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Abstract

Morphological data play a key role in the inference of biological relationships and

evolutionary history, and are essential for the interpretation of the fossil record. The

hierarchical interdependence of many morphological characters, however,

complicates phylogenetic analysis. In particular, many characters only apply to a

subset of terminal taxa. The widely used “reductive coding’ approach treats taxa in

which a character is inapplicable as though data on the characters state is simply

missing (unknown). This approach has long been known to create spurious tree

length estimates on certain topologies, potentially leading to erroneous results in

phylogenetic searches—but no practical solution has previously been suggested.

Here we present a single-character algorithm for reconstructing ancestral states in

reductively coded datasets, following the theoretical guideline of minimizing

homoplasy over all characters. Our algorithm uses up to three traversals to score a

tree, and a fourth to fully resolve final states at each node within the tree. We use

explicit criteria to resolve ambiguity in applicable/inapplicable dichotomies, and to

optimize missing data. So that it can be applied to single characters, the algorithm

employs local optimization; as such, the method provides a fast but approximate

inference of ancestral states and tree score. The application of our method to

published morphological datasets indicates that, compared to traditional methods,

it identifies different trees as “optimal”. As such, the use of our algorithm to handle

inapplicable data will significantly alter the outcome of tree searches, modifying the

inferred placement of living and fossil taxa and potentially leading to major

differences in reconstructions of evolutionary history.
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(Keywords: cladistic analysis, inapplicable data, character independence, phylogenetic

tree search, character optimization)
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Introduction

Morphological characters are an essential source of data in phylogenetic studies. Even

in the age of molecular sequence data, they underpin a range of research programmes

that depend on knowledge of extinct or ancestral phenotypic conditions (e.g.

palaeontology, molecular clock calibrations, comparative developmental biology).

Despite advances in the use of probabilistic models for analysing morphological data

(Lewis, 2001; Wright et al., 2016), all transformation-based methods (e.g. parsimony,

likelihood) are subject to a common and persistent problem: not all characters in a

dataset logically apply to all taxa under consideration. This problem arises due to

hierarchical relationships between characters.

Maddison (1993) famously showed that treating character state inapplicability as

missing data—still one of the most popular approaches to handling inapplicable

data—was prone to artifactual tree length calculations that could misdirect

phylogenetic searches. The essence of the problem is that existing parsimony methods

measure the amount of homoplasy—the metric by which trees should be evaluated

(De Laet, 2005)—by calculating the total number of character transformations.

However, this only works if character states refer exclusively to properties of

homologous structures (Platnick, 1979). To date, popular software for phylogenetic

analysis has failed to account for this problem, which leaves open the question of

whether existing computational methods are even appropriate for morphological

datasets that incorporate character hierarchies.
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Numerical phylogenetic methods require a two-dimensional matrix of character

state scores for a set of terminal taxa under investigation. This requires the construction

of either a molecular sequence alignment, or a character list and table of morphological

trait values. “Transformation-based” phylogenetic methods (e.g. parsimony, maximum

likelihood, or Bayesian inference) treat each individual column (character or

transformation series) in the matrix as independent, and use the states in each column

to calculate the length of the tree.

However, it is easy to show that characters in both morphological and molecular

datasets can exhibit non-independence. Logical character dependence (Wilkinson,

1995b) manifests as hierarchical relationships between morphological characters, where

a character that scores an attribute of a feature presupposes the presence of that feature.

In the case of molecular sequence data, this is most commonly seen in the case of gaps,

which presumably arise from insertion or deletion events (indels; for example, the

character “nucleotide at position X” is not applicable if position X does not exist in one

taxon due to deletion). In either case, some characters in the dataset can only have a

meaningful value for a subset of the species under investigation.

The process of encoding characters in a two-dimensional matrix and summing

their implied transformations under the assumption of independence creates two

competing problems. The first is that hierarchical character relationships themselves

contain information, which might be ignored: indels, for instance, represent

evolutionary events and therefore provide phylogenetic information. This has opened
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up research into techniques for dynamic (or direct) alignment of sequence data

(Sankoff, 1975; De Laet, 2005; Wheeler, 1995, 1996, 1999; De Laet, 2015; Varón et al.,

2010; Liu et al., 2009, 2012) in which alignment is co-optimised with tree reconstruction,

either simultaneously or in phases. The case of morphology can be considered a special

case of the more generalised problem (De Laet, 2005, 2015), but has nevertheless seen

fewer attempts to address it. In this paper, we focus on the special case of

morphological character hierarchies.

