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An exact first integral of the full, unsteady, incompressible Navier-Stokes equations
is achieved in its most general form via the introduction of a tensor potential and par-
allels drawn with Maxwell’s theory. Subsequent to this gauge freedoms are explored,
showing that when used astutely they lead to a favourable reduction in the complexity
of the associated equation set and number of unknowns, following which the inviscid
limit case is discussed. Finally, it is shown how a change in gauge criteria enables a
variational principle for steady viscous flow to be constructed having a self-adjoint
form. Use of the new formulation is demonstrated, for different gauge variants of
the first integral as the starting point, through the solution of a hierarchy of classical
three-dimensional flow problems, two of which are tractable analytically, the third
being solved numerically. In all cases the results obtained are found to be in excellent
accord with corresponding solutions available in the open literature. Concurrently,
the prescription of appropriate commonly occurring physical and necessary auxiliary
boundary conditions, incorporating for completeness the derivation of a first integral
of the dynamic boundary condition at a free surface, is established, together with
how the general approach can be advantageously reformulated for application in solv-
ing unsteady flow problems with periodic boundaries. Published by AIP Publishing.
https://doi.org/10.1063/1.5031119

I. INTRODUCTION

In classical fluid mechanics, potentials have been used to great effect for the solution of problems
considered ideal or Stokes like. Bernoulli’s equation is obtained as a first integral of Euler’s equations
in the absence of vorticity and viscosity, if the velocity vector is taken to be the gradient of a scalar
potential. The so-called Clebsch transformation1,2 and related approaches allow for further extension
to flows with non-vanishing vorticity, resulting in a generalised Bernoulli equation complemented
with transport equations for the Clebsch potentials.3 For compressible flow involving volume vis-
cosity but with the shear viscosity neglected - a special case of the general form, see Scholle and
Marner5 - Zuckerwar and Ash4 obtained a potential-based Lagrangian.

Progress involving the full incompressible Navier-Stokes (NS) equations has been far less fruitful
and restricted to the limiting case of steady two-dimensional (2D) flow, the most recent contribution
being that of Scholle, Haas, and Gaskell6 who constructed an exact complex-valued first integral,
based on the introduction of an auxiliary potential field. This formulation embodies the classical
complex-valued Goursat representation for steady Stokes flow, allowing the streamfunction to be
expressed in terms of two analytic functions.7 While essentially a rediscovery of the result of Leg-
endre,8 along similar lines to the work of Coleman9 and Ranger,10 a hallmark of Scholle, Haas, and
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Gaskell’s6 particular derivation is that it provides a clear hint apropos generalisation to unsteady,
three-dimensional (3D) viscous flow: the attainment of which has hitherto remained out of reach,
providing the impetus for the present work.

Beginning with the transformation of existing 2D theory from a complex formulation to a real-
valued one, resulting in the required tensor form, the key aspect leading to the determination of a first
integral is recognition that it can be derived using a potential formulation similar to that employed
in the reduction of Maxwell’s equations. Via the astute use of gauge freedoms, a decrease in the
number of equations and unknowns is achieved as well as their transformation to a known, more
tractable, equation set in which the differential order of the non-linear terms is reduced. Although
consideration is focused on specific gauging of the tensor potential, in order to ensure the equation set
has a favourable structure, the theory itself is amenable to alternative development. Some of which
offer the prospect of a promising continuation of the research field; for example, it is shown that the
gauge freedoms can be utilised intelligently to establish a variational principle for steady viscous
flow. The limit case of inviscid flow is also addressed. Since the equations are derived in their most
general form, restrictions to special cases such as steady or Stokes flow follows naturally, leading to
further simplifications.

Boundary conditions, physical and auxiliary, in the framework of the above are provided, with
the condition essential to the investigation of 3D free-surface flow problems derived in the form
of a first integral of the usual dynamic boundary condition.6,7 As a whole the approach followed
together with the established first integral represents an important step forward; demonstrated via
the solution of three classical, yet diverse, fluid flow problems of differing complexity, two of which
are approached analytically and the other numerically. In all three cases it is found that starting from
the first integral, in deference to the NS equations, corresponding established solutions appearing in
the open literature are recovered exactly; in one case it provides new theoretical insight. Last but not
least, the time-evolution of periodically constrained unsteady flow is addressed as a standard scenario
often encountered in relation to the direct numerical simulation (DNS) of viscous flow; using Fourier
decomposition, the first integral formulation proves to be a very elegant approach leading to a reduced
set of ordinary differential equations (ODEs).

