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We compute the total cross-section for Higgs boson production in bottom-quark fusion using the so-
called FONLL method for the matching of a scheme in which the b-quark is treated as a massless parton 
to that in which it is treated as a massive final-state particle. We discuss the general framework for the 
application of the FONLL method to this process, and then we present explicit expressions for the case 
in which the next-to-next-to-leading-log five-flavor scheme result is combined with the leading-order 
O(α2

s ) four-flavor scheme computation. We compare our results in this case to the four- and five-flavor 
scheme computations, and to the so-called Santander matching.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
In perturbative QCD, processes involving bottom quarks can be 
computed within different factorization schemes. One possibility is 
to use a five-flavor, or massless, scheme, in which the b-quark is 
treated as a massless parton. In this scheme, collinear logarithms 
of μ2

F /m2
b (with μF the factorization scale) are resummed through 

QCD evolution equations, but corrections suppressed by powers 
of m2

b/μ2
F are neglected. Alternatively, one may use a four-flavor, 

massive, or decoupling scheme, in which the b-quark is treated 
as a massive particle, which decouples from evolution equations 
and the running of αs , but full dependence on mb is retained. 
Generally, of course, results in the two schemes may differ by a 
large amount: indeed, the leading-order predictions for Higgs bo-
son in bottom-quark fusion [1–4] may differ by up to one order of 
magnitude [5], though the disagreement is reduced if the factor-
ization and renormalization scales are chosen to be smaller than 
mH (which may well [6–10] be more appropriate) and higher per-
turbative orders are included.

The five-flavor scheme is more accurate for scales μ2 � m2
b , 

while the four-flavor scheme is more accurate close to threshold, 
though of course if the four-flavor computation is performed to 
high enough order in perturbation theory it will reproduce the 
five-flavor scheme result (the converse is not true, because mass 
corrections are not included in the five-flavor scheme at any per-
turbative order). It is therefore advantageous to combine the two 
computations into one which is accurate at all scales. A phe-
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nomenological way of doing so, the so-called Santander matching, 
has been proposed in Ref. [11]: it consists of simply interpolat-
ing between the four- and five-flavor scheme results by means
of a weighted average, such that in the two limits μ/mb � 1 or 
μ/mb ∼ 1 the massless or massive results are respectively repro-
duced.

However, a more systematic approach which preserves the per-
turbative accuracy of both computations may be desirable. One 
such approach, the FONLL method, was proposed in Ref. [12] in 
the context of hadro-production of heavy quarks, and extended to 
deep-inelastic scattering in Ref. [13]. The basic idea of this method 
is to expand out the five-flavor-scheme computation in powers of 
the strong coupling αs , and replace a finite number of terms with 
their massive-scheme counterparts. The result then retains the ac-
curacy of both ingredients: at the massive level, the fixed-order 
accuracy corresponding to the number of massive orders which 
have been included (FO, or fixed order), and at the massless level, 
the logarithmic accuracy of the starting five-flavor scheme compu-
tation (NLL, or generally subleading logarithmic1).

It is the purpose of this paper to present the application of the 
FONLL scheme to Higgs production in bottom-quark fusion, focus-
ing for definiteness on the total cross-section. In the rest of this 
paper we will follow the notation and conventions of Ref. [13].

1 We will consistently use the notation NkLL to refer to the resummation of 
collinear logs of the heavy quark mass, i.e. by LL we mean a computation in which (
αs ln

m2
b

μ2

)
is treated as order one (α0

s ).
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The total cross-section σ in the five-flavor scheme has the form

σ (5) =
∫∫

dx1dx2

∑
i j

f (5)
i (x1,μ

2) f (5)
j (x2,μ

2)

× σ̂
(5)
i j

(
x1, x2,α

(5)
s (μ2)

)
, (1)

where the sum runs over the 10 quarks and antiquarks and the 
gluon, and the b quark and antiquark are treated as the other par-
tons, which in particular contribute to the running of α(5)

s . For 
simplicity we omit the dependence of the hard cross-section on 
the renormalization and factorization scales, which henceforth we 
will assume to be chosen equal to μR = μF = μ, unless otherwise 
stated.

