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Highlights  33 

 34 

- We empirically question the commonly employed distributional assumption of normality of 35 

taste distribution in mixed logit models with continuous random parameters.  36 

- We use a WTP-space random utility discrete choice model with flexible distributions  37 

- We provide a specific exploration of estimates’ sensitivity to the definition of the random 38 

coefficients’ range of variation. 39 

- We explore the sensitivity of different distributional features across cue and independent 40 

attributes when extending the attribute space.  41 

- Results from this study indicate that non-normal distributional features prevail.  42 

- Our findings suggest that researchers using mixed logit models should check the robustness of 43 

their findings by also using flexible distributions.  44 

 45 
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Are Preferences for Food Quality Attributes Really Normally Distributed? An Analysis 54 

using Flexible Mixing Distributions 55 

 56 

Abstract:  57 

We empirically question the commonly invoked assumption of normality of taste distribution in 58 

mixed logit models with continuous random parameters. We use a WTP-space random utility 59 

discrete choice model with flexible distributions on data from two choice experiments regarding 60 

beef with nested set of quality attributes. We specifically focus on distributional features such as 61 

asymmetry, multi-modality and range of variation, and find little support for normality. Our 62 

results are robust to attribute dimensionality in experimental design. Implications of our results 63 

for practitioners in the field are discussed. 64 

 65 
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Product differentiation is a strategic tool for food market operators. Success in this area is 76 

heavily reliant on market information derived from reliable methods to analyse differentiated 77 

consumer preference. As a consequence, the mixed logit models choice data analysis introduced 78 

by Revelt and Train in 1998 were enthusiastically embraced by empirical researchers in food 79 

choice (Bonnet and Simioni 2001; Cicia, Del Giudice and Scarpa 2002; Lusk and Schroeder 80 

2004; Alfnes et al. 2006; Rigby and Burton 2006) and are still widely used (Ortega et al. 2011; 81 

Caputo, Nayga and Scarpa 2013; Scarpa et al. 2013; van Wezemael et al. 2014; De Marchi et al. 82 

2016; Bazzani et al. 2017). Operationalizing mixed logit models, however, requires assumptions 83 

on mixing preference distributions for the sampled population.  84 

The question of what statistical distribution should be selected to model random taste 85 

coefficients to avoid unwarrented (and sometimes unintended) impacts in terms of data fit and 86 

welfare estimates, still poses serious empirical challenges to analysts. Like others before us, we 87 

start by observing that the assumptions on which these models are predicated, despite being often 88 

strong and crucial to the conclusions, are most often left unpersuasively justified. The 89 

contribution of this article is to explore the effectiveness of recently introduced tools for a robust 90 

investigation of common assumptions. Specifically, we offer some significant results on range, 91 

asymmetry and multimodality of taste distributions, which we deem as substantive for the future 92 

practice of food choice analyses. Our results also have significant implications for conceptual 93 

models of consumer demand whose results may be questionable given their reliance on the 94 

assumption of uniform preferences (e.g., Crespi and Marette 2003; Lapan and Moschini 2007; 95 

Giannakas and Yiannaka, 2008).  96 

The use of various types of preference mixing—finite, continuous or a combination 97 

thereof—is by now the presumptive approach in the field of food choice, and it has been in many 98 
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other areas of application (e.g., environmental, health and transport economics). Yet, most 99 

published studies fail to explicitly report investigations on the sensitivity of their results to the 100 

sometimes crucial distributional assumptions under which they are derived. Futhermore, such 101 

assumptions are often predicated on weak arguments and motivation including operational 102 

convenience (e.g., such as mathematical tractability), and comparisons of fit with alternative 103 

distributional assumptions. In this context, it is worth highlighting that consistency of maximum 104 

likelihood estimates holds only under the correct specification, and applies only probabilistically 105 

to the “comparatively” best specification, especially when all the elements in the set of 106 

comparison share some shortcomings (e.g., all imply symmetry to the mean). 107 

Almost universally in our review of food choice applications, when the selected model 108 

allows for continuous mixing of preferences, it relies on parametric distributions (normal, log-109 

normal, triangular, uniform, etc.). This approach is attractive because it reduces the space of 110 

parameters needed for model fit (e.g. from quantiles to only first and second central moments), 111 

but it overly simplifies matters, thereby ruling out several behaviourally plausible features of 112 

taste distributions, such as limited range, asymmetry, strong skewness and multimodality. This 113 

leads to inadequate conclusions, that often fit oddly in the face of common sense or even of mere 114 

introspection. Such discomfort has been expressed several times before and traces of it can be 115 

found in the concluding remarks of several previous papers approaching the issue from various 116 

persectives (Train and Sonnier 2005, Cherchi and Pollak 2005, Burton, Balcombe and Rigby 117 

2009). Warnings of significant biases due to erroneous distributional assumptions have been 118 

issued since the adoption of the mixed logit methodology. Yet, the issue has continued to receive 119 

little, if any, attention in empirical analyses of food choice. 120 
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To move the field forward, we explore the use of  more robust approaches that can enable 121 

analysts to openly explore behaviourally realistic distributional structures of food taste. In 122 

practice, this requires the adoption of flexible distributional forms, such as mixture of parametric, 123 

semi-parametric or non-parametric approaches. There is some obvious resistance to adopting 124 

these approaches, as they are bound to be somewhat more complex to implement and tend to 125 

deliver the additional features at relatively large sample sizes (Franeschinis et al. 2017). Thus, a 126 

successful solution needs to be sufficiently practical to have wide applicability. In moving from a 127 

standard parametric description of preference variation to a more flexible one, the analyst faces 128 

several unfamiliar challenges linked to taste distributions. In this article, we focus on three 129 

important distribution features: the definition of the range of variation, symmetry and multi-130 

modality. These features have obvious and important repercussions for the computation of 131 

statistical expectations and quantiles, which are crucial statistics in policy decisions. An example 132 

is the well-known so-called “fat-tail” problem (for a recent review see Parsons and Myers 2016).  133 

Throughout the article, we use a recently proposed semi-parametric choice model: the 134 

Logit-Mixed Logit (LML) developed by Train (2016) to explore the sensitivity of our results to 135 

the three distributional features mentioned above. This model allows for extremely flexible 136 

mixing distributions, that can accommodate asymmetry and multimodality, but it requires setting 137 

the range of variation. Hence, we also explore the stability of results in distributional outcomes 138 

by varying the range (the empirical support of the distribution). In addition, in response to recent 139 

works on the effect of context in food choice (Gao and Schroeder 2009; and Caputo, Scarpa and 140 

Nayga 2017), we also explore the sensitivity of our distributional results across food attribute 141 

types (e.g., cue and independent) when increasing the number of attributes (from three to five) in 142 

the discrete choice experiment design and associated utility functions. Finally, to make the article 143 
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more salient to recent tendencies in food choice, we specify random utility models specified in 144 

WTP-space, so as to avoid scale issues and focus on value distributions.  145 

This study contributes to the existing literature of consumer food preference analysis in 146 

two important ways. First, we observe that by mostly invoking normality, the great majority of 147 

food choice studies1 using continuous mixing tend to systematically fail to explore the 148 

plausibility of distributional assumptions to multimodality, asymmetry and range of variation. 149 

All of these features are of potential relevance to policy. Two of these issues (multimodality and 150 

asymmetry) were addressed in Scarpa, Thiene and Marangon (2008), but they only applied a 151 

flexible semi-parametric distribution to one of the various random coefficients in their 152 

specification and they specify a model in preference space. The present food choice study is the 153 

first to simultaneously address all three of these issues for all random coefficients, using utility in 154 

WTP-space by means of a flexible semi-parametric distribution. Our approach moves away from 155 

the standard assumptions of normality without excluding them.  156 

Second, to the best of our knowledge, this is the first food choice study exploring the 157 

sensitivity of different distributional features across cue and independent attributes when 158 

extending the attribute space. As argued by Gao and Schroeder (2009) and  Caputo, Scarpa and 159 

Nayga (2017), the way consumers value a ‘cue’ attribute (described as one whose levels 160 

