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1 Introduction

There has always been a wide interest in non equilibrium phenomena in quantum field

theory, since they can be used to describe processes in various areas of physics, including

condensed matter and high energy physics. In particular, it is very important to gain

a deeper understanding of thermalization, meaning the way in which physical quantities

attain their equilibrium values after some kind of perturbation has acted upon an initial

equilibrium state. Of course, QFT implies that a pure state will remain pure under time

evolution, so it is interesting to understand precisely how the final pure state will resemble

a thermal one.

A simple model of a thermalization process is the so-called “quantum quench”, which

involves a change in the parameters of the Lagrangian of the system, either instantaneously

or over a finite period of time. For example, it can describe a uniform or point-like energy

injection, depending on the kind of sources that are turned on. So, the vacuum state of

the initial Lagrangian will be a high energy state of the final Lagrangian, and it will evolve

with the final Hamiltonian.

It would be desirable to study the above problems in the strong coupling regime of

QFTs, where perturbation analysis becomes inapplicable. Although some progress had
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been made using QFT techniques, this problem became more tractable with the appear-

ance of the proposal that certain strongly coupled d-dimensional quantum field theories

with a large number of degrees of freedom are dual to classical gravity theories in d + 1

dimensions (this idea originated in [1]–[3]; see [4] for a recent review). Specifically, this

so-called “AdS/CFT correspondence” suggests that the vacuum state of a conformal field

theory in d dimensions is dual to pure AdSd+1, while a thermal state is dual to an (asymp-

totically AdSd+1) black hole geometry. So, it makes sense that the process of gravitational

collapse ending in a black hole in an asymptotically AdSd+1 spacetime geometry is dual to

thermalization in a CFT.

Apart from various correlation functions or physical observables, a particularly in-

teresting object to study is the entanglement entropy. Even though it is not a physical

observable and thus not directly measurable, it encodes the way quantum information is

distributed in the system, as well as the quantum correlations between the subsystems. It

is defined as the von Neumann entropy SI = −tr(ρI ln ρI) of the reduced density matrix ρI
corresponding to a subsystem I. Usually we take I to be a spatial subregion of our theory

and then SI measures the correlations of I with the rest of the system. SI is typically

divergent but, after regularization (usually by introducing a UV cut-off), we can isolate

the finite part (this was investigated in [5]; see [6] for a review). One can also define the

mutual information of two regions I1 and I2 by I(I1, I2) = SI1 +SI2−SI1∪I2 . This object

is interesting in its own right because it quantifies the correlations shared between I1 and

I2 but not the rest of the system, it is an upper bound for bounded correlators between I1

and I2, and it is finite as long as the two subsystems are not adjacent.

In general, the entanglement entropy is very hard to compute with QFT techniques,

and it has only been done for special theories (e.g. free scalar field theories, CFTs), in special

states (e.g. vacuum or thermal) or for specific regions with some degree of symmetry (see for

example [7, 8] among others). However, it was realized that holography greatly simplifies

this problem.

For generic theories with non-static Einstein-Hilbert gravity duals, the holographic

entanglement entropy (HEE) SI of a boundary region I (not necessarily on a constant

t-slice) is computed using the “HRT” proposal of [9]. According to this proposal, to

order O(G−1
N ), the HEE is given by the area (in Planck units) of an extremal surface A

anchored on the boundary ∂I of I (i.e. with ∂A = ∂I) and homologous to I. Specifically,

the homology constraint requires the existence of an everywhere spacelike manifold with

boundary A ∪ I.1 In case there are many surfaces satisfying these conditions, we should

choose the minimal one, so we can write SI = minA
area(A)

4GN
. It is easy to see that if the

spacetime is static, the HRT proposal coincides with the “RT” proposal of [12] and [13],

replacing the extremal surface by a minimal one on a Euclidean constant-time bulk slice.

Note that the choice of quantum state in which we compute the entanglement entropy

is implicit in the choice of a bulk gravity solution, and that the regularization procedure

analogous to introducing a UV cut-off in field theory is the introduction of a large radial

cut-off r∞ in the bulk spacetime.

1See [10] for a discussion of some subtleties (which imply that this condition requires some refinement).
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In this paper, we are going to investigate the evolution of the holographic mutual in-

formation (HMI) between two regions in a compact 1+1 dimensional CFT after a kind

of quantum quench describing an instantaneous, uniform energy injection into the ground

state of the system. We are going to use the simplest possible dual gravitational analogue:

the collapse of a spherically symmetric, infinitely thin null shell in pure 2+1 dimensional

AdS spacetime, resulting in the creation of a BTZ black hole. We will ignore the details

of the matter which gives rise to the so-called global Vaidya-BTZ metric2 describing the

above spacetime, focusing only on the purely gravitational part, which is expected to give

general and universal results. We will only consider this low dimensional model because

it is easier to apply the HRT prescription in this case: the extremal surfaces are spacelike

geodesics. However, it is able to capture important information about the higher dimen-

sional cases too.

Some aspects of our general setup can be seen in figure 1 (left). A spatial slice of pure

AdS3 is presented, and two boundary intervals I1 and I2 have been singled out. Obviously,

the HEE SI1 of the interval I1 will be computed by the length of the spacelike geodesic

(AB) and SI2 by the length of (CD). However, for the union I1 ∪ I2 there are more

candidates: both the set (AB) and (CD) (blue geodesics - “connected” configuration) and

the set (BC) and (DA) (red geodesics - “disconnected” configuration) satisfy the boundary

and homology conditions of HRT, so SI1∪I2 will be computed by the set with the smallest

sum of lengths. Thus, we can write the HMI in the form

I(I1, I2) = (AB) + (CD)−min[(AB) + (CD), (BC) + (DA)]

= max[(AB) + (CD)− (BC)− (DA), 0].
(1.1)

We can immediately see that eq. (1.1) implies I(I1, I2) ≥ 0. It is important to note that

the dashed geodesics (AC) and (BD) do not satisfy the homology condition (there is no

smooth, everywhere spacelike interpolating manifold between the geodesics and I1 ∪ I2).

Of course, the Vaidya-BTZ spacetime that we will consider is not static, so the geodesics

will not lie on a constant time slice as in figure 1. However, even in this more complicated

case, we should keep in mind that the “diagonal” geodesics (AC) and (BD) will not satisfy

the homology condition because the interpolating manifold cannot be everywhere spacelike.

So, the HMI will be computed as in eq. (1.1) in the rest of the paper.

The motivation for the current work is twofold. Firstly, even though similar models

have been investigated extensively in the literature (see for example [15]–[22]), the main

focus was on non-compact CFTs, (i.e. dual to Vaidya-BTZ in Poincaré coordinates). Sig-

nificantly less attention has been directed to compact CFTs, where finite size effects may

well result in unexpected behaviors for the HMI, since the generalization to compact space

is generically non trivial. For instance, it is well known that the HMI in non-compact holo-

graphic CFTs typically exhibits a “bump” (see [18, 19]), so it is interesting to investigate

whether more bumps, or qualitatively different behaviors, can appear in the compact case.

Secondly, there is a sharp contrast between this, typically non monotonic, evolution and

the evolution in the adiabatic approximation of the quench. As will also be explained later,

2Another model for holographic quenches was proposed in [14], but it will not be considered here.
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II1 ĪI2

A

B

C

D

Figure 1. Spatial projection of spacelike geodesics, with the boundary brought to finite distance

using the coordinate ρ = tan r. Left: spacelike geodesics in pure AdS3 spacetime, anchored on the

endpoints A and B of the boundary interval I1 and C and D of I2 in various combinations. Right:

spacelike geodesics in BTZ spacetime with r+ = 1/4. The inner black circle marks the event horizon

of the black hole. The two blue geodesics wind around the black hole 0 and 1 times, while the two

red ones wind around the black hole 0 and 2 times. The innermost blue geodesic is homologous

to the smaller interval I and the outermost red geodesic is homologous to the complementary

interval Ī.

the adiabatic approximation treats the system as always being in a thermal state with the

temperature slowly increasing. The dual gravitational description of this process is given

by a BTZ black hole with its radius slowly increasing (since the radius r+ is proportional

to the temperature T , T ∼ r+). We intuitively understand that, in this case, the “growth”

of the black hole radius will “push back” the boundary anchored spacelike geodesics (since

they cannot penetrate the horizon of a static black hole, see [23]). Combined with the

fact that longer geodesics reach deeper into the bulk, this suggests that non monotonic

behaviors for the HMI cannot appear in the adiabatic approximation. For example, we

can see that if the “connected” configuration of geodesics dominates (i.e. I = 0) initially,

it will remain so during the entire evolution, in contrast to the behaviors observed in [18]

and [19]. It is interesting to investigate this problem in order to understand why these

differences occur from a geometrical point of view.

