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We compute the total cross-section for Higgs boson production in bottom-quark fusion using the so-
called FONLL method for the matching of a scheme in which the b-quark is treated as a massless parton 
to that in which it is treated as a massive final-state particle, and extend our previous results to the 
case in which the next-to-next-to-leading-log five-flavour scheme result is combined with the next-to-
leading-order O(α3

s ) four-flavour scheme computation.
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Higgs production in bottom fusion, like any process involv-
ing bottom quarks at the matrix-element level, may be computed 
using two different factorization schemes, often called four- and 
five-flavour schemes for short. In the four-flavour scheme (4FS), 
the bottom quark is treated as a massive object, which is not en-
dowed with a parton distribution (PDF), and it decouples from QCD 
perturbative evolution, which is performed only including the four 
lightest flavours and the gluon in the DGLAP equations, and like-
wise it decouples from the running of αs so that n f = 4 in the 
computation of the QCD β function. In the five-flavour scheme 
(5FS), instead, the bottom quark is treated on the same footing 
as other quark flavours, there is a b PDF, and n f = 5 in both the 
DGLAP and renormalization-group equations.

For high enough scales, mass effects become negligible, col-
linear logarithms related to b-quark radiation are large and must 
be resummed, and the 5FS is always more accurate. On the other 
hand, very close to the production threshold mass effects are im-
portant while collinear logs are not large, and the 4FS is more 
accurate. In principle, a computation performed at high enough 
perturbative order in the 4FS will reproduce the 5FS result, while 
this is not the case for a 5FS computation, in which b-mass effects 
are never included.

In practice, however, for Higgs production in bottom fusion the 
leading-order production diagram, which is O(α0

s ) (parton model) 
in the 5FS, is O(α2

s ) in the 4FS, so one must go to very high order 
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indeed in the 5FS computation in order to reproduce 4FS results. 
In fact, in the 5FS, the cross section is known up to NNLO [1] and 
in the 4FS up to NLO [2,3]. Furthermore, the characteristic scale 
for this process is necessarily rather higher than the b produc-
tion threshold, but perhaps rather lower than the Higgs mass itself 
[4,5], and in a rather wide range the 4FS and 5FS computations 
at the highest available accuracy disagree by a sizeable amount, 
with the 5FS result being significantly larger than the 4FS one, 
though they can be brought to agree with very low scale choices, 
μ � mH/4. All this suggests that a reliable computation of this pro-
cess requires the use of a matched scheme which combines the 
accuracy of the 4FS and 5FS results.

In the previous work [6] we have implemented for this process 
the so-called FONLL matched scheme, first proposed in Ref. [7] for 
b production and extended in Ref. [8] to deep-inelastic scattering: 
this method can be used to combine 4FS and 5FS computations 
performed at any given perturbative accuracy, retaining the accu-
racy of both, i.e. in such a way that from the point of view of any 
of the two computations that enter the combined results the terms 
which are added are subleading.

In Ref. [6], this method was used to combine the next-to-next-
to-leading order 5FS result with the leading-order 4FS computation 
— this particular combination was called FONLL-A, corresponding 
to the lowest order at which the 4FS and 5FS results have a non-
vanishing overlap. The main result was that the FONLL-A result is 
generally quite close to the 5FS computation, and only acquires a 
small correction from the massive 4FS terms, though this correc-
tion has a scale dependence which is comparable to its absolutes 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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size. This is unsurprising given that the 4FS calculation was only 
included at leading order.

In order to pin down the precise size of the massive correc-
tions it is thus necessary to include the massive terms at least to 
next-to-leading order. This is the purpose of the present paper: we 
include an extra perturbative order to the 4FS result in comparison 
to FONLL-A, thereby constructing the FONLL-B matched result (ac-
cording to the nomenclature introduced in Ref. [6]). This amounts 
to combining both the 4FS and 5FS computations at the highest 
order available for both.

