them. The grid for the error determination spans in
x from 10−5 to 1 with the same anchor points. The uncertainties for
x < 10−5 are set to those at x = 10−5.
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Fig. 3 Correlation coefficients, given in percent and represented by dif-
ferent colours, among different PDFs at NLO and NNLO at the starting
scale Q2 = 1.7 GeV2 and x-grid points. From top to bottom, the panels
show correlation coefficients for the xuv(x), xdv(x), xŪ (x), x D̄(x)

and xg(x) distributions. The left column corresponds to the original
MC-method calculation and the right shows the result of the eigenvec-
tor representation. Each panel shows the correlation coefficients as a
function of the x-grid point for the NLO (bins 1 − 97) and NNLO (bins
98 − 194) PDFs. Bins 0, 27, 43, 62, 78 and 97 correspond to anchor
points at x = 10−5, 0.01, 0.1, 0.4, 0.7 and 1.0 with logarithmic x
spacing between them

NLO and NNLO PDFs. A qualitatively similar, strong corre-
lation is observed for the PDFs determined at LO and NLO;
however, it is somewhat reduced compared to that for the
NLO and NNLO PDFs. This explains why more eigenvec-
tors are required for the correlated LO-NLO PDF set. As a
cross check, the correlations between NLO and NNLO PDFs
are studied using a bi-log-normal parameterisation

x f (x) = ax p−b log(x)(1 − x)q−d log(1−x)

instead of the parameterisation of Eq. 1–5. Similar corre-
lation patterns are observed with some differences for the
gluon density at high x , where the uncertainties are large.

Model uncertainties in PDFs arise from the uncertainties
of the input parameters of the fit. The value of the strange-
quark density suppression rs is varied by ±0.30. The varia-
tion range is defined by the uncertainties found by the ATLAS
collaboration [34,38] and cover the somewhat lower value
determined by the CMS collaboration [8,39]. Based on the
ATLAS analysis, this variation is considered to be fully cor-
related between the NLO and NNLO PDFs.

The uncertainties of the heavy-quark masses are also
assumed to be fully correlated between NLO and NNLO.
The charm-quark mass uncertainty is taken from the H1 and
ZEUS analysis [29] to be 0.06 GeV. The bottom-quark mass
is varied between 4.3 and 5.0 GeV.

The uncertainties of the QCD evolution at small Q2 are
probed by varying the Q2

min cut between 5 and 10 GeV2.
The choice of the Q2

0 value is also tested by varying down
to Q2

0 = 1.5 GeV2. The resulting change in the PDFs is
considered as a symmetric uncertainty.

The strong coupling constant at both NLO and NNLO,
maybe considered to be the same, or different, following the
analyses from [4,5] or [1,3], respectively. To cover different
possibilities, αS(MZ ) is varied by ±0.002 independently for
the LO, NLO and NNLO fits.

Parameterisation uncertainties are estimated by including
additional terms in the polynomial expansion following the
procedure outlined in [5]. The extra terms are added coher-
ently to LO, NLO and NNLO sets to preserve the correlation
pattern.

The PDF sets are reported in the LHAPDF v6 format [40].
The correlated NLO-NNLO and LO-NLO sets are labelled
as “HF14cor-nlo-nnlo” and “HF14cor-lo-nlo”, respectively.
Separate sets are provided for experimental and model plus
parameterisation (“HF14cor-lo-nlo-nnlo_VAR”) uncertain-
ties. The experimental uncertainties are reported as both
Monte Carlo (“HF14cor-lo-nlo-nnlo_MC”) and symmet-
ric eigenvector (“HF14cor-nlo-nnlo_EIGSYM”, ”HF14cor-
lo-nlo_EIGSYM”) sets. The symmetric eigenvector set is
ordered according to the size of the PDF uncertainty, approxi-
mate calculations may use the first 26 sets only. The reference
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Table 1 Cross-section predictions, experimental (Exp.) as well as model and parameterisation (Mod.) PDF uncertainties, scale uncertainties and
correlation coefficients for the Z boson and W W di-boson production calculated at NLO and NNLO using the HF14cor-nlo-nnlo PDF set

Cross section Value Exp. PDF Mod. PDF Scale Correlation coefficient
pb pb pb pb σNLO

Z σNNLO
Z σNLO

W W

σNLO
Z 29,890 ±450 +490

−490
+680
−940 1 0.697 0.736

σNNLO
Z 30,390 ±420 +520

−540
+190
−260 0.697 1 0.451

σNLO
W W 46.1 ±0.6 +0.7

−0.6
+1.5
−1.4 0.736 0.451 1

set for all PDF sets is chosen to be the set averaged over the
MC replicas.

