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Abstrat

Peridynamis (PD) represents a new approah for modelling frature mehanis, where a ontinuum

domain is modelled through partiles onneted via physial interations. This formulation allows

us to model rak initiation, propagation, branhing and oalesene without speial assumptions.

Up to date, anisotropi materials were modelled in the PD framework as di�erent isotropi materials

(for instane, �bre and matrix of a omposite laminate), where the sti�ness of the bond depends on

its orientation. In this work we propose a non-ordinary state-based formulation to model general

anisotropi materials. The material properties for eah partile are de�ned using the material

onstitutive matrix, rather than being de�ned through the bond sti�ness between adjaent partiles.

We propose a damage riterion for omposite materials to model the rak propagation behaviour for

anisotropi materials. We validate the model using benhmark problems obtained with established

numerial methods or experimental results. The proposed approah enables the use of general

lasses of material models inluding roks, onrete and biomaterials.
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1. Introdution

Anisotropi materials have been studied sine the �rst works of Sih et al. [44℄, and ever sine

have attrated attention of frature mehanis researhers. Anisotropi materials are usually brittle,

almost ensuring that raks will appear during their lifetime. The e�et of raks in an anisotropi

material is more ompliated than the equivalent problem with an isotropi material. For instane,5

the rak propagation path is also a funtion of the material properties, rather than depending only

on the orientation of the applied load and the speimen geometry.

These materials are widely used in omposites in the aerospae and automobile industries [35,

32℄, as sensors and atuators (piezoeletri [12, 56℄ and magnetoeletroelasti [30, 55℄ materials) and

more reently have appliations in biomehanis [15, 40℄ and even in hydrauli fraturing [16, 19℄,10

just to mention some of the works. Craks in omposite materials an be responsible for omplete

failure of the omponent, resulting in eonomi losses or even loss of life. Damaged smart materials

exhibit di�erent eletri and magneti �elds ompared to the pristine material, inurring in errors
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of the response of a sensor for instane. Therefore, it is important to aurately quantify the e�et

of disontinuities in anisotropi materials.15

Frature mehanis have been studied for nearly a entury, from the �rst work of Gri�th [17℄

for brittle materials. Over the years a number of researhers have modelled frature mehanis

analytially [34, 43℄ for simple problems and geometries, and more ommonly using numerial

frameworks, suh as the extended �nite element method (XFEM) [4, 33℄ and the extended boundary

element method (XBEM) [18℄, among many others. Nevertheless, these methods su�er when rak20

branhing or oalesene are involved.

The phase-�eld method has been shown to model rak branhing behaviour [1, 20℄. The

method onsists in desribing the rak as an interfae diretly in the formulation and is used

onjointly to the �nite element method (FEM) [41℄. Nevertheless, the method requires a �ne mesh

around the rak to model the interfae orretly. Another drawbak of the method is that it25

an provide unrealisti results. A novel numerial method entitled peridynamis (PD) [45℄ has

been reently developed, and has shown great potential in frature mehanis problems involving

initiating, propagating, branhing and oalesing raks.

The peridynamis (PD) formulation is a type of non-loal formulation, where the state of a point

is measured over a �nite distane. This framework was proposed by Silling [45℄, where he rede�ned30

the lassial approah for ontinuum mehanis using an integral framework onsidering the fores

in the bonds rather than stresses and strains as in the lassial ontinuum mehanis. The main

reason for using this approah is that the lassial formulation ontains partial derivatives that

pose a hallenge when dealing with frature mehanis problems. The governing partial di�erential

equations in elastiity imply that singularities will appear due to the presene of disontinuities,35

whih is not desirable. Due to the integral form of the formulation, no speial assumptions are

needed to deal with singularities, suh as a rak in the domain.

The �rst PD formulation desribed a ontinuum medium through disrete partiles, interating

between eah other through physial onnetions entitled bonds. Eah bond has a sti�ness assoi-

ated with it, being analogous to a spring in ontinuum mehanis theory. However, eah partile40

has an area of in�uene, interating with all other partiles within a perimeter. The radius of

this perimeter is the horizon of that partile, and is a harateristi of non-loal formulations (see

[11, 27℄ for other types of non-loal approahes). The material properties in PD are alulated

using the material parameters of the lassial ontinuum mehanis, and also parameters from PD

suh as the horizon size. The trations between di�erent partiles are in the same diretion as the45

bond, have opposite sense and the same magnitude. This �rst formulation obtained by Silling was

denoted bond-based PD.

The rak is formed when the bonds between partiles are broken, a key feature of the PD

formulation. This harateristi also enables the modelling of rak initiation without further as-

sumptions. Additionally, rak branhing an appear if elasti wave re�etions generate instabilities50

at the rak tip, whih is very di�ult to model in standard numerial tehniques. However this

theory presented limitations with respet to the material properties. Silling has stated that the so

alled bond-based PD limits the Poisson's ratio of the material (1/3 for 2D plane stress and 1/4 for

2D plane strain and 3D) [45, 47℄. A more generalised framework alled state-based PD has been

developed so any material properties an be assumed without restritions [47℄.55

The state-based PD is divided into two main approahes: the ordinary state-based PD, whih

represents a generalisation of the bond-based theory, and the non-ordinary state-based PD. Some of

the main di�erenes lie in the orientation of trations between partiles and how material properties

are obtained. The trations in ordinary state-based PD are still in the same diretion of the bond,
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but they are not onstrained to have the same magnitude. A relation more similar to ontinuum60

mehanis is present due to the use of state vetors. The balane of linear and angular momentum

is automatially satis�ed in bond-based and ordinary state-based theories, but the same is not valid

for non-ordinary framework [47℄.

The non-ordinary theory uses non-loal approximations of some of the ontinuum mehanis

variables. This permits a more general representation of the ontinuum mehanis using stress-strain65

relations, so that the material onstitutive matrix an be used, instead of alulating equivalent

properties for the sti�ness in the bonds as in bond-based and ordinary state-based PD. Addition-

ally, the trations ating on the partiles are no longer onstrained to the diretion of the bonds

nor have the same magnitude. A drawbak of these properties is that the balane of linear and

angular momentum are not impliitly satis�ed and have to be proved. Silling et al. [47, 49℄ have70

demonstrated how these riteria an be satis�ed for a spei� non-ordinary state-based formulation.