In the four-flavor scheme it has the form

σ (4) =
∫∫

dx1dx2

∑
i j

f (4)
i (x1,μ

2) f (4)
j (x2,μ

2)

× σ̂
(4)
i j

(
x1, x2,

μ2

m2
b

,α
(4)
s (μ2)

)
, (2)

where now the sum only runs over the four lightest quarks and an-
tiquarks and the gluon, the b-quark decouples from the running of 
α

(4)
s and the DGLAP evolution equations satisfied by f (4)

i (x1, μ2), 
but full mb dependence of the partonic cross-section σ̂ (4)

i j is re-
tained.

In order to carry out the FONLL procedure, we need to express 
the four-flavor scheme cross-section, Eq. (2), in terms of α(5)

s and 
f (5)

i , so that their perturbative expansions can be compared di-
rectly. The coupling constant and the PDFs are related in the two 
schemes by equations of the form

α
(5)
s (μ2) = α

(4)
s (μ2) +

∞∑
i=2

ci(L) ×
(
α

(4)
s (m2

b)
)i

, (3)

f (5)
i (x,μ2) =

1∫
x

dy

y

∑
j

Ki j

(
y, L,α

(4)
s (μ2)

)
f (4)

j

(
x

y
,μ2

)
, (4)

where

L ≡ lnμ2/m2
b (5)

and the sum runs over the eight lightest flavors, antiflavors, and 
the gluon, while the index i takes value over all ten quarks and 
antiquarks and the gluon. The coefficients ci(L) are polynomials 
in L, and the functions Kij can be expressed as an expansion in 
powers of αs , with coefficients that are polynomials in L.

The first nine equations (4) relate the eight lightest quarks and 
the gluon in the two schemes and can be inverted to express the 
four-flavor-scheme PDFs in terms of the five-flavor-scheme ones. 
The last two equations, assuming that the bottom quark is gen-
erated by radiation from the gluon (i.e. no “intrinsic” [14] bottom 
component) express the bottom and anti-bottom PDFs in terms of 
the other ones. In particular, this assumption implies that the b
quark and antiquark PDFs are equal to each other, f (5)

b = f (5)

b̄
. In-

verting Eqs. (3)–(4) and substituting in Eq. (2) one can obtain an 
expression of σ (4) in terms of α(5)

s and f (5)
i :

σ (4) =
∫∫

dx1dx2

∑
i j=q,g

f (5)
i (x1,μ

2) f (5)
j (x2,μ

2)

× B(4)
i j

(
x1, x2,

μ2

m2
,α

(5)
s (μ2)

)
, (6)
b

where the coefficient functions Bij are such that substituting the 
matching relations Eqs. (3)–(4) in Eq. (6) the original expression 
Eq. (2) is recovered. Note that in the course of the procedure of 
expressing σ (4) in terms of α(5)

s and f (5)
i , subleading terms are in-

troduced, because (3)–(4) are only inverted to finite perturbative 
accuracy. It follows that the expressions Eq. (2) and Eq. (6) of σ (4)

actually differ by subleading terms. Henceforth, for σ (4) we will 
use the expression Eq. (6), and avoid any further reference to α(4)

s

and f (4)
i ; therefore, from now on αs and f i will denote the five-

flavor scheme expressions.
In order to match the two expressions for σ in the five-flavor 

scheme, Eq. (1), and in the four-flavor scheme, Eq. (6), we now 
work out their perturbative expansion. Using DGLAP evolution, the 
b-PDF, f (5)

b (μ2), can be determined in terms of the gluon and 
the light-quark parton distributions f (5)

i at the scale μ2 convo-

luted with coefficient functions expressed as a power series in α(5)
s , 

with coefficients that are polynomials in L. The five-flavor-scheme 
expression Eq. (1) may thus be written entirely in terms of light-
quark and gluon PDFs:

σ (5) =
∫∫

dx1dx2

∑
i j=q,g

f (5)
i (x1,μ

2) f (5)
j (x2,μ

2)

× A(5)
i j

(
x1, x2, L,α

(5)
s (μ2)

