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Abstra
t

Peridynami
s (PD) represents a new approa
h for modelling fra
ture me
hani
s, where a 
ontinuum

domain is modelled through parti
les 
onne
ted via physi
al intera
tions. This formulation allows

us to model 
ra
k initiation, propagation, bran
hing and 
oales
en
e without spe
ial assumptions.

Up to date, anisotropi
 materials were modelled in the PD framework as di�erent isotropi
 materials

(for instan
e, �bre and matrix of a 
omposite laminate), where the sti�ness of the bond depends on

its orientation. In this work we propose a non-ordinary state-based formulation to model general

anisotropi
 materials. The material properties for ea
h parti
le are de�ned using the material


onstitutive matrix, rather than being de�ned through the bond sti�ness between adja
ent parti
les.

We propose a damage 
riterion for 
omposite materials to model the 
ra
k propagation behaviour for

anisotropi
 materials. We validate the model using ben
hmark problems obtained with established

numeri
al methods or experimental results. The proposed approa
h enables the use of general


lasses of material models in
luding ro
ks, 
on
rete and biomaterials.
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1. Introdu
tion

Anisotropi
 materials have been studied sin
e the �rst works of Sih et al. [44℄, and ever sin
e

have attra
ted attention of fra
ture me
hani
s resear
hers. Anisotropi
 materials are usually brittle,

almost ensuring that 
ra
ks will appear during their lifetime. The e�e
t of 
ra
ks in an anisotropi


material is more 
ompli
ated than the equivalent problem with an isotropi
 material. For instan
e,5

the 
ra
k propagation path is also a fun
tion of the material properties, rather than depending only

on the orientation of the applied load and the spe
imen geometry.

These materials are widely used in 
omposites in the aerospa
e and automobile industries [35,

32℄, as sensors and a
tuators (piezoele
tri
 [12, 56℄ and magnetoele
troelasti
 [30, 55℄ materials) and

more re
ently have appli
ations in biome
hani
s [15, 40℄ and even in hydrauli
 fra
turing [16, 19℄,10

just to mention some of the works. Cra
ks in 
omposite materials 
an be responsible for 
omplete

failure of the 
omponent, resulting in e
onomi
 losses or even loss of life. Damaged smart materials

exhibit di�erent ele
tri
 and magneti
 �elds 
ompared to the pristine material, in
urring in errors
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of the response of a sensor for instan
e. Therefore, it is important to a

urately quantify the e�e
t

of dis
ontinuities in anisotropi
 materials.15

Fra
ture me
hani
s have been studied for nearly a 
entury, from the �rst work of Gri�th [17℄

for brittle materials. Over the years a number of resear
hers have modelled fra
ture me
hani
s

analyti
ally [34, 43℄ for simple problems and geometries, and more 
ommonly using numeri
al

frameworks, su
h as the extended �nite element method (XFEM) [4, 33℄ and the extended boundary

element method (XBEM) [18℄, among many others. Nevertheless, these methods su�er when 
ra
k20

bran
hing or 
oales
en
e are involved.

The phase-�eld method has been shown to model 
ra
k bran
hing behaviour [1, 20℄. The

method 
onsists in des
ribing the 
ra
k as an interfa
e dire
tly in the formulation and is used


onjointly to the �nite element method (FEM) [41℄. Nevertheless, the method requires a �ne mesh

around the 
ra
k to model the interfa
e 
orre
tly. Another drawba
k of the method is that it25


an provide unrealisti
 results. A novel numeri
al method entitled peridynami
s (PD) [45℄ has

been re
ently developed, and has shown great potential in fra
ture me
hani
s problems involving

initiating, propagating, bran
hing and 
oales
ing 
ra
ks.

The peridynami
s (PD) formulation is a type of non-lo
al formulation, where the state of a point

is measured over a �nite distan
e. This framework was proposed by Silling [45℄, where he rede�ned30

the 
lassi
al approa
h for 
ontinuum me
hani
s using an integral framework 
onsidering the for
es

in the bonds rather than stresses and strains as in the 
lassi
al 
ontinuum me
hani
s. The main

reason for using this approa
h is that the 
lassi
al formulation 
ontains partial derivatives that

pose a 
hallenge when dealing with fra
ture me
hani
s problems. The governing partial di�erential

equations in elasti
ity imply that singularities will appear due to the presen
e of dis
ontinuities,35

whi
h is not desirable. Due to the integral form of the formulation, no spe
ial assumptions are

needed to deal with singularities, su
h as a 
ra
k in the domain.

The �rst PD formulation des
ribed a 
ontinuum medium through dis
rete parti
les, intera
ting

between ea
h other through physi
al 
onne
tions entitled bonds. Ea
h bond has a sti�ness asso
i-

ated with it, being analogous to a spring in 
ontinuum me
hani
s theory. However, ea
h parti
le40

has an area of in�uen
e, intera
ting with all other parti
les within a perimeter. The radius of

this perimeter is the horizon of that parti
le, and is a 
hara
teristi
 of non-lo
al formulations (see

[11, 27℄ for other types of non-lo
al approa
hes). The material properties in PD are 
al
ulated

using the material parameters of the 
lassi
al 
ontinuum me
hani
s, and also parameters from PD

su
h as the horizon size. The tra
tions between di�erent parti
les are in the same dire
tion as the45

bond, have opposite sense and the same magnitude. This �rst formulation obtained by Silling was

denoted bond-based PD.

The 
ra
k is formed when the bonds between parti
les are broken, a key feature of the PD

formulation. This 
hara
teristi
 also enables the modelling of 
ra
k initiation without further as-

sumptions. Additionally, 
ra
k bran
hing 
an appear if elasti
 wave re�e
tions generate instabilities50

at the 
ra
k tip, whi
h is very di�
ult to model in standard numeri
al te
hniques. However this

theory presented limitations with respe
t to the material properties. Silling has stated that the so


alled bond-based PD limits the Poisson's ratio of the material (1/3 for 2D plane stress and 1/4 for

2D plane strain and 3D) [45, 47℄. A more generalised framework 
alled state-based PD has been

developed so any material properties 
an be assumed without restri
tions [47℄.55

The state-based PD is divided into two main approa
hes: the ordinary state-based PD, whi
h

represents a generalisation of the bond-based theory, and the non-ordinary state-based PD. Some of

the main di�eren
es lie in the orientation of tra
tions between parti
les and how material properties

are obtained. The tra
tions in ordinary state-based PD are still in the same dire
tion of the bond,
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but they are not 
onstrained to have the same magnitude. A relation more similar to 
ontinuum60

me
hani
s is present due to the use of state ve
tors. The balan
e of linear and angular momentum

is automati
ally satis�ed in bond-based and ordinary state-based theories, but the same is not valid

for non-ordinary framework [47℄.