                                                           
1 The food choice literature accounts for over 200 studies using choice experiments on food 

choice selection. By limiting ourselves to the top 5 journals in the field of agricultural 

economics, which were selected according to their article influence score 

(http://www.eigenfactor.org/about.php) and the ISI Web of Knowledge Journal Citations Report, 

table A1 in the appendix reports the food choice experiment papers published since 2013 in the 

following peer-reviewed journals: Food Policy, American Journal of Agricultural Economics, 

European Review of Agricultural Economics, Journal of Agricultural Economics, and Australian 

Journal of Agricultural and Resource Economics. Results clearly demonstrate that most of the 

published studies on food choice experiments are based on MXL models that assume normal 

distribution for the non-monetary random taste parameters, and that none of these studies have 

explored the plausibility of distributional assumptions to multimodality, asymmetry, and range of 

variation. 

http://www.eigenfactor.org/about.php
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correlate with the levels of other potentially absent attributes) and an independent attribute 161 

(relates to the physical aspects of the product whose information stands alone) can depend on the 162 

attribute space. Hence, this study adds to this stream of literature by showing that consumers 163 

would not only value these attributes differently across design dimensions, but also by 164 

suggesting that cue and independent attributes might be systematically characterized by different 165 

distributional features and context dependency.  166 

More notably, this study adds to the emerging choice modeling literature by providing a 167 

specific exploration of estimates’ sensitivity to the definition of the random coefficients’ range of 168 

variation. To date, applications of the LML model can be found in the field of transportation and 169 

environmental economics. To illustrate, in the field of transportation, Bansal, Daziano, and 170 

Achtnicht (2017) extended the LM model, where all the utility parameters are assumed random, 171 

to a combination of fixed and random parameters (LML-FR) using data from a Monte Carlo 172 

study and a discrete choice experiment on vehicle preferences in Germany. Similarly, in the field 173 

of environmental economics, Franceschinis, Scarpa, and Thiene (2017) employed data from 174 

Monte Carlo experiments and an applied choice experiment survey on people’s preferences for 175 

tap water quality to evaluate the accuracy of random parameters estimates from LML models. In 176 

addition, a recent application by Bazzani, Palma, and Nayga (2018) employed the LML model to 177 

test for differences in welfare estimates obtained from different assumptions on taste 178 

distributions using data from an induced real choice experiment study. Hence, together with 179 

these existing studies, this research contributes to a deeper understanding of distributional 180 

features of individual preferences in discrete choice analysis.  181 

The remainder of the article is organized as follows. In the next section, we provide a 182 

brief and essential literature review as a background to highlight the glaring knowledge gap that 183 
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this study informs. The third section provides a description of the data used. The fourth section 184 

discusses the method we employ, and this is followed by a description of the estimation strategy 185 

and the discussion of the results. The final section presents our conclusions and some 186 

recommendations for changes in the practice. 187 

 188 

Background 189 

That the researcher’s choice of taste distribution matters has been a central tenet of taste 190 

heterogeneity studies from its beginning. As early as 1999, Wedel et al. and later on in 2003 191 

Hensher and Greene provided detailed guidance for its selection. A more recent review on the 192 

topic can be found in a working paper by Yuan, You, and Boyle (2015). Several early studies 193 

showed that parametric mixing distributions assumed ex-ante by researchers (e.g., normal, 194 

lognormal, among others) may be limiting and may introduce mis-specification problems (Train 195 

and Sonnier 2005, Cherchi and Pollak 2005, Burton, Balcombe and Rigby 2009). These papers 196 

focused on bounding ranges of variation and therefore signs, and suggested remedies on how to 197 

handle distributions for theoretically signed coefficients (e.g. for price) on the negative or 198 

positive orthants, and on asymmetry (e.g. log-normal, Johnson-SB, etc.) and some forms of bi-199 

modality (Johnson-SB). The discussions in these papers, however, were confined to parametric 200 

distributions or transformations thereof which required further parameter estimates in the 201 

transformation function, often, as in the Johnson-SB, of complex empirical identification. The 202 

evidence provided emphasised the vulnerability of results to bias of different importance and 203 

size, in terms of post-estimation applications. Bias affects probability forecasts, marginal effects 204 

and welfare measures, all of which are of high relevance in food choice analysis and food policy 205 

design. 206 
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Later studies have gone further in the direction of adding flexibility, often in an attempt 207 

to uncover multi-modality when present and of practical relevance. These studies have proposed 208 

either mixtures of parametric distributions (e.g. mixtures of normals Train 2008, Wasi and 209 

Carson 2013), or the use of either semi- or non-parametric mixing distributions (Bajari, Fox, and 210 

Ryan 2007; Fosgerau and Bierlaire 2007; Scarpa, Thiene and Marangon 2008; Train 2008; 211 

Bastin, Cirillo and Toint 2010; Fox, Ryan and Bajari 2011; and Fosgerau and Mabit 2013). Such 212 

distributions are more flexible in retrieving preference heterogeneity, thereby accommodating 213 

multimodality as well as asymmetry, and hence skewness. They may even come with the added 214 

bonus of being computationally less expensive in estimation (Train, 2016; Bansal, Daziano, and 215 

Achtnicht 2017), and able to provide welfare estimates with lower hypothetical bias (Bazzani, 216 

Palma, and Nayga, 2018). However, because they are based on splines or polynomials, they are 217 

reliant on a larger parameter space than simply means and variances. Morevover, their sample-218 

size requirements to achieve given degrees of accuracy are likely to be larger than those required 219 

by parametric distributions. 220 

When the focus of taste heterogeneity is on economic values of food attributes, the 221 

typical subjects of investigation are distributions of marginal willingness to pay (mWTPS) or 222 

total welfare changes for selected food attributes. In linear utility specifications, these are non-223 

linear functions of parameter estimates, such as ratios, and whenever price coefficients are 224 

random, the estimates of these functions are sensitive to distributional assumptions on the price 225 

coefficient. Early attempts to deal with this issue often resulted in studies in which the price 226 

coefficient was assumed to be fixed. This is, however, a scarsely defensible assumption, as it 227 

implies a fixed marginal utility of money. Other solutions rely on bounding its range of variation 228 

by, for example, using constrained triangular distributions (Alfnes et al 2006; Hensher and 229 
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Greene 2009; Scarpa et al. 2013; Hensher, Rose and Greene 2015) or the previously mentioned 230 

uniform or Johnson-SB distributions. 231 

A solution for this has been eloquently and persuasively discussed elsewhere (Train and 232 

Weeks 2005; Scarpa, Thiene, and Train 2008; Daly, Hess and Train 2012), and it suggests 233 

rescaling utility by the error scale. This solution was suggested earlier by Cameron and James 234 

(1987) in the context of referendum contingent valuation data analysis, and it provides a 235 

specification of random utility directly in WTP-space. Here, the random coefficients of attributes 236 

can be readily interpreted as marginal WTPs, and their distributions are derived in a manner less 237 

sensitive to the distributional assumptions for the price coefficient. However, up until now, they 238 

still have been reliant on parametric distributional assumptions (Balcombe, Burton, and Rigby 239 

2011; Thiene,  Scarpa and Marangon 2008). 240 

Finally, Rose and Masiero (2010) argued that the assumptions implied by random utility 241 

models can be context dependent and affected by the nature of datasets and/or dimensions of 242 

experimental designs. In food choice studies, for example, a number of recent papers have shown 243 

a specific interest in the sensitivity of marginal WTPs estimates to both the expansion and 244 

hierarchy of food attributes (Gao and Schroeder 2009; Caputo, Scarpa and Nayga 2017). This 245 

literature explores the effects of progressively adding independent food attributes to choice 246 

contexts based on cue attributes in experimental choice. They found evidence of significant shifts 247 

in the means of the marginal WTPs, an issue also addressed here.  248 

 249 

Empirical Data  250 

In our investigation, we use choice data from two choice experiments (A and B) exploring the 251 

effect of an incrementally larger set of attributes on beef selection. The dataset we use is part of a 252 
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larger project investigating the effects of adding independent food attributes to cue attributes in 253 

discrete choice experiments published elsewhere (Caputo, Scarpa, and Nayga 2017). In this 254 

study, two experiments are conducted: Experiment A, which included only three beef attributes 255 

(Certified U.S., Guaranteed Tender, and Price), and Experiment B, which added two more beef 256 

characteristics (Guaranteed Lean, Sell-By Date) for a total of five attributes. As in Caputo, 257 