3 Prediction of Z and W W production cross sections at
the LHC

The usage of the correlated NLO and NNLO PDF sets is
exemplified by calculating W W di-boson and Z boson pro-
duction cross sections for the pp collisions at a

√
s = 7 TeV

centre-of-mass energy. The recent measurements of W W
di-boson production by the ATLAS and CMS collabora-
tions [9,41] have generated considerable interest from the
theoretical community. The uncertainties of the measure-
ments and predictions are comparable and the measurements
are about 1−2σ above the expectations. The difference may
originate from missing higher orders [42,43], electroweak
effects [44] and possible New Physics contributions [45].

The W W di-boson and Z boson production processes are
expected to have similar PDF dependences which may lead
to reduced uncertainties for the ratio of the cross sections. In
the following discussion, the predictions obtained using the
HF14cor-nlo-nnlo PDF sets are compared to the measure-
ment of the ratio obtained by the CMS collaboration [9].

The total cross section for W +W − di-boson production,
σW W (called W W di-boson production in the following) is
calculated at NLO using the MCFM v6.6 program [46,47].
The calculation includes the gluon–gluon initiated box dia-
gram which first contributes at order α2

S and so is formally
NNLO. The factorisation and renormalisation scales are
given by half of the scalar sum of the transverse momenta
of the outgoing final-state particles, HT /2. The contribution
from Higgs boson production, which contributes approx-
imately two percent, is not included. As a cross check,
the total W W di-boson cross-section predictions from the
original paper [47] are reproduced using the corresponding
setup.

The total cross section for Z/γ ∗ boson production, σZ

(referred to as Z boson production in the following discus-
sion) is calculated at NLO and NNLO using FEWZ [48,49].
The invariant mass for the lepton pair is chosen to be 60 <

M�� < 120 GeV as in the analysis of the CMS collaboration.
The factorisation and renormalisation scales are fixed to the Z

boson pole mass, MZ . The FEWZ calculation includes NLO
electroweak corrections, which are small for this mass range.
The contribution from γ γ → �� processes is not included
for either W W di-boson or Z boson production.

Uncertainties due to missing higher-order corrections are
estimated by varying the default scale up and down by a fac-
tor of two, for both factorisation and renormalisation scales
simultaneously or independently, excluding the variation in
opposite directions. An envelope of all variations is built and
maximal positive and negative deviations are taken as the
asymmetric uncertainty. The scale uncertainty is dominated
by the variation of the renormalisation scale for W W di-
boson production and by the variation of the factorisation
scale for Z boson production. The scale uncertainty is treated
as uncorrelated between W W di-boson and Z boson produc-
tion. The experimental PDF uncertainties are symmetric by
construction. The model and parameterisation PDF uncer-
tainties are quoted as asymmetric.

The resulting cross sections with their correlations are
given in Table 1 and shown in Fig. 4. The predictions for Z
boson production calculated at NLO and NNLO show a high
degree of correlation. The scale uncertainties are reduced sig-
nificantly for the NNLO prediction, becoming smaller than
the PDF uncertainties. The central value of the prediction at
NNLO is larger than that for NLO by 1.7 %. This differ-
ence is smaller than the uncertainty of σNLO

Z on the missing
higher-order corrections, estimated by the scale variation.

The correlation of the σW W and σZ cross sections is very
large for the experimental PDF uncertainties for both the
NLO and the NNLO calculations. Model and parameterisa-
tion PDF uncertainties are also highly correlated for most
of the uncertainty sources when both cross sections are cal-
culated at NLO. When σZ is calculated at NNLO, an anti-
correlation for some sources is observed. A detailed break-
down of the model and parameterisation uncertainties for the
total cross-section calculations is given in Table 2.