II. FIRST INTEGRAL DERIVATION

With reference to earlier work concerning the derivation and use of an exact complex-valued
first integral for 2D incompressible flow,7,11 a real-valued one for the full unsteady, incompressible
NS equations is formulated. Tensor calculus is employed, where vector fields are denoted by their
Cartesian components, e.g., the velocity field ~u by ui, i = 1, . . ., 3, and tensors such as that for stress
T by T ij. The Einstein summation convention is used throughout: ∂i denotes a spatial derivative with
respect to xi, i.e., ∂i = ∂/∂xi; ∂t is the time derivative; δij is the Kronecker delta function and εijk the
3D Levi-Civita symbol.

The beneficial use of potential fields, synonymous with Maxwell’s theory,12 underpins the present
approach: in that important and essential insight is gained for a similar treatment of the NS equations.
The latter together with the continuity equation, for the unsteady, incompressible flow of a Newtonian
fluid, dynamic viscosity η and density %, are given by

%∂tui + %uj∂jui =−∂i
[
p + U

]
+ η∂j∂jui, (1)

∂iui = 0, (2)

where p is the pressure and U is the potential energy density of an external conservative force.

A. Preliminaries and introduction of a streamfunction vector

Prior to deriving the 3D form of the first integral, consideration is given to Eq. (2), which is
fulfilled identically by introducing a vector potential Ψk for the velocity according to

ui = εijk∂jΨk , (3)
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known in the literature as a 3D generalisation of the 2D streamfunction13 that can be gauged by an
arbitrary gradient field, that is

Ψk −→Ψk + ∂k χ, (4)

leading, according to (3), to the same velocity field ui.
Within the present context, the above equation allows reformulation of the time derivative in

Eq. (1) as the divergence of a tensor field, namely, ∂tui = εijk∂t∂jΨk = ∂j

(
εijk∂tΨk

)
. In this way,

Eq. (1) can be re-written as

∂j

[
%εijk∂tΨk + %ujui − Tji + Uδji

]
= 0, (5)

with the stress tensor given by

Tij =−pδij + η
[
∂jui + ∂iuj

]
. (6)

B. First integral of the field equations

With reference to the above, it is clear that the momentum balance (5) is a partial differential
equation (PDE) of the same type as Eq. (2) but for a tensor rather than a vector field. Hence, by
introducing the tensor M lj as a new potential, in accordance with

%εijk∂tΨk + %uiuj − Tij + Uδij = εjlk∂lMki, (7)

Eq. (5) is fulfilled identically, the analogy with (3) being obvious. Since T ij is a symmetric tensor, it
is convenient to split the above equation into symmetric,

%uiuj − Tij + Uδij =
1
2

[
εjlk∂lMki + εilk∂lMkj

]
, (8)

and skew-symmetric parts; the latter, by multiplying (7) with εijn, is conveniently represented as a
vector equation,

2%∂tΨn = ∂nMll − ∂lMnl. (9)

Though not immediately obvious, the above rudimentary form of the first integral corresponds to
that of the 2D first integral;7,11 a more conveniently recognisable form is arrived at via the following
reformulation.

First, using the streamfunction (3), the stress tensor (6) can be written as

Tij =−pδij + η
[
εilk∂l

(
∂jΨk

)
+ εjlk∂l (∂iΨk)

]
,

and, hence, Eq. (8) as

%uiuj + (p + U)δij =
1
2

[
εjlk∂l (Mki + 2η∂iΨk) + εilk∂l

(
Mkj + 2η∂jΨk

)]
. (10)

The first order potential Mki enters the equations in combination with terms of the form 2η∂iΨk only.
Recognising this and following the procedure adopted by Marner, Gaskell, and Scholle11 for 2D flow,
the combination Mki + 2η∂iΨk can be rewritten as

Mki + 2η∂iΨk = εipq∂pakq + 2∂iϕk , (11)

which for vector fields is the well-known Maxwell decomposition into a divergence-free and a curl-
free part, the form of which is a generalisation toward tensors of second rank with vector and
tensor potential ϕk and akq, respectively. Inserting (11) into Eqs. (8) and (9) yields the following
relationships:

%uiuj + (p + U)δij =
1
2
εilkεjpq∂l∂p

(
akq + aqk

)
+ ∂i

(
εjlk∂lϕk

)
+ ∂j (εilk∂lϕk) , (12)

2%∂tΨn = ∂n∂k

[
εkqpapq + 2ϕk − 2ηΨk

]
− ∂k∂k

[
2ϕn − 2ηΨn

]
, (13)
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which can be simplified by making use of the gauge transformation (4). The latter has no effect on
Eq. (12) but Eq. (13) becomes