The basic idea of the FONLL method is to expand out the 5FS 
computation, in which logarithms of μ2

R/m2
b and μ2

F /m2
b are re-

summed to all orders, in powers of the strong coupling αs , and 
replace them with their massive-scheme counterparts, up to the 
same order at which the massive-scheme result is known. The 
combination then retains the logarithmic accuracy of the 5FS re-
sult one starts from (with the b quark treated as massless), but 
now also has the fixed-order accuracy of the massive result, up 
to the order which has been included. Henceforth, we consistently 
use the notation NkLL to refer to the resummed accuracy of the 
5FS computation (i.e. by LL we mean a computation in which (
αs ln

m2
b

μ2

)
is treated as order one), and by NkLO to the fixed or-

der at which the massive 4FS is performed. The FONLL-A scheme 
of Ref. [6] is thus NNLL+LO, while the FONLL-B combination con-
sidered here is NNLL+NLO.

The only technical complication of the FONLL method is that 
the two computations which are being combined are performed in 
different renormalization and factorization schemes. This difficulty 
is overcome by re-expressing αs and PDFs in the 4FS computation 
in terms of their 5FS counterparts, so that one single αs and set of 
PDFs is used everywhere. Once this is done, the 4FS and 5FS com-
putations can be simply added, with overlapping terms subtracted 
in order to avoid double counting: the result has the structure

σ F O N LL = σ (4) + σ (5) − σ (4),(0), (1)

in which σ (4) and σ (5) are respectively the 4FS and 5FS re-
sults, and σ (4),(0) is their overlap. The contributions to σ (4),(0)

can be viewed and obtained either from expansion of the 5FS 
computation up to finite order (thereby extracting them from the 
5FS result) or as the massless limit of the massive computation 
(thereby extracting them from the 4FS result) — with the caveat 
that the 4FS result in the massive limit acquires collinear singular-
ities which in the 5FS are factorized in the PDFs.

In order to extend the results of Ref. [6] to FONLL-B we must 
thus first work out to one extra order in αs the expansion of 4FS 
expressions in terms of 5FS αs and PDFs, and then, determine to 
one extra fixed order in αs the overlap term σ (4),(0) of Eq. (1).

The first goal is achieved by writing

σ (4) =
1∫

τH

dx

x

1∫
τH

x

dy

y2

∑
i j=q,g

f (5)
i (x, Q 2) f (5)

j

(
τH

xy
, Q 2

)

× Bij

(
y,α

(5)
s (Q 2),

Q 2

m2
b

)
, (2)

where f (5)
i and α(5)

s are 5FS PDFs and αs , and the coefficients

Bij

(
y,α

(5)
s (Q 2),

Q 2

m2
b

)
=

N∑
p=2

(
αs(Q 2)

)p
B(p)

i j

(
y,

Q 2

m2
b

)
(3)

are such that if f (5)
i and α(5)

s are re-expressed in terms of f (4)
i and 

α
(4)
s , then the expression of σ (4) in the 4FS is recovered:
σ (4) =
1∫

τH

dx

x

1∫
τH

x

dy

y2

∑
i j=q,g

f (4)
i (x, Q 2) f (4)

j

(
τH

xy
, Q 2

)

× σ̂i j

(
y,α

(4)
s (Q 2),

Q 2

m2
b

)
, (4)

with

σ̂i j

(
y,α

(4)
s (Q 2),

Q 2

m2
b

)
=

N∑
p=2

(
αs(Q 2)

)p
σ̂

(p)

i j

(
y,

Q 2

m2
b

)
. (5)

Note that here and in the following discussion on the 4FS, σ̂ (p)

i j
refer to the partonic cross sections computed in the 4FS, as high-
lighted by their explicit dependence on the ratio Q 2/m2

b .
The expressions relating the 4FS and 5FS PDFs up to O(α2

s ) are 
given in Ref. [9]. They turn out to be trivial at O(αs), so in our case 
it is only the redefinition of αs (due to changing n f by one unit) 
which has an effect. Explicitly, the non-vanishing B(k)

i j coefficients 
are at O(α2

s )