An anti-correlation between σW W and σZ is observed
for the variation of the rs parameter. In addition, an anti-
correlation between σNLO

Z and σNNLO
Z is observed for the

variation of the Q2
min cut as well from the addition of the

Duv parameter to the PDF parameterisation. A positive cor-
relation between σW W and σZ at both orders is observed for
the Mc, Mb and αS(MZ ) variations.
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Fig. 4 Correlation of the cross-section predictions for Z boson pro-
duction calculated at NLO and NNLO, W W di-boson and Z boson
production both calculated at NLO and W W di-boson production cal-
culated at NLO and Z boson production calculated at NNLO. The error
bars indicate scale uncertainties

Table 2 Shifts of the W W di-boson and Z boson production cross
sections due to the model and parameterisation variations in the PDF fit

Variation σNLO
W W (%) σNLO

Z (%) σNNLO
Z (%)

rs(−0.3) 1.00 −0.29 −0.33

rs(+0.3) −0.81 0.39 0.42

Mc(−0.06 GeV) −0.81 −0.89 −0.76

Mc(+0.06 GeV) 0.55 0.66 0.61

Mb(−0.45 GeV) 0.13 0.11 −0.02

Mb(+0.25 GeV) −0.07 −0.07 0.00

αS(MZ )(−0.002) −0.54 −1.27 −1.17

αS(MZ )(+0.002) 0.52 1.23 1.17

Q2
min(−2.5 GeV2) −0.25 −0.35 0.23

Q2
min(+2.5 GeV2) 0.75 0.73 −1.06

Q2
0(−0.2 GeV2) −0.21 −0.19 −0.14

+Duv −0.03 −0.32 0.97

+DŪ −0.04 −0.02 −0.01

+EŪ 0.01 0.00 0.00

Table 3 Predictions of the W W di-boson to Z boson production cross-
section ratio with PDF and scale uncertainties

Ratio Value Exp. PDF Mod. PDF Scale
×10−3 ×10−3 ×10−3 ×10−3

σNLO
W W

σNLO
Z

1.543 ±0.008 +0.023
−0.021

+0.069
−0.058

σNLO
W W

σNNLO
Z

1.517 ±0.010 +0.036
−0.027

+0.050
−0.046

Effects of variations of the input parameters other than
considered in Table 2 can be estimated by scaling the reported
shifts assuming a linear dependence of the cross sections.
Validity of this approach has been verified for the rs param-
eter which has been varied down to rs = 0.3 in steps of 0.1.
The observed anti-correlation between σW W and σZ for the
rs-parameter variation can be caused in part by the differ-
ent x ranges probed by the two processes and the assump-
tion that the s-quark density has the same x dependence as
the d̄-quark density, adopted in this paper because of a lack
of sensitivity of the HERA data. The effect of this assump-
tion can be probed by treating the rs-parameter variation as
uncorrelated for the two cross sections. Note, however, that
the anti-correlation leads to a conservative uncertainty for the
σW W to σZ cross-section ratio.

The predicted ratio σW W /σZ using the Z boson produc-
tion cross sections calculated at NLO and NNLO is given in
Table 3. The predictions are compared to the CMS data in
Fig. 5. The data and calculations agree reasonably well. The
scale uncertainty is reduced by using σNNLO

Z . Experimental
PDF uncertainties cancel in the ratio becoming negligible
compared to the scale uncertainties.
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Fig. 5 Ratio of the W W di-boson to Z boson production cross sections
calculated at NLO and NLO/NNLO compared to the result obtained by
the CMS collaboration (hatched area). The inner, middle and outer
filled error bars of the predictions indicate experimental and full PDF
uncertainties and the total uncertainty calculated as the scale and full
PDF uncertainties added in quadrature, respectively