The computational problem of morphological character hierarchies

In current programs for phylogenetic analysis, an investigator has the choice to treat

inapplicability as either a state of its own or as missing data. This allows for numerous

ways to “atomize” character variables in a matrix, each with different mathematical

(and theoretical) implications which have been extensively explored and reviewed

(Maddison, 1993; Wilkinson, 1995a; Farris, 1988; Platnick et al., 1991; Pleijel, 1995;

Strong and Lipscomb, 1999; Hawkins, 2000; Fitzhugh, 2006; Brazeau, 2011). Arguably

the most popular method of dealing with character hierarchies is to use a reductively

coded neomorphic transformation series (sensu Wilkinson 1995a; Sereno 2007; Brazeau

2011) to denote the presence or absence of a principal character, and one or more

ontologically dependent transformation series (which may employ a coding approach

somewhere on the spectrum from reductive to composite coding) to denote attributes

of the principal character:

1. Tail: absent (0); present (1)
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2. Tail colour: blue (0); red (1)

In the event that a taxon is scored 0 for character 1, then it will be treated as

having missing data in character 2. This approach is hoped not to lead to implicit (and

unintended) character weighting, but does entail spurious calculations. Because the

subsidiary character (here, ‘tail colour’) is assigned a state at every node, situations

exist in which a logically impossible transformation may be reconstructed (e.g. a

change in tail colour in an ancestor with no tail; see vignette §2, Maddison 1993). These

logically impossible state reconstructions and their concomitant transformations have

been informally referred to as “pseudo-parsimony”, but could be generalized to

“pseudo-optimality”, since they would occur in probabilistic calculations as well.

Maddison (1993) showed that this can distort the scores of individual trees, and

consequently misdirect phylogenetic searches.

In spite of the problem of logically impossible state reconstructions, this coding

strategy is still widely used, and is generally viewed as the most appropriate approach

(Strong and Lipscomb 1999; Brazeau 2011; but see also arguments from Fitzhugh 2006;

Vogt 2018). This is because, unlike other methods, it is seen as least likely to discard

useful phylogenetic information or to accumulate redundant changes (see above

references for a discussion of these problems). The challenge, therefore, is to create

algorithms that “understand” the difference between inapplicable and missing data. In

this paper, we review some of the practical and theoretical questions of morphological

character hierarchies and propose a single-character parsimony algorithm. We also
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present a C library and an R (R Core Team, 2017) package that can be used to conduct

phylogenetic tree searches with this new algorithm.

Limitations of Sankoff matrices

Forey and Kitching (2000) showed that it is possible to express character hierarchies in

terms of Sankoff matrices. They advocated this as a tenable solution to the problem of

inapplicable data. If this were the case, then there would be no real need to solve the

problem of morphological character hierarchies at an algorithmic level. However,

mathematical and practical limitations of the Sankoff approach render it undesirable for

phylogenetic analysis.

The primary mathematical problem is that the Sankoff method may result in

severe over-estimation of the number of losses, in proportion to the number of

sub-states in the character (see vignette §2.5 for an illustration). This is because the

matrix creates an imbalance in favour of losses, regardless of how much (or how little)

additional pairwise homology is implied between any two branches.

From a practical perspective, each new character combination requires the

calculation and storage of an individual cost for each possible combination of the state

of that character and the states of other characters encoded in the same Sankoff matrix.

The addition of a single character can greatly increase the computational time required

to optimise the tree. Desirable practical properties of new algorithms and programs

would—where possible—avoid this level of complexity and be readily applied to

existing data matrices without the need for substantial re-coding.
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Theoretical background for parsimony with character

hierarchies

It has recently been shown that the “inapplicable data” problem cannot be simply

reduced to the calculation of the number of evolutionary transformations in

single-column characters (De Laet, 2005, 2015). In a parsimony framework, the quantity

being minimized is the amount of homoplasy, in reference to Hennigs auxiliary

principle that assumptions of non-homology are to be minimized. De Laet (2005, 2015)

argues that, more precisely, parsimony is based on a preference for maximized pairwise

homology, the justification being that this maximizes the amount of pairwise similarity

that is explained by the tree. This is consistent with the general justification of

parsimony, which seeks to minimize the amount of homoplasy.

In reductively coded datasets, there is no clear way to count “steps’ on a tree

when inapplicable data are involved. Although it would be tempting to simply assign

no cost to transformations involving the inapplicable symbol, this will not work. This is

most clearly illustrated in the context of a principal character with a number of

hierarchically dependent transformational characters (Fig.1; see vignette §2.6). If

transformations between applicable and inapplicable states contribute nothing to tree

length, then identical independent appearances (e.g. gains) of a character have no

added cost, even when they are identical (i.e. share putative homology). This can, in

some cases, result in a penalty for character congruence (Fig. 1), and thus a penalty for

homology: a situation we consider inconsistent with the theory of phylogenetic
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parsimony. To again borrow Maddison (1993)’s example, a single transformation from

“tail absent” to “tail present, red” does not represent an instance of homoplasy for the

ontologically dependant character “tail colour”. However, if this same transformation

happens twice, homoplasy in tail colour has occurred. Thus, the tree should be

penalized once for the independent origin of the second tail, and once more because

the second tail, when it appeared, happened to exhibit the same state (red) as the first

(see vignette §3.1). By contrast, the loss of a tail implies the simultaneous loss of colour

and other similar attributes, which cannot similarly be explained as transformations.