B(2)
gg

(
y,

Q 2

m2
b

)
= σ̂

(2)
gg

(
y,

Q 2

m2
b

)
(6)

B(2)

qq̄

(
y,

Q 2

m2
b

)
= σ̂

(2)

qq̄

(
y,

Q 2

m2
b

)
(7)

while at O(α3
s ) the redefinition of αs contributes:

B(3)
gg

(
y,

Q 2

m2
b

,
μ2

R

m2
b

,
μ2

F

m2
b

)
= σ̂

(3)
gg

(
y,

Q 2

m2
b

)

− 2T R

3π
ln

μ2
R

μ2
F

σ̂
(2)
gg

(
y,

Q 2

m2
b

)
(8)

B(3)

qq̄

(
y,

Q 2

m2
b

,
μ2

R

m2
b

,
μ2

F

m2
b

)
= σ̂

(3)

qq̄

(
y,

Q 2

m2
b

)

− 2T R

3π
ln

μ2
R

m2
b

σ̂
(2)

qq̄

(
y,

Q 2

m2
b

)
(9)

B(3)
gq

(
y,

Q 2

m2
b

)
= σ̂

(3)
gq

(
y,

Q 2

m2
b

)
(10)

B(3)
qg

(
y,

Q 2

m2
b

)
= σ̂

(3)
qg

(
y,

Q 2

m2
b

)
. (11)

The second goal is achieved by retaining all logarithms and con-
stant terms in the 4FS NLO cross section and dropping all terms 
suppressed by powers of mb/μ, namely by computing

σ (4),(0)
(
αs(Q 2), L

)
=

1∫
τH

dx

x

1∫
τH

x

dy

y2

∑
i j=q,g

f i(x, Q 2) f j

(
τH

xy
, Q 2

)

× B(0)
i j

(
y, L,αs(Q 2)

)
, (12)

where

L ≡ ln Q 2/m2
b (13)

and
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Fig. 1. Representative examples of contributions to the 5FS computation which are subtracted and get replaced by massive 4FS contributions. The diagrams circled with a 
dashed line become massive in FONLL-A, while those circled with a solid pink line are those that must be additionally subtracted in the FONLL-B scheme.
B(0)
i j

(
y, L,αs(Q 2)

)
=

N∑
p=2

(
αs(Q 2)

)p
B(0),(p)

i j (y, L) , (14)

where the coefficients B(0),(p)

i j satisfy

lim
mb→0

[
B(p)

i j

(
y,

Q 2

m2
b

)
− B(0),(p)

i j

(
y,

Q 2

m2
b

)]
= 0. (15)

As already mentioned, all B(0),(p)

i j terms in Eq. (12) may be 
equivalently viewed as contributions to the 5FS computation, as 
schematically summarized in Fig. 1 (for real emission terms). In 
fact, because no simple closed-form expression of the massive co-
efficients B(p)

i j is available, it turns out to be more convenient to 

extract the B(0),(p)

i j from the 5FS result, as it was done in Ref. [6]. 
This is simply done by expressing the 5FS b PDF in terms of the 
4FS light quark and gluon PDFs up to O(αs) using the matching 
coefficients from Ref. [9] (see also Appendix C of Ref. [4]), and then 
re-expressing the result in terms of the 5FS quark and gluon PDF, 
and 5FS αs .