The non-ordinary theory uses non-lo
al approximations of some of the 
ontinuum me
hani
s

variables. This permits a more general representation of the 
ontinuum me
hani
s using stress-strain65

relations, so that the material 
onstitutive matrix 
an be used, instead of 
al
ulating equivalent

properties for the sti�ness in the bonds as in bond-based and ordinary state-based PD. Addition-

ally, the tra
tions a
ting on the parti
les are no longer 
onstrained to the dire
tion of the bonds

nor have the same magnitude. A drawba
k of these properties is that the balan
e of linear and

angular momentum are not impli
itly satis�ed and have to be proved. Silling et al. [47, 49℄ have70

demonstrated how these 
riteria 
an be satis�ed for a spe
i�
 non-ordinary state-based formulation.

Maden
i and Oterkus [29℄ detail extensively the use of ordinary state-based PD. Warren et al.

[53℄ and Breitenfeld et al. [5℄ have performed some of the �rst works in non-ordinary state-based PD

for expli
it and impli
it implementations, respe
tively. Yaghoobi and Chorzepa [57℄ have modelled

�bre reinfor
ed 
on
rete problems for non-ordinary state-based PD. Wu et al. [54℄ have implemented75

a non-ordinary state-based for the metal ma
hining pro
ess in du
tile materials, where the loss of

material usually leads to instabilities due to the strain lo
alisation problem. A simple stabilisation

te
hnique was implemented to eliminate these instabilities. Wang et al. [52℄ have studied 
ra
k

propagation problems in ro
k type materials.

Some authors have investigated di�erent anisotropi
 materials using PD. Hu et al. [22℄ and80

Oterkus et al. [36, 37℄ have implemented bond-based models for 
omposite materials, where the

�bre and the matrix have di�erent material properties, and are de�ned by the orientation of the

bond. However, these PD models assume only two material 
onstants (sti�ness at the bonds and

in the matrix). Hu et al. [23℄ have also analysed delamination as well as damage in the �bre and

the bonds.85

Ghajari et al. [14℄ have implemented a bond-based model for orthotropi
 materials. The

anisotropy is generated by 
hanging the sti�ness of the bonds with their orientation. A limita-

tion of this model is to use only two 
onstants to de�ne the material properties, instead of the four

used in the 
ontinuum me
hani
s model. Another limitation imposed by the bond-based formula-

tion is that mode II behaviour is dependent on mode I, whi
h is not desirable. To the best of the90

authors' knowledge, a general formulation for anisotropi
 materials in the non-ordinary state-based

PD has not been found in the literature. In the 
urrent work, the material anisotropy is de�ned for

ea
h parti
le rather than being de�ned at the bond level. A general des
ription of the material is

possible using the proposed approa
h.

In this paper we propose a non-ordinary 
orresponden
e model for generally anisotropi
 materi-95

als for dynami
 
ra
k problems. We implement an anisotropi
 damage 
riterion in order to 
apture

the appropriate 
ra
k propagation path. We validate our model using ben
hmark problems and


omparison against other numeri
al methods or experimental results. The remainder of the paper

is organised as follows: the 
ontinuum me
hani
s theory is brie�y introdu
ed in Se
tion 2. We

des
ribe the state-based PD formulation in Se
tion 3, with emphasis on the non-ordinary formu-100

lation. In Se
tion 4, the anisotropi
 damage 
riterion is explained, while the expli
it integration

s
heme is brie�y explained in Se
tion 5. The numeri
al results are presented in Se
tion 6. The

main 
on
lusions are summarised in Se
tion 7.
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2. Classi
al 
ontinuum me
hani
s

In this se
tion we introdu
e some of the parameters of 
ontinuum me
hani
s employed in PD.

The deformation gradient 
hara
terises the behaviour of motion in the neighbourhood of a point,

and it is de�ned as [21℄

F(x) =
∂y

∂x
(1)

where x denotes an arbitrary point in the referen
e 
on�guration, and

y = x+ u (2)

denotes a point in the deformed 
on�guration, while u 
orrespond to the displa
ements. The105

deformation gradient is in prin
iple not symmetri
. If the displa
ements u are zero, then the

deformation gradient is the identity matrix.

The determinant of the deformation gradient is de�ned as J = det(F(x)), and this gives the ratio
of the volumes between the referen
e and deformed 
on�gurations. Sin
e J > 0, the volume of the

material in the deformed 
on�guration will never be zero. Moreover, the inverse of the deformation110

gradient 
an always be 
al
ulated.

The �rst Piola-Kir
hho� stress is given by [21℄

P(x) = JσF(x)T (3)

where σ stands for the Cau
hy stress and the supers
ript T denotes the transpose of a matrix.

In the small strain assumption, the �rst Piola-Kir
hho� stress 
an be approximated by the

Cau
hy stress, i.e.,

σ ≈ P(x) (4)

and the in�nitesimal strain 
an be de�ned in terms of the deformation gradient su
h as

ε ≈
1

2

(

F(x)T + F(x)
)

− I (5)

where I is the identity matrix.

In the 
lassi
al 
ontinuum me
hani
s, the equation of motion is de�ned as

σij,j + bi(xi, t) = ρüi (6)

where b(x, t) denotes the body for
es per unit volume, ρ is the density and ü is the a

eleration.

The generalised Hooke's law is the relation between stresses and strains for an elasti
 material

and is expressed as

σij = Cijklεkl (7)

where εkl are the strains, and Cijkl denotes the material 4th order 
onstitutive tensor. The most

general form of anisotropy 
onsists of 81 independent 
omponents in the 
onstitutive tensor. Never-

theless, most anisotropi
 materials present symmetry properties that admit the following relations

Cijkl = Cjikl = Cijlk = Cklij (8)

leading to a tensor with only 21 independent 
omponents for the 3D 
ase, and 6 
omponents in the115

2D 
ase.

Classi
al linear strain-displa
ement relations are assumed as

εij =
1

2
(ui,j + uj,i) (9)
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3. State-based peridynami
s

The equation of motion in state-based peridynami
s (PD) is de�ned as [47℄

∫

H

{T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉}dVx
′ + b(x, t) = ρü(x, t) (10)

where H is the family of the parti
le x, while the horizon δ delimits the neighbourhood of the

family of the parti
le of interest x, x′
represents the parti
les inside the neighbourhood of x, T is

the for
e ve
tor state �eld, and square bra
kets denote that the variables are taken in the state120

ve
tor framework. In order for Eq. (10) to be valid, it must satisfy both balan
e of linear and

angular momentum. The proofs 
an be found in [47, 49℄.

Silling et al. [47℄ have proposed a generalised peridynami
s (PD) formulation, where the PD

variables are expressed in terms of ve
tor states. For instan
e, the referen
e state ve
tor X〈ξ〉 is
de�ned as

X〈ξ〉 = ξ, ∀ξ ∈ H (11)

and

ξ = x′ − x (12)

Eq. (11) represents the mapping between all parti
les x′
with respe
t to the parti
le x. The

state ve
tor nomen
lature in
ludes an underline to make a 
lear distin
tion from matri
es, while

the angle bra
kets relate to other variables the state ve
tor relies upon.125

Another way to visualise the ve
tor state 
on
ept is to assume a matrix form as stated in [29℄.

The deformation state ve
tor Y〈x′ − x〉 is then de�ned as

Y〈x− x′〉 =











y1 − y

y2 − y
.

.