Scoring trees.— In presenting a solution to the problem of scoring trees, De Laet (2005,

2015) introduces the concept of a subcharacter or, equivalently, regions of character

applicability. Homology can be maximised by co-minimizing the number of

transformations and the number of regions (subcharacters). The logic behind this is not

obvious, but is fairly simple. When inapplicables are present, a variable character can

either transform at least once (e.g. a change from red to blue) or be split into two or

more subcharacters (i.e. two separate appearances of tails). If tails can be either present

or absent in an analysis, and have two possible colours (red and blue), then splitting

tails into three clades involves at least five homoplasious observations: three

independent tail origins, plus at least two clades that have independent appearances of

exactly the same tail colour.

Throughout this manuscript we therefore make a clear distinction between tree

length and tree score. Tree length designates the number of transformational events
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(steps) implied by a topology, whereas tree score designates an optimisation value that

can combine some function of the tree length with other non-transformational events,

such as the sum of the number of applicable regions.

Single-character parsimony with inapplicable data

Preliminary assumptions.— Here we describe our algorithm procedure using informal

terms. A formal description of the algorithm using set logic is included in the

Appendix. The following assumptions are made, consistent with the theory outlined

above:

• The dataset contains separate transformation series for the principal character and

each contingent character.

• A separate signifier (usually “-” symbol, also called the “gap” symbol) has been

used to denote that a character is inapplicable for a particular taxon.

• Missing data is equivalent to a polymorphism consisting of all possible states

(applicable and inapplicable). It is possible, but rarely desirable (vignette §5), to

define missing data as “unknown, but must be from the applicable set of states”.

The state symbols used for logically applicable values are called “applicable

states”. The state symbol used to denote inapplicability will be called the “inapplicable

state”. We further assume that the distribution of applicable and inapplicable states in
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the dependent character will match the distribution of the principal character to which

they are related.

General principle.— Given these latter assumptions and an accurately coded dataset, our

algorithm can be applied without any specification of which character in the dataset is

the principal character. This differs from De Laet’s (2005; 2015) method, which uses a

prior specification of hierarchy.

Our algorithm attempts to reconstruct ancestral states where inapplicable values

are present by first resolving the implicit distribution of “applicable” and

“inapplicable” states. Then, it resolves any character state transitions between

applicable tokens. Steps are counted for normal transitions. On the way down the tree,

a tracker variable detects and records whether the character has been “split” into

multiple regions of applicable tokens.

To accomplish this, the algorithm proceeds in two sets of down- and up-passes

on the tree: the first resolves regions of applicability and inapplicability, while the

second resolves character state transformations within the regions of applicability. The

following instructions apply to a single character at a single node, which is assumed to

be binary and have a single ancestor (the root has no ancestor). An interactive

visualisation of the four passes is available via the Inapp R package (Guillerme et al.

2018; https://github.com/TGuillerme/Inapp).

First procedure: resolve presence-or-absence status of each node

11
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First downpass.—

1. If any descendant has any applicable states (regardless of whether they are the

same state), but at most one descendant has the inapplicable state, the nodal set is

constructed by combining all applicable states (i.e. without the inapplicable state,

Fig. 2a).

2. Otherwise, if both descendants have the inapplicable state, but at most one

descendant has an applicable state, reconstruct the nodal set as inapplicable (Fig.

2b).

3. Otherwise, combine all applicable and inapplicable states into the nodal set (Fig.

2c and d).

First uppass.— Consider the three branches incident to the node being evaluated: two

descendants and one ancestor. (In the case of the root node, the ancestor should be

considered to have an applicable state.)

1. If two or more adjacent nodes have applicable states, reconstruct the nodal set as

having only the applicable states (Fig. 3a).

2. Otherwise, the node is reconstructed as inapplicable (Fig. 3b).

We base this on a theoretically justifiable assumption: choose the reconstruction

that assumes parallel losses over loss and re-gain—that is, choosing the presence over

the absence of a character at any ambiguous node. Minimizing the number of
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independent origins in the neomorphic character is generally considered preferable, as

it is more likely to preserve homology between similar, complex characters

(Agnarsson and Miller, 2008); (see vignette §1.3.1). This has the benefit of speeding up

execution of the algorithm. However, this differs from De Laets method; it is locally

optimal, but there are cases where it may not be globally optimal.

Second procedure: conditionally resolve applicable states and score the tree

In order to score the tree by counting the number of extra character regions, a second

variable is introduced here: a ”tracker” that records whether or not any applicable

regions exist on the subtree upwards of the given node. For computational simplicity,

we use two logical states for the tracker: “true” when the region contains applicable

states, and “false” when it contains the inapplicable state. All tips with applicable states

have their tracker set to “true”; inapplicable tips are set to “false”.

After this stage of the algorithm is applied, each vertex must be unambiguously

applicable or inapplicable. Ambiguous tips are resolved thus: if the ancestor is

applicable, remove the inapplicable state from the terminal state set; if the ancestor is

inapplicable, remove the applicable state(s) from the terminal state set.