The result has the structure

f (5)

b (x, Q 2) = α
(5)
s (Q 2)

1∫
x

dz

z

{
A(1)

gb (z, L) f (5)
g

( x

z
, Q 2

)

+ αs(Q 2)
[
A(2)

gb (z, L) f (5)
g

( x

z
, Q 2

)

+A(2)

�b (z, L) f (5)
�

( x

z
, Q 2

)]}
, (16)

where f (5)

b , f (5)
� and f (5)

g are respectively the 5FS b quark, singlet, 
and gluon PDFs, and

A(1)

gb = a(1,1)

gb (z) L,

A(2)

gb = a(2,2)

gb (z)L2 + a(2,1)

gb (z)L + a(2,0)

gb (z), (17)

A(2)

�b = a(2,2)

�b (z)L2 + a(2,1)

�b (z)L + a(2,0)

�b (z)

Note that, as well known, to O(α2
s ) the expression of the 5FS 

f (5)

b in terms of the light quarks and gluon receives constant (i.e. 
non-logarithmic) contributions a(2,0)

(z) and a(2,0)
(z), and thus it is 
gb �b
discontinuous at threshold Q 2 = m2
b in the massless scheme, as a 

consequence of it being continuous in the fully massive calcula-
tion. The explicit expressions of the coefficients Eq. (17) are given 
in Appendix A for completeness.

We can now collect all contributions to σ (4),(0) . The O(α2
s )

terms, already given in Ref. [6], are

B(0)(2)
gg (y, L) = y

1∫
y

dz

z

[
2A(1)

gb (z, L)A(1)

gb

( y

z
, L

)

+ 4A(1)

gb

( y

z
, L

)
σ̂

(1)

gb (z)
]
+ σ̂

(2)
gg (y), (18)

B(0)(2)

qq̄ (y, L) = σ̂
(2)

qq̄ (y); (19)

while the new contributions to O(α3
s ) are

B(0)(3)
gg (y, L) = y

1∫
y

dz

z

[
4A(2)

gb (z, L)A(1)

gb

( y

z
, L

)

+ 2A(1)

gb (z, L)A(1)

gb

( y

z
, L

)
σ̂

(1)

bb̄
(z)

+ 4A(1)

gb

( y

z
, L

)
σ̂

(1)

gb (z) + 4A(1)

gb

( y

z
, L

)
σ̂

(2)

gb (z)
]
,

(20)

B(0)(3)
gq (y, L) = y

1∫
y

dz

z

[
2A(2)

�b (z, L)A(1)

gb

( y

z
, L

)

+ 2A(2)

�b

( y

z
, L

)
σ̂

(1)

gb (z) + 2A(1)

gb

( y

z
, L

)
σ̂

(2)

qb (z)
]
,

(21)

which completes our result. Note that in Eq. (20) σ̂
(p)

i j (x) denotes 
the partonic cross-section in the 5FS, as indicated by the fact that 
it only depends on the momentum fraction and does not have 
any dependence on mb (unlike the 4FS partonic cross sections 

σ̂
(p)

i j

(
x, Q 2

m2
b

)
of Eq. (5)).

We have implemented our final FONLL-B expression by combin-
ing, according to Eq. (1) 4FS predictions up to NLO obtained using 
MG5_aMC@NLO [10,11], 5FS computations up to NNLL obtained 
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Fig. 2. Comparison of the FONLL matched result and its 4FS and 5FS components, 
Eq. (1). Results are shown as a function of the renormalization scale, with the fac-
torization scale fixed at a high value μF = mH (top) or a low value μF = (mH +2mb )

4
(bottom).

using the bbh@nnlo code [1], and our own implementation of 
the subtraction term Eq. (12).

In Figs. 2–4 we compare the 4FS, 5FS and matched FONLL re-
sults. Specifically, in Figs. 2–3 we show for the physical Higgs mass 
value mH = 125 GeV, varying the renormalization and factoriza-
tion scale both the LO and NLO 4FS predictions, and the FONLL-A 
and FONLL-B matched results in which they are respectively com-
bined with the NNLL 5FS result, also shown. In Fig. 4 we show the 
most accurate results obtained in the 4FS (NLO), 5FS (NNLO) and 
matched (FONLL-B) schemes, as a function of the Higgs mass, with 
μR = μF = mH +4mB

4 , and the uncertainty band obtained by taking 
the envelope of the variations of the renormalization and factor-
ization scales by a factor two about the central value with the two 
outer points μR = 4μF and μF = 4μR omitted. Note that for the 
lowest (unphysical) Higgs mass values this uncertainty blows up 
because the lower edge of the scale variation range extends in the 
non-perturbative region.