Scarpa, and Nayga (2017), in this study we defined Certified U.S. as “cue attributes’, and 258 

Guaranteed Tender, Guaranteed Lean, and Sell-By Date as “independent attributes”. In both 259 

experiments the price attribute was specified with four levels: $4.64; $6.93; $9.22; $11.50. The 260 

other attributes were simply binary (either present or absent). Each respondent was assigned to 261 

undertake a panel of eight choice tasks. Each task involved the selection of their preferred 262 

alternative out of three: two beefsteak profiles and the “no-purchase” option. Sample statistics 263 

and further details about the experimental designs are reported in Caputo, Scarpa, and Nayga 264 

(2017). Table 1 shows the attributes and attribute levels included in this study and highlights the 265 

differences in use of the data between Caputo, Scarpa, and Nayga (2017) and the present study.   266 

<<Insert Table 1>> 267 

Econometric Models  268 

Throughout we use a WTP-space utility specification (Weeks and Train 2005) with flexible 269 

distributional assumptions for marginal WTPs, which allows us to retrieve more realistic taste 270 

(value) distributions for food attributes because they allow for multimodality and asymmetry. 271 

We then contrast these flexible semi-parametric results with those from conventional parametric 272 

distributions based on normality. 273 

The flexible distribution approach is to be implemented by using the logit mixed logit 274 

(LML) model recently proposed by Train (2016). If the data display evidence of multimodality 275 
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and asymmetry for some attribute, the flexible approach will make it apparent, while the MXL 276 

with normal distributions will not. For example, in Scarpa, Thiene and Marangon (2008), a 277 

random coefficient attribute that when assumed to be distributed normal showed an insignificant 278 

mean estimate with value close to zero and a very large standard deviation, once its distribution 279 

was evaluated semi-parametrically, using the Legendre polynomial method proposed by 280 

Fosgerau and Bierlaire (2007), it showed a much more plausible bi-modal distribution. The two 281 

modes, one at each side of zero made it clear that taste distribtuion was bi-polar, with some 282 

consumer types desiring the attribute and others avoiding it. The normal interpretation, instead, 283 

implied indifference to the attribute, a difference with clear implications for marketing. 284 

However, the investigation of the sensitivity of the results to the range, which needs to be 285 

defined a-priori for the LML, needs some decision rule. Train (2016) uses a range spanning two 286 

standard deviations (2SD) at both sides of the estimated mean. So, to start with, we adopt this 287 

approach too, which should work if the real range of variation is symmetric around the mean. 288 

Yet, in the presence of fat tails or multimodality, this may not be the case. In such instances, one 289 

can obtain guidance on how to extend the range to investigate by visual inspection of the 290 

histogram depicting mixing distributions resulting from the LML approach. More on this issue is 291 

reported in the estimation strategy section. We now proceed by briefly detailing the nature of 292 

both models, but we direct the readers interested in the details to the seminal papers. 293 

 294 

Utility in WTP-space 295 

Following Train and Weeks (2005), the utility that individual n derives from choosing alternative 296 

j within a choice set J in choice situation t can be expressed as follows: 297 

 (1)                         𝑈𝑛𝑗𝑡 = 𝑉𝑛𝑗𝑡 + 𝜀𝑛𝑗𝑡 = ⁡𝜏𝑛(−𝑃𝑟𝑖𝑐𝑒𝑗𝑡 + 𝜔𝑛
′ xjt) + 𝜀𝑛𝑗𝑡 298 
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where 𝑉𝑛𝑗𝑡 is the observed portion of the utility;  𝜀𝑛𝑖𝑡 is the i.i.d Gumbel distributed error term; n 299 

is a random positive scalar representing the price/scale parameter; here 𝑃𝑟𝑖𝑐𝑒𝑗𝑡 is the price level 300 

for 12 ounce of beef steak for alternative j and choice situation t; 𝜔𝑛 is a vector of estimated 301 

marginal WTPs; 𝐱jt is the vector of observed non-price attributes for alternative j. In our 302 

application, these attributes are: US (Certified US product) and Tender (Guaranteed Tender) in 303 

in both experiment A and B, while in experiment B two more are added: Lean (Guaranteed 304 

Lean), and Sell (Sell-by Date).  305 

 306 

Panel mixed logit  307 

Let 𝑦𝑛𝑗𝑡 = 1 if individual n chooses alternative j in choice situation t, and 0 otherwise. 308 

Conditional on the vector <𝜏𝑛, 𝜔𝑛>, the probability of a sequence of T choices, assuming 309 

independence between choices is:  310 

 (2)                                   𝐿𝑛𝑗𝑡(𝜏𝑛, 𝜔𝑛⁡) = ∏ ∏ [
exp⁡(𝜏𝑛(−𝑃𝑟𝑖𝑐𝑒jt+𝜔n

′ xjt))

∑ exp⁡(𝜏𝑛(−𝑃𝑟𝑖𝑐𝑒it+𝜔n
′ xit)𝑖∈𝐽

]
𝑦𝑛𝑗𝑡

𝐽
𝑗=1

𝑇
𝑡=1  311 

To simplify notation, let us re-define <𝜏𝑛, 𝜔𝑛⁡> as 𝛽𝑛. The unconditional probability requires 312 

integrating over the distribution of the random parameter across respondents so that the 313 

probability of sequence of alternatives chosen by individual n can be expressed as follows:  314 

 (3)                                            P𝑛{Θ} = ∫ 𝐿𝑛𝑗𝑡(𝛽𝑛⁡) 𝑓(𝛽𝑛|Θ)𝑑𝛽𝑛 315 

where 𝑓(𝛽𝑛|Θ)⁡⁡is the probability density function of the vector of random parameters, as defined 316 

by the hyper-parameters Θ.  317 

 318 

Panel Mixed Logit with Normal Taste Distributions (MXL) 319 
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In what we take as the reference model, the mixture for the random parameters 𝛽𝑛 is multivariate 320 

normal, so 𝛽𝑛 ∼ 𝑁(𝜇, Ω) and Θ =< μ, Ω >. In other words, the hyper-parameters are the mean 321 

vector μ and the variance and covariance matrix Ω. Note here that for each random WTP the 322 

mean, median and mode all coincide, and the range with meaningful symmetric density around 323 

the means is a function of Ω. All these are undesirable restrictions that are relaxed in the flexible 324 

model that we now describe. 325 

Panel Logit Mixed Logit Models with Flexible Taste Distributions (LML) 326 

Unlike the MXL, in the LML model the joint mixing distribution of the random parameters 𝜔𝑛 is 327 

assumed discrete over a finite support set S. Discretization is not a constraint because the support 328 

set is essentially a multidimensional grid that can be made larger and denser by considering a 329 

broader domain of parameters and a higher number of grid points. As shown in Train (2016), the 330 

joint probability mass function of random parameters 𝛽𝑟 ∈ 𝑆 in the LML is represented by a logit 331 

formula:  332 

(4)                                           Pr(𝛽𝑛 = 𝛽𝑟) ≡ 𝑊(𝛽𝑟|𝛼) =
exp⁡(𝛼′𝑧(𝛽𝑟))

∑ exp(𝛼′𝑧(𝛽𝑠))𝑠∈𝑆
 333 

 334 

where 𝛼 is a vector of probability mass parameters and 𝑧(𝛽𝑟) defines the shape of the mixing 335 

distribution. Substituting in equation (3), the unconditional probability⁡𝑃𝑛(𝛼) of the sequence of 336 

choices of individual n is then: 337 

(5)                                         𝑃𝑛(𝛼) = ∑ 𝐿𝑛𝑗𝑡(𝛽𝑛⁡) [
exp(𝛼′𝑧(𝛽𝑟))