For convenience, we are going to set the AdS radius of curvature LAdS to LAdS = 1, and

also ignore factors of 4GN below, loosely identifying the length of spacelike geodesics with

SI . So we should keep in mind that the HRT formula for the HEE is a good approximation

when quantum and higher curvature corrections are suppressed, since it is an order O(G−1
N )

result in classical Einstein-Hilbert spacetime (with GN small). In other words, recalling

that the central charge c of the boundary CFT is given by the “Brown-Henneaux relation”

c = 3LAdS
2GN

, we will be working in order O(c), in the limit of large c. As usual, the speed of

light c and Planck’s constant ~ are set to 1, c = ~ = 1.

The plan of this paper is as follows. In section 2 we start by presenting the Vaidya-

BTZ spacetime and its spacelike geodesic equations. Then, we present the solutions of

these equations, also describing the geodesic structure of the spacetime in some detail. In
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section 3 we plot our results for the holographic entanglement entropy and the holographic

mutual information, before turning to the comparison with the adiabatic approximation. In

the final section we conclude and we discuss some open questions. The appendix contains

explicit calculations not presented in the main body of the work.

2 Geodesics in Vaidya-BTZ

2.1 Vaidya-BTZ spacetime in global coordinates

As explained in the introduction, we will consider the 2 + 1 dimensional, asymptotically

AdS spacetime described by the Vaidya-BTZ metric:

ds2 = −f(v, r)dv2 + 2dvdr + r2dϕ2, (2.1)

where r is the usual radial coordinate with range [0,∞), φ ∈ [0, 2π) is the angular coordi-

nate with period 2π, v ∈ (−∞,+∞) is the “ingoing time” and

f(v, r) ≡ r2 −m(v) = r2 + 1− θ(v)(r2
+ + 1) =

{
r2 + 1 ≡ fi(r), v < 0

r2 − r2
+ ≡ fo(r), v > 0

, (2.2)

where θ(v) is the Heaviside step function. It is clear that f(v, r) interpolates between pure

AdS3 for v < 0 and the BTZ black hole with an event horizon of radius r+ for v > 0, while

v = 0 describes an incoming null shell which collapses and forms a curvature singularity

at r = 0 for v > 0. More generally, we could consider a shell with non-zero thickness, by

replacing θ(v) with a smooth function interpolating between 0 and 1, over a time extent

characterized by a parameter vt, such as 1
2(tanh v/vt + 1). The vt � 1 regime corresponds

to a slow thermalization, which we expect to be well approximated by an adiabatic process

(see for example [9]). We will focus on the thin shell limit (vt → 0), which describes a

fast, non-adiabatic thermalization and allows us to obtain analytic results, returning to

comment on the differences between the two descriptions in the final subsection.

Performing the change of coordinates

t = v − ρ+
π

2
, ρ ≡ tan−1 r (2.3)

we can easily see that t is identified with the static time coordinate ti inside the shell

(i.e. for v < 0), but not with the static time to outside the shell, which makes sense since

the Vaidya-BTZ spacetime is not static. In these new coordinates, infalling null geodesics

always form angles of π/4 in ρ− t diagrams, whereas this is true for outgoing null geodesics

only in the AdS part v < 0. Also, t coincides with v on the conformal boundary S1×R at

r → ∞, where it provides a natural time coordinate for the dual field theory and will be

denoted by t∞. Then (2.3) implies that the shell starts imploding when t∞ = 0.

More details about the structure of this spacetime can be found in [24].

– 5 –
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2.2 Geodesic equations

Following [24] and exploiting the symmetries of the problem, we can obtain the following

first order equations of motion for spacelike geodesics:

L = r2ϕ̇, (2.4a)

E = fα(r)v̇ − ṙ, (2.4b)

ṙ2 = E2 −
(
L2

r2
− 1

)
fα(r), (2.4c)

where α = i, o and the dots denote differentiation with respect to an affine parameter

s along the geodesics. In the above, L is the angular momentum originating from the

spherical symmetry, and E is the energy originating from time translation invariance in

v < 0 and v > 0. It can be seen that, while L is kept constant along each spacelike geodesic,

E is constant in v < 0 and v > 0 separately, but is discontinuous at the point where the

geodesic crosses the shell, i.e. at v = 0. In fact, the discontinuity can be computed:

∆E ≡ E|v=0+ − E|v=0− =
1

2
(f |v=0+ − f |v=0−)v̇|v=0 = −1

2
(r2

+ + 1)v̇|v=0, (2.5)

with v̇ being continuous everywhere.

From the second order equation of motion for v

v̈ = −1

2

∂f

∂r
v̇2 +

L2

r3
(2.6)

we observe that v̈|v̇=0 > 0, which implies that v has one (global) minimum along the

geodesic. This will be denoted by vmin. Now, noting from eq. (2.4b) that flipping the sign

of E is equivalent to the reparametrization s → −s, we will only consider geodesics with

E|vmin ≥ 0 without loss of generality. Similarly, (2.4a) implies that flipping the sign of L is

equivalent to reversing the direction of the increase of ϕ, so we will only consider L ≥ 0.

Then, eq. (2.4b) and (2.4c) imply that r|vmin = L.

We are interested in computing the entanglement entropy of boundary theory intervals,

the endpoints of which lie at the same boundary time t∞. In our case, the HRT prescription

dictates that this is given by the length of spacelike geodesics with both endpoints anchored

on the boundary, at the same time t∞ (termed “ETEBA geodesics” in [24]). Generally,

there are 3 types of ETEBA geodesics in Vaidya-BTZ:

• Geodesics lying entirely in the AdS part of the spacetime (i.e. in v < 0). These must

necessarily end at a time slice t∞ ≤ 0 on the boundary.

• Geodesics lying entirely in the BTZ part of the spacetime (i.e. in v > 0). These can

only end at t∞ > 0.

• Geodesics that lie in the BTZ part near the boundary, but reach inside the shell.

These, too, can only end at t∞ > 0.

– 6 –
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Geodesics with E|vmin = 0 have an additional symmetry under s→ −s, so they necessarily

end at the same time slice on the boundary (if they do not end at the singularity). In

principle we could also have asymmetric ETEBA geodesics, i.e. ETEBA geodesics with

E|vmin > 0, but there are good arguments against their existence (see [24]), so from this

point on we will assume E|vmin = 0. Then, geodesics which lie entirely in the AdS or the

BTZ part of the spacetime have E = 0 everywhere, whereas, adopting the convention that

s increases in the direction towards the boundary, (2.5) implies that geodesics which cross

the shell have E = 0 inside the shell and E < 0 outside.

2.3 Solutions of the geodesic equations

Solving eq. (2.4) is straightforward, though somewhat tedious. The details of the calcula-

tions, as well as the explicit forms of the geodesics, can be found in appendix A; here we

just quote the most important results. In the following, r∞ is the (large) radial cut-off.

• For t∞ ≤ 0 the geometry is pure AdS3 and we obtain the well-known result that, for

an interval I = [−ϕ∞, ϕ∞] on the boundary, where ϕ∞ ∈ [0, π), there is a unique

spacelike geodesic of length

`AdS = 2 ln(2r∞) + 2 ln(sinϕ∞). (2.7)

Before moving on to the next cases, we briefly recall what happens in pure BTZ spacetime.

As is also explained in [10], fixing the interval I = [−ϕ∞, ϕ∞] on the boundary, the

spacelike geodesics can wind around the BTZ black hole an arbitrary number of times.

This results from the existence of solutions that have angular extent greater than 2π, but

are anchored at the same endpoints ∂I on the boundary due to the compactness of ϕ (see

figure 1 (right)). More precisely, geodesics with angular extent ϕ(k) ≡ 2ϕ∞+ 2πk, k ∈ Z+,

as well as those with angular extent ϕ̃(k) ≡ −2ϕ∞ + 2π(k + 1), all end on ∂I. However,

in the present case the homology constraint is non-trivial; this implies that only ϕ(0) is

homologous to I and ϕ̃(0) is homologous to the complementary interval Ī. The lengths of

the geodesics are given by `
(k)
BTZ = 2 ln(2r∞) + 2 ln

(
1
r+

sinh(r+ϕ
(k))
)

.