Second downpass.— The second downpass constructs the applicable state sets at nodes

that have been resolved as applicable. It applies Fitch rules to descendant nodes if the

current node is applicable. It is during this pass that the tracker values are updated,

and the score of the tree is calculated.
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1. If the node is applicable:

(a) Check for states in common between descendant nodal sets. If there are

states in common and they are applicable values, the preliminary nodal set is

formed by the applicable states in common.

(b) Otherwise, if there are no descendent states in common, but both

descendants have applicable states, construct a set consisting of all

descendant applicable states. Add one step to the tree score.

(c) Otherwise, if at most one descendant has applicable states, add those states

to the nodal set of the current node. Check the trackers of both descendants:

if both indicate descendants with applicable regions, add one region count

to the tree score.

2. Otherwise, if the node is in the inapplicable state, check the trackers of both

descendants: if both indicate descendants with applicable regions, add one region

count to the tree score.

3. Update the tracker: if any descendant tracker is “true”, set the current nodal

tracker to “true”. Otherwise, it is set to “false”.

Second uppass.— The second uppass finalizes the ancestral state estimations. Unlike the

first uppass, character gains are not minimized, as the algorithm has no awareness of

presence versus absence designations in the applicable states, as it would in normal

Fitch optimization.
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If the current nodal set has only applicable states, follow normal Fitch rules, with

the following exceptions:

1. If the immediate ancestor has only the inapplicable state, then the current nodal

set is final (it is equivalent to the root of the tree for this character, and thus no

further changes are required, Fig. 4a).

2. If at most one of the descendants is in the inapplicable state, add to the final nodal

set any states in the ancestor not found in the descendant with applicable states

(Fig. 4b).

3. If any applicable states are shared in common between ancestor and descendant,

remove from the set any applicable states not found in both the descendant and

the ancestor (Fig. 4c).

The complete optimization of characters proceeds in four passes: two sets of

downpass-uppass traversals on the tree to calculate final ancestral state sets (Fig. 5).

Three passes are therefore sufficient to calculate the score of any tree; four are required

to reconstruct the character states at every node.

We have been unable to identify a process that accomplishes this in two passes

(as would be sufficient for a single, independent character under the Fitch algorithm).

We believe that a two-pass method is impossible for realistic datasets (i.e. with

ambiguity and missing data), though we have not proven this formally. Nevertheless, it

stems from intuition that the number of passes required to simultaneously resolve n

characters with a hierarchic relationship will likely require 2n passes on the tree, as
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each principal character needs to be fully resolved before satisfactory resolution of the

next dependent character.

The formal description of this algorithm is available in the Appendix. The

algorithm has been implemented in Shiny (R) (Guillerme et al., 2018) and C

(Brazeau et al., 2017) (http://www.morphyproject.org/; Phylogenetic search using the

C implementation is implemented in the TreeSearch R package (Smith, 2018), available

from the CRAN repository. An informal, step by step illustration and explanation of

the algorithm is provided in vignette §3.2.

Properties of the algorithm and implications for

character coding

Effect of minimizing regions on character distributions in the tree

The method of minimizing the number of independent character regions has important

mathematical properties that set it apart from the standard Fitch procedure. The

algorithm is symmetrical, and thus gives the same final result and tree score regardless

of the rooting of the tree. However, the following discussion assumes the tree is rooted

in order to explore the evolutionary implications of the algorithm.

Under our algorithm, a tree incurrs costs for transformations and costs for

additional regions. Therefore, even an invariant subordinate character with

inapplicability (i.e. consisting of only one applicable state, with some taxa inapplicable)
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will inform a phylogenetic search. An example would be a dataset where some taxa do

not have tails, and other taxa do have tails, all of which happen to be blue. Here, a cost

is incurred for a gain or a loss of a tail, and an additional cost will be incurred every

time an independent instance of blueness appears.

This has an advantage and a drawback. The advantage is that complex similarity

between characters can be objectively weighted without increasing the penalty for

losing that character. Unlike the case where “inapplicable” is treated as a character

state, the cost of a loss is not compounded by summing non-independent losses over all

subordinate characters. The main drawback is that apparently uninformative characters

that previously had no impact on the results might disproportionately penalize certain

topologies. Care must be taken, therefore, that each hierarchically dependent character

truly reflects a biologically significant similarity, for a principal character might be

misleadingly upweighted if trivial subordinate properties (e.g. “number of distinct

bases in tail DNA”) are included in a matrix.

Hierarchies of neomorphic characters

It is important to distinguish between ontogenetically dependent characters (Vogt, 2018)

that are transformational (as in the case of tail colour) and neomorphic (Sereno, 2007).

Up to this point, we have only dealt with an instance of a transformational character

which happens to take one of two states, red and blue, whenever a tail is present. A

neomorphic subcharacter, in contrast, refers to a presence-or-absence character that is

subordinate to the principal character. In this case, it might be a structure such as an
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eyespot or spine that is situated on the tail itself. Our method opens up choices for how

an investigator may wish to encode this information at the level of character definition

and matrix construction. Each option has different mathematical consequences.