)
, (7)

where the A(5)
i j coefficient functions are given by a perturbative 

expansion of the form

A(5)
i j

(
x1, x2, L,α

(5)
s (μ2)

)

=
N∑

p=0

(
α

(5)
s (μ2)

)p ∞∑
k=0

A(p),(k)

i j (x1, x2)
(
α

(5)
s (μ2)L

)k
, (8)

with at leading order N = 0, and at NmLO order N = m.
On the other hand, the four-flavor-scheme expression Eq. (6), as 

mentioned, is also written in terms of the light-quark PDFs, with 
coefficient functions Bij which can also be expanded in power of 
α

(5)
s ,

B(4)
i j

(
x1, x2,

μ2

m2
b

,α
(5)
s (μ2)

)

=
N∑

p=0

(
α

(5)
s (μ2)

)p
B(p)

i j

(
x1, x2,

μ2

m2
b

)
, (9)

where N is the order of the expansion needed to reach the de-
sired accuracy. It follows that the sum of all contributions to the 
four-flavor-scheme expression Eq. (9) which do not vanish when 
μ2 � m2

b must also be present in the five-flavor-scheme result.

These contributions B(0),(p)

i j provide the massless limit of B(p)

i j , 
in the sense that

lim
mb→0

[
B(p)

i j

(
x1, x2,

μ2

m2
b

)
− B(0),(p)

i j

(
x1, x2,

μ2

m2
b

)]
= 0. (10)

In other words, B(0),(p)

i j is obtained from B(p)

i j by retaining all log-
arithms and constant terms and dropping all terms suppressed by 
powers of mb/μ. Given that these terms are also present in the 
five-flavor-scheme calculation, we can also write

B(0),(p)

i j

(
x1, x2,

μ2

m2

)
=

p∑
A(p−k),(k)

i j (x1, x2) Lk (11)

b k=0
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and

B(0)
i j

(
x1, x2,

μ2

m2
b

,α
(5)
s (μ2)

)

=
N∑

p=0

(
α

(5)
s (μ2)

)p
B(0),(p)

i j

(
x1, x2,

μ2

m2
b

)
. (12)

We finally define the massless limit of the four-flavor-scheme 
cross-section, namely

σ (4),(0) =
∫∫

dx1dx2

∑
i j=q,g

f (5)
i (x1,μ

2) f (5)
j (x2,μ

2)

× B(0)
i j

(
x1, x2,

μ2

m2
b

,α
(5)
s (μ2)

)
. (13)

The FONLL method can thus be stated as follows: replace in the 
five-flavor scheme expression, Eq. (7), all contributions to the ex-

pansion Eq. (8) of the coefficients A(5)
i j

(
x1, x2, L,α

(5)
s (μ2)

)
which 

appear in B(0),(p)

i j , Eq. (11), with their fully massive expression B(p)

i j
from Eq. (9). In this way, all mass suppressed effects that are not 
present in Eq. (1) but are known from Eq. (2), are included. More 
symbolically

σ FONLL = σ (4) + σ (5) − σ (4),(0). (14)

If the five-flavor scheme computation is performed to NkLL accu-
racy, and the replacement is performed up to fixed N jLO in α(5)

s , 
the final result retains NkLL accuracy at the massless level, and 
N jLO accuracy at the massive level.

In Ref. [13], three combinations were considered specifically in 
the case of deep-inelastic scattering: namely FONLL-A, correspond-
ing to NLL-LO, FONLL-B, NLL-NLO, and FONLL-C, NNLL-NLO (where 
by “leading” we always mean the first order at which the result 
does not vanish, assuming no intrinsic heavy quarks). In deep-
inelastic scattering, the leading order is O (α0

s ) (parton model) in 
the five-flavor scheme, and O (αs) in the four-flavor scheme: there 
is thus a mismatch by one order, and therefore FONLL-A is the 
simplest nontrivial scheme. In the case of Higgs production in bot-
tom fusion, the mismatch is now by two orders: the leading order 
is O (α0

s ) (parton model) in the five-flavor scheme, and O (α2
s ) in 

the four-flavor scheme. The simplest nontrivial case, which we 
will also refer to as FONLL-A, is thus NNLL-LO; we will then 
call FONLL-B the NNLL-NLO combination and FONLL-C N3LL-NLO. 
In the five-flavor scheme, the result is known up to NNLO [15], 
thereby allowing for an NNLL computation when used in conjunc-
tion with NNLO PDFs, and in the four-flavor scheme up to NLO 
[16,17], hence in principle FONLL-A and FONLL-B are accessible us-
ing current knowledge.