According to the RT prescription, the entanglement entropy of I is given by the area

of the bulk minimal surface anchored on ∂I and homologous to I. In our case, candidate

bulk minimal surfaces include the connected geodesics described above and disconnected

surfaces consisting of two pieces: the geodesics and the bifurcation surface of the black hole

event horizon H. In the latter case, a geodesic homologous to I, together with H, form an

extremal surface which is homologous to Ī. It can be seen that there is a value ϕχ > π/2

of ϕ∞ separating two regimes: for ϕ∞ < ϕχ the HEE is given by the length `
(0)
BTZ of the

geodesic with angular extent ϕ(0) ≡ 2ϕ∞, while for ϕ∞ > ϕχ it is given by the sum of the

length `
(0)

BTZ,Ī of the geodesic with angular extent ϕ̃(0) ≡ 2π − 2ϕ∞ and the bifurcation

surface area area(H). This regime was termed “entanglement plateau” and was explored

in [10].3 The fact that generally SI 6= SĪ signifies that the BTZ spacetime is dual to a

mixed state in the boundary theory (in particular, to a thermal state).

3See also [11] for related work.
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Returning to the study of the Vaidya-BTZ case, we firstly note that, due to the fact

that the spacetime is topologically trivial, the homology constraint trivializes (at least for

the analogues of the k = 0 geodesics described above4). Thus, the disconnected surfaces

are absent in our case and we will always have SI = SĪ (signifying that the state is always

pure), because ∂I ≡ ∂Ī and the geodesics giving the HEEs will be homologous both to I
and Ī. So, from now on the discussion will be focused on a single interval I.

• Provided that t∞ ≥ ϕ
(k)
∞ (using an obvious notation in analogy with the above), we

find geodesics which lie entirely in the BTZ part v ≥ 0.5 Their lengths are given by:

`
(k)
BTZ = 2 ln(2r∞) + 2 ln

(
1

r+
sinh(r+ϕ

(k)
∞ )

)
. (2.8)

• Finally, for t∞ ≥ 0, there exist ETEBA geodesics that cross the shell. Using the

radial coordinate at which they encounter the shell rs (note that they are symmetric,

so there is only one such parameter) as a parameter, we find that these geodesics have:

ϕ∞(r+, rs, t∞) = ϕi∞(r+, rs, t∞) + ϕo∞(r+, rs, t∞), (2.9a)

where ϕi∞ is the angular extent inside the shell

ϕi∞(r+, rs, t∞) = tan−1

(
2(r+ − rsT )√

−4r2
+ − 4r+(r2

+ − 1)rsT + (1 + r4
+ + r2

+(2 + 4r2
s))T

2

)
,

(2.9b)

having set T ≡ tanh(r+t∞), and

ϕo∞(r+, rs, t∞) =
1

r+
tanh−1


√
−4r2

+ − 4r+(r2
+− 1)rsT + (1+r4

+ + r2
+(2+4r2

s))T
2

1− r2
+ + 2r+rsT


(2.9c)

is the angular extent of the geodesic outside the shell.

The length is given by the expression

`(r+, rs, t∞) = `i(r+, rs, t∞) + `o(r+, rs, t∞), (2.10a)

with

`i(r+, rs, t∞) = ln

(
(r2

+ + 1)T

(r2
+ + 1)T + 4rs(rsT − r+)

)
, (2.10b)

giving the length of the AdS part and

`o(r+, rs, t∞) = 2 ln(2r∞) + 2 ln

(
(r2

+ + 1)T + 2rs(rsT − r+)

r+(r2
+ + 1)

√
(1− T 2)

)
(2.10c)

giving the length of the BTZ part.

4More evidence for why k 6= 0 geodesics don’t come into play will be given in subsection 3.1.
5Note here that the same condition was found in the Poincaré case (see for example [19]), though only

for the solution with k = 0, since no geodesics wind around the black hole horizon in that case.
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Here we should also mention the following constraints, which we obtain by demanding

that the geodesics end on the boundary (and not at the singularity):

r2
+ − 1 + (r2

+ + 1)
√

1− T 2

2r+T
≤ rs ≤

r+

T
. (2.11)

In particular, the first inequality in (2.11) implies that

rs ≥
r2

+ − 1

2r+
, (2.12)

since 0 ≤ T ≤ 1. The second inequality in (2.11) trivializes when rs ≤ r+.6

From eqs. (2.7), (2.8) and (2.10c), we observe that the divergence in the length of the

geodesics appears as the term 2 ln(2r∞), in which, strictly, we should take the cut-off to

infinity r∞ → ∞. We will invoke the simplest regularization procedure, which involves

subtracting this term from the above equations. From now on, when we refer to the length

of the geodesics, we will always mean the regularized length.

Poincaré limit. A good consistency check would be to show that our solutions (2.9)

and (2.10) reproduce the known solutions in Poincaré coordinates, which were first found

in [16]. To go from global to Poincaré coordinates, effectively we need to “zoom in” on the

boundary and at the same time make the black hole large (so that it does not disappear).

That way, the boundary will look like R1,1 and the horizon will look planar. More precisely,

we need to scale
r → λr (⇒ r+ → λr+, r∞ → λr∞),

ϕ→ λ−1ϕ,

v → λ−1v (⇔ t→ λ−1t)

(2.13)

and then take the limit λ → ∞. This also has the effect of uncompactifying ϕ, since the

period becomes infinite. Then, the Vaidya-BTZ metric (2.1) takes the form

ds2 = −(r2 − θ(v)r2
+)dv2 + 2dvdr + r2dx2, (2.14)

in which we have conventionally denoted the uncompactified direction on the boundary

by x.

In this limit, (2.9) becomes

ϕP∞(r+, rs, t∞) =
2(r+ − rsT )

r+

√
Tr+(−4rs+r+T+4r2

sT )
+

1

r+
tanh−1

(√
Tr+(−4rs+r+T+4r2

sT )

−r+ + 2rsT

)
(2.15)

and (2.10) becomes

`P (r+, rs, t∞) = ln

(
4r2
∞T (r2

+T + 2rs(rsT − r+))2

r4
+(1− T 2)(r2

+T + 4rs(rsT − r+))

)
. (2.16)

We can now see that the solutions obtained in [16] are equivalent to (2.15) and (2.16) after

making the appropriate redefinitions.

6These constraints may be thought of as the analogue of the “critical extremal surface” of [21, 22]. They

describe the allowed parameter space for the geodesics to be anchored on the boundary, and also give a

significant amount of information about the behavior of certain physical quantities, as will be seen below.
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Figure 2. Density plot of ϕ∞(r+ = 3, rs, t∞). The continuous coloured curves are curves of

constant ϕ∞, as can be seen in the legend. The dotted curves “go around” the singularity, but they

have the same spatial endpoints as the corresponding continuous ones (on time slices specified by

t∞). The dotted-dashed black line, which corresponds to half of the spacetime boundary, can be

thought of as a limiting case, with two branches merging into one. The boundaries of the plot are

the thick black line t∞ = ν1(r+ = 3, rs) and the thin black line t∞ = ν2(r+ = 3, rs). The curve

ν2(3, rs) is a local minimum of ϕ∞ with t∞ constant, while µ(r+ = 3, rs) is a local maximum.

Graphical representation. In principle, we should now invert the expression for the

angle ϕ∞, (2.9), in order to find rs(r+, ϕ∞, t∞) for a fixed ϕ∞, and then replace it in the

expression for the length `(r+, rs, t∞), eq. (2.10). This way we can find the evolution of the

geodesic length for a fixed interval on the boundary, i.e. `(r+, ϕ∞, t∞). However, (2.9) can-

not be solved analytically for rs, so we will solve it numerically in the next section. We end

this section by examining some qualitative features of the geodesics in global Vaidya-BTZ.