2%∂tΨn = ∂n

{
∂k

[
εkqpapq + 2ϕk − 2ηΨk

]
− 2%∂t χ

}
− ∂k∂k

[
2ϕn − 2ηΨn

]
. (14)

Since the gauge field χ can be chosen arbitrarily, the term εkqp∂kapq−2%∂t χ may be set to any value.
In particular, by choosing

χ =
1

2%

∫
εkqp∂kapqdt + χ0(xi), (15)

leads to

%∂tΨn = ∂n∂k
[
ϕk − ηΨk

]
− ∂k∂k

[
ϕn − ηΨn

]
, (16)

showing that the skew-symmetric part of the tensor potential can be eliminated and therefore apq

assumed symmetric from the very outset, leading ultimately to the following simplified form of
Eq. (12),

%uiuj + (p + U)δij = εilkεjpq∂l∂pakq + ∂i

(
εjlk∂lϕk

)
+ ∂j (εilk∂lϕk) . (17)

Second, the divergence ∂n(· · · ) of Eq. (16) leads to 2%∂t (∂nΨn)= 0, implying that ∂nΨn is
independent of time. Since χ0 in (15) is arbitrary, it can be chosen such that

∂nΨn = 0, (18)

analogous to the Coulomb gauge in Maxwell’s theory.12 This, together with the identity ∂n∂kϕk

− ∂k∂kϕn = εnij∂i

(
εjlk∂lϕk

)
enables Eq. (16) to be written in the form of an inhomogeneous diffusion

equation,

%∂tΨn − η∂k∂kΨn = εnij∂i

(
εjlk∂lϕk

)
, (19)

leading simultaneously to a reduction in the numbers of potentials due to the elimination of the
skew-symmetric part of apq.

Thus far, a first integral of the unsteady incompressible Navier-Stokes equations has been
obtained in the form of a tensor-valued field equation (17) and a vector-valued field equation (19)
constrained by (18), involving various unknown fields apq, Ψn, un, p, and ϕn. Although these remain
to be closed mathematically, even at this stage they serve as an insightful starting point for fixing the
remaining degrees of freedom in beneficial ways, that is, tuning the form of the equations. This is
explored in detail below.

III. CLOSURE VIA SELECTIVE GAUGE CRITERIA

In general, a gauge transformation of a given set of potentials replaces them by an equivalent
set of potentials leading to identical observables. Accordingly, such transformations can be used to
simplify corresponding field equations, for the potentials, with respect to their mathematical structure
as well as to the number of potentials. In the following, the gauge freedoms of apq and ϕn are analyzed
in detail. Obviously, by performing the operations

apq −→ apq + ∂pαq + ∂qαp, (20)

ϕn −→ ϕn + ∂nζ , (21)

for an arbitrary vector field αq and an arbitrary scalar field ζ , the field equations (17) and (19) remain
invariant. The above rules are utilised subsequently to establish bona fide gauging scenarios, ones
that lead favourably to a reduction of the order of the established first integral, Eqs. (17)–(19); in this
context, Scholle, Haas, and Gaskell6 showed that, by applying a particular gauge, a special form of
the first integral of NS equations for steady 3D flow can be obtained based on a minimum number of
three potential fields only.
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A. Convenient re-ordering of the first integral

Mixed derivatives of the form ∂k∂l(· · · ) are an inconvenience which can be avoided via a specific
gauge transformation. This is achieved as follows, beginning with the re-ordering of the first and the
second order derivatives within the double curl operation εiklεjpq∂k∂palq of Eq. (17). Since the product
of two Levi-Civita symbols can be expressed as

εiklεjpq = δijδkpδlq + δipδkqδlj + δiqδkjδlp − δipδkjδlq − δijδkqδlp − δiqδkpδlj,

the identity

εiklεjpq∂k∂palq =−∂k∂k

[
aij − allδij

]
+ ∂i∂kakj + ∂j∂kaki − ∂i∂jakk − ∂l∂kaklδij

=−∂k∂k

[
aij −

all

2
δij

]
+ ∂i∂k

[
akj −

all

2
δkj

]
+ ∂j∂k

[
aki −

all

2
δki

]
− ∂l∂k

[
akl −

ann

2
δkl

]
δij

results, giving rise to the following reformulation of Eq. (17):

%uiuj + (p + U)δij =−∂k∂k ãij + ∂iAj + ∂jAi − ∂kAkδij, (22)

in terms of the modified tensor potential ãij and an auxiliary vector field Aj defined as

ãijB aij −
akk

2
δij, (23)

AjB ∂k ãkj + εjlk∂lϕk . (24)

Note that from the form (22) of the tensor equation, the mathematical structure of the first integral
for 2D flows reported in Refs. 7 and 11 is recovered; see Appendix A.