Madeni and Oterkus [29℄ detail extensively the use of ordinary state-based PD. Warren et al.

[53℄ and Breitenfeld et al. [5℄ have performed some of the �rst works in non-ordinary state-based PD

for expliit and impliit implementations, respetively. Yaghoobi and Chorzepa [57℄ have modelled

�bre reinfored onrete problems for non-ordinary state-based PD. Wu et al. [54℄ have implemented75

a non-ordinary state-based for the metal mahining proess in dutile materials, where the loss of

material usually leads to instabilities due to the strain loalisation problem. A simple stabilisation

tehnique was implemented to eliminate these instabilities. Wang et al. [52℄ have studied rak

propagation problems in rok type materials.

Some authors have investigated di�erent anisotropi materials using PD. Hu et al. [22℄ and80

Oterkus et al. [36, 37℄ have implemented bond-based models for omposite materials, where the

�bre and the matrix have di�erent material properties, and are de�ned by the orientation of the

bond. However, these PD models assume only two material onstants (sti�ness at the bonds and

in the matrix). Hu et al. [23℄ have also analysed delamination as well as damage in the �bre and

the bonds.85

Ghajari et al. [14℄ have implemented a bond-based model for orthotropi materials. The

anisotropy is generated by hanging the sti�ness of the bonds with their orientation. A limita-

tion of this model is to use only two onstants to de�ne the material properties, instead of the four

used in the ontinuum mehanis model. Another limitation imposed by the bond-based formula-

tion is that mode II behaviour is dependent on mode I, whih is not desirable. To the best of the90

authors' knowledge, a general formulation for anisotropi materials in the non-ordinary state-based

PD has not been found in the literature. In the urrent work, the material anisotropy is de�ned for

eah partile rather than being de�ned at the bond level. A general desription of the material is

possible using the proposed approah.

In this paper we propose a non-ordinary orrespondene model for generally anisotropi materi-95

als for dynami rak problems. We implement an anisotropi damage riterion in order to apture

the appropriate rak propagation path. We validate our model using benhmark problems and

omparison against other numerial methods or experimental results. The remainder of the paper

is organised as follows: the ontinuum mehanis theory is brie�y introdued in Setion 2. We

desribe the state-based PD formulation in Setion 3, with emphasis on the non-ordinary formu-100

lation. In Setion 4, the anisotropi damage riterion is explained, while the expliit integration

sheme is brie�y explained in Setion 5. The numerial results are presented in Setion 6. The

main onlusions are summarised in Setion 7.
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2. Classial ontinuum mehanis

In this setion we introdue some of the parameters of ontinuum mehanis employed in PD.

The deformation gradient haraterises the behaviour of motion in the neighbourhood of a point,

and it is de�ned as [21℄

F(x) =
∂y

∂x
(1)

where x denotes an arbitrary point in the referene on�guration, and

y = x+ u (2)

denotes a point in the deformed on�guration, while u orrespond to the displaements. The105

deformation gradient is in priniple not symmetri. If the displaements u are zero, then the

deformation gradient is the identity matrix.

The determinant of the deformation gradient is de�ned as J = det(F(x)), and this gives the ratio
of the volumes between the referene and deformed on�gurations. Sine J > 0, the volume of the

material in the deformed on�guration will never be zero. Moreover, the inverse of the deformation110

gradient an always be alulated.

The �rst Piola-Kirhho� stress is given by [21℄

P(x) = JσF(x)T (3)

where σ stands for the Cauhy stress and the supersript T denotes the transpose of a matrix.

In the small strain assumption, the �rst Piola-Kirhho� stress an be approximated by the

Cauhy stress, i.e.,

σ ≈ P(x) (4)

and the in�nitesimal strain an be de�ned in terms of the deformation gradient suh as

ε ≈
1

2

(

F(x)T + F(x)
)

− I (5)

where I is the identity matrix.

In the lassial ontinuum mehanis, the equation of motion is de�ned as

σij,j + bi(xi, t) = ρüi (6)

where b(x, t) denotes the body fores per unit volume, ρ is the density and ü is the aeleration.

The generalised Hooke's law is the relation between stresses and strains for an elasti material

and is expressed as

σij = Cijklεkl (7)

where εkl are the strains, and Cijkl denotes the material 4th order onstitutive tensor. The most

general form of anisotropy onsists of 81 independent omponents in the onstitutive tensor. Never-

theless, most anisotropi materials present symmetry properties that admit the following relations

Cijkl = Cjikl = Cijlk = Cklij (8)

leading to a tensor with only 21 independent omponents for the 3D ase, and 6 omponents in the115

2D ase.

Classial linear strain-displaement relations are assumed as

εij =
1

2
(ui,j + uj,i) (9)
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3. State-based peridynamis

The equation of motion in state-based peridynamis (PD) is de�ned as [47℄

∫

H

{T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉}dVx
′ + b(x, t) = ρü(x, t) (10)

where H is the family of the partile x, while the horizon δ delimits the neighbourhood of the

family of the partile of interest x, x′
represents the partiles inside the neighbourhood of x, T is

the fore vetor state �eld, and square brakets denote that the variables are taken in the state120

vetor framework. In order for Eq. (10) to be valid, it must satisfy both balane of linear and

angular momentum. The proofs an be found in [47, 49℄.

Silling et al. [47℄ have proposed a generalised peridynamis (PD) formulation, where the PD

variables are expressed in terms of vetor states. For instane, the referene state vetor X〈ξ〉 is
de�ned as

X〈ξ〉 = ξ, ∀ξ ∈ H (11)

and

ξ = x′ − x (12)

Eq. (11) represents the mapping between all partiles x′
with respet to the partile x. The

state vetor nomenlature inludes an underline to make a lear distintion from matries, while

the angle brakets relate to other variables the state vetor relies upon.125

Another way to visualise the vetor state onept is to assume a matrix form as stated in [29℄.

The deformation state vetor Y〈x′ − x〉 is then de�ned as

Y〈x− x′〉 =











y1 − y

y2 − y
.

.

.

yN − y











(13)

where y = y(x, t) represents the deformed position of partile x at time t, and yi = y(x′, t),
i = 1, · · ·N denotes all the partiles x′

ontained within the horizon of x.