In figure 2 we have made the contour plot of ϕ∞(r+, rs, t∞) for a black hole of radius

r+ = 3. The plot continues to rs → ∞ and t∞ → ∞ in an obvious way. The coloured

curves in the rs − t∞ plane are curves of constant ϕ∞. We have also emphasized the

boundaries of the plot, which can be read off from constraints (2.11) for general r+: the

thick black line is given by

t∞ = ν1(r+, rs) ≡
1

r+
tanh−1

(
2r+((r2

+ − 1)rs + (r2
+ + 1)

√
r2
s + 1)

1 + r4
+ + 2r2

+(2r2
s + 1)

)
, (2.17)
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Figure 3. In these plots, the time coordinate t runs upwards, and we have compactified the

infinite radial direction by plotting ρ ≡ tan−1 r. The outer cylinder is the boundary of Vaidya-

BTZ, the (null) cone is the incoming shell and the inner cylinder is the event horizon of the black

hole formed after the collapse. Here we have chosen r+ = 3 and we are only plotting the part with

t∞ ≥ 0. Note once again that t 6= to, and that is why the geodesics lying entirely in the BTZ part

of the spacetime do not lie on a constant-t slice. The green lines are reference lines of ϕ∞ = π on

the boundary (showing that the plots are rotated with respect to each other). The red lines mark

the endpoints of the boundary intervals in question, i.e. ϕ∞ = 11π
12 . Left : geodesics belonging to

the family with angular extent 11π
12 . Right : geodesics belonging to the family with angular extent

2π − 11π
12 . The blue geodesic appears first, which then splits into the “left branch” (black) and the

“right branch” (purple), as shown in the plot.

along which ϕ∞ = π
2 , and the thin black line is given by

t∞ = ν2(r+, rs) ≡
1

r+
tanh−1

(
r+

rs

)
, (2.18)

marking the time after which the geodesics belonging to a family with a particular angular

extent lie entirely in the BTZ part of the spacetime.

Let us now focus on a fixed interval of length 2ϕ∞ with ϕ∞ ≤ π
2 on the boundary.

We observe that, for t∞ → 0, we get rs → ∞ as expected. Then, as time goes by, rs gets

smaller, reaches a minimum, and grows again, until it reaches the boundary ν2(r+, rs) of

our plot, at which point the geodesic just touches the shell. After that time, the geodesics

belonging to that particular family lie entirely in the BTZ part of the spacetime. In

figure 3 (left) we can see this evolution for ϕ∞ = 11π
24 .

It is apparent from figure 2 that, at a specific time, a new family of geodesics will

come into play. It will have the same endpoints as the family of angular extent 2ϕ∞, but

it will have an angular extent of 2π − 2ϕ∞, i.e. it will “go around” the black hole. This

new family has two branches of geodesics, separated by the curve

t∞ = µ(r+, rs) ≡
1

r+
tanh−1

(
r+

2rs

)
, (2.19)
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namely the right one, with an evolution and BTZ saturation as the one discussed before,

and the left one, which tends asymptotically to the boundary curve ν1(r+, rs). A graphical

representation of the evolution of this family can be seen in figure 3 (right), again for

ϕ∞ = 11π
24 . Note that, for large enough intervals, the second family appears before the first

one has saturated to its BTZ form. Finally, it is interesting to observe that the geodesics

of the left branch accumulate quickly to the boundary curve ν1(r+, rs) regardless of the

interval size and that ν1 itself tends to the value
r2+−1

2r+
for large time t∞.

For geodesics connecting antipodal points on the boundary, the splitting into radial

and non-radial ones is just the degenerate case in which the right branch of the k = 1 family

coincides with a part of the k = 0 family. This happens at t|cusp = 1
r+

tanh−1

(
r+
√
r2++2

r2++1

)
,

when ν1(r+, rs) meets µ(r+, rs), at which point the curve rs(t∞) for constant ϕ∞ = π/2 is

not smooth. We thus understand that there is a spontaneous breaking of the Z2 reflection

symmetry.

In a similar fashion as above, higher-k families, containing geodesics which wind around

the black hole multiple times, will come into play as t∞ increases.

A slight difference that occurs for radii r+ < 1 is that the curve ν1(r+, rs) ends on the

t∞ axis at time 1
r+

tanh−1
(

2r+
r2++1

)
(which is always greater than t|cusp). This means that

the family of radial geodesics, as well as those belonging to the “left branch” of the higher

k families, eventually cease to exist (see also the discussion in [24]).

3 Holographic entanglement entropy and mutual information

3.1 Holographic entanglement entropy

The holographic entanglement entropy (HEE) of a boundary interval I at time t∞ is

given by the length of the minimal ETEBA geodesic anchored on ∂I at that specific time.

In principle, there is an infinite number of geodesics we should take into account, since

each family (which is labelled by k ∈ Z+, see eq. (2.8)), generically contains 2 candidate

geodesics, (see figure 3 (right)), apart from the family with k = 0 (see figure 3 (left)). We

expect that geodesics which wind around the black hole many times are longer than those

which do not, and, although it is hard to prove this directly, eq. (2.9), (2.10) and (2.8)

give strong indications that this is the case. We postpone this discussion momentarily, now

turning our attention to the k = 0 families which should give the HEE.

We can numerically invert (2.9) to find rs(r+, ϕ∞, t∞) and replace in (2.10) to express

the length as a function `(r+, ϕ∞, t∞). The resulting plots of the HEE for various interval

sizes are presented in figure 4, for r+ = 5 (top left), r+ = 1 (top right) and r+ = 1/4

(bottom). We observe that there is a smooth, monotonic interpolation between the AdS

value and the BTZ value, always increasing since eq. (2.7) and (2.8) imply that `i < `o for

all ϕ∞. As expected from (2.7), the initial value of the HEE for intervals of length π/2 is 0,

while it goes to −∞ as the length goes to 0.7 Importantly, the linear growth regime initially

7Note that we are only considering the constant part of the HEE, having ignored the term 2 log(2r∞)

which diverges quicker.
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predicted from general CFT arguments in [25], and verified from a holographic viewpoint

in [14]–[17], [20]–[22] and [26] (among others), is absent in our case. This is not surprising:

the derivation of [25] relied crucially on defining the 1+1 dimensional quantum field theory

on R1,1, as well as starting from a gapped theory before the quantum quench, and ending

with a CFT after the quench (but it was independent of the coupling). Physically, this

means that initially there were only short range correlations at a scale set by the inverse

mass gap, inside which the proposed quasiparticles that “carry the entanglement” are

produced, and then travel freely to infinity with a velocity v = 1. This toy model explains

the linear growth and saturation found in that case. In the context of AdS/CFT, initially

(i.e. for t∞ < 0), the boundary theory state is the vacuum of a 1+1 dimensional CFT,

since it is dual to pure AdS3, and so we start with long range correlations. Despite this

difference, the linear growth regime can also be derived from the gravity perspective by

using the separation of scales r+ϕ∞ � r+t∞ � 1 (see for example [22]). The effects of

this separation of scales will start appearing as r+ becomes larger, and indeed it can be

observed in figure 4 that a linear regime starts forming when r+ = 5.

Although the free quasiparticle model is adequate to capture the growth of the entan-

glement entropy of one interval after a global quench, it fails when the subsystem consists

of two or more disconnected components, as was noted in [27]: it predicts a non mono-

tonic evolution, while the holographic prescription and large c CFT calculations show that

it increases until it reaches its equilibrium value. The same contradiction arises for our

compact system: the periodic, sawtooth evolution predicted by the above toy model is in

sharp contrast to the plots in figure 4. We thus expect that figure 4 captures the essential

characteristics of global quenches in compact 1+1 dimensional quantum systems, at least

for large central charge c.8

A simple calculation of the behavior of the HEE at early and late times (see appendix B)

confirms the findings of [29]: for t∞ → 0 we find

`(ϕ∞, r+, t∞) = 2 ln(sin(ϕ∞)) +
r2

+ + 1

2
t2∞ +O(t3∞), (3.1)

while for t∞ → ϕ∞

`(ϕ∞, r+, t∞) = 2 ln

(
1

r+
sinh(r+ϕ∞)

)
−

2
√

2(r2
+ + 1)

√
tanh(r+ϕ∞)

3
√
r+

(ϕ∞ − t∞)3/2

+O((ϕ∞ − t∞)2).

(3.2)

k > 0 families. Returning to figure 2, we make the following observations which hold for

general r+: firstly, eq. (2.8) shows that `ko is an increasing function of k. Secondly, it can

be checked that the qualitative features of ϕ∞(r+, rs, t∞) agree with those of `(r+, rs, t∞);

in particular, the curve ν2 is a (local) minimum and µ is a maximum (for constant rs),

while the parameter space is of course bounded by ν1 and ν2. It can be shown by a direct

8Indeed, it was recently shown in [28] that a small enough central charge c leads to an HEE profile in

agreement with the quasiparticle model of [25], while in the holographic regime (c � 1, strong coupling),

the profile agrees with the one predicted using the “HRT prescription”.
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Figure 4. Holographic entanglement entropy of intervals of total length (from bottom to top)

π/6, π/3, π/2, 2π/3, 5π/6, π, for the cases r+ = 5 (top left), r+ = 1 (top right) and r+ = 1/4

(bottom), as a function of the time on the boundary t∞.

calculation that the length ` increases along curves rs(t∞) of constant ϕ∞, as well as along

ν1, ν2 and µ (see appendix B). In fact, along ν2 the length is

`(r+, t∞) = 2 ln

(
1

r+
sinh(r+t∞)

)
(3.3)

and along ν1 the length is

`(r+, t∞) = 2 ln

(
−1 + r2

+ + (1 + r2
+) cosh(r+t∞)

2r2
+

)
∼ 2r+t∞, (3.4)

for r+t∞ � 1. It is interesting to note here that in the r+ < 1 case, after ν1(r+, rs)

terminates, the length along the rs = 0 axis is also given by eq. (3.3) above.