We now work out Eq. (14) explicitly for Higgs production in 
bottom-quark fusion, in the simplest FONLL-A case.2 To NNLL, the 
partonic cross-section must be computed up to order O(α2

s ): it 
then receives contributions from the following sub-processes:

• O(1) ⇒ bb̄ → h
• O(αs) ⇒ bb̄ → h (1-loop), bg → hb, bb̄ → hg
• O(α2

s ) ⇒ bb̄ → h (2-loop), bg → hb (1-loop), bb̄ → hg (1-loop), 
bq → hbq, gg → hbb̄, bb → hbb̄, qq̄ → hbb̄.

2 A matched computation for the related process of Higgs production in top fu-
sion has been presented recently [18], based on a modified version of the ACOT [19]
matching scheme, which for NLO deep-inelastic scattering is known [20] to coincide 
with FONLL-A; however, in this work only terms up to NLL in the five-flavor com-
putations are included.
Fig. 1. Leading-order (a) and next-to-leading order (b–c) contributions to the hard 
cross-section in the five-flavor scheme. To order O(α2

s ) these processes receive 
2-loop corrections (a) and 1-loop corrections (b) and (c), respectively.

Fig. 2. Leading-order contributions to the four-flavor scheme. Not shown are dia-
grams that can be obtained by crossing the initial state gluons, or radiating the 
Higgs off an anti-bottom quark.

The LO diagrams are shown in Fig. 1. The full calculation up to 
O(α2

s ) can be found in Ref. [15]. The relevant perturbative orders 
in each parton channel are thus

σ̂
(5)

bb̄

(
x1, x2,α

(5)
s (μ2)

)
= σ̂

(5),(0)

bb̄
(x1, x2) + α

(5)
s (μ2)σ̂

(5),(1)

bb̄
(x1, x2)

+
(
α

(5)
s (μ2)

)2
σ̂

(5),(2)

bb̄
(x1, x2) +O(α3

s ), (15)

σ̂
(5)

bg

(
x1, x2,α

(5)
s (μ2)

)
= α

(5)
s (μ2)σ̂

(5),(1)

bg (x1, x2) +
(
α

(5)
s (μ2)

)2
σ̂

(5),(2)

bg (x1, x2)

+O(α3
s ), (16)

σ̂
(5)

bq

(
x1, x2,α

(5)
s (μ2)

)
=

(
α

(5)
s (μ2)

)2
σ̂

(5),(2)

bq (x1, x2) +O(α3
s ),

(17)

σ̂
(5)
gg

(
x1, x2,α

(5)
s (μ2)

)
=

(
α

(5)
s (μ2)

)2
σ̂

(5),(2)
gg (x1, x2) +O(α3

s ),

(18)

σ̂
(5)

bb

(
x1, x2,α

(5)
s (μ2)

)
=

(
α

(5)
s (μ2)

)2
σ̂

(5),(2)

bb (x1, x2) +O(α3
s ),

(19)

and

σ̂
(5)

qq̄

(
x1, x2,α

(5)
s (μ2)

)
=

(
α

(5)
s (μ2)

)2
σ̂

(5),(2)

qq̄ (x1, x2) +O(α3
s ).