.

yN − y











(13)

where y = y(x, t) represents the deformed position of parti
le x at time t, and yi = y(x′, t),
i = 1, · · ·N denotes all the parti
les x′


ontained within the horizon of x.

Figure 1 illustrates the referen
e (or undeformed) 
on�guration, and the deformed 
on�guration

after a displa
ement u and u′
has been imposed on parti
les x and x′

, respe
tively. Similarly, δ
and δ′ 
orrespond to the horizon of parti
les x and x′

, respe
tively.130

In the original bond-based formulation [45℄, the parti
les within the distan
e δ of x are said

to be inside the horizon of that parti
le, thus making a 
ontribution to the displa
ement solution.

The bonds possess sti�ness, and 
an be 
onsidered as springs or trusses sin
e the bonds only have

tra
tions in the dire
tion of the bond. Ma
ek and Silling [28℄ have used this idea to implement a

bond-based formulation where the bonds were modelled by truss elements. They 
on
luded that this135

formulation provided similar results to the ones found with a 
ommer
ial �nite element software.

However, the bond-based PD formulation presents limitations with respe
t to the material

properties. The Poisson's ratio is restri
ted to 1/3 for 2D plane stress problems and to 1/4 for 2D

plane strain and 3D problems [45℄, sin
e the parti
les within the horizon δ′ of parti
le x′
are not all

in
luded during the analysis of x. The reasons for the limitation of the Poisson's ratio are related140

to the fa
t that the equilibrium needs to be satis�ed for every bond. This enfor
es that the for
es

in the bonds must be in the dire
tion of the bond, of equal magnitude and opposite dire
tions.
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y′

y
T

T′

x

x′

δ′

δ

z x

y

referen
e state

deformed state

u

u′

Figure 1: Referen
e and deformed 
on�guration in state-based PD.

The bond-based theory assumes that the intera
tion between two parti
les is governed by a 
entral

potential that does not depend on other lo
al 
onditions [47℄. To over
ome this limitation, Silling

et al. [47℄ have proposed the state-based theory, whi
h removes limitations with respe
t to the145

material properties. Other authors have developed di�erent approa
hes to over
ome this limitation

in bond-based models (see [13℄ for instan
e). In this work, we fo
us on the state-based PD theory.

There are two types of state-based formulation: ordinary and non-ordinary. In the ordinary

theory, the for
es in the bonds are de�ned in the dire
tion of the bonds, in the same way as in

the bond-based formulation. However, the for
es do not need to have the same magnitude, as in150

the bond-based approa
h. On the other hand, the non-ordinary formulation presents no restri
tion

with respe
t to the dire
tion of the bond and the magnitude of the tra
tions. These di�eren
es are

illustrated in Figure 2.

ordinary non-ordinary

x x′ x x′

T[x] T[x′] T[x] T[x′]

Figure 2: Di�eren
es between tra
tion in the bonds in ordinary and non-ordinary state-based PD.

The pro
ess of obtaining the equivalent material properties in the ordinary state-based formula-

tion is not straightforward. There are no dire
t equivalen
es of stresses and strains in the ordinary155

framework. In this sense, a typi
al approa
h is to draw an equivalen
e between the strain energy for

the 
ontinuum me
hani
s theory and the strain energy density in the PD framework. Then the ma-

terial properties are obtained by solving a series of simple problems with known deformation, su
h

as pure shear, uni-axial deformation, bi-axial deformation [29℄. For isotropi
 materials or some

spe
i�
 anisotropi
 (e.g. orthotropi
) materials, analyti
al solutions 
an be obtained. However,160

analyti
al solutions are not possible for generally anisotropi
 materials.

The equivalen
e between strain energy densities from 
ontinuum me
hani
s and PD framework

also poses another in
onvenien
e. Parti
les 
loser to the boundaries of the analysed domain will

share bonds with fewer parti
les than those in the middle of the domain, for example. However,

6



it is assumed that the strain energy density for the parti
les, regardless of the number of parti
les165

in the horizon, leading to an overestimation of the material properties at the boundaries [29, 50℄.

Corre
tion fa
tors have been proposed to modify the strain energy for a parti
le whose horizon


ontains a redu
ed number of parti
les (see [24℄ for a detailed explanation on di�erent te
hniques).

3.1. Non-ordinary state-based PD

The non-ordinary PD framework is a more generalised approa
h, where some of the main pa-170

rameters in 
ontinuum me
hani
s, su
h as the deformation gradient, are expressed in terms of the

PD formulation. Sin
e these parameters are not 
onstrained by the physi
al bonds 
onne
ting the

parti
les, the tra
tions in the bonds are not enfor
ed to be in the same dire
tion as the bonds them-

selves, as is the 
ase in ordinary PD models. Another advantage is that the material properties in

the non-ordinary state-based formulation 
ome from the material 
onstitutive matrix, whi
h is not175

the 
ase for the ordinary state-based PD.

The deformation gradient F(x) in the 
lassi
al 
ontinuum me
hani
s is given by Eq. (1). The

non-lo
al deformation gradient F(x) for ea
h parti
le is given by [47℄

F(x) =

[∫

H

ω(|ξ|)(Y(ξ)⊗ ξ)dVx

]

.B(x) (14)

B(x) =

[
∫

H

ω(|ξ|)(ξ ⊗ ξ)dVx

]

−1

(15)

where B(x) is the shape tensor, ⊗ denotes the dyadi
 produ
t of two ve
tors, and ω(|ξ|) is a

dimensionless weight fun
tion, used to in
rease the in�uen
e of the nodes 
loses to x. In this work,

we assumed that the in�uen
e fun
tion has a triangular shape, and is given by

ω(|ξ|) = 1−
ξ

δ
(16)

where ξ = |ξ|. The reason for using this in�uen
e fun
tion is to make the behaviour of parti
les


loser to x more dominant than the ones more distant. Warren et al. [53℄ have used a unitary

in�uen
e fun
tion, while Queiruga and Moridis [39℄ have investigated several in�uen
e fun
tions for

simple problems in 2D and 
on
luded that the triangular fun
tion given by Eq. (16) leads to lower180

errors for the non-ordinary state-based PD.

The dis
retisation of Eqs. (14) and (15) 
an be expressed as a Riemann sum as [53℄

F(xj) =

[

m
∑

n=1

ω(|xn − xj |)(Y〈xn − xj〉 ⊗ (xn − xj))Vn

]

.B(xj) (17)

B(xj) =

[

m
∑

n=1

ω(|xn − xj |)((xn − xj)⊗ (xn − xj))Vn

]

−1

(18)

where m is the number of parti
les with the horizon of node j and Vn is the volume of parti
le n.
Let us remark that ea
h parti
le xj must be 
onne
ted to at least two other parti
les in di�erent

orientations to ensure that B(xj) will not be singular for 2D problems. To illustrate this behaviour,

let us 
onsider a parti
le xj = (a, c) and its intera
tion with xn = (bn, c), n = 1 · · ·M whi
h

7



represent the other parti
les in this family, with a, bn, c 6= 0. All parti
les are in the same line. For

a 2D problem, the shape tensor is given by

B(xj) =

[

M
∑

n=1

ω(|xn − xj |)

[

bn − a 0
0 0

]

]−1

(19)

It is 
lear that the inverse of this matrix does not exist, leading to the aforementioned singular

behaviour of the shape tensor. This analysis is valid for any family where the parti
les share the

same 
oordinate in either x or y-dire
tion. The same analogy is valid for 3D problems, where at

least three parti
les in di�erent planes must be 
onne
ted to avoid singularity of B(xj). This issue185

was �rst reported by Warren et al. [53℄ for 3D problems.