The 4FS results shown are those which enter the FONLL combi-
nation, namely, the form Eq. (2) of the 4FS result is used, in which 
this is expressed in terms of 5FS PDFs and αs . All results are com-
puted using a PDF set presented and discussed in Ref. [12]. This 
PDF set is based on the PDF4LHC15 combined sets [13–19], with 
which it is taken to coincide below the b mass, but from which 
it is then evolved up in the 5F S from Q = mb , with the results 
Fig. 3. Same as Fig. 2, but now with the factorization scale varied with the renor-
malization scale kept fixed at a high value μR = mH (top) or a low value μR =
(mH +2mb )

4 (bottom).

below and above threshold matched exactly as in Eq. (16). This is 
not quite the same as the original PDF4LHC15 combination, which 
is obtained by combining sets which adopt different values of mb , 
and also incorporate subleading differences in the way the 4FS and 
5FS are matched at threshold: it thus has the advantage of being 
fully consistent. We use pole-mass expressions and take a b pole-
mass value mb = 4.58 GeV; the strong coupling is αs(mZ ) = 0.118.

From Fig. 2 we see that the strong renormalization scale de-
pendence of the LO 4FS result is reduced at NLO, and also, that 
at NLO the big gap between the 4FS and 5FS results gets com-
pensated for by the inclusion of higher order terms in the 4FS. 
This, together with the fact that the 5FS shows very little scale de-
pendence, and that differences are significantly smaller for smaller 
values of μF , strongly suggests that the bulk of the difference be-
tween the 4FS and the 5FS is due to large logs of μ2

F /m2
b which 

are resummed into the PDF in the latter case. This is in agree-
ment with the conclusion of Ref. [5], in which it was shown that 
resummation increases the cross section in most cases by up to 
30% at the LHC, leading to a better precision. On the other hand, 
the 4FS predictions at NLO also displays a consistent perturbative 
behaviour only when evaluated at a suitably low scale.

The massive corrections which the 4FS result contains turn 
out to be much smaller, though not entirely negligible. Indeed, 
whereas the FONLL-A result essentially coincides with the 5FS, the 
FONLL-B, which only differs from it because of the inclusion of 
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Fig. 4. The cross-section using the most accurate results in the 4FS (NLO), 5FS 
(NNLO) and matched (FONLL-B) schemes, as a function of the Higgs mass, with 
μR = μF = (mH +2mb )

4 . The bottom panel shows the result as a ratio to the 5FS com-
putation. The uncertainty band is obtained by standard seven-point scale variation 
(see text).

massive terms at one extra perturbative order, departs somewhat 
from it.1 The factorization scheme dependence shown in Fig. 3 is 
very mild in all schemes when μR is high, but for low μR , where 
the perturbative expansion of the 4FS result is more reliable, both 
the 5FS and the FONLL-A results show a contained scale depen-
dence, comparable in size to the mass effects, which is reduced in 
the FONLL-B result.

These results suggest that the main difference between the 
FONLL-A and the FONLL-B schemes is the inclusion of a higher 
order contribution from the 4FS computation which reduces the
scale dependence of the FONLL-A result; because the latter is es-
sentially the same as that of the 5FS computation this contribution 
is likely to be dominated by a constant, i.e., mass-independent 
term. This conclusion is supported by Fig. 4, in which results are 
shown as a function of the Higgs mass: the difference between the 
FONLL-B and 5FS results decreases slightly as the mass grows un-
til mH ∼ 200 GeV, but then it remains constant up to the highest 
values of the Higgs mass.