(20)

In the four-flavor scheme, the LO O(α2
s ) result corresponds to 

the gg → hbb̄ and qq̄ → hbb̄ sub-processes shown in Fig. 2. The 
computation of this process in the four-flavor scheme is formally 
identical to that of associate production of a Higgs boson with a tt̄
pair, first performed in Ref. [1].
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We can now match the two expressions. First, we note that in 
the FONLL-A scheme the four-flavor scheme result is included to 
lowest nontrivial order: therefore, we can simply replace in it α(4)

s

and f (4)
i with their five-flavor scheme counterparts, as the differ-

ence is higher order in αs and thus subleading. We thus simply 
have

Bij

(
x1, x2,

μ2

m2
b

,αs(μ
2)

)
= σ̂

(4)
i j

(
x1, x2,

μ2

m2
b

,αs(μ
2)

)
+O(α3

s ).

(21)

We also need the massless limit of the four-flavor scheme re-
sult: recalling that it starts at order α2

s , and using the general 
expressions Eqs. (11)–(12), we conclude that it must have the form

B(0)
i j (x1, x2, L,αs

= (αs)
2 B(0),(2)

i j (x1, x2, L) +O(α3
s )

= (αs)
2
(

A(2),(0)
i j (x1, x2)

+ A(1),(1)
i j (x1, x2)L + A(0),(2)

i j (x1, x2)L2
)

+O(α3
s ). (22)

The easiest way of determining the coefficients A(p),(k)

i j is to start 
with the five-flavor scheme expression Eq. (1) and expand the bot-
tom PDF in power of αs ,

fb(x,μ2) = αs(μ
2)

2π
L

1∫
x

dy

y
Pqg(y) f g

(
x

y
,μ2

)
+O(α2

s ), (23)

where

Pqg(y) = T R

[
y2 + (1 − y)2

]
. (24)

We get

A(2),(0)
qq (x1, x2) = σ̂

(5),(2)

qq̄ (x1, x2), (25)

A(2),(0)
gg (x1, x2) = σ̂

(5),(2)
gg (x1, x2), (26)

A(1),(1)
gg (x1, x2)

= 1

2π

1∫
0

dy Pqg(y)
(
σ̂

(5),(1)

gb (x1, yx2) + σ̂
(5),(1)

bg (yx1, x2)
)

+ (b → b̄), (27)

A(0),(2)
gg (x1, x2)

= 1

(2π)2

1∫
0

1∫
0

dy1dy2 Pqg(y1)Pqg(y2)σ̂
(5),(0)

bb̄
(y1x1, y2x2)

+ (b → b̄), (28)

so that

B(0),(2)
i j (x1, x2, L,αs)

= A(2),(0)
i j (x1, x2) + A(1),(1)

i j (x1, x2)L + A(0),(2)
i j (x1, x2)L2. (29)

We now have all the ingredients which enter the FONLL-A ex-
pression. For book-keeping purposes, we introduce a formal expan-
sion of the cross-section of the form

σ FONLL−A = σ FONLL−A,(0) + αs(μ
2)σ FONLL−A,(1)

+
(
αs(μ

2)
)2

σ FONLL−A,(2) +O(α3
s ), (30)
where it is understood that only the coefficient functions B(4)
i j , A(5)

i j

and B(0)
i j in Eqs. (6), (7) and (12) respectively are expanded, but not 

the PDFs. The expansion is formal in that, as we have just seen, the 
nominally O(α0

s ) contribution really starts at O(α2
s ) once one sub-

stitutes the explicit expression Eq. (23) of the b-quark distribution, 
as it should be in order for it to match the four-flavor scheme ex-
pression.

Be that as it may, since the four-flavor scheme starts at O(α2
s ), 

σ FONLL−A,{(0),(1)} , the first two terms in the expansion Eq. (30) co-
incide with the five-flavor scheme expressions:

σ FONLL−A,(0) =
∫∫

dx1dx2 fb(x1,μ
2) fb̄(x2,μ

2)σ̂
(5),(0)

bb̄
(x1, x2)

(31)
σ FONLL−A,(1)

=
∫∫

dx1dx2

{
fb(x1,μ

2) fb̄(x2,μ
2)σ̂

(5),(1)

bb̄
(x1, x2)

+ σ̂
(5),(1)

gb (x1, x2)
[(

f g(x1,μ
2) fb(x2,μ

2) + (x1 → x2)
)

+ (b → b̄)
]}

. (32)