A

ording to [47℄, a material is denominated simple if the tra
tion state depends only on the

deformation state, i.e., T = T(Y). A material is simple and elasti
 if the tra
tion state 
an be

expressed as

T = ∇W (Y) (20)

where W is the strain energy density and ∇ represents the Fré
het derivative.

The for
e and deformation 
an be related in a state ve
tor framework by using a stress-strain

model as an intermediate step [48℄. For a strain energy density W (F), the stress tensor 
an be

expressed as [53℄

T = ∇W =
∂W

∂F
∇F (21)

The transpose of the �rst Piola-Kir
hho� stress is a measure of the derivative of the strain

energy density W with respe
t to the deformation gradient, i.e.

P(x)T =
∂W

∂F
(22)

Substituting Eq. (22) into Eq. (20) and evaluating the Fré
het derivative, the tra
tion state is

de�ned expli
itly as

T[x, t]〈x′ − x〉 = ω(|x′ − x|)P(x)T .B(x).(x′ − x) (23)

Let us remark that there is no dependen
e on time for P(x) and B(x), however these parameters

are modi�ed when bonds are broken.

The pro
essing of mapping a stress tensor as a peridynami
 for
e state is the inverse of the190

pro
ess of approximating the deformation state by a deformation gradient tensor. A peridynami



onstitutive model that uses stress as an intermediate quantity results in general in bond for
es

whi
h are not parallel to the deformed bonds [47℄.

In this work the material anisotropy is 
onsidered through Eq. (7), where the anisotropi


material 
onstitutive matrix 
an be employed in the non-ordinary state-based framework. The195

material properties are thus de�ned for ea
h parti
le, rather than being de�ned through the sti�ness

of the bond 
onne
ting two parti
les. This enables the use of general material models in non-

ordinary state-based PD. An issue of the bond-based and ordinary state-based theories is that

modelling anisotropi
 materials 
an be 
ompli
ated be
ause the bonds dire
tion may not be aligned

with the material orientation. This restri
ts the 
lass of anisotropi
 materials that 
an be modelled200

within these frameworks, for example, materials that present some symmetries su
h as orthotropi


materials. It is 
umbersome to de�ne the sti�ness of ea
h bond for a general anisotropi
 material

model within the bond-based framework.
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4. Damage 
riterion for anisotropi
 materials

In PD, damage is modelled through the bond breakage between pairs of parti
les. On
e a bond

is broken, the intera
tion between parti
les provided by that bond will not be used during the rest

of the analysis. A damage index ϕ(x, t) is used to measure the relation of damaged bonds and

a
tive bonds for any given parti
les and is given by

ϕ(x, t) = 1−

∫

H
µ(ξ, t)dVξ
∫

H
dVξ

(24)

and

µ(ξ, t) =

{

1 if the bond is a
tive

0 if the bond is broken

(25)

From Eq. (24), 0 ≤ ϕ(x, t) ≤ 1, where 0 represents the undamaged state and 1 represents the205

breakage of all the bonds of a given parti
le. The parameter µ(ξ, t) is used only to spe
ify if a

parti
ular bond is a
tive or broken. The broken bonds will eventually lead to a softening material

response, sin
e failed bonds 
annot sustain any load.

There are di�erent damage 
riteria for anisotropi
 materials. For instan
e, Pensée et al. [38℄

have 
onsidered a mi
rome
hani
al approa
h for modelling damage in anisotropi
 brittle materials

su
h as ro
ks and 
on
rete, based on energy and a multis
ale approa
h. The damage 
riterion is

related to the type of anisotropi
 material analysed. In this work, we have employed the Tsai-Hill


riterion to de�ne damage in the bonds. This 
riterion is used for 
omposite laminates and 
an

take into a

ount failure between di�erent modes and is given by the following expression

(

σL

σLu

)2

+

(

σT

σTu

)2

−
σL

σLu

σT

σLu

+

(

τLT

τLTu

)2

= 1 (26)

where σL, σT and τLT stand for the longitudinal stress (in the dire
tion of the �bre), transver-

sal stress (perpendi
ular to the �bre) and shear stress, respe
tively. σLu, σTu and τLTu are the210

respe
tive tensile strength of the 
omposite material for di�erent loading.

In order to use this 
riterion in PD, the stress in a bond is de�ned as the average stress between

the intera
ting parti
les, su
h as

σ(x,x′) =
1

2
(σ(x) + σ(x′)) (27)

In this 
ase, we 
an employ the Cau
hy stresses instead of the �rst Piola-Kir
hho� stress sin
e

we are using the small strain assumption.

Next, the stress at the bond is expressed in terms of a lo
al 
oordinate system using the rotation

matrix R(θ), whi
h depends on the �bre orientation θ and is de�ned as

R(θ) =





cos2 θ sin2 θ 2 cos θ sin θ
sin2 θ cos2 θ −2 cos θ sin θ

− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ





(28)

Figure 3 illustrates the rotation with the global and lo
al stresses, with respe
t to the �bre

orientation.215
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Figure 3: Rotation of the stresses from global (x,y) to lo
al (1,2) 
oordinates.

Finally, the lo
al stresses are given by





σL

σT

τLT



 = R(θ)





σxx

σyy

τxy





(29)

where σxx, σyy and τxy are the stresses in the global 
oordinate system. The lo
al stresses of Eq.

(29) are 
ombined into Eq. (26), and if the result is higher than 1, then the 
urrent bond breaks.

Let us remark that di�erent 
riteria have been used for non-ordinary state-based PD. For in-

stan
e, Wang et al. [52℄ and Zhou et al. [59℄ have used a stress 
riterion to model damage in

ro
ks using a linear Mohr-Coulomb failure 
riterion, but they 
onsider the ro
k to be an isotropi
220

material. To the authors' knowledge, this is the �rst time that a damage 
riterion for 
omposite

materials is employed within a non-ordinary state-based PD framework. It shows that di�erent

damage 
riteria for anisotropi
 materials 
an be employed in the future.

5. Numeri
al dis
retisation

In this work, an expli
it integration s
heme was employed to 
al
ulate the displa
ements, velo
-225

ities and a

elerations in the PD framework, in a similar way as in the work of [53℄. A drawba
k

of the PD formulation is the requirement for a large 
omputational power, sin
e a large number

of parti
les are typi
ally used. In order to redu
e the extensive 
omputational 
al
ulations, some

authors have tried to ta
kle this issue by 
oupling PD with standard numeri
al methods, su
h as

the FEM [25, 58℄. Moreover, ea
h parti
le intera
ts with a number of other parti
les, whi
h 
on-230

tributes for the method to be 
omputationally expensive. However, a parallel implementation of a

PD expli
it formulation is straightforward with OpenMP or MPI for instan
e. In this work we have

implemented the non-ordinary state-based formulation in a Fortran 90 
ode, then used OpenMP

to improve 
omputational performan
e. Although not done in the 
urrent work, numeri
al 
al
ula-

tions in PD are also suitable to be implemented using GPUs, as have been performed by [31℄ with235

OpenCL and OpenMP and [26℄ using OpenACC.