Table 1 shows two different ways of coding tail eyespots contingent on the

presence of a tail. The first method is the reductive coding strategy. The second is

equivalent to additive binary coding of Kluge and Farris (1969). The possible advantage

of additive binary coding is that it will not lend support to clades that are united by the

absence of eyespots on tail (see vignette §4.4.1). It can be argued that the absence of

eyespots is a condition that conveys less information than presence of eyespots. On this

basis, an investigator may wish to give increased importance to the presence of the

eyespot, but no particular importance to its absence (unless there is a loss). In this case,

additive binary coding will be preferable. The consequence of this approach, however,

is that the loss of a tail requires two steps (one for the loss of the tail itself, and a second

for the loss of the eyespot). If this is considered unrealistic, then the investigator might

prefer reductive coding.

Comparing approaches to phylogenetic reconstruction

In order to evaluate whether the treatment of inapplicable data meaningfully impacts

phylogenetic results, we analyzed 30 discrete morphological matrices (Smith et al.,

2018) under three approaches: (i), treating inapplicable tokens as missing data (the
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“missing” approach); (ii), the “extra state” approach, treating inapplicability as a

separate character state; and (iii), the “inapplicable” approach, which applies our new

algorithm.

Before beginning our analysis, matrices were inspected to confirm that their

coding followed the assumptions made by our algorithm (by checking whether gaps

and missing data symbols were defined separately and whether both symbols occured

in the matrices), and every inapplicable token in each neomorphic character was

replaced with the token corresponding to the presumed non-derived condition

(typically “absent”), following the additive binary coding approach advocated above.

Each matrix was then subjected to phylogenetic tree search: the “missing” and “extra

state” approaches used TNT, employing the parsimony ratchet, sectorial search and tree

drifting algorithms (Goloboff, 1999; Goloboff and Catalano, 2016); the “inapplicable”

approach used the parsimony ratchet, implemented in TreeSearch 0.0.8 (Smith, 2018).

Because it is difficult to guarantee that every optimal tree will be identified, we ensured

a wide sampling of tree space in TNT by conducting 100 independent tree searches,

and in R by sampling shortest trees until the shortest length had been found by 250

ratchet iterations.

In order to establish whether the three methods recovered different sets of

optimal trees, we tallied the number of distinct bifurcating trees that occurred in the

optimal sets of one, two, or all three approaches. In addition, we calculated a strict

consensus tree for all bifurcating trees in each optimal set, the number of bipartitions
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present in each set serving as a proxy for the disparity of trees that are optimal under

each approach. Finally, each set of optimal trees was plotted in a two-dimensional

space (Hillis et al., 2005) by decomposing a matrix of pairwise quartet distances

(Estabrook et al., 1985), calculated using the tqDist R library (Sand et al., 2014), into

two dimensions by minimising the Kruskal-1 stress function (Borg and Groenen, 2005),

following (Hillis et al., 2005).

Results

In most cases, the three different methods identified different sets of optimal trees.

Indeed, only in one of the thirty examined datasets were the optimal trees recovered by

each method also optimal under the other two (Fig. 7a). In ten datasets (Fig. 7b), a

subset of trees are optimal under all methods, but other trees are optimal under one

method and a few steps longer under another. In nine datasets (Fig. 7c), the forests of

trees that are optimal under two methods (here, “missing” and “extra state”) partially

overlap, but in one method (here, “inapplicable”), no optimal trees were found that are

also optimal under either other method. In the final ten datasets (Fig. 7d), each method

generates a distinct set of optimal trees. Summing across all datasets, only 4% of trees

that were optimal under one method were also optimal under the other two (Fig. 8a).

How topologically different were the trees that each method described as

optimal? One qualitative way to explore the difference between multiple forests of trees

is to generate a two-dimensional treespace from the distances between pairs of trees.

This approach demonstrates that it is difficult to predict which methods will identify

20

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy083/5238046 by U

niversity of D
urham

 user on 18 D
ecem

ber 2018



the most similar sets of optimal trees, and that the regions of treespace identified as

optimal by the different methods may be very different or very similar (Fig. 9).

An alternative way to explore how much trees in the three optimal sets have in

common is to count the number of bipartitions held in common between trees within a

set—or, in other words, the number of bipartitions present on the strict consensus of all

trees in that set. On this approach, averaged across all datasets, 76% of the bipartitions

that are present in every tree that is optimal under the “inapplicable” approach are also

present in every tree that is optimal under the “missing” approach, and 82% are

present in every tree that is optimal under the “extra state” approach; only 70% are

present in all trees recovered by all methods (Fig. 8b).