Figure 1 illustrates the referene (or undeformed) on�guration, and the deformed on�guration

after a displaement u and u′
has been imposed on partiles x and x′

, respetively. Similarly, δ
and δ′ orrespond to the horizon of partiles x and x′

, respetively.130

In the original bond-based formulation [45℄, the partiles within the distane δ of x are said

to be inside the horizon of that partile, thus making a ontribution to the displaement solution.

The bonds possess sti�ness, and an be onsidered as springs or trusses sine the bonds only have

trations in the diretion of the bond. Maek and Silling [28℄ have used this idea to implement a

bond-based formulation where the bonds were modelled by truss elements. They onluded that this135

formulation provided similar results to the ones found with a ommerial �nite element software.

However, the bond-based PD formulation presents limitations with respet to the material

properties. The Poisson's ratio is restrited to 1/3 for 2D plane stress problems and to 1/4 for 2D

plane strain and 3D problems [45℄, sine the partiles within the horizon δ′ of partile x′
are not all

inluded during the analysis of x. The reasons for the limitation of the Poisson's ratio are related140

to the fat that the equilibrium needs to be satis�ed for every bond. This enfores that the fores

in the bonds must be in the diretion of the bond, of equal magnitude and opposite diretions.
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Figure 1: Referene and deformed on�guration in state-based PD.

The bond-based theory assumes that the interation between two partiles is governed by a entral

potential that does not depend on other loal onditions [47℄. To overome this limitation, Silling

et al. [47℄ have proposed the state-based theory, whih removes limitations with respet to the145

material properties. Other authors have developed di�erent approahes to overome this limitation

in bond-based models (see [13℄ for instane). In this work, we fous on the state-based PD theory.

There are two types of state-based formulation: ordinary and non-ordinary. In the ordinary

theory, the fores in the bonds are de�ned in the diretion of the bonds, in the same way as in

the bond-based formulation. However, the fores do not need to have the same magnitude, as in150

the bond-based approah. On the other hand, the non-ordinary formulation presents no restrition

with respet to the diretion of the bond and the magnitude of the trations. These di�erenes are

illustrated in Figure 2.

ordinary non-ordinary

x x′ x x′

T[x] T[x′] T[x] T[x′]

Figure 2: Di�erenes between tration in the bonds in ordinary and non-ordinary state-based PD.

The proess of obtaining the equivalent material properties in the ordinary state-based formula-

tion is not straightforward. There are no diret equivalenes of stresses and strains in the ordinary155

framework. In this sense, a typial approah is to draw an equivalene between the strain energy for

the ontinuum mehanis theory and the strain energy density in the PD framework. Then the ma-

terial properties are obtained by solving a series of simple problems with known deformation, suh

as pure shear, uni-axial deformation, bi-axial deformation [29℄. For isotropi materials or some

spei� anisotropi (e.g. orthotropi) materials, analytial solutions an be obtained. However,160

analytial solutions are not possible for generally anisotropi materials.

The equivalene between strain energy densities from ontinuum mehanis and PD framework

also poses another inonveniene. Partiles loser to the boundaries of the analysed domain will

share bonds with fewer partiles than those in the middle of the domain, for example. However,
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it is assumed that the strain energy density for the partiles, regardless of the number of partiles165

in the horizon, leading to an overestimation of the material properties at the boundaries [29, 50℄.

Corretion fators have been proposed to modify the strain energy for a partile whose horizon

ontains a redued number of partiles (see [24℄ for a detailed explanation on di�erent tehniques).

3.1. Non-ordinary state-based PD

The non-ordinary PD framework is a more generalised approah, where some of the main pa-170

rameters in ontinuum mehanis, suh as the deformation gradient, are expressed in terms of the

PD formulation. Sine these parameters are not onstrained by the physial bonds onneting the

partiles, the trations in the bonds are not enfored to be in the same diretion as the bonds them-

selves, as is the ase in ordinary PD models. Another advantage is that the material properties in

the non-ordinary state-based formulation ome from the material onstitutive matrix, whih is not175

the ase for the ordinary state-based PD.

The deformation gradient F(x) in the lassial ontinuum mehanis is given by Eq. (1). The

non-loal deformation gradient F(x) for eah partile is given by [47℄

F(x) =

[∫

H

ω(|ξ|)(Y(ξ)⊗ ξ)dVx

]

.B(x) (14)

B(x) =

[
∫

H

ω(|ξ|)(ξ ⊗ ξ)dVx

]

−1

(15)

where B(x) is the shape tensor, ⊗ denotes the dyadi produt of two vetors, and ω(|ξ|) is a

dimensionless weight funtion, used to inrease the in�uene of the nodes loses to x. In this work,

we assumed that the in�uene funtion has a triangular shape, and is given by

ω(|ξ|) = 1−
ξ

δ
(16)

where ξ = |ξ|. The reason for using this in�uene funtion is to make the behaviour of partiles

loser to x more dominant than the ones more distant. Warren et al. [53℄ have used a unitary

in�uene funtion, while Queiruga and Moridis [39℄ have investigated several in�uene funtions for

simple problems in 2D and onluded that the triangular funtion given by Eq. (16) leads to lower180

errors for the non-ordinary state-based PD.

The disretisation of Eqs. (14) and (15) an be expressed as a Riemann sum as [53℄

F(xj) =

[

m
∑

n=1

ω(|xn − xj |)(Y〈xn − xj〉 ⊗ (xn − xj))Vn

]

.B(xj) (17)

B(xj) =

[

m
∑

n=1

ω(|xn − xj |)((xn − xj)⊗ (xn − xj))Vn

]

−1

(18)

where m is the number of partiles with the horizon of node j and Vn is the volume of partile n.
Let us remark that eah partile xj must be onneted to at least two other partiles in di�erent

orientations to ensure that B(xj) will not be singular for 2D problems. To illustrate this behaviour,

let us onsider a partile xj = (a, c) and its interation with xn = (bn, c), n = 1 · · ·M whih
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represent the other partiles in this family, with a, bn, c 6= 0. All partiles are in the same line. For

a 2D problem, the shape tensor is given by

B(xj) =

[

M
∑

n=1

ω(|xn − xj |)

[

bn − a 0
0 0

]

]−1

(19)

It is lear that the inverse of this matrix does not exist, leading to the aforementioned singular

behaviour of the shape tensor. This analysis is valid for any family where the partiles share the

same oordinate in either x or y-diretion. The same analogy is valid for 3D problems, where at

least three partiles in di�erent planes must be onneted to avoid singularity of B(xj). This issue185

was �rst reported by Warren et al. [53℄ for 3D problems.