For the small strain assumption, the in�nitesimal strain state 
an be approximated by Eq. (5)

and the Cau
hy stresses σ are evaluated using Eq. (7).

The values of a

eleration are 
al
ulated dire
tly from Eq. (10). The velo
ities are integrated

using a forward di�eren
e approa
h, while the displa
ements are obtained through a ba
kward

10



s
heme. The numeri
al integration is summarised by

ü(x, t) =
1

ρ

(∫

H

{T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉}dVx
′ + b(x, t)

)

(30)

u̇(x,∆t+ t) = u̇(x, t) + ü(x, t)∆t (31)

u(x,∆t+ t) = u(x, t) + u̇(x, t)∆t (32)

where u̇(x, t) are the velo
ities and u(x, t) are the displa
ements.

Due to the use of an expli
it approa
h, the time step must be smaller than a 
ertain 
riti
al240

value in order for the analysis to be valid. Silling and Askari [46℄ and Maden
i and Oterkus [29℄

have obtained the 
riti
al time step for bond-based and ordinary state-based theories, respe
tively.

Warren et al. [53℄ have used the Courant-Friedri
hs-Lewy 
ondition [7℄ to estimate the 
riti
al

time step for a non-ordinary state-based PD. In this 
ase, the 
riti
al time step is proportional

δ/cp, where cp =
√

C22/ρ is the dilatational wave speed and C22 = C2222. We used a 
onservative245

approa
h to guarantee a time step size smaller than the 
riti
al value. In this work we assumed

∆t = 0.01 δ
cp
.

Let us remark that some authors have proposed modi�
ations to improve the numeri
al 
al
u-

lation in PD. For instan
e, Seleson [42℄ has provided a detailed study on di�erent te
hniques to

evaluate the area of the neighbourhood of a parti
le. In this work we found that the error due to250

the approximation of the area of in�uen
e of a single parti
le is negligible, and therefore we do not

impose a volume 
orre
tion.

6. Numeri
al simulations

In this se
tion we investigate several appli
ations for the PD formulation in anisotropi
 materials

for 2D problems. The dynami
 stress intensity fa
tors (DSIF) are 
al
ulated and 
ompared with


onverged FEM solutions. We have employed the extrapolation method in order to 
al
ulate the

DSIF as follows [18, 56℄

(

KII(t)
KI(t)

)

=

√

π

8r
(ℜ(iAB−1))−1

(

∆u1(t)
∆u2(t)

)

(33)

where KI(t) and KII(t) are the dynami
 mode I and mode II at time t, respe
tively; ∆u1(t) and
∆u2(t) are the 
ra
k opening displa
ement at time t in the x and y-dire
tion, respe
tively; A,255

B 
ome from the material properties and are obtained from the Stroh formalism [18, 51℄; ℜ(·)
represents the real part of (·) while i is the imaginary 
omponent; and r is the distan
e where the


ra
k opening displa
ements are measured to the 
ra
k tip.

Note that in the present work DSIF 
al
ulations are performed only for analyses that do not


onsider 
ra
k propagation. We perform this 
omputation in order to assess the dynami
 behaviour260

of the anisotropi
 materials.

6.1. Edge 
ra
k in an anisotropi
 2D plate

A square plate 
ontaining an edge 
ra
k is analysed in this se
tion. The plate has dimensions

h = w = 0.1 m, and the length of the 
ra
k is a = 0.05 m. Figure 4 illustrates this example.

The plate is a symmetri
 angle ply 
omposite laminate of four graphite-epoxy laminae, with the

following material properties: E1 = 144.8 GPa, E2 = 11.7 GPa, G12 = 9.66 GPa and ν12 = 0.21.
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The density was assumed to be ρ = 2710 kg/m

3
. The material 
onstitutive matrix CIJ in Voigt

notation is 
al
ulated as

CIJ =





1/E1 −ν12/E1 0
−ν12/E1 1/E2 0

0 0 1/G12





−1

(34)

The material properties have been rotated by an angle θ ranging from 0◦ to 90◦ in order to

evaluate the e�e
t in the 
orresponding SIFs. The rotation of the 
onstitutive matrix is given by

Cijkl = rim(θ)rjn(θ)rko(θ)rlm(θ)Cmnop (35)

where Cmnop is the unrotated material properties, Cijkl is the rotated one and

rij(θ) =

(

cos θ sin θ
− sin θ cos θ

)

(36)

is the rotation matrix.

The plate is subje
ted to an initial velo
ity �eld in the y-dire
tion and it is de�ned as

u̇(x, t) =
∂u(x, 0)

∂t
= 50

y

2h
m/s (37)

w

2h

a

u̇(x)

u̇(x)

E2

E1

θ

x

y

Figure 4: Anisotropi
 edge 
ra
k.

Some authors have investigated how the non-lo
al PD theory 
onverges to other non-lo
al for-

mulations, or even lo
al ones. A detailed explanation of the main bran
hes of this resear
h �eld are265

given in [9℄. Bobaru et al. [3℄ studied the 
onvergen
e in PD for 1D problems, and 
on
luded that

there are three main di�erent approa
hes:

1. m−
onvergen
e: the number of parti
les m in
reases as the horizon remains �xed. The PD


onverges to the non-lo
al solution for that parti
ular horizon;
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2. δ−
onvergen
e: δ → 0 while m is �xed. In this 
ase the PD formulation 
onverges to the270

lo
al solution, i.e., the solution obtained with FEM for instan
e;

3. δm−
onvergen
e: the number of parti
les m in
reases as δ → 0, with m in
reasing faster than

δ de
reases. The solution 
onverges uniformly to the lo
al solution and faster than using the

m− 
onvergen
e alone.

Initially we investigate how the horizon size in�uen
es the DSIF for an anisotropi
 material.275

The material orientation is �xed at θ = 30◦ and we 
al
ulate the DSIF for di�erent horizon sizes.

The dynami
 mode I and mode II stress intensity fa
tors are given in Figures 5 and 6 for four

di�erent parti
le dis
retisations. In all 
ases the DSIFs obtained with PD are 
ompared with those

obtained using a 500× 500 4-node fully integrated quadrilateral �nite element mesh. The horizon

is de�ned as δ = m∆x, where m is a 
onstant and ∆x is the grid spa
ing.
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Figure 5: Edge 
ra
k: 
omparison di�erent grid spa
ing and horizon size - mode I.
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Figure 6: Edge 
ra
k: 
omparison di�erent grid spa
ing and horizon size - mode II.