∑ exp(𝛼′𝑧(𝛽𝑠))𝑠∈𝑆
] .𝑟∈𝑆    338 

Note that the hyper-parameter is now the vector 𝛼 and that the flexibility depends on the nature 339 

of the logit transformation of the z functions, to which we now turn.    340 

 341 



16 
 

The z functions in the LML 342 

Following Train (2016), three types of z functions are adopted here: orthogonal polynomials (for 343 

model LML-poly), grids (step-functions) (for model LML-step), and splines (for model LML-344 

spline). 345 

In his 2016 seminal article, Train starts by showing how normality can be approximated 346 

by specifying z as a second order polynomial in 𝜷𝑟. More flexibility in the shape of the 347 

distribution, allowing for asymmetry and multimodality, can be achieved by higher order 348 

polynomials (in our LML-poly we use two, four, six, and eight orders), bearing in mind that the 349 

number of inflection points is equal to the polynomial order minus one. Of the various categories 350 

of polynomials available, orthogonal polynomials, such as Legendre polynomials (but also 351 

Hermite, Jacobi, Chebyshev, Bernstein polynomials), have the advantage of having uncorrelated 352 

terms. Correlation across 𝜷𝑟⁡can be achieved by using cross-products of only first order terms, 353 

which greatly reduces the number of necessary parameters.  354 

A second alternative for the 𝑧(𝜷𝑟) used in LML-step is represented by a step function 355 

based on a grid over the parameter ranges (i.e. the support).  Partitioning the set S into G possibly 356 

overlapping subsets Hg, consider the probability mass 𝑊(𝜷𝑟|𝛼)⁡being the same for all points in 357 

a given subset, but different across subsets. In this case we have the following probability mass 358 

function:  359 

(6)                                  Pr(𝜷𝑛 = 𝜷𝑟) ≡ W(𝜷r|α) =
exp⁡(∑ 𝛼𝑚

𝑀
𝑚=1 (𝜷𝑟∈𝑇𝑚))

∑ exp(∑ 𝛼𝑚
𝑀
𝑚=1 (𝜷𝑠∈𝑇𝑚))𝑠∈𝑆

 360 

This set up generates a type of latent class at each point, except that the parameter values 361 

of each class are predefined, instead of being the outcome of an estimation, as in the case of a 362 

standard latent class model. In practice, a computational limitation of this approach is that with 363 

many attributes in the utility function the number of evaluations becomes quickly infeasible, 364 
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even with rather largely spaced grids. In this study we use LML-step with four, six, eight and ten 365 

mass points.  366 

Splines can also be used (in LML-spline) as they conform to the 𝛼′𝑧(𝜷𝑟) format required 367 

in (5). To illustrate, take an interval for a single parameter 𝛽 that goes from start point 𝛽1 and 368 

end point 𝛽4, ⁡and consider the two intermediate points (knots) 𝛽2 and 𝛽3, with  𝛽1 < 𝛽2 < 𝛽3 <369 

𝛽4. Using I(.) as an adequate indicator function, this gives rise to the following four elements of 370 

the vector 𝑧(β): 371 

𝑧1(𝛽) = (1 −
𝛽 − 𝛽1
𝛽2 − 𝛽1

) 𝐼(𝛽 ≤ 𝛽2), 372 

𝑧2(𝛽) = (
𝛽 − 𝛽1
𝛽2 − 𝛽1

) 𝐼(𝛽 ≤ 𝛽2) + (1 −
𝛽 − 𝛽2
𝛽3 − 𝛽2

) 𝐼(𝛽2 < 𝛽 ≤ 𝛽3), 373 

𝑧3(𝛽) = (
𝛽 − 𝛽2
𝛽3 − 𝛽2

) 𝐼(𝛽2 < 𝛽 ≤ 𝛽3) + (1 −
𝛽 − 𝛽3
𝛽4 − 𝛽3

) 𝐼(𝛽3 < 𝛽), 374 

𝑧4(𝛽) = (
𝛽 − 𝛽3
𝛽4 − 𝛽3

) 𝐼(𝛽3 < 𝛽), 375 

 The elements of the vector 𝛼 requiring estimation in this case are only three, since the 376 

height of the spline is standardized to one (only relative height matters). Note that in (5) it is 377 

exp⁡(𝛼′𝑧(𝜷𝑟)) that defines the probability mass, and hence this non-linear transformation 378 

changes the spline shape, allowing flexibility. In this study, we use LML-spline with two, four, 379 

six and eight knots.  380 

 381 

Model Estimation Strategy and Results  382 

As a baseline, the data from Experiment A with two food attributes and price and Experiment B 383 

with the additional two food attributes are used to estimate separate MXL models. Normal 384 

mixing distributions are assumed for all mWTPs, i.e.,⁡𝜔𝑛⁡~𝑁(𝜇, Ω) and lognormal distribution 385 
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for the scale/price coefficient factor. We termed these conventional specifications as MXL-N and 386 

we use the results as reference points for comparisons with the flexible distribution model. In our 387 

specification search, we estimate a range of flexible distribution models, with different z 388 

functions and increasing number of parameters to explore the sensitivity to increased flexibility. 389 

Specifically, four LML-polynomial (of order four, six, and eight), four LML-step (with four, six, 390 

eight, and ten “steps” or mass points), and four LML-spline (with two, four, six, and eight knots) 391 

models2 are estimated from data from each experiment. These flexible distribution models were 392 

estimated by using [0, 2] as the range of variation for the price/scale coefficient. To explore the 393 

sensitivity to range, we investigate three different ranges for the mWTPs for food attributes. The 394 

endpoints of these ranges define the highest and the lowest marginal WTP values in the 395 

parameter space S and are constructed using the following three approaches:  396 

1) two standard deviations above and below the mean marginal WTPs obtained from the 397 

MXL-N model (this is the approach used in the seminal paper by Train 2016);  398 

2) three standard deviations above and below the mean of marginal WTPs obtained from the 399 

MXL-N model, to explore behavior in the tails; and 400 

3) we then extended the upper or lower range limits any time a sufficiently high probability 401 

mass was observed at the lowest and/or highest bin of the histogram. That is, whenever 402 

the tails of the distribution derived from 1) and 2) above had large mass. This assessment 403 

was made by visual inspection, but formal tests can be used.  404 

The rationale for extending the range in these cases rests on our desire to investigate whether the 405 

high mass probability is due to an accumulation of consumers predicted to have mWTPs values 406 

                                                           
2 For all models, during estimation the probability integral in equation (3) was approximated by 

using 2000 random draws for each person in the sample.  
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at the upper end of the range, but who in reality have higher values and should hence have 407 

probability mass located outside the investigated range. Alternatively, these mass points at 408 

high/low mWTP values could be confirmed to be accurate representations of preference 409 

densities. Some degree of asymmetry is to be expected in these distributions because of the very 410 

nature of the attributes; however, the MXL-N model forces symmetry around the 411 

mean/median/mode. After ascertaining the robustness of distributional findings in terms of 412 

range, asymmetry and multimodality, we assess their repercussion comparatively to the MXL-N 413 

results and across the two experiments with varying number of attributes. 414 

Data from each of the two experiments are used to estimate 24 models: four grid densities 415 

times three different ranges of variation times two experiments (A and B). This is repeated for 416 

each of the three types of z function (poly, step and spline), for a total of 52 flexible distribution 417 

models, respectively (26 per experiment).  418 

The proper selection method for best performing models in the context of choice models 419 

with flexible semi-parametric distributions is still a subject of debate. In our case, we use 420 

standard information criteria that promote parsimony in the number of parameters: Akaike 421 

Information Criteria (AIC), the Bayesian Information Criteria (BIC), and modified Akaike 422 

Information Criteria (3AIC). The lower the information criterion value, the better the fit. Table 2 423 

reports the model fit statistics for all models estimated across experiments A and B for each 424 

range approach utilized to define the highest and the lowest marginal WTP values in the 425 

parameter space S.  426 

<< Insert Table 2>> 427 

It can be noted that increasing the number of parameters improves the log-likelihood 428 

value, but does not necessary improve the information criteria values as these penalize for over-429 
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parameterization. This finding is consistent with Bansal, Daziano, and Achtnicht (2017), who 430 

employed the LML-polynomial, LML-step, and LML-spline models in both a Monte Carlo and 431 

empirical studies in the field of transportation. For ranges selected using the method of 2SD 432 

around the means estimated from the MXL-N, the best performing (accounting for all criteria) 433 

LML-polynomial models are of fourth order in both experiments. In the LML-step models, it is 434 

with 6 steps and 4 for Experiment A and B, respectively, although for Experiment B the one with 435 