In principle, it is possible that for some t∞, the geodesics belonging to the k = 0 and

k = 1 families exchange dominance, i.e. the minimal geodesics belong to the k = 1 family.

However, the allowed parameter space for this to happen can be significantly restricted by

the above observations. Firstly, note that we can show that the length increases along the

k = 0 families of fixed ϕ∞, as well as along the left and the right branch of k ≥ 1 families

(see appendix B). Also, since for constant t∞ the length is monotonically decreasing from

µ to ν2, we can see that when they first appear, the higher k families will never be shorter

than those belonging to lower k families, and this will remain so for the right branch

geodesics. This confirms the intuition that geodesics winding around the black hole are

always longer than those which don’t. Regarding the left branch, which contains geodesics

reaching deep inside the shell, we observe from figure 2 that they accumulate quickly near

the boundary curve ν1, which contains geodesics with lengths growing almost linearly with
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Figure 5. Time evolution of holographic entanglement entropy of k = 0 (blue), and the left

branch (black) and right branch (black, dashed) of k = 1 families of geodesics. The radius of the

black hole is r+ = 5 and the intervals on the boundary are of total length: π/2 (top left), 5π/6 (top

right), and π (bottom).

time t∞ (see eq. (3.4)). So we expect them to be even longer, although we cannot rule out

the possibility that something counterintuitive happens at the beginning of the left branch.

Similar arguments can be applied to families with general k ≥ 1.9

After an extensive numerical search of the parameter space, the general behavior is

found to agree with our intuition, and can be seen in figure 5. Thus, the saturation to

equilibrium is found to be continuous.

Rate of growth. An interesting quantity to compute is the dimensionless rate of growth

R(t∞) ≡ 1

seqA

dSI
dt∞

, (3.5)

introduced in [21] and [22] for a boundary region I in a general d-dimensional boundary.

In the above, A is the entangling surface of I, i.e. A = area(∂I) and seq is the equilibrium

entropy density. seq is defined such that the difference of the equilibrium entropy from the

vacuum entropy ∆Seq takes the form ∆Seq ≈ seqvol(I) for regions I with large effective

size Reff compared to the equilibrium scale 1/r+ set by the radius of the black hole. The

definition of the rate of growth was motivated from the fact that, in a very large class of

Vaidya-type geometries with non-compact boundary, there exists a universal “post-local-

equilibration linear growth” of the form

SI(t∞) = vEseqAt∞ + . . . , (3.6)

9Note also that in some cases the geodesics may even be excluded from the possibility of giving the HEE

due to the homology constraint.
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where vE is a shape-independent dimensionless quantity. This linear growth regime appears

when Reff � t∞ � 1/r+. When t∞ � 1/r+ a quadratic “pre-local-equilibration growth”

was observed.

Specializing to the Vaidya-BTZ case in Poincaré coordinates and translating to our

notation, we get: seq = r+,10 A = 2 (reflecting the fact that a boundary interval has 2

endpoints) and vE = 1 (a universal result for the linear growth regime in non-compact 1+1

dimensional CFTs). So we get

∆` =
r2

+

2
t2∞, r+t∞ � 1 (3.7a)

∆` = 2r+t∞, r+ϕ∞ � r+t∞ � 1 (3.7b)

and

R(2)(t∞) =
1

2r+

d`

dt∞
. (3.8)

We also note that extensivity for the equilibrium entropy is derived by the expression for

the length of a spacelike geodesic in BTZ spacetime: eq. (2.8) implies `BTZ ≈ r+(2ϕ∞)

when r+ϕ∞ � 1.

Natural arguments led the authors to suggest that R ≤ 1 for the class of systems they

studied and in appendix C it is shown that this holds in the Vaidya-BTZ case in Poincaré

coordinates. However, it is easy to see that we can have R(2) > 1 in the case of global

coordinates for small enough r+.11 For example, we can compute the rate of growth of a

boundary interval with ϕ∞ = π/2 at the time when the geodesics stop being radial: the

time derivative of eq. (3.4) evaluated at time t|cusp = 1
r+

tanh−1

(
r+
√
r2++2

r2++1

)
gives

R(2)|cusp =
1

2r+

2(r2
+ + 1)

√
r2

+ + 2

r2
+ + 3

. (3.9)

This implies that R(2)|cusp ≥ 1 for r+ ≤
√√

2− 1 < 1, while R(2)|cusp → 1 from below

quickly as r+ grows larger.

This does not imply any violation of causality, but only that the definition (3.8) ceases

to have a nice interpretation as the rate of growth of HEE when r+ is small enough. More

precisely, a small r+ cannot be interpreted as the entropy density seq if our system is

compact, since extensivity will fail even for the biggest interval that we may consider (we

necessarily have ϕ∞ . O(1)). Indeed, we see that the divergence at r+ = 0 comes from

the normalization 1/2r+. This also makes sense if we recall that the extensive behavior of

the equilibrium HEE comes from the part of the geodesic which “lies along the horizon”,

so a small radius black hole cannot have this effect in a compact boundary spacetime. On

the other hand, in the flat boundary case, r+ can always be interpreted as the entropy

density seq, since we can consider arbitrarily large boundary intervals, able to compensate

for the small r+. Geometrically, a spacelike geodesic anchored on a large enough boundary

interval will always contain a part lying along a flat, non-compact black hole horizon.

10In our analysis we consistently ignore the factor of 1/4GN , as explained in the introduction.
11Numerical calculation of R(2) for various black hole radii r+ and boundary interval sizes ϕ∞ is in

agreement with the following arguments.
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Figure 6. Time evolution of holographic mutual information for r+ = 5. Upper line: HMI of two

intervals of lengths π/2 and π/2 (left), and 3π/8 and 5π/8 (right), separated by intervals of length

π/24 (black), π/8 (purple), 7π/24 (red), 5π/12 (yellow) and π/2 (blue). Middle line (left): HMI of

two intervals of lengths 7π/16, separated by intervals of length π/24 (black), π/6 (purple), 7π/24

(red), π/2 (yellow) and 7π/12 (blue). Middle line (right) and lower line: HMI of two intervals of

lengths 9π/16 and 9π/16 (middle line right), 7π/16 and 11π/16 (lower line left), and 5π/16 and

13π/16 (lower line right), separated by intervals of length π/24 (black), π/6 (purple), 7π/24 (red),

3π/8 (yellow) and 7π/16 (blue). Note that some of the above lines are always 0.

3.2 Holographic mutual information

We now turn to the evolution of the holographic mutual information, where we can ob-

serve important deviations from the adiabatic approximation and a generalization of the

previous findings in the Poincaré case ([18] and [19]). All qualitatively different behaviors

are presented in figure 6 below, for r+ = 5 (without loss of generality).

We observe that the evolution of the HMI strongly resembles the flat boundary case in

the upper line and the left panel of the middle line in figure 6. More specifically, considering

only same length intervals and varying their separation, the classification of [19] includes
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4 different behaviors:

• the HMI is 0 at all times

• the HMI starts from 0, becomes positive for some time and ends at 0

• the HMI starts from a positive value, forms a “bump” and ends at 0

• the HMI starts from a positive value, forms a “bump” and ends at another positive

value, smaller than the initial.

Making the two intervals unequal has the effect of “flattening” the bump, but no other

interesting phenomena arise.12

These 4 cases appear in our study of the compact boundary as well, when the sum of

the two intervals is less than half of the total boundary. For instance, the middle left panel

depicts the HMI of two equal intervals of length 2φ∞ = 7π/16, the separation of which

increases from top to bottom (for a large enough separation the HMI is always vanishing).

This holds until both intervals are of length π/2 (see the upper left panel). Making the

two intervals unequal but keeping the same total length produces a deformation similar to

the Poincaré case (see the upper right panel).