Aording to [47℄, a material is denominated simple if the tration state depends only on the

deformation state, i.e., T = T(Y). A material is simple and elasti if the tration state an be

expressed as

T = ∇W (Y) (20)

where W is the strain energy density and ∇ represents the Fréhet derivative.

The fore and deformation an be related in a state vetor framework by using a stress-strain

model as an intermediate step [48℄. For a strain energy density W (F), the stress tensor an be

expressed as [53℄

T = ∇W =
∂W

∂F
∇F (21)

The transpose of the �rst Piola-Kirhho� stress is a measure of the derivative of the strain

energy density W with respet to the deformation gradient, i.e.

P(x)T =
∂W

∂F
(22)

Substituting Eq. (22) into Eq. (20) and evaluating the Fréhet derivative, the tration state is

de�ned expliitly as

T[x, t]〈x′ − x〉 = ω(|x′ − x|)P(x)T .B(x).(x′ − x) (23)

Let us remark that there is no dependene on time for P(x) and B(x), however these parameters

are modi�ed when bonds are broken.

The proessing of mapping a stress tensor as a peridynami fore state is the inverse of the190

proess of approximating the deformation state by a deformation gradient tensor. A peridynami

onstitutive model that uses stress as an intermediate quantity results in general in bond fores

whih are not parallel to the deformed bonds [47℄.

In this work the material anisotropy is onsidered through Eq. (7), where the anisotropi

material onstitutive matrix an be employed in the non-ordinary state-based framework. The195

material properties are thus de�ned for eah partile, rather than being de�ned through the sti�ness

of the bond onneting two partiles. This enables the use of general material models in non-

ordinary state-based PD. An issue of the bond-based and ordinary state-based theories is that

modelling anisotropi materials an be ompliated beause the bonds diretion may not be aligned

with the material orientation. This restrits the lass of anisotropi materials that an be modelled200

within these frameworks, for example, materials that present some symmetries suh as orthotropi

materials. It is umbersome to de�ne the sti�ness of eah bond for a general anisotropi material

model within the bond-based framework.
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4. Damage riterion for anisotropi materials

In PD, damage is modelled through the bond breakage between pairs of partiles. One a bond

is broken, the interation between partiles provided by that bond will not be used during the rest

of the analysis. A damage index ϕ(x, t) is used to measure the relation of damaged bonds and

ative bonds for any given partiles and is given by

ϕ(x, t) = 1−

∫

H
µ(ξ, t)dVξ
∫

H
dVξ

(24)

and

µ(ξ, t) =

{

1 if the bond is ative

0 if the bond is broken

(25)

From Eq. (24), 0 ≤ ϕ(x, t) ≤ 1, where 0 represents the undamaged state and 1 represents the205

breakage of all the bonds of a given partile. The parameter µ(ξ, t) is used only to speify if a

partiular bond is ative or broken. The broken bonds will eventually lead to a softening material

response, sine failed bonds annot sustain any load.

There are di�erent damage riteria for anisotropi materials. For instane, Pensée et al. [38℄

have onsidered a miromehanial approah for modelling damage in anisotropi brittle materials

suh as roks and onrete, based on energy and a multisale approah. The damage riterion is

related to the type of anisotropi material analysed. In this work, we have employed the Tsai-Hill

riterion to de�ne damage in the bonds. This riterion is used for omposite laminates and an

take into aount failure between di�erent modes and is given by the following expression

(

σL

σLu

)2

+

(

σT

σTu

)2

−
σL

σLu

σT

σLu

+

(

τLT

τLTu

)2

= 1 (26)

where σL, σT and τLT stand for the longitudinal stress (in the diretion of the �bre), transver-

sal stress (perpendiular to the �bre) and shear stress, respetively. σLu, σTu and τLTu are the210

respetive tensile strength of the omposite material for di�erent loading.

In order to use this riterion in PD, the stress in a bond is de�ned as the average stress between

the interating partiles, suh as

σ(x,x′) =
1

2
(σ(x) + σ(x′)) (27)

In this ase, we an employ the Cauhy stresses instead of the �rst Piola-Kirhho� stress sine

we are using the small strain assumption.

Next, the stress at the bond is expressed in terms of a loal oordinate system using the rotation

matrix R(θ), whih depends on the �bre orientation θ and is de�ned as

R(θ) =





cos2 θ sin2 θ 2 cos θ sin θ
sin2 θ cos2 θ −2 cos θ sin θ

− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ





(28)

Figure 3 illustrates the rotation with the global and loal stresses, with respet to the �bre

orientation.215
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Figure 3: Rotation of the stresses from global (x,y) to loal (1,2) oordinates.

Finally, the loal stresses are given by





σL

σT

τLT



 = R(θ)





σxx

σyy

τxy





(29)

where σxx, σyy and τxy are the stresses in the global oordinate system. The loal stresses of Eq.

(29) are ombined into Eq. (26), and if the result is higher than 1, then the urrent bond breaks.

Let us remark that di�erent riteria have been used for non-ordinary state-based PD. For in-

stane, Wang et al. [52℄ and Zhou et al. [59℄ have used a stress riterion to model damage in

roks using a linear Mohr-Coulomb failure riterion, but they onsider the rok to be an isotropi220

material. To the authors' knowledge, this is the �rst time that a damage riterion for omposite

materials is employed within a non-ordinary state-based PD framework. It shows that di�erent

damage riteria for anisotropi materials an be employed in the future.

5. Numerial disretisation

In this work, an expliit integration sheme was employed to alulate the displaements, velo-225

ities and aelerations in the PD framework, in a similar way as in the work of [53℄. A drawbak

of the PD formulation is the requirement for a large omputational power, sine a large number

of partiles are typially used. In order to redue the extensive omputational alulations, some

authors have tried to takle this issue by oupling PD with standard numerial methods, suh as

the FEM [25, 58℄. Moreover, eah partile interats with a number of other partiles, whih on-230

tributes for the method to be omputationally expensive. However, a parallel implementation of a

PD expliit formulation is straightforward with OpenMP or MPI for instane. In this work we have

implemented the non-ordinary state-based formulation in a Fortran 90 ode, then used OpenMP

to improve omputational performane. Although not done in the urrent work, numerial alula-

tions in PD are also suitable to be implemented using GPUs, as have been performed by [31℄ with235

OpenCL and OpenMP and [26℄ using OpenACC.