8 steps has lowest AIC. For the LML-spline model, those with two knots outperform the rest in 436 

both experiments. More importantly, all flexible models outperform the MXL-N, except for the 437 

data in Experiment B, but only when used in an extended asymmetric range. Intuitively, 438 

exploring asymmetry seems to be more costly with over-parameterized models. For models with 439 

ranges established as 3SD around the MXL-N means, the best performing models are those with 440 

the fewest parameters. This is true across all three z functions, although in Experiment B, the 441 

LML-step with 4 steps has better performance. 442 

We now turn our attention to asymmetry. To explore it, we extend the range of variation 443 

for selected mWTPs based on visual inspection of the histogram representations of the mWTPs 444 

distributions from the 2SD and 3SD. These are reported in figure 1 for the two steak attributes of 445 

Experiment A (Certified US product and guaranteed tender).  446 

<< Figure 1>> 447 

Both attributes show evidence of bi-modality in both 2SD and 3SD taste distributions, 448 

with high mass around small positive dollar values (0-6 for Certified US product and 0-3 for 449 

guaranteed tender, both with highest mass at around 2 dollars), but also some high mass at the 450 

upper end of the dollar range. These upper tail values on the mWTP range are worth 451 

investigating further by extending the range. As a consequence, the upper limit in the third set of 452 
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models for the Guaranteed tender attribute was extended from 6 and 8 dollars to 16, with the 453 

results of shifting and spreading the probability mass previously cumulated at 6 and 8 dollars 454 

over the range 8-12 dollars. A similar re-estimation for the attribute Certified US product, with 455 

range increased to a highly unlikely 50 dollars, shows that significant mass is still present at 456 

values over 20 dollars, with a third mode with mass at 40! This is brought about by a shift in the 457 

polynomial from the 4th to the 6th order. In fact, asymmetry in the range increases the number of 458 

parameters of the best fitting models across all z functions, for both experiments, except for 459 

Experiment B with LML-polynomial. 460 

We finally turn our attention to the stability of the distributional features to the addition 461 

of other food attributes in choice, by comparing the histograms for Certified US product and 462 

Guaranteed tender attributes of Experiment B (the two top rows of Figure 2) with 4 non-price 463 

attributes with the results obtained in Experiment A with only two (in Figure 1).  464 

<< Figure 2>> 465 

Unexplained context-dependency of results is generally regarded as a negative feature in all 466 

methods, and this has been a criticism recently leveled to discrete choice models from 467 

experimental food data (Gao and Schroeder 2009; Caputo, Scarpa, and Nayga 2017). This 468 

evidence, however, was obtained under normal distributional assumptions. We explore whether 469 

this is still evident with flexible functional forms. Comparing figures 1 and 2, we note that the 470 

bimodality of the taste distribution for the Certified US product (cue attribute) is still supported 471 

by the results obtained with the symmetric ranges used (2SD, 3SD, and visual inspection). The 472 

fact that only the cue attribute (Certified US product) remains bimodal across the experiments is 473 

an intriguing finding that may be explained by how consumers process cue attribute information. 474 

These are described as indicators (proxies) of other unobservable quality attributes. A number of 475 
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market research and consumer psychology studies found that consumers use cues to develop 476 

beliefs (Dewar and Parker 1994; Aqueveque 2006; Aqueveque 2008; Akdeniz, Calantone and 477 

Voorhees 2014), and how they evaluate products might be a direct function of these mediating 478 

beliefs (Garrido-Morgado, González-Benito and Martos-Partal 2016). Since these tend to be 479 

clustered (e.g. Verdurme and Viaene 2003) they would be consistent with multimodality in cue 480 

attributes, as we find here.  481 

Moreover, we note that the taste distribution for the independent attribute (Guaranteed 482 

tender) is bimodal in Experiment A, while in Experiment B the bimodality of the taste 483 

distribution for the independent attributes (Guaranteed tender, Guaranteed lean, and Sell-by 484 

date) are only supported by the results obtained with the symmetric ranges 2SD and 3SD. In fact, 485 

once the asymmetric range is used, the distributions appear unimodal and strongly skewed to the 486 

left—much more so than what a normal distribution would correctly capture—and with well-487 

behaved upper tails that taper out. Balcombe, Burton and Rigby (2009) already focussed on 488 

skewness and reported this to be a major empirical regularity in preference distributions. The 489 

different distributional features characterizing the cue and independent attributes may partly be 490 

explained by the degree to which consumers use food attributes (both independent and cue) as 491 

quality cues, which has been shown to depend on the design dimensions (e.g., number of 492 

attributes, Caputo, Scarpa, and Nayga 2017). Hence, we speculate that in Experiment A, where 493 

fewer attributes were used, consumers perceive both cue (Certified US product) and independent 494 

(guaranteed tender) attributes as quality cues. On the other hand, in Experiment B, where three 495 

additional independent attributes were used, the cue role of the independent attributes in 496 

Experiment A dissipated because in Experiment B the alternative profiles became more explicit. 497 



23 
 

Further, we note that the value range is less extended for these attributes in Experiment B 498 

than in Experiment A. This is consistent with what we expect in a choice context in which some 499 

cue attributes lose value in the presence of properly specified independent attributes, which 500 

would otherwise embed some value in the cue attributes when they are unspecified (Caputo, 501 

Scarpa, and Nayga 2017). This is confirmed also by the mean and standard deviation values for 502 

the mWTPs reported in Table 3. 503 

<< Table 3>> 504 

 This evidence corroborates the hypothesis that results are somewhat senstive to the 505 

choice context, even when using flexible distributions. Yet, the main non-normal features of the 506 

distributions of tastes for cue attributes seem relatively stable to context. Interestingly, extending 507 

the range to the right, which allows for asymmetry, in the mWTP for the sell-by date attribute 508 

produces an upper tail that tapers out, rather than the binomial distribution portrayed in the 509 

symmetric 2SD and 3SD results. Once again, behavior in the tails matters, and it is best captured 510 

by the asymmetric range, as the 2SD and 3SD representation still indicate bimodality for taste of 511 

this attribute. Altogether, these results suggest significant departures from the standard normality 512 

assumptions commonly invoked by food choice analysts in existing preference heterogeneity 513 

studies. 514 

 515 

Robustness check of observable vs. unobservable sources of heterogeneity   516 

Differences in consumer preferences for food attributes can be explained by observable and/or 517 

unobservable sources of preference heterogeneity. Observable sources of preference 518 

heterogeneity such as demographics are those known by the researcher.  They are commonly 519 

incorporated into discrete choice models through interactions with the experimentally designed 520 

levels of the attributes. The basic assumption of this modeling approach is that consumer 521 
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preferences are heterogeneous due, at least in part, to differences in preferences across diverse 522 

socio-demographic groups. However, unobservable sources of preference heterogeneity may still 523 

remain even after such interactions are accounted for. These are unknown to the researcher and 524 

often modeled by assuming random taste variation in MXL models, where the distribution of 525 

random coefficients is intended to approximate unobserved sources of preference heterogeneity.  526 

A natural question to ask in our study is whether the distributional features identified by 527 

the LML for each attribute of interest are due to observed and/or unobserved sources of 528 

preference heterogeneity. To profile our respondents, we collected socio-demographic data 529 

during the CE surveys. So, the samples from both experiments (A and B) were used to estimate 530 

models that account for observed sources of preference heterogeneity by interacting the 531 

experimentally designed attribute levels with the individual characteristics of our respondents. If 532 

interactions coefficients yield statistically insignificant estimates, then we can conclude that 533 

observed individual characteristics fail to explain preference heterogeneity around the mean 534 

(Hensher, Rose, and Greene 2015). This does not imply absence of preference heterogeneity 535 

around the mean, but simply that the socio-demographic characteristics of respondents fail to 536 

account for it. Results are presented in table 4 for both experiment A and B.  537 

<< Table 4>> 538 

As can be seen from Table 4, with the exception of gender in Experiment A, none of such 539 

interaction terms yield statistically significant estimates in our experiments. Hence, our findings 540 

generally confirm results from a number of applications of discrete choice models analyzing 541 

consumer food preferences, which have shown that demographic characteristics of respondents 542 

often fail to explain preference heterogeneity (Nilsson, Foster and Lusk 2006; Gracia, Loureiro 543 

and Nayga Jr. 2009; Caputo, Nayga and Scarpa 2013). Nilsson, Foster and Lusk (2006) suggest 544 
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that the observable consumer characteristics might be poor indicators of food preference 545 

heterogeneity when analyzing consumer preferences for credence attributes of food products 546 