Finite size effects seem to take over when the sum of the lengths of the two boundary

intervals exceeds π. When this sum is large enough, the final value of the HMI is greater

than the initial, as can be seen in the middle right panel and the lower line in figure 6 (which

show the evolution of the HMI for intervals of total length 9π/8, with their separation

increasing from top to bottom in each panel). Of course, the initial and final values are

dictated by the equilibrium formulae (2.7) and (2.8), so it is more interesting to observe

the interpolation between them.

For two intervals of length 9π/16, we observe that the bump is present when their sep-

aration is small enough, but at maximum separation we see a smooth monotonic increase.

This is a result of the effective degeneracy of the parameter space due to the symmetry

of our configuration, and it holds until one of the complementary intervals has the same

length as one of the intervals in question (see the red line in the middle right panel). After

this point the bump starts to appear again.

The lower line in figure 6 shows how the above considerations are altered when the two

intervals have different lengths. In particular, from the lower right panel we can understand

that the monotonic behavior appears when one of the complementary intervals becomes

equal to one of the intervals in question. When their separation is small, we see a quite

deformed bump. When their separation is large, the HMI decreases in the beginning and

then increases up to the saturation value. When their separation is large enough, the

HMI can even reach 0 and remain there for some time before it starts increasing. For

even more asymmetric intervals, the HMI can begin from 0 and then start increasing at a

specific time.13

12In [30] it was shown that the HMI of strip regions in higher dimensions obeys the same classification.
13See bottom right panel of figure 7.
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Figure 7. Time evolution of holographic mutual information for r+ = 5. Upper line: HMI of

two intervals of lengths 5π/16 and 13π/16 (left), and 3π/16 and 15π/16 (right), for complementary

intervals of lengths 7π/16 in both cases. Lower line: HMI of two intervals of lengths 9π/16 and

9π/16 (left), and 5π/16 and 13π/16 (right) for complementary intervals of length π/6 and 17π/24

in both cases. In each panel, the intervals in question are graphically represented by the thick

black parts of the total boundary circle. The vertical dashed lines mark the saturation times of

the different intervals that come into play in computing the HMI (note that in the top line and the

bottom left panel two of the dashed lines coincide because, in each case, two of the intervals are of

equal length).

Many of the above observations result from the compactness of the boundary. In order

to gain a clearer understanding of how this happens, some of the curves of figure 6 (plus

one not included) are presented in figure 7, together with a graphical representation of the

boundary intervals in question.

The behaviors presented in the top line in figure 7 can be understood as “comple-

mentary” to some of the behaviors shown in the middle left panel in figure 6 (the purple

and the red line, qualitatively). Indeed, having partitioned our system into four intervals,

the HMI of two of them equals minus the HMI of the complementary intervals (always

bounded by 0 from below), see eq. (1.1). More specifically, the intervals in the middle left

panel in figure 6 are of total length 7π/16 each, whereas in the top line in figure 7 the

complementary intervals are of total length 7π/16 each. These behaviors are absent in the

non-compact case, unless we consider infinite size intervals.

The behavior shown in the bottom left panel in figure 7 is also a result of the compact-

ness of the boundary. Although a bump is present, the biggest complementary interval is

slightly bigger than each of the two intervals in question, and so the HMI decreases a little
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before saturating at a value larger than its initial one (the fact that only the biggest com-

plementary interval contributes to the decrease can be seen from the vertical dotted lines,

which mark the saturation times of the various intervals). In contrast, in the non-compact

boundary case, the corresponding interval would be larger than the sum of the intervals in

question, resulting in a decrease of the HMI to a value always smaller than its initial one.

Now, the evolution shown in the bottom right panel in figure 7 is interesting because

no bump or “inverse bump” is present. As explained above, it can be understood as an

intermediate behavior between the cases in which the contribution of one of the intervals

in question cancels the contribution of one of the complementary intervals. Two stages

of increase are distinguishable in this plot, occurring between the dotted lines for the

following reason: the size of the small interval 5π/16 is bigger but comparable to the size

of the separation π/6 and the size of the big interval 13π/16 is slightly bigger than the size

of the separation 17π/24. In the beginning of the evolution we can ignore the two biggest

intervals because the corresponding geodesics lie mostly in the AdS part of the spacetime

and get deformed slowly; thus their contributions almost cancel each other. So, after the

smallest of the two complementary intervals has saturated (first dotted line), the main

contribution to the HMI comes from the interval of length 5π/16, leading to the first clear

stage of increase. In an analogous way we can understand the second stage of increase as

the competition between the remaining two intervals. We thus see that this is also a direct

result of the compactness of the boundary. Similar arguments can be applied to most of

the curves presented in figures 6 and 7.

Finally, from figure 6 we note that for any configuration, as we bring the two intervals

close together, the HMI seems to obtain a fixed shape, which is then only shifted to larger

values. This happens because, to first order, the HEE of a small interval is just a (negative)

constant (see equations (2.7), (2.8) and also figure 4).

3.3 Comparison with adiabatic approximation

Finally, let us compare these results with what we would get using the adiabatic approxi-

mation. From the boundary theory point of view, we slowly inject energy to the system, so

that it (approximately) stays in equilibrium during the whole evolution. Holographically,

this amounts to effectively making the infalling shell thick enough, so that spacetime looks

like a BTZ black hole with its radius slowly increasing in time. In other words, when

the mass function m(v) in eq. (2.2) is slowly increasing,14 we can approximate our fixed-v

spacetime slice with a BTZ spacetime slice, where r+ =
√
m(v). The spacelike geodesics

giving the HEE will then have their equilibrium forms, i.e. eq. (2.8), with the replacement

r+ =
√
m(v). This is equivalent to forcing our system to remain in equilibrium. In the

rest of this subsection, r+ will refer to the final black hole radius r+ = limv→∞
√
m(v) and

we will use m(v) to describe the intermediate stages of the evolution.

Pure AdS3 is obtained for m(v) = −1. As m(v) increases, a naked conical singularity

forms until m(v) = 0, while for m(v) > 0 an event horizon appears.15 It is natural to

14Note that the null energy condition does not allow m(v) to decrease.
15The Hawking-Page transition for 0 < m(v) < 1 does not concern us here.
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3.1

3.2
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I

t∞

13π/24, 13π/24

Figure 8. Time evolution of holographic mutual information among two intervals of lengths

13π/24 separated by an interval of length 2π/24, for r+ = 1. The continuous curve represents the

case of an infinitely thin shell, while the dashed curve represents the case of a shell with effective

thickness vt = 1.

consider the mass profile

m(v) =
r2

+ + 1

2
tanh

(
v

vt

)
+
r2

+ − 1

2
, (3.10)

smoothly interpolating between m = −1 and m = r2
+, with vt corresponding to the ef-

fective “thickness” of the shell. The limit vt → 0 reproduces the previous analysis of the

instantaneous quench.

In [9] the adiabatic approximation was checked against numerical calculations for r+ =

1 and vt = 1, and a very good agreement was observed for the HEE of intervals of various

sizes. This implies that we can compute the HMI using the adiabatic approximation with

the mass profile m(v) = tanh(v) and we are guaranteed to obtain trustworthy results for a

slow enough quench. So we are going to consider this case, with our analysis also persisting

to other values of r+.

Figure 8 confirms the expectations outlined in the introduction, in the specific case of

two intervals of lengths 13π/24 separated by an interval of length 20π/24: even though

the infinitely thin shell produces a “bump” in the HMI, the thick shell predicts a smooth

monotonic evolution. A similar monotonic evolution between the initial and final value of

the HMI was also confirmed for many other choices of intervals, in contrast to the variety

of different behaviors presented in figure 6.