Table 1 shows the 
omparison between the PD and FEM solutions. The error in the L2 norm

is 
al
ulated as

Error =

√

∑N
i=1

(KPD
αi

−KFEM
αi

)2
√

∑N
i=1

(KFEM
αi

)2
(38)

where N is the total number of time steps, KPD
α and KFEM

α are the DSIFs for the PD and FEM

formulations, respe
tively, and α = I, II.
In Figure 5(a), the DSIFs 
al
ulated for m = 1 and m = 2 are in total disagreement with

the referen
e FEM solution and the other PD solutions as well. This is due to the fa
t that the

dynami
s are not modelled properly in this 
ase; the horizon size is not adequate for this parti
ular285

grid spa
ing. When the grid spa
ing de
reases, the quality of the solution 
al
ulated with smaller

horizon sizes also in
reases, agreeing with the referen
e solution, as 
an be seen in Figure 5(b), where
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Table 1: Relative error between PD and FEM for the dynami
 mode I.

Horizon δ = m∆x
Parti
les ∆x (m) m = 1 m = 2 m = 3 m = 4 m = 5
200× 200 5.0× 10−4 0.9898 0.7387 0.1137 0.1643 0.1374
300× 300 3.3× 10−4 0.9317 0.0520 0.0861 0.1122 0.1130
400× 400 2.5× 10−4 0.8990 0.0273 0.0751 0.0844 0.0847
500× 500 2.0× 10−4 0.8808 0.0306 0.0580 0.0654 0.0719

the error solution for m = 2 de
reases from 0.7387 to 0.0520, representing a better 
orrelation to

the referen
e solution, while m = 1 shows a small redu
tion in the error but still provides a poor

approximation. In Figures 5(
) and 5(d), there are negligible di�eren
es between the DSIFs obtained290

with PD for any horizon size. The same analysis is valid for the dynami
 mode II results depi
ted

in Figure 6.

From the previous analysis and the results from Table 1, we adopt the following parameters:

400 × 400 parti
le dis
retisation and m = 2, as this has the lowest error between the FEM and

PD solutions. Next we evaluate the DSIF for these parameters and varying the anisotropy angle θ.295

The dynami
 mode I and II stress intensity fa
tors are shown in Figures 7 and 8, respe
tively. An

ex
ellent agreement is obtained for the PD solution 
ompared to a FEM approa
h.
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Figure 7: Edge 
ra
k: DSIF for di�erent values of θ - mode I.

6.2. Cra
k propagation of 
entred 
ra
k in anisotropi
 2D plate

In this se
tion we analyse the 
ra
k propagation in an anisotropi
 re
tangular plate as depi
ted

in Figure 9. The plate has aspe
t ratio h/w = 2 and 
ontains a 
entred 
ra
k su
h that a/w = 0.2.300

The plate has dimensions w = h = 125 mm. The plate is made from a unidire
tional HTA/6376


omposite laminate and the material properties are given in Table 2, withG12 = 5.5GPa, σLTu = 70
MPa and ν12 = 0.3. The plate is subje
ted to an initial velo
ity gradient u̇(x, 0) = 50 y

2h
m/s.
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Table 2: Material properties of HTA/6376 
omposite

HTA �bre 6376 epoxy laminate (θ = 0◦) laminate (θ = 90◦)
Young's modulus [GPa℄ 235 3.6 136 8.75
Tensile strength [MPa℄ 3920 105 1670 60
Maximum elongation 1.7% 3.1% - -

Density [kg/m

3
℄ 1770 1310 1586 1586

We study the e�e
t of the parti
le dis
retisation and the horizon size for θ = 45◦. Cahill et

al. [6℄ give experimentally found paths of 
ra
k propagation in unidire
tional 
omposite materials.305

They have shown that the 
ra
k propagation path grows parallel to the �bre dire
tion, indi
ating

that the damage originates only through matrix failure. Figures 10, 11 and 12 illustrate the 
ra
k

propagation for di�erent grid spa
ing and horizon sizes. Only the region around the 
ra
k is

represented. The Figures represent the damage index ϕ for the deformed 
on�guration, where blue

stands for ϕ = 0 while the red 
olour stands for ϕ = 1. The displa
ements are s
aled by a fa
tor of310

20.

It is 
lear that for m = 2, the 
ra
k path is irregular and some bran
hing 
an o

ur at the


ra
k tips. One reason for this behaviour is that the energy of a broken bond is redistributed to

the remaining a
tive bonds in that parti
le, whi
h also lead these bonds to break. Hen
e, a larger

horizon will stabilise the 
ra
k propagation, sin
e there are more parti
les to re-balan
e the energy315

from broken bonds. Similar 
on
lusions were rea
hed by [8℄ for simpler, bond-based PD models of

isotropi
 media. However, larger horizon in 
oarse parti
le dis
retisation 
an lead to problemati


results. Some os
illations and 
ra
k nu
leation sites are visible at the edges of the plate, and

these are attributed to the dynami
s of the problem as the 
ra
k approa
hes the edge of the plate.

However, as illustrated in Figures 10(
), 10(d) and 11(d), this e�e
t takes pla
e too early for the320


oarse dis
retisations and is presenting an unrealisti
 result. Moreover, m = 3 and m = 4 seem

to provide stable results for the 300 × 600 dis
retisation, shown in Figures 11(b) and 11(
), and

400 × 800 dis
retisation illustrated in Figures 12(b) and 12(
). The suggested remedy proposed

by [8℄ of in
reasing m to 6-7 to stabilise the 
ra
k propagation path may give rise to ina

ura
ies

in representing the elasti
 wave propagation, sin
e the wave speed will spuriously in
rease with325

in
reasing horizon.
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Figure 10: Cra
k propagation of 
entred 
ra
k for di�erent horizon - θ = 45
◦
- 200× 400 parti
les.

Figures 13, 14, 15 and 16 illustrate di�erent �bre orientations for m = 3 and 300× 600 parti
le

dis
retisation. The 
ra
k propagation paths are 
ompared with experimental ones from [6℄ for

uni-dire
tional HTA/ 6376 
omposite.
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Figure 11: Cra
k propagation of 
entred 
ra
k for di�erent horizon - θ = 45◦ - 300× 600 parti
les.
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Figure 12: Cra
k propagation of 
entred 
ra
k for di�erent horizon - θ = 45◦ - 400× 800 parti
les.
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(d) Experiment from [6℄

Figure 13: Cra
k propagation of 
entred 
ra
k for θ = 0
◦
- m = 3 - 300 × 600 parti
les.

From Figures 13 to 16, the 
ra
k propagation paths in PD mat
h those obtained experimentally.330
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Figure 14: Cra
k propagation of 
entred 
ra
k for θ = 45
◦
- m = 3 - 300× 600 parti
les.
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Figure 15: Cra
k propagation of 
entred 
ra
k for θ = 60
◦
- m = 3 - 300× 600 parti
les.

However, sin
e the plates are subje
ted to a dynami
 load, some di�eren
es arise during the analysis.