We conclude that the FONLL-B result is the most reliable, and 
a low choice of renormalization and factorization scheme seems 
to lead to a more reliable perturbative expansion, but all in all 
mass corrections are very moderate, so the usage of the 5FS re-
sult at all scales would be adequate in most cases. This rather 
disfavours phenomenological combinations such as the so-called 
Santander matching [20] in which the 4FS and 5FS results are com-
bined through an interpolation that gives each of them comparable 
weight. The difference between the FONLL-B and 5FS is almost 
entirely due to a constant O (α3

s ) mass-independent contribution 

1 In Ref. [6] the FONLL-A result , while also close to the 5FS result, did not coin-
cide exactly with it for generic scales, because their respective scale dependences, 
though slight, had different shapes. This difference in shape was due to the fact 
that, unlike here, a fully consistent PDF set was not used: rather, the PDFs were 
taken from a public set, with a value of mb which differed from that used in the 
computation of the matrix element, thereby leading to a mismatch in the scale de-
pendence.
which appears in the 4FS at NLO but would only enter the 5FS at 
N3LO; the FONLL-B computation, which includes it, is accordingly 
more accurate, even for very high vales of the Higgs mass.

Matched results for this process were recently obtained in 
Refs. [12,21] using an effective field theory approach, and a some-
what different counting of perturbative orders. A benchmarking of 
our results with those of these references has been performed in 
the context of the Higgs cross section working group, and it will 
be presented there [22]. In that benchmarking the matched calcu-
lations are found to agree to within better than 5% when results at 
the same perturbative orders are included, with the residual dif-
ference due to a somewhat different choice of factorization and 
renormalization scales in the two computations which are being 
compared.

In summary, we have presented a matched computation of 
Higgs production in association with bottom quarks including 
known results to the highest available accuracy, namely, NLO in 
a four-flavour scheme in which b quark mass effects are fully ac-
counted for, and NNLL in a five-flavour scheme in which the b
quark is treated as a massless parton with collinear logs resummed 
to all orders. We find that mass corrections are very small while 
collinear logs are substantial, so that in practice the fully matched 
result is very close to the 5FS one. The fully matched result re-
ceives a small correction from mass effects and it is very stable 
upon renormalization and factorization scheme variation, suggest-
ing that it is adequate for precision phenomenology at the LHC.

A public implementation of our NNLL+NLO FONLL-B matched 
computation will be made available from:

http://bbhfonll.hepforge.org/
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Appendix A

We give for completeness the expressions of the coefficients 
Eq. (17). These were computed in Ref. [9]. There are a few dif-
ferences compared to what is presented there. Firstly we separate 
contributions from b and b̄. Secondly our expansion is done in 
powers of αs rather than in powers of αs

4π . Lastly we have re-
expressed the gluon and singlet PDFs in the 4FS in terms of those 
computed in the 5FS.

A(2)

�b(z, L) = 1

32π2
C F T f

{[
−8(1 + z) ln z − 16

3z

− 4 + 4z + 16

3
z2

]
L2

−
[

8(1 + z) ln2 z −
(

8 + 40z + 64

3
z2

)
ln z

− 160

9z
+ 16 − 48z + 448

9
z2

]
L
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+ (1 + z)

[
32S1,2(1 − z) + 16 ln zLi2(1 − z)

− 16ζ(2) ln z − 4

3
ln3 z

]

+
(

32

3z
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3
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)
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+
(

−32
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3
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)
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+
(
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3
z2

)
ln2 z

−
(

56

3
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3
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9
z2

)
ln z

− 448

27z
− 4

3
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3
z + 1600

27
z2

}
, (A.1)

A(1)

gb (z, L) = T f

2π

[
(z2 + (1 − z)2)L

]
, (A.2)

and

A(2)

bg (z, L) = 1

32π2

{{
C F T f [(8 − 16z + 16z2) ln(1 − z)

− (4 − 8z + 16z2) ln z − (2 − 8z)]
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