The O(α2
s ) contribution can be written as the sum of two 

terms: four-flavor scheme, and difference between the five-flavor 
and the massless limit of the four-flavor scheme. The former is 
simply given by the leading-order partonic cross-section in the 
four-flavor scheme. The latter is given by

σ FONLL−A,(2) = σ (4),(2) + σ (d),(2), (33)

where

σ (d),(2) = σ (5),(2) − σ (4),(0),(2), (34)

and

σ (4),(0),(2) =
∫∫

dx1dx2

∑
i j=q,g

f i(x1,μ
2) f j(x2,μ

2)

× B(0),(2)
i j (x1, x2, L,αs) . (35)

We get

σ (d),(2) =
∫∫

dx1dx2

{
fb(x1,μ

2) fb̄(x2,μ
2)σ̂

(5),(2)

bb̄
(x1, x2) +

+ fb(x1,μ
2) fb(x2,μ

2)σ̂
(5),(2)

bb (x1, x2)

+ σ̂
(5),(2)

gb (x1, x2)
[(

f g(x1,μ
2) fb(x2,μ

2) + (x1 → x2)
)

+ (b → b̄)
]
+ σ̂

(5),(2)

qb (x1, x2)
[(

fq(x1,μ
2) fb(x2,μ

2)

+ (x1 → x2)
)

+ (b → b̄,q → q̄)
]
+

− L

2π

∫∫
dy Pqg(y)

[
σ̂

(5),(1)

bg (x1, yx2) f g(x1,μ
2)

× f g(x2,μ
2) + σ̂

(5),(1)

bg (yx1, x2) f g(x1,μ
2) f g(x2,μ

2)

+ (b → b̄)
]
+

− L2

4π2

∫∫
dy1dy2 Pqg(y1)Pqg(y2) f g(x1,μ

2)

× f g(x2,μ
2)σ̂

(5),(0)

bb̄
(y1x1, y2x2)

}
, (36)

which is our main result. Note that in the general case in which 
μR 	= μF , the expansion Eq. (30) should be viewed as an expan-

sion in powers of αs(μR); the log is L ≡ ln
μ2

F

m2 ; all PDF should 

b
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be evaluated at μ = μF , and all five-flavor scheme partonic cross-
sections should be evaluated at the appropriate scale σ̂

(5),(i)
i j =

σ̂
(5),(i)
i j (μ2

R , μ2
F ). Strictly speaking, in this case the argument of the 

strong coupling in the term in Eq. (36) which is linear in L should 
be αs(μR)αs(μF ) = (αs(μR))2(1 + O (α3

s )).
It is easy to see explicitly that, if the b-PDF is expressed in 

terms of its values at μ2 = m2
b using Eq. (23), the FONLL-A expres-

sion differs from the four-flavor scheme result by terms of order 
α3

s , namely, the difference term

σ (d) = σ (5),(0) + αs(μ
2)σ (5),(1) + (αs(μ

2))2σ (d),(2) (37)

is O(α3
s ). Indeed, Eq. (23) implies that all contributions to σ (d),(2)

but the logarithmic ones are O(α3
s ). We then have

σ (d) =
∫∫

dx1dx2

{[
fb(x1,μ

2) fb̄(x2,μ
2)σ̂

(5),(0)

bb̄
(x1, x2)

− α2
s L2

4π2

∫∫
dy1dy2 Pqg(y1)Pqg(y2) f g(x1,μ

2)

× f g(x2,μ
2)σ̂

(5),(0)

bb̄
(y1x1, y2x2)

]
+

[
αsσ̂

(5),(1)

gb (x1, x2)

×
(

f g(x1,μ
2) fb(x2,μ

2) + (x1 → x2)
)

− α2
s L

2π

∫
dy Pqg(y)

(
σ̂

(5),(1)

bg (x1, yx2) + σ̂
(5),(1)

bg (yx1, x2)
)

× f g(x1,μ
2) f g(x2,μ

2)
]}

+O(α3
s ). (38)

Substituting Eq. (23) in Eq. (38) all terms in Eq. (38) cancel, as 
expected.