For the small strain assumption, the in�nitesimal strain state an be approximated by Eq. (5)

and the Cauhy stresses σ are evaluated using Eq. (7).

The values of aeleration are alulated diretly from Eq. (10). The veloities are integrated

using a forward di�erene approah, while the displaements are obtained through a bakward
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sheme. The numerial integration is summarised by

ü(x, t) =
1

ρ

(∫

H

{T[x, t]〈x′ − x〉 −T[x′, t]〈x− x′〉}dVx
′ + b(x, t)

)

(30)

u̇(x,∆t+ t) = u̇(x, t) + ü(x, t)∆t (31)

u(x,∆t+ t) = u(x, t) + u̇(x, t)∆t (32)

where u̇(x, t) are the veloities and u(x, t) are the displaements.

Due to the use of an expliit approah, the time step must be smaller than a ertain ritial240

value in order for the analysis to be valid. Silling and Askari [46℄ and Madeni and Oterkus [29℄

have obtained the ritial time step for bond-based and ordinary state-based theories, respetively.

Warren et al. [53℄ have used the Courant-Friedrihs-Lewy ondition [7℄ to estimate the ritial

time step for a non-ordinary state-based PD. In this ase, the ritial time step is proportional

δ/cp, where cp =
√

C22/ρ is the dilatational wave speed and C22 = C2222. We used a onservative245

approah to guarantee a time step size smaller than the ritial value. In this work we assumed

∆t = 0.01 δ
cp
.

Let us remark that some authors have proposed modi�ations to improve the numerial alu-

lation in PD. For instane, Seleson [42℄ has provided a detailed study on di�erent tehniques to

evaluate the area of the neighbourhood of a partile. In this work we found that the error due to250

the approximation of the area of in�uene of a single partile is negligible, and therefore we do not

impose a volume orretion.

6. Numerial simulations

In this setion we investigate several appliations for the PD formulation in anisotropi materials

for 2D problems. The dynami stress intensity fators (DSIF) are alulated and ompared with

onverged FEM solutions. We have employed the extrapolation method in order to alulate the

DSIF as follows [18, 56℄

(

KII(t)
KI(t)

)

=

√

π

8r
(ℜ(iAB−1))−1

(

∆u1(t)
∆u2(t)

)

(33)

where KI(t) and KII(t) are the dynami mode I and mode II at time t, respetively; ∆u1(t) and
∆u2(t) are the rak opening displaement at time t in the x and y-diretion, respetively; A,255

B ome from the material properties and are obtained from the Stroh formalism [18, 51℄; ℜ(·)
represents the real part of (·) while i is the imaginary omponent; and r is the distane where the

rak opening displaements are measured to the rak tip.

Note that in the present work DSIF alulations are performed only for analyses that do not

onsider rak propagation. We perform this omputation in order to assess the dynami behaviour260

of the anisotropi materials.

6.1. Edge rak in an anisotropi 2D plate

A square plate ontaining an edge rak is analysed in this setion. The plate has dimensions

h = w = 0.1 m, and the length of the rak is a = 0.05 m. Figure 4 illustrates this example.

The plate is a symmetri angle ply omposite laminate of four graphite-epoxy laminae, with the

following material properties: E1 = 144.8 GPa, E2 = 11.7 GPa, G12 = 9.66 GPa and ν12 = 0.21.
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The density was assumed to be ρ = 2710 kg/m

3
. The material onstitutive matrix CIJ in Voigt

notation is alulated as

CIJ =





1/E1 −ν12/E1 0
−ν12/E1 1/E2 0

0 0 1/G12





−1

(34)

The material properties have been rotated by an angle θ ranging from 0◦ to 90◦ in order to

evaluate the e�et in the orresponding SIFs. The rotation of the onstitutive matrix is given by

Cijkl = rim(θ)rjn(θ)rko(θ)rlm(θ)Cmnop (35)

where Cmnop is the unrotated material properties, Cijkl is the rotated one and

rij(θ) =

(

cos θ sin θ
− sin θ cos θ

)

(36)

is the rotation matrix.

The plate is subjeted to an initial veloity �eld in the y-diretion and it is de�ned as

u̇(x, t) =
∂u(x, 0)

∂t
= 50

y

2h
m/s (37)

w

2h

a

u̇(x)

u̇(x)

E2

E1

θ

x

y

Figure 4: Anisotropi edge rak.

Some authors have investigated how the non-loal PD theory onverges to other non-loal for-

mulations, or even loal ones. A detailed explanation of the main branhes of this researh �eld are265

given in [9℄. Bobaru et al. [3℄ studied the onvergene in PD for 1D problems, and onluded that

there are three main di�erent approahes:

1. m−onvergene: the number of partiles m inreases as the horizon remains �xed. The PD

onverges to the non-loal solution for that partiular horizon;
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2. δ−onvergene: δ → 0 while m is �xed. In this ase the PD formulation onverges to the270

loal solution, i.e., the solution obtained with FEM for instane;

3. δm−onvergene: the number of partiles m inreases as δ → 0, with m inreasing faster than

δ dereases. The solution onverges uniformly to the loal solution and faster than using the

m− onvergene alone.

Initially we investigate how the horizon size in�uenes the DSIF for an anisotropi material.275

The material orientation is �xed at θ = 30◦ and we alulate the DSIF for di�erent horizon sizes.

The dynami mode I and mode II stress intensity fators are given in Figures 5 and 6 for four

di�erent partile disretisations. In all ases the DSIFs obtained with PD are ompared with those

obtained using a 500× 500 4-node fully integrated quadrilateral �nite element mesh. The horizon

is de�ned as δ = m∆x, where m is a onstant and ∆x is the grid spaing.
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Figure 5: Edge rak: omparison di�erent grid spaing and horizon size - mode I.
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Figure 6: Edge rak: omparison di�erent grid spaing and horizon size - mode II.