For instan
e, in Figure 13(
), some parallel 
ra
ks appear as the 
entred 
ra
k propagates towards
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Figure 16: Cra
k propagation of 
entred 
ra
k for θ = 90
◦
- m = 3 - 300× 600 parti
les.

the edges of the plate. As the 
ra
k propagates, the newly formed 
ra
k surfa
es in
rease the wave

re�e
tion inside the plate, whi
h 
an lead to the formation of new 
ra
ks at the edge of the plate.

Similar e�e
ts 
an also be seen in Figures 14(
) and 15(
), where a small level of bran
hing appears335

at the 
ra
k tip as it nears the edge of the plate.

Cahill et al. [6℄ have mentioned that for the θ = 90◦ 
ase, the 
ra
k would propagate either

up or down, and o

asionally it would bran
h. In the PD framework, we have seen that the 
ra
k

always bran
hes, propagating in both dire
tions.

The evolution of the 
ra
k propagation for the θ = 60◦ �bre orientation 
an be visualised in the340

Supplemental Data available online.

6.3. Edge 
ra
k in an anisotropi
 plate with in
lusion and hole

In this example we study a re
tangular (w = h = 20 mm) anisotropi
 plate with an edge 
ra
k

of length a = 4 mm. The plate has an in
lusion of radius r = 4.5 mm, shifted b = 8 mm from the


entre of the plate, and a hole of same radius shifted downwards from the 
entre of the plate, as345

illustrated in Figure 17. The plate is subje
ted to an initial velo
ity de�ned a
ross the plate, and

given by v = 50 y
2h

m/s.

The material properties of the plate and the in
lusion are given in Voigt notation by

C
plate
IJ =





155.43 3.72 0
3.72 16.34 0
0 0 7.48





GPa (39)

Cinc
IJ =





235 3.69 0
3.69 2 0
0 0 28.2





GPa (40)
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Figure 17: Anisotropi
 plate with in
lusion and void.

The density of the plate is ρplate = 1600 kg/m

3
and the density of the in
lusion is ρinc = 5670

kg/m

3
. The material properties of the plate are rotated by an angle θ1 with respe
t to the horizontal

axis, while the in
lusion represents an orthotropi
 material (θ2 = 0◦).350

Initially we study the behaviour of the problem with no 
ra
k propagation. Table 3 shows the

relative error of the DSIF obtained with a �nite element mesh and the PD formulation for θ1 = 45◦.
The �nite element mesh has 165728 3-node triangular elements, and has been de�ned using the

MESH2D algorithm (for details see referen
e [10℄). For this 
on�guration, the dis
retisation with

400 × 800 parti
les and m = 2 presents the lowest relative error. A possible explanation for this355

fa
t is that the horizon size is also dependent on the material properties.

In most works, it has been shown that the horizon size is 
hosen a

ording to the analysed

problem, however Bobaru et al. [2℄ have shown that the horizon size a�e
ts the dynami
s of 
ra
k

bran
hing, where a horizon too large 
auses the elasti
 wave to propagate too fast, leading to

di�eren
es with respe
t to experimental results. The in�uen
e of the horizon size in the analysis360

would lead to larger errors in anisotropi
 materials, implying that there is an optimum horizon size

for a given material. For the material in the present study, Table 3 suggests that the optimum

horizon size lies between ∆x and 2∆x.
Figures 18(a) and 18(b) depi
t the mode I and mode II DSIFs for this parti
ular PD 
on�gu-

ration, respe
tively. One 
an observe that the DSIFs 
al
ulated for di�erent horizon sizes provide365

similar values of the DSIF for n ≥ 2.
Figures 19 and 20 depi
t the DSIF for di�erent values of θ. Very good agreement between the
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Table 3: Relative error between PD and FEM for DSIF I.

Horizon δ = m∆x
Parti
les ∆x (mm) m = 1 m = 2 m = 3 m = 4 m = 5
200× 400 0.10 0.8124 0.0937 0.1168 0.1227 0.1391
300× 600 0.07 0.8115 0.0574 0.0751 0.0789 0.0913
400× 800 0.05 0.8087 0.0487 0.0580 0.0634 0.0706
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Figure 18: Edge 
ra
k with in
lusion and void: 
omparison between di�erent horizon size - 400 × 800 parti
le

dis
retisation - θ1 = 45
◦
.

FEM and PD solutions is a
hieved. One 
an remark that the os
illation behaviour in
reases as θ
in
reases, sin
e the elasti
 P-wave speed in the y-dire
tion in
reases with in
reasing θ.

From Figure 20, we observe that KII is not zero when θ = 0◦ and θ = 90◦. Sin
e the problem370

is no longer symmetri
 due to the presen
e of the in
lusion and the hole, there is an a
ting mode II

behaviour. In 
ase where there would be a double in
lusion (or double void), KII will be zero for

these values of θ.
Next we evaluate the 
ra
k propagation patterns in this problem. We assume the same material

properties given in Table 2 for the plate, while the material properties of the in
lusion remain the375

same. The tensile strength in the �bre, matrix and shear dire
tion of the in
lusion are given by:

σLu = 2100 MPa, σTu = 120 MPa and τLTu = 135 MPa, respe
tively. For the interfa
e between

the plate and the in
lusion, we 
onsider the tensile strength parameters of the plate, sin
e they

assume lower values than the 
orresponding parameters for the in
lusion. We analyse the 
ra
k

propagation for two di�erent initial velo
ities.380

Figures 21, 22 and 23 depi
t the 
ra
k propagation for θ = 0◦, θ = 45◦ and θ = 90◦, respe
tively,
under an initial velo
ity of v = 25 y

2h
m/s. The di�erent orientation of the material properties

provide di�erent 
ra
k propagation paths. In Figure 21, the in
lusion is not damaged, but 
ra
ks

appear on the hole. From Figure 22, there is some damage arising at the interfa
e of the plate

and the in
lusion, as well as 
ra
k propagation from the edge 
ra
k and the hole. Figure 23 shows385

a di�erent 
ra
k propagation pattern, 
ompared to those shown in Figure 16. Additionally, the

interfa
e between the plate and the in
lusion is almost fully damaged.
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Figure 19: Edge 
ra
k with in
lusion and void: DSIF for di�erent values of θ - 400× 800 parti
les - m = 2 - mode I.
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Figure 20: Edge 
ra
k with in
lusion and void: DSIF for di�erent values of θ - 400× 800 parti
les - m = 2 - mode II.

Now we in
rease the initial velo
ity to v = 50 y
2h

m/s and re-analyse the 
ra
k propagation for

this example. The results are illustrated in Figures 24, 25 and 26. It be
omes 
lear that the 
ra
k

propagation 
an 
hange depending on the loading 
onditions. Figure 24 now presents damage in390

the in
lusion, and a double parallel 
ra
k originates from the hole. The 
ra
k propagation pattern
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Figure 21: Cra
k propagation for θ = 0
◦
- v = 25 m/s - m = 3 - 300 × 600 parti
les.
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Figure 22: Cra
k propagation for θ = 45◦ - v = 25 m/s - m = 3 - 300× 600 parti
les.

in Figure 25 is very similar to that shown in Figure 22, with the ex
eption of the damage on the

right side of the plate. Figure 26 presents an almost verti
al 
ra
k propagation, rea
hing both the

in
lusion and the void. Additionally, the applied velo
ity is su�
iently high that some damage is

in
urred in the in
lusion.395

Animations of this example for the initial velo
ity v = 50 m/s are available in the online version

in the Supplemental Data se
tion.
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Figure 23: Cra
k propagation for θ = 90
◦
- v = 25 m/s - m = 3 - 300× 600 parti
les.
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Figure 24: Cra
k propagation for θ = 0
◦
- v = 50 m/s- m = 3 - 300 × 600 parti
les.