Table 4 Shifts of the ratios σNLO
W W /σNLO

Z and σNLO
W W /σNNLO

Z due to the
model and parameterisation variations in the PDF fit

Variation σNLO
W W / σNLO

Z σNLO
W W / σNNLO

Z×10−3 ×10−3

rs(−0.3) 0.020 0.020

rs(+0.3) −0.018 −0.019

Mc(−0.06 GeV) 0.001 −0.001

Mc(+0.06 GeV) −0.002 −0.001

Mb(−0.45 GeV) 0.000 0.002

Mb(+0.25 GeV) 0.000 −0.001

αS(MZ )(−0.002) 0.011 0.010

αS(MZ )(+0.002) −0.011 −0.010

Q2
min(−2.5 GeV2) 0.002 −0.007

Q2
min(+2.5 GeV2) 0.000 0.028

Q2
0(−0.2 GeV2) 0.000 −0.001

+Duv 0.005 −0.015

+DŪ 0.000 −0.001

+EŪ 0.000 0.000

A detailed breakdown of the model uncertainty sources
for the ratio of the cross sections is given in Table 4. The rs

variation results in a large uncertainty for the ratio using both
NLO and NNLO calculations of σZ . Additional experimental
input constraining rs will allow this uncertainty to be reduced.
Variations of the Q2

min cut and addition of the Duv parameter
cancel in the ratio for σNLO

W W /σNLO
Z ; however, these variations

have significant impact on σNLO
W W /σNNLO

Z . The variations of
Mc, Mb and αS(MZ ) do not affect the ratio significantly for
either the NLO or NNLO calculations of σZ .

An alternative approach to benefit from the partial cancel-
lation of the PDF uncertainties is to use NNLO PDFs for the
processes with only NLO matrix-element calculations. The

mismatch of the calculation order is beyond the NLO accu-
racy and thus could be considered to be covered by the NLO
calculation uncertainty, which is estimated by the scale varia-
tion. Given the observed anti-correlations between NLO and
NNLO sets, this procedure may, however, lead to an underes-
timation of the PDF uncertainties. A calculation of the W W
di-boson to Z boson production cross-section ratio using the
HF14cor-nlo-nnlo NNLO PDF set yields

σ
NLO(NNLO PDF)
W W /σNNLO

Z =
[1.527 ± 0.008 (exp.)+0.023

−0.022 (mod.)] × 10−3,

where the uncertainties represent the experimental (exp.) and
model plus parameterisation (mod.) PDF errors only and are
very similar to the PDF errors for the σNLO

W W /σNLO
Z ratio. The

central value is consistent with the σNLO
W W /σNNLO

Z calcula-
tion within 0.7 %; however, the PDF uncertainties may be
underestimated by 30–50 %.

Adding the PDF and scale uncertainties (Table 4) in
quadrature, the cross-section ratio of W W di-boson to Z
boson production calculated as the ratio of NLO predictions
is

σNLO
W W /σNLO

Z = [1.543+0.073
−0.062] × 10−3

and as the ratio of NLO to NNLO predictions is

σNLO
W W /σNNLO

Z = [1.517+0.051
−0.047] × 10−3.

The usage of the mixed-order calculations leads to a 30–40 %
reduction of the overall theoretical uncertainty.

4 Summary

Sets of LO, NLO and NNLO parton distribution func-
tions are reported preserving the correlations of PDFs deter-
mined at different orders. The sets are determined with the
HERAFitter program using the combined HERA data. The
input parameters of the fits use recent experimental results
on the charm-quark mass parameter Mc and the strangeness
suppression parameter rs . The experimental PDF uncertain-
ties are determined using the MC method and reported using
both MC and eigenvector representations. A high degree of
correlation is observed for the PDFs at different perturba-
tive order and similar Bjorken variable x . The model and
parameterisation PDF uncertainties are estimated by varying
the values of the input parameters and by adding extra terms
in the PDF parameterisation.

The correlated NLO and NNLO PDF sets are used to cal-
culate the W W di-boson and Z boson production cross sec-
tions. The W W di-boson production cross section is calcu-
lated at NLO using MCFM. The Z boson production cross
section is calculated at NLO and NNLO using FEWZ. Signif-
icant correlations of the PDF uncertainties are observed for
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the cross sections calculated at different orders. For the ratio
of the W W di-boson to Z boson production cross sections an
overall 30–40 % reduction of uncertainties is observed when
using mixed-order calculations due to the reduced higher-
order uncertainty for the Z boson production cross section
calculated at NNLO.
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