(e.g. country of origin, brands, etc.) due to the strong separability assumption between food 547 

attributes and demographic information.  548 

Given the significance of the interaction term between gender and the US Certified label 549 

in Experiment A, we estimated a LML3 for each sub-sample based on gender (male and female) 550 

to further explore if there is heterogeneity in the estimates. As before, for each sub-sample, 551 

extreme marginal WTP values in the parameter space S are set to two and three standard 552 

deviations above and below estimated means of marginal WTPs from the MXL-N model with 553 

covariates. Any time a sufficiently high probability mass was observed at the lowest and/or 554 

highest bin of the histogram we extended the upper or lower range limits. Figures 3 (female sub-555 

sample) and 4 (male sub-sample) report the estimated WTP distributions for Certified US 556 

product and for guaranteed tender.  557 

<<Insert Figures 3 and 4>>> 558 

Even after fitting LML models to data by gender sub-samples, clear evidence of 559 

asymmetry—and to some extent of bimodality—remains, thereby rejecting normality.    560 

 561 

Conclusions and Recommendations for Practice 562 

Food choice studies that addressed taste heterogeneity have used parametric mixing distributions 563 

(i.e., largely normal distributions) that fail to simultaneously address the three issues we focus on 564 

in this study in relation to distribution features: the definition of the range of variation, symmetry 565 

                                                           
3 Results of the LML by segmented samples (female and male) are reported in Appendix, table 

A5.   
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and multi-modality. This is an important topic since these distribution issues could significantly 566 

affect marginal WTP estimates that are used for important marketing and policy decisions. This 567 

study is the first to simultaneously focus on all of these issues for all random coefficients of food 568 

attributes by using a flexible semi-parametric distribution estimated in WTP space.  569 

Should future investigations of preference heterogeneity in food choice studies move 570 

beyond the pervasive assumptions of normality implicitly assuming symmetry and unimodality? 571 

Our findings suggest that the answer to this question is a resounding “yes”. Researchers using 572 

mixed logit models should check the robustness of their findings by also using flexible 573 

distributions over ranges that go beyond the one implied by the rule of mean plus or minus two 574 

standard deviations. In our investigation on beef preferences, we use a flexible semi-parametric 575 

approach, the logit mixed logit estimator proposed by Train (2016) and discover that non-normal 576 

distributional features prevail. These features are sensitive to the setting of the range of variation 577 

and include acute skewness, asymmetry and bimodality. All of these features would affect policy 578 

and marketing implications because they are likely to lead to different consumer stratifications 579 

from those derived using normality assumptions. We also note that flexible distributions imply 580 

over-parameterization. Over-parameterization is always a risk, but the consequences of 581 

misspecification are difficult to generalize: they depend on the loss function of the decision 582 

maker. So, what is the cost of getting it wrong? Is it higher than the benefit of searching for a 583 

better fit? These are empirical questions requiring an empirical answer. In our case, believing 584 

that there is only one mode, rather two or more, will imply losing some market shares in 585 

substantive segments.  586 

The approach used in this study is very flexible and not computationally burdensome, at 587 

least in our application. Our results suggest that the marginal WTP values show lower means in 588 
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our experiments with a larger set of attributes, in accordance with previous findings in these 589 

contexts. Some significant probability mass extends over ranges of values that might appear very 590 

unlikely in reality, because they are excessively high. To limit this problem, and retain 591 

flexibility, we suggest that upper ranges for marginal WTP distributions from flexible 592 

distributions might need to be informed by responses to specific questions that can be included in 593 

survey questionnaires. In this way, the delimitation of the range could be grounded to some 594 

empirical data based, for example, on self-reported maximum willingness to pay statements for 595 

specific attributes. To sum up, given our findings, future food choice analysts should consider 596 

systematic testing of the sensitivity of their results to the use of different parameter distributional 597 

features. Our hope is that this study will start a serious discussion about and consideration for 598 

this issue, given the increasing popularity of the use of discrete choice models in food choice 599 

studies. These studies are typically used not just for business applications but also for welfare 600 

and policy analysis.  601 

Our results also have significant implications for research in other fields of inquiry where 602 

uniform type distributions between two extremes are commonly used (e.g., studies investigating 603 

the market and welfare effects of novel food products and labels) since failure to capture 604 

deviations from normality could have serious economic consequences. Most notably, although 605 

this study focuses on food choices, our findings may also have a bearing in other fields (e.g., 606 

environmental economics, transportation, development economics, and market research, among 607 

others) where discrete choice models are widely employed. This study adds to the emerging 608 

choice modeling literature (Train 2017; Bansal, Daziano, and Achtnicht 2017; Franceschinis, 609 

Scarpa, and Thiene 2017; and Bazzani, Palma, and Nayga 2018) by providing further evidence 610 
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corroborating for asymmetry and multi-modality in preference distribution, and for the first time 611 

evidencing their sensitivity to ranges of variation. 612 
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Tables  837 

Table 1. Attributes and Experiments  838 

 Caputo, Scarpa, and Nayga 2017 Present Study  

 Experiment A Experiment B Experiment C Experiment A Experiment B 

Attributes (attribute levels) A1 A2 B1 B2 C1 C2 From A1 From C1 

         

Price ($4.64;$6.93; $9.22; $11.50)  √ √ √ √ √ √ √ √ 

Certified U.S. Product 

(absent/not absent)  

√ √ √ √ √ √             √  √ √ 

Guaranteed Tender  

(absent/not absent ) 

√ √ √ √ √ √ √ √ 

Guaranteed Lean  

(absent/not absent) 

  √ √ √ √ √   √ 

Days before Sell-by Data  

(2 days; 8 days) 

      √ √ √     

Enhanced Omega-3 fatty acids 

(absent/not absent) 

          √     

                  

N. of respondents  201 183 208 201 208 

 839 

 840 
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Table 2.  Model Information Criteria of MXL-N and LML models, Experiments A and B 

Model    
 

LL Par BIC AIC 3AIC 
 

LL Par BIC AIC 3AIC 

  

Experiment A (1,608 choices, N=201) Experiment B (1,664 choices, N= 208) 

  
Normal Distribution  

   
MXL-N 

 
-1125 10 2324 2270 2280 

 
-1294 21 2744 2630 2651 

              

  

2SD above and below the mean 

LML Polynomial 

            

 

4  -995 19 2129 2027 2046  -1239 34 2730 2546 2580 

 

6  -986 27 2172 2027 2054  -1233 46 2807 2558 2604 

 

8  -974 35 2206 2018 2053  -1225 58 2881 2566 2624 

 

10  -974 43 2266 2035 2078  -1209 70 2937 2558 2628 

LML Step 

            

 

4  -993 21 2142 2029 2050  -1248 38 2778 2573 2611 

 

6  -979 29 2173 2016 2045  -1233 50 2836 2565 2615 

 

8  -982 37 2237 2038 2075  -1220 62 2900 2564 2626 

 

10  -968 45 2269 2026 2071  -1216 74 2981 2580 2654 

LML Spline 

           

 

2  -987 21 2130 2017 2038  -1243 38 2768 2562 2600 

 

4  -979 29 2173 2017 2046  -1230 50 2831 2560 2610 

 

6  -974 37 2221 2022 2059  -1221 62 2902 2566 2628 

 

8  -957 45 2247 2005 2050  -1210 74 2969 2568 2642 

              

 
 

3SD above and below the mean 

LML Polynomial 

            

 

4  -982 19 2104 2001 2020  -1265 34 2782 2598 2632 

 

6  -977 27 2153 2007 2034  -1259 46 2859 2610 2656 
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8  -975 35 2209 2021 2056  -1245 58 2920 2606 2664 

 

10  -972 43 2261 2029 2072  -1240 70 3000 2620 2690 

LML Step 

           

 

4  -987 21 2130 2017 2038  -1261 38 2805 2599 2637 

 

6  -990 29 2194 2038 2067  -1261 50 2892 2622 2672 

 