6.4. Delamination between anisotropi
 materials

In this example we evaluate the 
ase of a bimaterial re
tangular plate with dimensions h = 37.5
mm and b = 150mm. The interfa
e is lo
ated at h/2 and 
ontains di�erent material properties than400

the other two materials. We denote material I as the material of the bottom layer of the bimaterial

plate, having the same material properties given in Eq. (39) and Table 2. Material II 
onstitutes

the top layer of this plate, and its material properties are given in Eq. (40) with σII
Lu = 2100 MPa,

σII
Tu = 120 MPa and τIILTu = 135 MPa.
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Figure 25: Cra
k propagation for θ = 45
◦
- v = 50 m/s - m = 3 - 300× 600 parti
les.
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Figure 26: Cra
k propagation for θ = 90◦ - v = 50 m/s - m = 3 - 300× 600 parti
les.

The interfa
e of the plate is de�ned for every bond 
ontaining parti
les with two di�erent405

materials. To evaluate the damage in the bonds, we assume the following parameters for failure in

the interfa
e: σint
Lu = 1670 MPa, σint

Tu = 48 MPa and τ intLTu = 56 MPa.

In this example, we use the following parameters for the PD model: 400 × 100 parti
le dis-


retisation, ∆x = 0.375 mm and δ = 3∆x. Analysis with these parameters has shown 
onverged

results, and in
reasing further the parti
le dis
retisation has a negligible in�uen
e on the results of410

the analysis.

26



Figure 6.4 depi
ts the plate with an edge 
ra
k of length a = 30 mm. Initially d = 0, so we study
the problem with a 
ra
k at the interfa
e. The plate is subje
ted to an initial velo
ity gradient

v = 25 y
h
m/s de�ned only on the left half of the plate (x ≤ 0). The material properties are rotated

by θI = 0◦ and θII = 45◦.
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Figure 27: Delamination between two di�erent anisotropi
 materials.

415

Figure 28 illustrates the 
ra
k propagation at several time steps. The displa
ements are s
aled

by a fa
tor of 15. It is 
lear from Figure 28(b) that the 
ra
k propagates rapidly along the interfa
e,

then the 
ra
k propagation speed de
reases, sin
e the os
illatory behaviour of the plate dynami
s

redu
es the tensile loads a
ting at the 
ra
k at 
ertain times. The anisotropy of the plate 
ombined

with the dynami
 e�e
ts and the formation of a new surfa
e also lead to some damage in the top420

layer of the plate, as 
an be seen in Figures 28(
), 28(d) and 28(e).

We evaluate the delamination behaviour when the 
ra
k is no longer on the interfa
e. The 
ra
k

is shifted by a distan
e d = 5 mm and is lo
ated entirely in material I.

Figure 29 shows the 
ra
k propagation for this 
ase. We 
an verify that a new 
ra
k initiates

and propagates fast in the interfa
e before that pre-existing 
ra
k propagates in material I in425

Figure 29(a). From Figure 29(b), the 
ra
k in material I starts to propagate, but the 
ra
k at

the interfa
e 
ontinues to propagate. The dynami
 e�e
ts also 
ause some damage nu
leation in

regions of material II just above the delamination. The deformed shape illustrated in Figures 29(
)

and 29(d) suggests that the delamination prevents the propagation of the 
ra
k in material I. For

the investigated 
ases, the interfa
e is weaker than the parent materials, whi
h leads to the most430

signi�
ant 
ra
k propagation taking pla
e at the interfa
e. The resulting 
ra
k propagation path

will depend on the relative strength of the materials and the interfa
e.

Animations of both problems anaylsed in this se
tion are available in the online version in the

Supplemental Data se
tion.

7. Con
lusions435

A generally anisotropi
 model for the non-ordinary state-based PD has been presented for the

�rst time in the literature. The proposed formulation has been demonstrated for 2D materials
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Figure 28: Delamination problem with 
ra
k in the material interfa
e.

assuming linear material behaviour and in�nitesimal strains. The non-ordinary state-based frame-

work has been used to model a 
omposite anisotropi
 material. The PD formulation was validated

against the FEM, and a very good agreement was a
hieved with both methods in the 
al
ulation of440

the dynami
 stress intensity fa
tors. The Tsai-Hill 
riterion for 
omposite materials has been shown

to provide good results for 
ra
k propagation problems. It is the �rst time a damage 
riterion for


omposite materials has been used in the non-ordinary state-based PD framework. It shows that

di�erent damage 
riteria for anisotropi
 materials 
an be employed in the future.

We have two 
on
lusions with respe
t to the horizon size: in problems where the 
ra
ks do not445

propagate, we have shown that lower errors are a
hieved when m = 2; however, in an analysis
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Figure 29: Delamination problem with shifted 
ra
k.

where the 
ra
k propagates, a small horizon introdu
es undesirable os
illations su
h as irregular


ra
k paths and unexpe
ted 
ra
k bran
hing. This is due to the fa
t that material softening takes

pla
e, sin
e the energy of the broken bonds is redistributed to the a
tive bonds. In the 
ase

of a smaller horizon, this additional energy may be too high, and these bonds break prematurely,450

exaggerating the damage. Larger horizons (m = 3 orm = 4) are 
ommonly adopted in the literature

and they 
an stabilise the solution, sin
e the energy of the broken bonds is redistributed over a

larger number of a
tive bonds. This shows eviden
e that there are optimum values of the horizon

size and grid spa
ing in order to redu
e error and to obtain a reliable analysis. So far the horizon

has been 
hosen empiri
ally, but it be
omes evident that it also depends on the material properties.455

Instabilities arising from material softening for small horizons still need to be 
onsidered. The

dynami
 formulation has shown some interesting features for the 
ra
k propagation, where some

os
illations have arisen at the edge of the plate when the 
ra
k is 
lose to the edge. Di�erent loading

may also lead to di�erent 
ra
k propagation patterns, espe
ially if heterogeneities are present in

the material. We have analysed delamination 
ases between anisotropi
 materials, and the results460

depend on the relative material properties of the interfa
e with respe
t to the anisotropi
 materials.

The formulation 
an be easily extended to 3D materials and di�erent anisotropi
 materials, su
h

as ro
ks. In this 
ase, a damage 
riterion for this spe
i�
 
on�guration would be ne
essary. Future

work 
an in
lude the assumption of large deformation in the model. Hen
e, the orientation of the

material will evolve with deformation. An impli
it formulation 
an also be implemented, allowing465

the use of larger time steps, leading to an enhan
ed 
omputational e�
ien
y.
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