Table 1 shows the omparison between the PD and FEM solutions. The error in the L2 norm

is alulated as

Error =

√

∑N
i=1

(KPD
αi

−KFEM
αi

)2
√

∑N
i=1

(KFEM
αi

)2
(38)

where N is the total number of time steps, KPD
α and KFEM

α are the DSIFs for the PD and FEM

formulations, respetively, and α = I, II.
In Figure 5(a), the DSIFs alulated for m = 1 and m = 2 are in total disagreement with

the referene FEM solution and the other PD solutions as well. This is due to the fat that the

dynamis are not modelled properly in this ase; the horizon size is not adequate for this partiular285

grid spaing. When the grid spaing dereases, the quality of the solution alulated with smaller

horizon sizes also inreases, agreeing with the referene solution, as an be seen in Figure 5(b), where
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Table 1: Relative error between PD and FEM for the dynami mode I.

Horizon δ = m∆x
Partiles ∆x (m) m = 1 m = 2 m = 3 m = 4 m = 5
200× 200 5.0× 10−4 0.9898 0.7387 0.1137 0.1643 0.1374
300× 300 3.3× 10−4 0.9317 0.0520 0.0861 0.1122 0.1130
400× 400 2.5× 10−4 0.8990 0.0273 0.0751 0.0844 0.0847
500× 500 2.0× 10−4 0.8808 0.0306 0.0580 0.0654 0.0719

the error solution for m = 2 dereases from 0.7387 to 0.0520, representing a better orrelation to

the referene solution, while m = 1 shows a small redution in the error but still provides a poor

approximation. In Figures 5() and 5(d), there are negligible di�erenes between the DSIFs obtained290

with PD for any horizon size. The same analysis is valid for the dynami mode II results depited

in Figure 6.

From the previous analysis and the results from Table 1, we adopt the following parameters:

400 × 400 partile disretisation and m = 2, as this has the lowest error between the FEM and

PD solutions. Next we evaluate the DSIF for these parameters and varying the anisotropy angle θ.295

The dynami mode I and II stress intensity fators are shown in Figures 7 and 8, respetively. An

exellent agreement is obtained for the PD solution ompared to a FEM approah.
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Figure 7: Edge rak: DSIF for di�erent values of θ - mode I.

6.2. Crak propagation of entred rak in anisotropi 2D plate

In this setion we analyse the rak propagation in an anisotropi retangular plate as depited

in Figure 9. The plate has aspet ratio h/w = 2 and ontains a entred rak suh that a/w = 0.2.300

The plate has dimensions w = h = 125 mm. The plate is made from a unidiretional HTA/6376

omposite laminate and the material properties are given in Table 2, withG12 = 5.5GPa, σLTu = 70
MPa and ν12 = 0.3. The plate is subjeted to an initial veloity gradient u̇(x, 0) = 50 y

2h
m/s.
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Table 2: Material properties of HTA/6376 omposite

HTA �bre 6376 epoxy laminate (θ = 0◦) laminate (θ = 90◦)
Young's modulus [GPa℄ 235 3.6 136 8.75
Tensile strength [MPa℄ 3920 105 1670 60
Maximum elongation 1.7% 3.1% - -

Density [kg/m

3
℄ 1770 1310 1586 1586

We study the e�et of the partile disretisation and the horizon size for θ = 45◦. Cahill et

al. [6℄ give experimentally found paths of rak propagation in unidiretional omposite materials.305

They have shown that the rak propagation path grows parallel to the �bre diretion, indiating

that the damage originates only through matrix failure. Figures 10, 11 and 12 illustrate the rak

propagation for di�erent grid spaing and horizon sizes. Only the region around the rak is

represented. The Figures represent the damage index ϕ for the deformed on�guration, where blue

stands for ϕ = 0 while the red olour stands for ϕ = 1. The displaements are saled by a fator of310

20.

It is lear that for m = 2, the rak path is irregular and some branhing an our at the

rak tips. One reason for this behaviour is that the energy of a broken bond is redistributed to

the remaining ative bonds in that partile, whih also lead these bonds to break. Hene, a larger

horizon will stabilise the rak propagation, sine there are more partiles to re-balane the energy315

from broken bonds. Similar onlusions were reahed by [8℄ for simpler, bond-based PD models of

isotropi media. However, larger horizon in oarse partile disretisation an lead to problemati

results. Some osillations and rak nuleation sites are visible at the edges of the plate, and

these are attributed to the dynamis of the problem as the rak approahes the edge of the plate.

However, as illustrated in Figures 10(), 10(d) and 11(d), this e�et takes plae too early for the320

oarse disretisations and is presenting an unrealisti result. Moreover, m = 3 and m = 4 seem

to provide stable results for the 300 × 600 disretisation, shown in Figures 11(b) and 11(), and

400 × 800 disretisation illustrated in Figures 12(b) and 12(). The suggested remedy proposed

by [8℄ of inreasing m to 6-7 to stabilise the rak propagation path may give rise to inauraies

in representing the elasti wave propagation, sine the wave speed will spuriously inrease with325

inreasing horizon.
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Figure 10: Crak propagation of entred rak for di�erent horizon - θ = 45
◦
- 200× 400 partiles.

Figures 13, 14, 15 and 16 illustrate di�erent �bre orientations for m = 3 and 300× 600 partile

disretisation. The rak propagation paths are ompared with experimental ones from [6℄ for

uni-diretional HTA/ 6376 omposite.
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Figure 11: Crak propagation of entred rak for di�erent horizon - θ = 45◦ - 300× 600 partiles.
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Figure 12: Crak propagation of entred rak for di�erent horizon - θ = 45◦ - 400× 800 partiles.
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Figure 13: Crak propagation of entred rak for θ = 0
◦
- m = 3 - 300 × 600 partiles.

From Figures 13 to 16, the rak propagation paths in PD math those obtained experimentally.330
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Figure 14: Crak propagation of entred rak for θ = 45
◦
- m = 3 - 300× 600 partiles.
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Figure 15: Crak propagation of entred rak for θ = 60
◦
- m = 3 - 300× 600 partiles.

However, sine the plates are subjeted to a dynami load, some di�erenes arise during the analysis.