Even though, in any one dataset, the number of trees identified as optimal can

vary considerably between the three methods, we were unable to identify any

systematic trend in the disparity of optimal trees. Neither the number of distinct trees

in the optimal tree set, nor the resolution of the strict consensus tree, nor the area of

treespace occupied by the trees showed any systematic variation with respect to

properties of the underlying datasets.

Conclusion

We have presented a single-character modified Fitch algorithm for ancestral state

reconstructions that is aware of a special “inapplicable” token. This algorithm avoids

logically impossible reconstructions of ancestral states by acknowledging that
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applicable state distributions rely on the prior resolution of dichotomies between

applicable and inapplicable characters.

Because applicable state assignments depend on the resolution of the outcome of

this dichotomy, up to four passes may be required to correctly calculate tree length.

Furthermore, missing data need to be updated at the tips—initially as either applicable

or inapplicable—in order to complete ancestral state sequences.

Our tree scoring procedure follows De Laet (2005) in penalizing increasing

amounts of homoplasy without redundant penalties, but differs in that each character

reconstruction must be locally parsimonious. Up to three traversals are necessary in

order to score a tree, whereas a final reconstruction of character states requires a fourth

traversal (a second uppass). The method, unsurprisingly, takes additional time, though

this is expected to be mostly in proportion to the number of characters having

inapplicable tokens. Nevertheless, some economies are possible, because only

characters with three or more inapplicable tokens need to be treated with this

algorithm. The method provides a means of evaluating existing datasets with minimal

modification, and without a need to specify explicit relationships between characters

(because the presence or absence of a parent character is already implicit in the

distinction between applicable and inapplicable states). Preliminary results show that

analyses with non-trivial amounts of inapplicable data are likely to be considerably

influenced by mishandling of inapplicable data. In some cases, the set of trees that are

optimal under our new algorithm does not overlap with the optimal sets obtained by
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standard Fitch parsimony, indicating that the effects on inapplicable data on

morphological datasets has been substantial. Further work will be necessary in order to

compare the results of these analyses with those of exact methods (such as De Laet’s

forthcoming anagallis program), assess accuracy using meaningful simulations, and

extend these approaches for use with explicitly probabilistic methods.

Implementations

The algorithm described throughout this paper is implemented at different levels in

different projects. The main C implementation of the algorithm and associated tools is

available at http://www.morphyproject.org/ (Brazeau et al., 2017). Phylogenetic search

using the C implementation available in the TreeSearch R package (Smith, 2018),

available from the CRAN repository or https://github.com/ms609/TreeSearch.

Finally, a shiny (R) visualisation of the algorithm is available via the Inapp package at

https://github.com/TGuillerme/Inapp (Guillerme et al., 2018).
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Appendix A: Description of algorithm

Definitions

Recognizing that this algorithm uses terminology from disparate fields, we define key

terms as follows:

Our algorithm is applied to a bifurcating tree: a connected graph in which all

vertices are either order 1 (referred to as tips), order 3 (nodes), or, in the single case of

the root node, order 2. The tree is directed: it is a representation of evolutionary history,

in which the basal (root) node is taken to represent the branching point that

corresponds to the earliest branching point in the lineages’ shared evolutionary history.

Each node except the root thus has one ancestral node—its immediate neighbour in the

direction of the root—and two descendant nodes.

A token represents the possible presence of a particular character’s state at a

particular point on a tree. The user specifies which tokens may occur at each tip; the

algorithm identifies all tokens that may be present at each tip and each node, subject to

the constraint that the token distribution maximises homology. Each applicable token

corresponds to a user-specified state of the coded character; the inapplicable token

denotes that the coded character does not apply. If the applicability of the character is

ambiguous at a vertex, then it will bear the inapplicable token in addition to one or

more applicable tokens.
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The tokens present at a particular vertex are considered to represent a set. The

union of two sets of tokens contains all tokens that are present in either set: for

example, the union of {-0} and {01} is {-01}.

A traversal of the tree involves visiting each vertex in a specified order. A

postorder traversal starts at the tips, and only visits a node once all its descendants

have been visited; a preorder traversal works from the root, and only visits vertices

once their ancestor has been visited.

First postorder traversal (downpass) – Figs 2, 5a; vignette §3.2.1

Traverse the internal nodes of the tree in postorder. At each node:

1. If there is any token in common between both descendants, go to 2; else go to 3.

2. If the token in common is only the inapplicable token, and both descendants have

an applicable token, set the node’s state to be the union of the descendants’ states;

else set the node’s state to be the token in common between both descendants.

Then go to 4.

3. If both descendants have an applicable token, set the node’s state to be the union

of both descendants’ states without the inapplicable token; else set the node’s

state to be the union of its descendants’ states. Then go to 4.

4. Visit the next node in postorder. Once all nodes have been visited, conduct the first

uppass.
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First preorder traversal (uppass) – Figs 3, 5b; vignette §3.2.1

Traverse the tree in preorder. At each node:

1. If the node has the inapplicable token, go to 2; else leave the node’s state

unchanged and go to 8.