We can now study the phenomenological implications of our 
results. Leading-order four-flavor scheme predictions have been 
obtained using a modified version of the SHERPA Monte Carlo gen-
erator [21] which we tested against results obtained in Ref. [16]
and Ref. [22]; for NLO results (which we will also show for 
comparison) this has been further interfaced to the OpenLoops
code [23]. Four-flavor scheme results are obtained using n f = 4
NNPDF3.0 LO PDFs [24] with α5F

S (mZ ) = 0.118. Five-flavor scheme 
predictions are obtained using the bbh@nnlo code [15] with the 
n f = 5 NNLO NNPDF3.0 parton set [24]. For FONLL-A, results for 
the central scale choice have been obtained in two different ways. 
First, we have recomputed the four-flavor scheme result, but now 
using n f = 5 NNLO NNPDF3.0 PDFs, and we have combined this 
with our implementation of Eq. (36). Then, we have checked that 
we get the same answer by combining this four-flavor scheme re-
sult with the five-flavor scheme one from the bbh@nnlo code, 
and adding an implementation of the subtraction term Eq. (13). 
Scale variation plots have then been produced using this second 
combination. In all cases, the strong coupling provided with the 
PDF set has been used through the LHAPDF interface [25]. The b
mass in FONLL expressions has been identified with the pole mass, 
for which we have taken the value mb = 4.72 GeV; this corre-
sponds to the MS value mb(mb) = 4.21 GeV through the two-loop 
relation of Ref. [26], which we implemented in order to evaluate 
the bottom Yukawa coupling in the MS scheme at μ = μR . Like 
αs and the PDFs, Yukawa couplings are evolved at NNLO in the 
five-flavor scheme in all contributions to the FONLL expression.

In Fig. 3 we compare the cross-section computed in the four-
flavor, five-flavor and FONLL-A scheme. Results are shown as a 
function of the Higgs mass. Here and henceforth, uncertainty 
bands are obtained by varying the renormalization and factoriza-
tion scales μR and μF independently by a factor of 2 about the 
Fig. 3. The total inclusive cross-section computed in the four-flavor scheme at LO 
(red), in the five-flavor scheme at NNLO (blue), and in the FONLL-A scheme (green). 
The Santander matching Eq. (39) of the four- and five-flavor scheme results is also 
shown (purple). Both the absolute result (top) and the ratio to the FONLL-A predic-
tion (bottom) are shown. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

central value μF = μR = mH , discarding the two extreme points 
μR = 4μF and μF = 4μR , and taking the envelope of results. In 
the same figure we also show the curve obtained using the so-
called Santander matching of Ref. [11], which is given by

σS−M = σ (4F ) + w σ (5F )

1 + w
(39)

with w = ln mH/mb − 2: this reproduces the five-flavor scheme re-
sult when w → ∞, and the four-flavor scheme one when w = 0. 
This prescription was suggested in Ref. [11] to be used with the 
highest-order available four- and five-flavor scheme results. Here, 
we show it using the LO four-flavor scheme result in order to pro-
vide a meaningful assessment of the differences in comparison to 
FONLL-A.

The four-flavor scheme result is rather smaller than the five-
flavor scheme one, and it is affected by a significantly larger 
scale uncertainty, as one expects of a LO computation. The FONLL 
and five-flavor scheme results are very close, with, for mh =
125.09 GeV, the FONLL prediction just below the five-flavor one, 
with a somewhat larger uncertainty. Note that the four-flavor 
scheme result shown in the plot is determined using LO PDFs, 
while the four-flavor scheme result that enters the FONLL com-
bination is consistently computed with NNLO PDFs, as discussed 
above. We have verified that the latter would be yet lower, fur-
ther away from the five-flavor scheme results, as one expects due 
to the fact that the LO gluon is typically larger. This shows that 
mass effects for this process are small, though not negligible in 
comparison to the scale uncertainty on the five-flavor result, as 
we will see shortly. The fact that mass-corrections at leading or-
der are small was already noticed in Ref. [27]. Such a quantitative 
conclusion cannot be arrived at using the Santander-matched re-
sult, which simply interpolates between the four- and five-flavor 
scheme results.