For instane, in Figure 13(), some parallel raks appear as the entred rak propagates towards
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Figure 16: Crak propagation of entred rak for θ = 90
◦
- m = 3 - 300× 600 partiles.

the edges of the plate. As the rak propagates, the newly formed rak surfaes inrease the wave

re�etion inside the plate, whih an lead to the formation of new raks at the edge of the plate.

Similar e�ets an also be seen in Figures 14() and 15(), where a small level of branhing appears335

at the rak tip as it nears the edge of the plate.

Cahill et al. [6℄ have mentioned that for the θ = 90◦ ase, the rak would propagate either

up or down, and oasionally it would branh. In the PD framework, we have seen that the rak

always branhes, propagating in both diretions.

The evolution of the rak propagation for the θ = 60◦ �bre orientation an be visualised in the340

Supplemental Data available online.

6.3. Edge rak in an anisotropi plate with inlusion and hole

In this example we study a retangular (w = h = 20 mm) anisotropi plate with an edge rak

of length a = 4 mm. The plate has an inlusion of radius r = 4.5 mm, shifted b = 8 mm from the

entre of the plate, and a hole of same radius shifted downwards from the entre of the plate, as345

illustrated in Figure 17. The plate is subjeted to an initial veloity de�ned aross the plate, and

given by v = 50 y
2h

m/s.

The material properties of the plate and the inlusion are given in Voigt notation by

C
plate
IJ =





155.43 3.72 0
3.72 16.34 0
0 0 7.48





GPa (39)

Cinc
IJ =





235 3.69 0
3.69 2 0
0 0 28.2





GPa (40)
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Figure 17: Anisotropi plate with inlusion and void.

The density of the plate is ρplate = 1600 kg/m

3
and the density of the inlusion is ρinc = 5670

kg/m

3
. The material properties of the plate are rotated by an angle θ1 with respet to the horizontal

axis, while the inlusion represents an orthotropi material (θ2 = 0◦).350

Initially we study the behaviour of the problem with no rak propagation. Table 3 shows the

relative error of the DSIF obtained with a �nite element mesh and the PD formulation for θ1 = 45◦.
The �nite element mesh has 165728 3-node triangular elements, and has been de�ned using the

MESH2D algorithm (for details see referene [10℄). For this on�guration, the disretisation with

400 × 800 partiles and m = 2 presents the lowest relative error. A possible explanation for this355

fat is that the horizon size is also dependent on the material properties.

In most works, it has been shown that the horizon size is hosen aording to the analysed

problem, however Bobaru et al. [2℄ have shown that the horizon size a�ets the dynamis of rak

branhing, where a horizon too large auses the elasti wave to propagate too fast, leading to

di�erenes with respet to experimental results. The in�uene of the horizon size in the analysis360

would lead to larger errors in anisotropi materials, implying that there is an optimum horizon size

for a given material. For the material in the present study, Table 3 suggests that the optimum

horizon size lies between ∆x and 2∆x.
Figures 18(a) and 18(b) depit the mode I and mode II DSIFs for this partiular PD on�gu-

ration, respetively. One an observe that the DSIFs alulated for di�erent horizon sizes provide365

similar values of the DSIF for n ≥ 2.
Figures 19 and 20 depit the DSIF for di�erent values of θ. Very good agreement between the
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Table 3: Relative error between PD and FEM for DSIF I.

Horizon δ = m∆x
Partiles ∆x (mm) m = 1 m = 2 m = 3 m = 4 m = 5
200× 400 0.10 0.8124 0.0937 0.1168 0.1227 0.1391
300× 600 0.07 0.8115 0.0574 0.0751 0.0789 0.0913
400× 800 0.05 0.8087 0.0487 0.0580 0.0634 0.0706
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Figure 18: Edge rak with inlusion and void: omparison between di�erent horizon size - 400 × 800 partile

disretisation - θ1 = 45
◦
.

FEM and PD solutions is ahieved. One an remark that the osillation behaviour inreases as θ
inreases, sine the elasti P-wave speed in the y-diretion inreases with inreasing θ.

From Figure 20, we observe that KII is not zero when θ = 0◦ and θ = 90◦. Sine the problem370

is no longer symmetri due to the presene of the inlusion and the hole, there is an ating mode II

behaviour. In ase where there would be a double inlusion (or double void), KII will be zero for

these values of θ.
Next we evaluate the rak propagation patterns in this problem. We assume the same material

properties given in Table 2 for the plate, while the material properties of the inlusion remain the375

same. The tensile strength in the �bre, matrix and shear diretion of the inlusion are given by:

σLu = 2100 MPa, σTu = 120 MPa and τLTu = 135 MPa, respetively. For the interfae between

the plate and the inlusion, we onsider the tensile strength parameters of the plate, sine they

assume lower values than the orresponding parameters for the inlusion. We analyse the rak

propagation for two di�erent initial veloities.380

Figures 21, 22 and 23 depit the rak propagation for θ = 0◦, θ = 45◦ and θ = 90◦, respetively,
under an initial veloity of v = 25 y

2h
m/s. The di�erent orientation of the material properties

provide di�erent rak propagation paths. In Figure 21, the inlusion is not damaged, but raks

appear on the hole. From Figure 22, there is some damage arising at the interfae of the plate

and the inlusion, as well as rak propagation from the edge rak and the hole. Figure 23 shows385

a di�erent rak propagation pattern, ompared to those shown in Figure 16. Additionally, the

interfae between the plate and the inlusion is almost fully damaged.
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Figure 19: Edge rak with inlusion and void: DSIF for di�erent values of θ - 400× 800 partiles - m = 2 - mode I.
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Figure 20: Edge rak with inlusion and void: DSIF for di�erent values of θ - 400× 800 partiles - m = 2 - mode II.