In order to highlight the differences between the adiabatic and the non-adiabatic evo-

lution, both cases are presented in figure 9. In particular, the top left panel shows all of

the geodesics that come into play in the non-adiabatic evolution, from t∞ = −π/4 up to

t∞ = 2 (for clarity, the shell is not depicted). The top right panel shows the analogous

process using the adiabatic approximation. In the bottom panel we can see the projection

of the four intermediate geodesics on the ρ−ϕ plane, with the color coding indicating the

rate of change of the affine parameter s along the geodesic. We have imposed a cut-off for

the geodesics at r = 10.
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Figure 9. Upper line: the conventions are as in figure 3. Here, t∞ runs from −π/4 up to 2

and the black hole radius is r+ = 1. Neither the shell nor the black hole horizon is depicted. The

boundary is partitioned in 4 intervals of lengths 20π/24, 13π/24, 13π/24 and 4π/24, as indicated

by the dashed lines. The corresponding spacelike geodesics are presented for t∞ = −π/4, 0, 0.5, 1,

1.3 and 2, for the non-adiabatic (left) and the adiabatic case (right). Note that the black geodesics

seem to be discontinuous only due to numerical inaccuracies. Lower line: combination of ρ − ϕ
geodesic projections in the non-adiabatic (left part) and the adiabatic case (right part) separated

by the dashed line, for an interval of length 20π/24 at times t∞ = 0, 0.5, 1 and 1.3. The color

coding indicates the rate at which the affine parameter s changes along the geodesics: the quicker

the color changes, the faster s increases. More specifically, s increases by 2 as we go from red back

to red. Note that the geodesics get deformed in an outwards direction as t∞ increases, and that

the first two geodesics in the non-adiabatic case almost coincide. In all of the above plots, we have

imposed a cut-off for the geodesics at r = 10.

In figure 9 we can observe the geometric differences between the two processes, the

sharpest being the way the geodesics are “deformed”: in the non-adiabatic evolution we see

that the “perturbations” propagate from the endpoints towards the middle part, whereas in

the adiabatic evolution the singularity “pushes” the geodesics mainly at their middle part.

This produces a tension in the following sense: big intervals feel the effect of the singularity

formation early in their adiabatic evolution, since they reach deep inside the bulk geometry.
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In contrast, in the non-adiabatic case, the length increase is slow in the beginning because

the deformation starts from the UV (i.e. the bulk asymptotic AdS region). The length

increases significantly only when the shell has “collapsed enough” so that the geodesic can

feel the effect of the mass. This can be seen in figure 9 (lower line), taking into account

the fact that the next to last geodesics in both cases have the same length. In the non-

adiabatic case we observe that the gravitational pull of the shell makes the geodesic long

in the region close to the shell, compensating for the middle part which is in pure AdS.

Similar arguments apply to small intervals, too: in the instantaneous quench case the shell

passes through the geodesics in the beginning of the collapse, and so they quickly saturate

to their equilibrium form. In the adiabatic case, it takes them a long time to “feel” the

effects of the singularity, since they are close to the boundary.16

It is important to note that making the parameter vt smaller while still employing the

adiabatic approximation does not result in the HMI interpolating between the behaviors

presented in figure 8. This shows that the instantaneous quench cannot be modelled by an

adiabatic process, as expected from the above discussions. However, the fact that in both

cases there is only one family of geodesics which gives the HHE of a boundary interval

suggests that this should also hold in the numerical solutions of the cases with 0 < vt < 1.

We expect that, as vt grows from 0 to 1, the cusps at the places where a geodesic crosses the

infinitely thin shell get “smoothed out” gradually, until they look similar to the geodesics

in the adiabatic approximation. Accordingly, we expect the HMI to interpolate between

the dashed and the continuous curves in figure 8, with the bump starting to form at some

intermediate stage.

4 Conclusion and discussion

To sum up, in this paper we have explored the evolution of the holographic entanglement

entropy and the mutual information after a quantum quench with the dual description

of Vaidya-BTZ spacetime. Figure 6 presents a classification of the qualitatively different

behaviors of the HMI, confirming the behaviors that can be intuitively understood by the

arguments in subsection 3.2. We also highlighted the geometric differences between the

instantaneous and the slow quench.

We finish our work with a few comments and open questions. Firstly, it is interesting to

note that the recent proposal of [27] for calculating the (vacuum subtracted) entanglement

entropy using the “entanglement tsunami” picture of [21, 22] seems to be able to capture

many qualitative features of the HMI even in our compact boundary case. Although

some modifications are required in order to achieve good agreement (it only describes the

linear part of the HEE in the non-compact case, which is absent here), it provides strong

support for the usefulness of an “entanglement tsunami” toy model. The importance

16We should mention that the recent work [28] gave strong evidence that the entanglement scrambles

maximally in the holographic systems considered by the authors, and so the bump in the HMI is only a

result of the different saturation times of different intervals. Since the bump disappears in the adiabatic

approximation in the non-compact case as well, it can be inferred that this is what produces the tension

between the fast and the slow quench, as was also explained from a geometrical point of view above.
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of such a description was also hinted in our comparison of the thin shell and the thick

shell spacetimes: we saw that the “deformation” of the geodesics propagated from the

endpoints and the midpoint respectively, resulting in the different evolutions of the HMI.

Now, we expect that a slightly thick shell will give rise to a tsunami with a slightly thick

wavefront. However, this picture should break down as the thickness of the wavefronts

becomes comparable to the size of the intervals in question (which are even comparable to

the whole system in the compact case), and indeed the behavior observed in the adiabatic

approximation was quite different from what a tsunami picture would suggest.

Finally, we should mention that there are many generalizations of the simple Vaidya-

BTZ model that one could consider. Adding charge and angular momentum to the black

hole would be the most natural generalization, with the geodesic structure of the spacetime

becoming complicated enough to allow for novel phenomena in the time evolution of the

HMI. More importantly, a systematic study of higher dimensional Vaidya-type spacetimes

in global coordinates, along the lines of [22], would be highly desirable. This would illumi-

nate the possibility of observing genuinely finite size effects, invisible to the latter analysis.

Of course, a direct calculation of these processes with CFT techniques, analogous to those

recently developed for the non-compact case (see for example [31, 32]), would allow us to

obtain a spherical perspective on thermalization.
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A Solving the geodesic equations

Here we present the solution of the geodesic equations (2.4). First they must be solved

inside the shell (i.e. for v < 0), then outside (i.e. for v > 0), and finally the solutions must

be patched together on the shell v = 0, taking care to keep only those that end on the

boundary. Most of the following results were also obtained in [29].

Inside the shell. Recalling that we only consider symmetric geodesics, the energy should

vanish inside the shell, E = 0, and we can set the affine parameter s to be equal to 0 at

the minimum v point vmin. Then, for v < 0, the geodesic equations (2.4) become

L = (ri)2ϕ̇i, (A.1a)

v̇i =
ṙi

(ri)2 + 1
, (A.1b)

(ṙi)2 = −
(
L2

(ri)2
− 1

)
((ri)2 + 1). (A.1c)

The solution of (A.1c) subject to r(s = 0) = L is

ri(s, L) =

√
(L2 + 1) cosh(2s) + L2 − 1

2
(A.2)
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and the solution of (A.1b) subject to the same condition is

vi(s, L, vmin) = tan−1

(
ri(s, L)− L
1 + ri(s, L)L

)
+ vmin. (A.3)

Without loss of generality we can set ϕ(s = 0) = 0, and then (A.1a) implies that

ϕi(s, L) = tan−1

(
tanh(s)

L

)
. (A.4)

The parameter value s0 at which the geodesic encounters the shell v = 0, will actually give

us (half of) the length of the AdS part v < 0. Setting ri(s0, L) ≡ rs, from (A.3) evaluated

at s0 we get:

vmin = tan−1

(
L− rs
1 + rsL

)
. (A.5)

We can now invert (A.2) and (A.4) to find (half of) the proper length inside the shell

`i ≡ s0 and ϕ|shell as functions of the two parameters rs and L:

s0 =
1

2
log

(
2r2
s − L2 + 1 + 2

√
(r2
s + 1)(r2

s − L2)

L2 + 1

)
(A.6)

and

ϕ|shell = tan−1

(
1

L

√
r2
s − L2

r2
s + 1

)
. (A.7)

Outside the shell. In region v > 0, the geodesic equations take the form

L = r2ϕ̇o, (A.8a)

E = ((ro)2 − r2
+)v̇o − ṙo, (A.8b)

(ṙo)2 = E2 −
(

L2

(ro)2
− 1

)
((ro)2 − r2

+). (A.8c)

The relation E = − (r2++1)

2 v̇|v=0 (2.5), the continuity of v̇ across the shell and the explicit

expression for vi, eq. (A.3), give the energy in the region v > 0

E = −
(r2

+ + 1)

2rs

√
r2
s − L2

r2
s + 1

. (A.9)

Also, evaluating eq. (A.8b) at v = 0+, we find

ṙo|shell = −
E(2r2

s − r2
+ + 1)

(r2
+ + 1)

≡ β. (A.10)

We observe that the velocity of the geodesic just after it crosses the shell is positive when

r2
s > (r2

+ − 1)/2 and negative when r2
s ≤ (r2

+ − 1)/2. Setting now s = 0 at the point where
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the geodesic crosses the shell, i.e. ro(s = 0) = rs and vo(s = 0) = 0, we can solve (A.8c)

with the aid of eq. (A.9), to get

ro(s, α, β, r+, rs) =
1

2

√
−2α+ 2(2r2

s + α) cosh(2s) + 4βrs sinh(2s), (A.11)

where we set α = E2 − L2 − r2
+ for brevity.