The scale dependence of the various results of Fig. 3 is shown in 
Fig. 4 for mH = 125.09 GeV. The four- and five-flavor scheme re-
sults display a significant renormalization scale dependence. The 
four-flavor scheme result drops significantly as the scale is in-
creased because of the reduction in value of αs , while the five-
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Fig. 4. Renormalization (top) and factorization (bottom) scale dependence of the cross-sections shown in Fig. 3 with mH = 125.09 GeV. The preferred scale choice mH +2mb
4 is 

denoted by a vertical bar.

Table 1
The total cross-section computed for mH = 125.09 GeV in the five-flavor scheme at NNLO, the four-flavor scheme at LO, and matching the two with FONLL-A, or with 
Santander matching (denoted as σ S−M

A ). The NLO four-flavor scheme result, and its Santander matching to the five-flavor scheme are also shown for comparisons. Results are 
given for μ = mH (top row) and μ = (mH + 2mb)/4 (bottom row). For μ = mH we also show the uncertainty band obtained from scale variation (see text).

σ (5F) (pb) σ
(4F)
LO (pb) σ FONLL (pb) σ S−M

A (pb) σ (4F) (pb) σ S−M

μ = mH 0.65+0.07
−0.03 0.22+0.25

−0.06 0.63+0.34
−0.01 0.55+0.20

−0.10 0.26+0.19
−0.10 0.56+0.12

−0.13
μ = (mH + 2mb)/4 0.61 0.41 0.82 0.56 0.42 0.57
flavor scheme results grows because the residual, weaker O (α3
s )

dependence has the opposite sign (NNLO corrections are negative) 
combines with the growth of the Yukawa coupling with scale. In-
terestingly, this scale dependence cancels to a large extent both 
in the FONLL-A and Santander matched results. As a consequence, 
the mass-corrections included in the FONLL-A result, and the scale 
dependence of the five-flavor scheme computation are of compa-
rable size, with the FONLL result below the massless one at the 
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upper range of the scale variation, and above it for lower scale 
choices, and specifically if the renormalization scale is fixed at 
μR = mH +2mb

4 , as recommended in Refs. [8,16,28], with a crossing 
point just below μR = mH .

The factorization scale dependence is very mild in all schemes, 
except for FONLL, where it turns out that the scale dependence 
is of the same order as the mass-corrections, which as we have 
seen are small but not negligible. In fact, the factorization scheme 
dependence shown in the plot has been determined using as argu-
ment of the strong coupling for the term in Eq. (36) which is linear 
in L αs(μR)α(μF ), as discussed above. If one makes the choice 
(αs(μR)2), which is equivalent up to subleading term, the scale de-
pendence changes (and in fact it becomes stronger) by an amount 
which is comparable to the scale variation itself. This means that 
corrections of relative order (αs(μR)2) ln(μR/μF ) to the mass-
corrections are not negligible on the scale of the mass-corrections 
themselves. They could only be accounted for by upgrading the 
four-flavor scheme computation to NLO.

Finally, in Table 1 we collect our results with mH = 125.09 GeV
and μ = mH or μ = mH +2mb

4 . For comparison, in addition to the 
results shown in Figs. 3–4 we also show the best available calcu-
lation in the four-flavor scheme (NLO) and its Santander matching 
to the NNLO five-flavor result.

In summary, we have shown how to consistently match the 
four- and five-flavor scheme computations of Higgs production in 
bottom-quark fusion. We have found that a fully matched compu-
tation allows detailed quantitative comparisons between the com-
putations in various schemes, unlike other more phenomenological 
approaches. However, for competitive precision phenomenology, 
the results presented in this paper should be upgraded to include 
the four-flavor scheme result up to NLO: indeed, the factorization 
scheme dependence of the mass corrections turns out to be com-
parable to their size. Such an upgrade is possible by using the 
scheme presented here, in its FONLL-B version, which requires an 
in principle straightforward, though in practice somewhat labori-
ous extension of the techniques presented in this paper: this is the 
object of ongoing work.
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