Now we inrease the initial veloity to v = 50 y
2h

m/s and re-analyse the rak propagation for

this example. The results are illustrated in Figures 24, 25 and 26. It beomes lear that the rak

propagation an hange depending on the loading onditions. Figure 24 now presents damage in390

the inlusion, and a double parallel rak originates from the hole. The rak propagation pattern
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Figure 21: Crak propagation for θ = 0
◦
- v = 25 m/s - m = 3 - 300 × 600 partiles.
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Figure 22: Crak propagation for θ = 45◦ - v = 25 m/s - m = 3 - 300× 600 partiles.

in Figure 25 is very similar to that shown in Figure 22, with the exeption of the damage on the

right side of the plate. Figure 26 presents an almost vertial rak propagation, reahing both the

inlusion and the void. Additionally, the applied veloity is su�iently high that some damage is

inurred in the inlusion.395

Animations of this example for the initial veloity v = 50 m/s are available in the online version

in the Supplemental Data setion.
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Figure 23: Crak propagation for θ = 90
◦
- v = 25 m/s - m = 3 - 300× 600 partiles.
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Figure 24: Crak propagation for θ = 0
◦
- v = 50 m/s- m = 3 - 300 × 600 partiles.

6.4. Delamination between anisotropi materials

In this example we evaluate the ase of a bimaterial retangular plate with dimensions h = 37.5
mm and b = 150mm. The interfae is loated at h/2 and ontains di�erent material properties than400

the other two materials. We denote material I as the material of the bottom layer of the bimaterial

plate, having the same material properties given in Eq. (39) and Table 2. Material II onstitutes

the top layer of this plate, and its material properties are given in Eq. (40) with σII
Lu = 2100 MPa,

σII
Tu = 120 MPa and τIILTu = 135 MPa.
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Figure 25: Crak propagation for θ = 45
◦
- v = 50 m/s - m = 3 - 300× 600 partiles.
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Figure 26: Crak propagation for θ = 90◦ - v = 50 m/s - m = 3 - 300× 600 partiles.

The interfae of the plate is de�ned for every bond ontaining partiles with two di�erent405

materials. To evaluate the damage in the bonds, we assume the following parameters for failure in

the interfae: σint
Lu = 1670 MPa, σint

Tu = 48 MPa and τ intLTu = 56 MPa.

In this example, we use the following parameters for the PD model: 400 × 100 partile dis-

retisation, ∆x = 0.375 mm and δ = 3∆x. Analysis with these parameters has shown onverged

results, and inreasing further the partile disretisation has a negligible in�uene on the results of410

the analysis.
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Figure 6.4 depits the plate with an edge rak of length a = 30 mm. Initially d = 0, so we study
the problem with a rak at the interfae. The plate is subjeted to an initial veloity gradient

v = 25 y
h
m/s de�ned only on the left half of the plate (x ≤ 0). The material properties are rotated

by θI = 0◦ and θII = 45◦.
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Figure 27: Delamination between two di�erent anisotropi materials.

415

Figure 28 illustrates the rak propagation at several time steps. The displaements are saled

by a fator of 15. It is lear from Figure 28(b) that the rak propagates rapidly along the interfae,

then the rak propagation speed dereases, sine the osillatory behaviour of the plate dynamis

redues the tensile loads ating at the rak at ertain times. The anisotropy of the plate ombined

with the dynami e�ets and the formation of a new surfae also lead to some damage in the top420

layer of the plate, as an be seen in Figures 28(), 28(d) and 28(e).

We evaluate the delamination behaviour when the rak is no longer on the interfae. The rak

is shifted by a distane d = 5 mm and is loated entirely in material I.

Figure 29 shows the rak propagation for this ase. We an verify that a new rak initiates

and propagates fast in the interfae before that pre-existing rak propagates in material I in425

Figure 29(a). From Figure 29(b), the rak in material I starts to propagate, but the rak at

the interfae ontinues to propagate. The dynami e�ets also ause some damage nuleation in

regions of material II just above the delamination. The deformed shape illustrated in Figures 29()

and 29(d) suggests that the delamination prevents the propagation of the rak in material I. For

the investigated ases, the interfae is weaker than the parent materials, whih leads to the most430

signi�ant rak propagation taking plae at the interfae. The resulting rak propagation path

will depend on the relative strength of the materials and the interfae.

Animations of both problems anaylsed in this setion are available in the online version in the

Supplemental Data setion.

7. Conlusions435

A generally anisotropi model for the non-ordinary state-based PD has been presented for the

�rst time in the literature. The proposed formulation has been demonstrated for 2D materials
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Figure 28: Delamination problem with rak in the material interfae.

assuming linear material behaviour and in�nitesimal strains. The non-ordinary state-based frame-

work has been used to model a omposite anisotropi material. The PD formulation was validated

against the FEM, and a very good agreement was ahieved with both methods in the alulation of440

the dynami stress intensity fators. The Tsai-Hill riterion for omposite materials has been shown

to provide good results for rak propagation problems. It is the �rst time a damage riterion for

omposite materials has been used in the non-ordinary state-based PD framework. It shows that

di�erent damage riteria for anisotropi materials an be employed in the future.

We have two onlusions with respet to the horizon size: in problems where the raks do not445

propagate, we have shown that lower errors are ahieved when m = 2; however, in an analysis
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Figure 29: Delamination problem with shifted rak.

where the rak propagates, a small horizon introdues undesirable osillations suh as irregular

rak paths and unexpeted rak branhing. This is due to the fat that material softening takes

plae, sine the energy of the broken bonds is redistributed to the ative bonds. In the ase

of a smaller horizon, this additional energy may be too high, and these bonds break prematurely,450

exaggerating the damage. Larger horizons (m = 3 orm = 4) are ommonly adopted in the literature

and they an stabilise the solution, sine the energy of the broken bonds is redistributed over a

larger number of ative bonds. This shows evidene that there are optimum values of the horizon

size and grid spaing in order to redue error and to obtain a reliable analysis. So far the horizon

has been hosen empirially, but it beomes evident that it also depends on the material properties.455

Instabilities arising from material softening for small horizons still need to be onsidered. The

dynami formulation has shown some interesting features for the rak propagation, where some

osillations have arisen at the edge of the plate when the rak is lose to the edge. Di�erent loading

may also lead to di�erent rak propagation patterns, espeially if heterogeneities are present in

the material. We have analysed delamination ases between anisotropi materials, and the results460

depend on the relative material properties of the interfae with respet to the anisotropi materials.

The formulation an be easily extended to 3D materials and di�erent anisotropi materials, suh

as roks. In this ase, a damage riterion for this spei� on�guration would be neessary. Future

work an inlude the assumption of large deformation in the model. Hene, the orientation of the

material will evolve with deformation. An impliit formulation an also be implemented, allowing465

the use of larger time steps, leading to an enhaned omputational e�ieny.
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