2. If the node also has an applicable token, go to 3; else go to 4.

3. If the node’s ancestor has the inapplicable token, set the node’s state to be the

inapplicable token only and go to 8; else remove the inapplicable token from the

current node’s state. Then go to 8.

4. If the node’s ancestor has the inapplicable token, set the node’s state to be the

inapplicable token only and go to 8; else go to 5.

5. If any of the descendants have an applicable token, set the node’s state to be the

union of the applicable states of its descendants; else set the node’s state to be the

inapplicable token only. Then go to 8.

6. If the unvisited tip includes both inapplicable and applicable tokens, go to 7; else

go to 8

7. If the current node has only the inapplicable token, set the tip’s state to the

inapplicable token only; else remove the inapplicable token from the tip’s state.

Then go to 8.
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8. If one of the node’s descendants is an unvisited tip, go to 6; else visit the next

node in preorder. Once all nodes and tips have been visited, initialise the tracker.

Initialise tracker – Fig. 5b, vignette §3.2.2.1

Visit each tip in turn. At each tip:

1. If the tip’s state contains the inapplicable token, set its tracker to “off” and go to 4;

else go to 2.

2. If the tip’s state does not contain the inapplicable token, set its tracker to “on” and

go to 4; else go to 3.

3. If the ancestor’s state contains an inapplicable token, set the tip’s tracker to “off”;

else set the tip’s tracker to “on”. Then go to 4.

4. Visit the next tip. Once all tips have been visited, conduct the second downpass.

Second postorder traversal (downpass) – Fig. 5b; vignette §3.2.2

Traverse the tree in postorder. At each node:

1. If the tracker of either descendant is “on”, set this node’s tracker to “on”; else set

it to “off”. Then, go to 2

2. If the node had an applicable token in the first uppass, go to 3; else go to 7.
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3. If there is any token in common between both descendants, go to 4; else go to 5.

4. If the tokens in common are applicable, set the node’s state to be the tokens held

in common, without the inapplicable token; else set the node’s state to be the

inapplicable token. Then go to 9.

5. Set the node’s state to be the union of the states of both descendants (if present)

without the inapplicable token, and go to 6.

6. If both descendants have an applicable token, add one to the tree score (denoting

a transformation from one applicable state to another) and go to 9; else go to 7.

7. If both of the node’s descendants’ trackers are “on”, add one to the tree score

(denoting a previously uncounted region) and go to 9; else go to 8.

8. If the tracker of both descendants is “on” and the node has only the inapplicable

token, add one to the tree score (denoting a previously uncounted region) and go

to 9; else just go to 9.

9. Visit the next node in postorder. Once all nodes have been visited, report the tree

score. If character state reconstructions are required at all nodes, conduct the second

uppass.

Second preorder traversal (uppass) – Figs 4, 5b; vignette §3.2.3

Traverse the tree in preorder. At each node:
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1. If the node has any applicable token, go to 2; else go to 9.

2. If the node’s ancestor has any applicable token, go to 3; else go to 9.

3. If the node’s state is the same as its ancestor’s, go to 9; else go to 4.

4. If there is any token in common between the node’s descendants, go to 5; else go

to 6.

5. Add to the current node’s state any token in common between its ancestor and its

descendants and go to 9.

6. If the states of the node’s descendants both contain the inapplicable token, go to 7;

else go to 8.

7. If there is any token in common between either of the node’s descendants and its

ancestor, set the node’s state to be its ancestor’s state; else set the current node’s

state to be all applicable tokens that are common to both its descendants and

ancestor. Then go to 9.

8. Add to the node’s state the tokens of its ancestor. Then go to 9.

9. Visit the next node in preorder.
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Vignettes

This paper is accompanied by a series of vignettes that aim to expound relevant

principles in a clear and extended fashion. These supplementary materials are archived

on GitHub (https://github.com/TGuillerme/Inapp/releases/tag/v0.4.1),

(permanent archive) and are best viewed in HTML format (short URL: goo.gl/WFsX9d).
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Figures
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----------
----------
----------
----------
----------

-

Principal character:

Present

Absent

Ontologically dependent 

transformational characters:

State 1

State 2

Inapplicable

----------
----------
----------
----------
----------

b

a

Figure 1: Effect of counting method on tree preference. If transformations between losses

and gains of the principal character are inadequately penalised, then trees with multiple

gains of the principal character (a) will be favoured; if transformations between appli-

cable and inapplicable states are penalized, then trees in which the principal character

evolves exactly once (b) will be favoured.
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(-) (1)

(-,1)

(-,0) (1)

(0,1)(a) (b)

(-,0) (-)

(-)

(c)

(-,0) (-,1)

(-,0,1)(d)

Figure 2: First downpass procedures. Where both descendants have an applicable state,

but only one has the inapplicable state, reconstruct the node as having all of the appli-

cable states (a); where both descendants have only the inapplicable state in common,

the node is reconstructed with the inapplicable state only (b); where one descendant

has only the inapplicable state, and the other has any applicable state(s), the node is

reconstructed as all the applicable and inapplicable states (c); where both descendants

have the inapplicable state, as well as applicable states, reconstruct the node as having

all descendant states (d).
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(-) (1)