8  -981 37 2236 2037 2074  -1238 62 2936 2600 2662 

 

10  -977 45 2286 2044 2089  -1236 74 3021 2620 2694 

LML Spline  

           

 

2  -984 21 2122 2009 2030  -1270 38 2821 2615 2653 

 

4  -978 29 2170 2014 2043  -1255 50 2882 2611 2661 

 

6  -976 37 2225 2026 2063  -1245 62 2951 2615 2677 

 

8  -969 45 2271 2028 2073  -1235 74 3019 2619 2693 

              

  

Visual Inspection 

LML Polynomial 

            

 

4  -1021 19 2182 2080 2099  -1353 34 2959 2775 2809 

 

6  -1000 27 2200 2054 2081  -1349 46 3038 2789 2835 

 

8  -994 35 2247 2059 2094  -1345 58 3121 2807 2865 

 

10  -994 43 2306 2074 2117  -1341 70 3202 2822 2892 

LML Step 

     

 

     

 

4  -1015 21 2186 2073 2094  -1367 38 3016 2810 2848 

 

6  -990 29 2194 2038 2067  -1343 50 3056 2785 2835 

 

8  -997 37 2268 2068 2105  -1331 62 3121 2786 2848 

 

10  -993 45 2319 2077 2122  -1326 74 3200 2799 2873 

LML Spline  

     

 

     

 

2  -1016 21 2187 2074 2095  -1365 38 3011 2806 2844 

 

4  -993 29 2200 2044 2073  -1341 50 3053 2782 2832 

 

6  -994 37 2261 2062 2099  -1331 62 3121 2786 2848 

  8  -981 45 2294 2052 2097  -1324 74 3197 2796 2870 



42 
 

Table 3. Statistics of Marginal WTP Estimates from MXL-N and LML (Bootstrapped 1 

Standard Errors) models, Experiments A and B 2 

      

Experiment A 

  

Experiment B 

          

Models   MXL-N LML-Polynomial MXL-N LML-Polynomial  

      2SD 3SD Vis. Insp.    2SD 3SD Vis. Insp.  

Variables  Par         

          

US µ 5.56* 

(0.47)1 

5.13* 

(0.54) 

6.14* 

(0.73) 

7.92* 

(1.20) 

3.53* 

(0.30) 

3.75* 

(0.30) 

4.29* 

(0.39) 

5.87* 

(0.77) 

σ 4.39* 

(0.64) 

4.32* 

(0.44) 

5.76* 

(0.62) 

9.42* 

(1.85) 

3.17* 

(0.33) 

3.36*  

(0.22) 

3.94*  

(0.33) 

6.46*  

(0.82) 

Tender  µ 2.35* 

(0.37) 

1.89* 

(0.31) 

2.18* 

(0.38) 

2.43** 

(2.43) 

1.26*  

(0.34) 

1.82*  

(0.22) 

1.51*  

(0.26) 

1.89**  

(0.58) 

σ 1.79* 

(0.47) 

1.29* 

(0.28) 

2.11* 

(0.33) 

2.98* 

(0.76) 

1.99*  

(0.34) 

1.71*  

(0.21) 

2.70*  

(0.28) 

4.40*  

(0.77) 

Lean  µ     1.26*  

(0.31) 

1.62*  

(0.27) 

1.22*  

(0.29) 

1.85*  

(0.58) 

σ     2.07*  

(0.29) 

1.36*  

(0.21) 

2.19*  

(0.30) 

4.85*  

(0.97) 

Sell  µ     1.13*  

(0.24) 

1.02*  

(0.26) 

1.00*  

(0.30) 

1.61**  

(0.57) 

σ     1.88*  

(0.31) 

1.49*  

(0.20) 

2.26*  

(0.23) 

4.31*  

(0.67) 

Note: Asterisk (*) and double asterisk (**) denote coefficients significant at 1% and 5%, 3 

respectively. 4 

  5 
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Table 4. Statistics of Marginal WTP Estimates from MXL-N model including socio-6 

demographics, Experiments A and B 7 

  Experiment A Experiment B 

Models   MXL-N MXL-N 

Variables  Par   

    
Main effects     

 

US 

µ 5.22* 

(0.75) 

3.05* 

(0.75) 

σ 4.02* 

(0.57) 

3.13* 

(0.38) 

 

Tender  

µ 1.92* 

(0.67) 

1.30* 

 (0.58) 

σ 1.80* 

(0.44) 

1.96* 

 (0.40) 

 

Lean  

µ  1.34* 

 (0.62) 

σ  2.06* 

 (0.45) 

 

Sell  

µ  0.19* 

 (0.51) 

σ  1.82* 

 (0.29) 

σ   

Interaction terms    

    

US  Female  µ 0.61** 

(0.31) 

0.47 

(0.29) 

US * Education  µ 0.07 

(0.32) 

0.16 

(0.34) 

US * Age µ 0.29 

(0.33) 

0.04 

(0.30) 

US * Income  µ 0.28 

(0.32) 

0.23 

(0.30) 

Tender * Female  µ 0.08 

(0.20) 

0.31 

(0.29) 

Tender * Education  µ 0.34 

(0.23) 

0.10 

(0.28) 

Tender * Age µ 0.08 

(0.23) 

0.27 

(0.26) 

Tender * Income  µ 0.08 

(0.23) 

0.19 

(0.28) 

Lean * Female  µ  0.29 

(0.26) 

Lean * Education  µ  0.04 
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(0.26) 

Lean * Age µ  0.29 

(0.25) 

Lean * Income  µ  0.05 

(0.26) 

Sell * Female  µ  0.21 

(0.23) 

Sell * Education  µ  0.28 

(0.23) 

Sell * Age µ  0.04 

(0.22) 

Sell * Income  µ  0.37 

(0.24) 

Statistics     

    

Choices   1608 1664 

LL  -1119.67 -1280.62 

Par   18 37 

N of. Respondents   201 208 
 8 
Note: Asterisk (*) and double asterisk (**) denote coefficients significant at 1% and 5%, 9 

respectively. 10 

 11 
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Figure 1: Estimated distributions of food attribute coefficients, Experiment A 12 

  

  

  
  13 
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Figure 2: Estimated distributions of food attribute coefficients, Experiment B      14 
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Figure 3: Estimated distributions of food attribute coefficients for Female, Experiment A 15 

  

  

  
Figure 4: Estimated distributions of food attribute coefficients for Male, Experiment A  16 
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Appendix  17 

Table A1. Summary of recent consumer studies on food choice experiments since 20131 18 

Authors/Paper Title Year Model  Distribution of non-

monetary random 

parameters  

FOOD POLICY      

    

Grebitus, C., Jensen, H. H., & Roosen, J. 

 

US and German consumer preferences for ground beef packaged under a modified 

atmosphere–Different regulations, different behaviour? 

2013 MXL Normal  

Rousseau, S., & Vranken, L.  

 

Green market expansion by reducing information asymmetries: Evidence for labeled 

organic food products. 

 

2013 CL, MXL Normal  

Bechtold, K. B., & Abdulai, A. 
 

Combining attitudinal statements with choice experiments to analyze preference 

heterogeneity for functional dairy products. 

2014 CL, LC  None  

Van Wezemael, L., Caputo, V., Nayga Jr, R. M., Chryssochoidis, G., & Verbeke, W. 

 

European consumer preferences for beef with nutrition and health claims: A multi-

country investigation using discrete choice experiments. 

2014 MXL-EC Normal 

Van Loo, E. J., Caputo, V., Nayga Jr, R. M., & Verbeke, W.  

 

Consumers’ valuation of sustainability labels on meat. 

 

2014 MXL-EC Normal 
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Uchida, H., Onozaka, Y., Morita, T., & Managi, S.  

 

Demand for ecolabeled seafood in the Japanese market: A conjoint analysis of the 

impact of information and interaction with other labels. 

 

2014 MXL Normal  

Grebitus, C., Steiner, B., & Veeman, M. 

 

The roles of human values and generalized trust on stated preferences when food is 

labeled with environmental footprints: Insights from Germany 

 

2015 MNL, 

MXL 

Normal 

De Marchi, E., Caputo, V., Nayga Jr, R. M., & Banterle, A. 