Eq. (A.8c) determines the behavior of (ṙo)2, and we can thus find the necessary and

sufficient conditions which the geodesics should obey in order to end on the boundary:

• If there is no turning point, i.e. (ṙo)2 > 0 always, the geodesics should emerge from

the shell with a positive velocity, i.e. ṙo(s = 0) > 0. Eq. (A.8c) implies that the

minimum of (ṙo)2 is at
√
Lr+, taking the value E2 − (L − r+)2 there. This means

that when E2 > (L− r+)2, we necessarily have r2
s ≥ (r2

+ − 1)/2.

• If there is a turning point, i.e. (ṙo)2 = 0 at some point, this should be at a value r̃

of r with r̃ ≤ rs, so that the geodesics emerging from the shell with positive velocity

don’t get affected, while the ones emerging with negative velocity do change their

direction. In this case eq. (A.8c) implies that r̃ ≡
√
−α+

√
α2 − 4(Lr+)2/

√
2 ≤ rs.

Keeping these conditions in mind, we can proceed to solve eq. (A.8a):

ϕo(s, β, L, r+, rs, ϕs) =
1

r+
tanh−1

(
Lr+ tanh(s)

rs(rs + β tanh(s))

)
+ ϕ|shell. (A.12)

Similarly, the solution of eq. (A.8b) subject to vo(s = 0) = 0 is

vo(s, β, E, r+, rs) =
1

r+

[
tanh−1

(
Er+ tanh(s)

−r2
+ + rs(rs + β tanh(s))

)
+ tanh−1

(
r+(rs − ro(s))
r2

+ − rsro(s)

)]
.

(A.13)

We can now take the limit s→∞ in (A.13) and solve for the energy E in terms of r+,

rs and the time on the boundary t∞ ≡ vo(s→∞). Explicitly,

E =
(r2

+ + 1)(r+ − rsT )

T (2r2
s + r2

+ + 1)− 2r+rs
, (A.14)

where T ≡ tanh(r+t∞). So, through eq. (A.9) we can express L as a function of r+, rs and

t∞, as well as the quantities s0 and ϕ|shell. (Half of) the extent of the boundary interval

will be given by the s → ∞ limit of (A.12), while (half of) the proper length in the BTZ

part can be found by inverting eq. (A.11). Specifically, assuming r∞ to be a large radial

cut-off, we find

exp(2s∞) =
4r2
∞

2r2
s + α+ 2βrs

+O(r0
∞). (A.15)

Expressing all of the above as functions of r+, rs and t∞, we are led to the results (2.9)

and (2.10) presented in section 2.3. In an analogous way, the conditions for the geodesics

to end on the boundary boil down to eq. (2.11).
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B Early and late time evolution of holographic entanglement entropy

Here we present the calculations of subsection 3.1.

Firstly, it is convenient to make the change of variables rs ↔ a defined by:

rs =
r2

+ − 1 + (r2
+ + 1)

√
1− tanh(r+t∞)2

2r+ tanh(r+t∞)
(1− a) + a

r+

tanh(r+t∞)
. (B.1)

This way a interpolates between ν1 for a = 0 and ν2 for a = 1, while it simplifies the

constraints (2.11) to

0 ≤ a ≤ 1. (B.2)

So, we can express ϕ∞ and ` as functions of a in the following way:

ϕ∞(r+, a, t∞) = tan−1

( √
2(1− a) sinh(r+t∞/2)

r+

√
a(2− a+ a cosh(r+t∞))

)

+
1

r+
tanh−1

(√
2a(2− a+ a cosh(r+t∞)) sinh(r+t∞/2)

1− a+ a cosh(r+t∞)

) (B.3)

and

`(r+, a, t∞)=ln


(

(−3(a−1)2+(−3a2+4a+1)r2+) sinh
(

r+t∞
2

)
+((a−1)2+(a2+1)r2+) sinh

(
3r+t∞

2

))2
8r4+(−1 + (2− a)a(r2+ + 1) + (1 + a(−2 + a + ar2+)) cosh(r+t∞))

.

(B.4)

Fixing r+, we are looking for paths a(t∞) such that ϕ∞ in eq. (B.3) is constant. So,

forcing the time derivative of eq. (B.3) to vanish, we get the relation

a′ =

ar+ coth
(
r+t∞

2

)(
r2+−1+cosh(r+t∞)+a(2 + r2+−2 cosh(r+t∞))+2a2(r2++1) sinh

(
r+t∞

2

)2)
(a− 1)

(
r2+ + 1− cosh(r+t∞) + 2a(r2+ + 1) sinh

(
r+t∞

2

)2) ,

(B.5)

where we denote by prime the derivative with respect to t∞. Using (B.5) in the time

derivative of eq. (B.4) we find that along paths of constant ϕ∞

`′|ϕ∞ =
2r+(r2

+ + 1)(1− a) sinh(r+t∞)

r2
+−1+(r2

+ + 1)(2−a)a+ cosh(r+t∞) + (r2
+ + a(−2 + a(r2

+ + 1))) cosh(r+t∞)
.

(B.6)

Now, recalling the restriction (B.2), it can be shown that `′|ϕ∞ ≥ 0 for any t∞ > 0,

with the equality holding only when t = 0 or a = 1, i.e. when the geodesics start evolving

and when they reach their final BTZ form. This shows in particular that the time derivative

of the HEE is continuous.
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We can see in more detail the early and late time behavior of the HEE by expanding

perturbatively a(t∞) around the points t∞ = 0 and t∞ = ϕ∞. Specifically, we see that if

a(t∞) =
1

4 tanφ
t2∞ +

6 + (12 + r2
+) tanφ2

48 tanφ4
t4∞ +O(t5∞), (B.7)

then

ϕ∞(t∞) = φ+O(t3∞) (B.8)

and substituting eq. (B.7) in the length (B.4) and expanding in t∞, we find

` = 2 ln(sinφ) +
r2

+ + 1

2
t2∞ +O(t3∞), (B.9)

as was also stated in subsection 3.1.

Similarly, expanding a(t∞) in φ− t∞ we find

a(t∞) = 1−
sinh(r+φ)

√
2r+ tanh(r+φ)

cosh(r+φ)− 1

√
(φ− t∞)

−
2 sinh(r+φ)(−3r2

+ + (r2
+ + 1) tanh(r+φ))

3r+ cosh(r+φ)− 1
(φ− t∞) +O((φ− t∞)3/2),

(B.10)

so that

ϕ∞(t∞) = φ+O((φ− t∞)2). (B.11)

Substituting in (B.4) and expanding in φ− t∞ we find

` = 2 ln

(
1

r+
sinh(r+φ)

)
−

2
√

2(r2
+ + 1)

√
tanh(r+φ)

3
√
r+

(φ− t∞)3/2 +O((φ− t∞)2). (B.12)

An analogous analysis can be performed in the Poincaré case, resulting in similar

expressions with some slight changes in the coefficients of the above formulas. They can be

computed exactly by taking the Poincaré limit (2.13)), reproducing the Vaidya-BTZ case

of the general results of [22] in the early growth and saturation regimes.

C Rate of growth in Poincaré Vaidya-BTZ

Taking the Poincaré limit of the corresponding expressions in B, we obtain the time deriva-

tive of the length along paths of constant ϕ∞

`′P |ϕ∞ =
2r+(1− a) sinh(r+t∞)

(2− a)a+ 1 + (1 + a2) cosh(r+t∞)
, (C.1)

where now

rs = r+
1 +

√
1− tanh(r+t∞)2

2 tanh(r+t∞)
(1− a) + a

r+

tanh(r+t∞)
(C.2)

and so a is still bounded by 0 and 1. Now, since the derivative of eq. (C.1) with respect

to a at constant t∞ is always negative, we find that `′P |ϕ∞ is a decreasing function of a.

Thus, at every t∞ we have

R(2)P (t∞) =
1

2r+
`′P ≤ 1

2r+
`′P |a=0 = tanh

(
r+t∞

2

)
< 1. (C.3)

We conclude that, in the flat boundary case, the rate of growth R(2)P as defined above is

indeed bounded by the speed of light.
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