(-,1) (-)

(-)

(a) (b)

(-) (1)

(-,1)

(0)

(1)

Figure 3: First uppass procedures. When two or more adjacent nodes are applicable, the

node is applicable (a); otherwise, the node is inapplicable (b).
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(-) (1)

(1) (0,1)

(0)

(a) (b)

(0) (1,2)

(0,1,2)

(-)

(-) (0,1)

(0,1) (0)

(0)

(c)

Figure 4: Second uppass procedures. If a node’s ancestor is inapplicable, its state re-

quires no further modification (a). If a node contains applicable tokens and its ancestor

has no states in common with its applicable descendant(s), the ancestral states are added

to to the node’s (b); but if its ancestor and descendants do have states in common, these

common states become the node’s states (c).
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Subsequent passes (b)

0011---0

(-)

(-)

(1)

(0,1)

(0)

(-)

(0)

0011---0

(-)

(-,1)

(1)

(0,1)

(0)

(-)

(-,0)

First downpass (a)

*

**

Figure 5: Scoring of a simple tree with inapplicable data. A principal character is present

in two regions of the tree (black lines). A transformation from state 1 to state 0 adds one

step to tree length. A second occurrence of state 0 represents a case of homoplasy, and

should also contribute to tree score. The first downpass of our algorithm (a) generates

possible reconstructions of each node; the state reconstructions generated in the first

uppass happen not to be modified by further passes. The second downpass calculates

this character’s contribution (+2) to the tree’s score, reflecting one transformation (at *)

and one additional region (at **).
41

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy083/5238046 by U

niversity of D
urham

 user on 18 D
ecem

ber 2018



0 1

-

-

-

-

-

-

0

2

1

0 1

-

-

-

-

-

-

0

2

1

0 1

-

-

-

-

-

-

0

2

1

0 1

-

-

-

-

-

-

0

2

1

(0,1)

(-,0,1)

(1)

(-,1)

(-)

(-,0)

(-)

(-)

(-,2)

(-)

(0,1)

(1)

(-)

(-)

(-)

(-)

(-)

(-)

(-)

(-)

(0,1)

(0,1)

(1)

(-)

(-)

(-)

(-)

(-)

(-)

(-)

(-)

(1)

(1)

(1)

(-)

(-)

(-)

(-)

(-)

(-)

(-)

(-)

First downpass (a) First uppass (b)

Second downpass (c) Second uppass (d)

+T

+R

+R

(0,1)

Figure 6: Our algorithm performs an initial downpass (a) and uppass (b) to assign each

node to an applicable or inapplicable region. A second downpass (c) counts standard

Fitch transformations (+T) and additional applicable regions (+R), the latter counted

at nodes whose left descendant leads to a different applicable region than their right

descendant.
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Figure 7: Different methods recover different optimal tree sets. Each histogram details

the distribution of tree scores when each of the optimal trees recovered under method P

is scored using method Q. Scores are presented relative to the lowest score recovered by

method Q for each dataset. Histograms for all examined datasets are presented in the

supplementary information.
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Figure 8: Venn diagrams depicting (a), proportions of optimal trees that are optimal

under one, two or three methods; (b), proportion of nodes present in every optimal tree

recovered under one, two or three methods. Results are summed across all datasets;

figures for individual datasets are available in the supplementary information.
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Figure 9: Distribution of optimal trees in MDS treespace for each dataset. Shaded re-

gions correspond to convex hulls surrounding all optimal trees recovered using a given

approach. No method is consistently more precise or more similar to any other method.
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Table Caption

Table 1: Coding inapplicable data in ontologically dependent characters. “Tail” is a prin-

cipal character with two ontologically dependent characters:, “Tail colour”, a transfor-

mational character that should be coded as “-” when a tail is absent;, and “Tail eyespot”,

a neomorphic character that should be coded as “0” when a tail is absent. “?” is used to

denote ambiguity in cases where the presence of a tail is known, but its characteristics

uncertain.
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Tail 0 0 0 1 1 1 1 1 (0, absent; 1, present)

Tail colour - - - 0 0 1 2 ?
(0, red; 1, blue; 2, green;

-, inapplicable)

Tail eyespot

(reductive coding)
- - - 1 0 1 0 ? (0, absent; 1, present)

Tail eyespot

(additive binary coding)
0 0 0 1 0 1 0 ? (0, absent; 1, present)

Table 1: Coding inapplicable data in ontologically dependent characters. “Tail” is a prin-

cipal character with two ontologically dependent characters:, “Tail colour”, a transfor-

mational character that should be coded as “-” when a tail is absent;, and “Tail eyespot”,

a neomorphic character that should be coded as “0” when a tail is absent. “?” is used to

denote ambiguity in cases where the presence of a tail is known, but its characteristics

uncertain.
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