 

Time preferences and food choices: evidence from a choice experiment. 

 

2016 MXL-EC Normal  

Apostolidis, C., & McLeay, F. 

 

Should we stop meating like this? Reducing meat consumption through substitution. 

 

2016 MNL, LC None  

Balcombe, K., Bradley, D., Fraser, I., & Hussein, M. 

 

Consumer preferences regarding country of origin for multiple meat products. 

 

2016 MXL Normal  

Gao, Z., House, L., & Bi, X. 
 

Impact of satisficing behavior in online surveys on consumer preference and welfare 

estimates. 

2016 CL, MXL Normal 

Balogh, P., Békési, D., Gorton, M., Popp, J., & Lengyel, P. 

 

Consumer willingness to pay for traditional food products. 

 

2016 MXL, 

GMNL 

Normal  
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Petrolia, D. R.  

 

Risk preferences, risk perceptions, and risky food. 

 

2016 MXL Normal 

Wongprawmas, R., & Canavari, M. 

 

Consumers’ willingness-to-pay for food safety labels in an emerging market: The case of 

fresh produce in Thailand. 

 

2017 GMXL Normal 

Zhou, J., Liu, Q., Mao, R., & Yu, X.  

 

Habit spillovers or induced awareness: Willingness to pay for eco-labels of rice in 

China. 

 

2017 MXL Normal  

Maples, J. G., Lusk, J. L., & Peel, D. S. 

 

Unintended consequences of the quest for increased efficiency in beef cattle: When 

bigger isn’t better. 

 

2018 CL, LC None  

AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS  

 

   

Scarpa, R., Zanoli, R., Bruschi, V., & Naspetti, S. 

 

Inferred and stated attribute non-attendance in food choice experiments. 

 

2013 MXL-EC Normal  

De-Magistris, T., Gracia, A., & Nayga Jr, R. M. 

 

On the use of honesty priming tasks to mitigate hypothetical bias in choice experiments. 

 

2013 MXL Normal  

Meas, T., Hu, W., Batte, M. T., Woods, T. A., & Ernst, S. 

 

Substitutes or complements? Consumer preference for local and organic food attributes. 

 

2014 CL, MXL Normal (only in the 

MXL)  
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Balcombe, K., Fraser, I., Lowe, B., & Souza Monteiro, D. 
 

Information customization and food choice. 

2015 MXL Normal, log-normal  

Lusk, J. L. 

 

Consumer research with big data: Applications from the food demand survey (FooDS). 

 

2017 MNL None  

EUROPEAN REVIEW OF AGRICULTURAL ECONOMICS     

    

Moser, R., Raffaelli, R., & Notaro, S. 

 

Testing hypothetical bias with a real choice experiment using respondents' own money 

 

2013 MNL, 

MXL 

Normal (MXL) 

Lusk, J. L., Schroeder, T. C., & Tonsor, G. T. 

 

Distinguishing beliefs from preferences in food choice. 

 

2014 MXL Normal  

Chalak, A., Abiad, M., & Balcombe, K. 

 

Joint use of attribute importance rankings and non-attendance data in choice 

experiments. 

 

2016 MXL  Normal, Log-normal 

Caputo, V., Scarpa, R., & Nayga, R. M. 

 

Cue versus independent food attributes: the effect of adding attributes in choice 

experiments 

 

2017 MXL-EC Normal  

Van Loo, E. J., Nayga, R. M., Campbell, D., Seo, H. S., & Verbeke, W. 

 

Using eye tracking to account for attribute non-attendance in choice experiments. 

 

2018 MXL-EC Normal  

JOURNAL OF AGRICULTURAL ECONOMICS     



53 
 

Kehlbacher, A., Balcombe, K., & Bennett, R.  

 

Stated Attribute Non‐attendance in Successive Choice Experiments. 

 

2013 MXL Normal 

Balcombe, K., Bitzios, M., Fraser, I., & Haddock‐Fraser, J. 

 

Using attribute importance rankings within discrete choice experiments: An application 

to valuing bread attributes. 

 

2014 MXL Normal, Lognormal  

Gracia, A., Barreiro‐Hurlia, A., Barreirortance  

Are local and organic claims complements or substitutes? A consumer preferences study 

for eggs.  

 

2014 LC None  

Viegas, I., Nunes, L. C., Madureira, L., Fontes, M. A., & Santos, J. L. 

 

Beef credence attributes: Implications of substitution effects on consumers’ WTP.   

 

2014 MXL Normal 

Yue, C., Zhao, S., & Kuzma, J. 

 

Heterogeneous Consumer Preferences for Nanotechnology and Genetic‐modification 

Technology in Food Products. 

2015 LC None  

 

Erdem, S.  

 

Consumers' preferences for nanotechnology in food packaging: a discrete choice 

experiment. 

 

2015 MNL, 

MXL 

Normal 

Gerini, F., Alfnes, F., & Schjøll, A. 

 

Organic‐and Animal Welfare‐labelled Eggs: Competing for the Same Consumers? 

2016 MXL Normal  
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Lewis, K. E., Grebitus, C., Colson, G., & Hu, W. 

 

German and British consumer willingness to pay for beef labeled with food safety 

attributes. 

 

2017 MXL Normal 

Alphonce, R., & Alfnes, F.  

 

Eliciting consumer WTP for food characteristics in a developing context: Application of 

four valuation methods in an African market. 

 

2017 MXL Normal 

Edenbrandt, A. K., Gamborg, C., & Thorsen, B. J. 
 

Consumers’ Preferences for Bread: Transgenic, Cisgenic, Organic or Pesticide‐free? 

 

2018 MXL Normal  

Caputo, V., Van Loo, E. J., Scarpa, R., Nayga, R. M., & Verbeke, W.  

 

Comparing Serial, and Choice Task Stated and Inferred Attribute Non‐Attendance 

Methods in Food Choice Experiments. 

 

2018 MXL,  

LC 

Normal 

AUSTRALIAN JOURNAL OF AGRICULTURAL AND RESOURCE ECONOMICS  

Caputo, V., Nayga, R. M., & Scarpa, R. 

 

Food miles or carbon emissions? Exploring labelling preference for food transport 

footprint with a stated choice study. 

2013 MNL, 

MXL, 

MXL-EC, 

LC 

Normal  

1 Selected Peer-Reviewed Journals: Food Policy, American Journal of Agricultural Economics, European Review of Agricultural 19 

Economics, Journal of Agricultural Economics, and Australian Journal of Agricultural and Resource Economics (see footnote 1).  20 
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Note: MXL = mixed logit model or Random Parameter Logit model; CL=Conditional logit model; MNL= Multinomial Logit Model; 21 

LC= Latent Class Logit Model; GXML=Generalized Mixed Logit Model.  22 

 23 
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Table A2. Statistics of Marginal WTP Estimates from the LML model across 24 

demographics (Bootstrapped Standard Errors), Experiment A 25 

   Female  Male  

Models    Polynomial  Polynomial  

   2SD 3SD Vis. 

Insp.  

2SD 3SD Vis. 

Insp.  

Variables  Par        

         

US µ  6.49* 

(0.63) 

7.64* 

(0.78) 

10.69* 

(1.76) 

4.13* 

(0.59) 

5.15* 

(0.79) 

5.55* 

(1.45) 

σ  5.12* 

(0.47) 

7.16* 

(0.65) 

12.25* 

(2.34) 

3.91* 

(0.47) 

5.76* 

(0.68) 

8.16* 

(1.77) 

Tender µ  2.44* 

(0.42) 

2.37* 

(0.45) 

4.73* 

(1.75) 

1.94* 

(0.46) 

1.97* 

(0.48) 

2 87* 

(1.05) 

σ  1.26** 

(0.35) 

2.11* 

(0.47) 

8.65* 

(3.01) 

1.40* 

(0.35) 

1.62* 

(0.39) 

5. 22* 

(1.77) 

Statistics          

Choices    1056 1056 1056 552 552 552 

LL   672.44 672.50 678.62 312.74 308.84 321.14 

Par    19 19 19 19 19 19 

N of. Respondents   132 132 132 69 69 69 

Note: Asterisk (*) and double asterisk (**) denote coefficients significant at 1% and 5%, 26 

respectively.  27 

 28 