Compared to its original form (17), Eq. (22) provides a partition of terms: in particular, all math-
ematical expressions with mixed derivatives of the form ∂k∂l(· · · ) occur exclusively as derivatives
of the auxiliary vector field Aj. Now, via a gauge transformation of the form (20), the vector field Aj

can be manipulated according to

Aj→Aj + ∂k∂kαj, (25)

which can be set to any arbitrary value by means of the proper choice of the gauge field αj. The
choice

Aj = 0 (26)

leads to the elimination of all mixed derivatives in (22) and to the simplified form

%uiuj + (p + U)δij =−∂k∂k ãij. (27)

The gauge condition (26) is reminiscent of the Lorenz gauge or Coulomb gauge in Maxwell’s the-
ory12 which similarly leads to the elimination of mixed terms in the associated field equations.
Moreover, via (26) the additional vector potential ϕj is eliminated from Eq. (27). By writing (26)
explicitly as εjlk∂lϕk = �∂k ãkj, ϕj can also be eliminated from Eq. (19), which accordingly takes the
form

%∂tΨn − η∂k∂kΨn =−εnkl∂k∂mãml (28)

of an inhomogeneous diffusion equation; cf. Eq. (19). Total elimination of ϕj from the entire set of
equations requires the divergence of the gauge condition (26), implying

∂j∂k ãkj = 0. (29)

The outcome is a favourably reduced equation set comprised of one each of a symmetric tensor
equation (27), a vector equation (28), and a scalar equation (29), in terms of the symmetric modified
tensor potential ãij = aij � akkδij/2, the streamfunction vector Ψn, and the pressure p.
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The key features associated with Eqs. (27)–(29) are as follows: (i) though the number of unknown
fields (one symmetric tensor, one vector, and one scalar) exceeds that of a comparable formulation
in primitive variables (one vector and one scalar), their favourably different structure off sets this;
(ii) in contrast to the original NS equations (1) which include the material time derivative, a non-
linear term involving first order velocity derivatives, Eq. (27) consists of a non-linear term which
depends directly on the velocities—Eq. (28) is simply a linear inhomogeneous diffusion equation,
not a nonlinear diffusion-convection equation—resulting in a reduction of the differential order of
the non-linearity.

1. Zero-viscosity limit

Since the zero-viscosity limit leads to a change of problem type, namely, from second order
PDEs (Navier-Stokes equations) to ones of first order (Euler’s equations), it is apposite to explore
this special case: applying the limit η → 0 to Eqs. (27)–(29), the following set of PDEs

∂k∂k ãij =−%uiuj − (p + U)δij, (30)

%∂tΨn =−εnkl∂k∂mãml, (31)

∂j∂k ãkj = 0, (32)

is obtained, containing still, second order derivatives of the tensor potential but only first order
derivatives of the streamfunction vector. Taking now the curl εpqn∂q of (31), in combination with
(30), (32), and (3), it follows that

%∂t

(
εpqn∂qΨn

)︸        ︷︷        ︸
up

=−
[
δpkδql − δplδqk

]
∂q∂k∂mãml = ∂m∂k∂k ãmp − ∂p ∂l∂mãml︸   ︷︷   ︸

0

=−∂m

[
%umup + (p + U)δmp

]
=−%

0︷︸︸︷
∂mum up − %um∂mup − ∂pp − ∂pU,

which is a full reproduction of Euler’s equations, proving that the PDE set (30)–(32) is a first integral
of Euler’s equations, as it should be. Also in this case, conservation of energy, momentum (in the
absence of external forces, U = 0), angular momentum, and helicity is fulfilled.13

2. Steady flow case

By employing the two gauge conditions (18) and (29), together with the well-known identity
∂k∂kΨn = ∂n∂kΨk − εnkl∂k

(
εlpq∂pΨq

)
and the definition of the streamfunction vector (3), Eq. (28)

takes the form %∂tΨn + εnkl∂k
[
ηul + ∂mãml

]
= 0. Hence, for steady flow, ∂tΨn = 0, the term in square

brackets can be written as the gradient of a scalar field, that is,

ηul + ∂mãml = ∂lΦ,

and by proper gauging of the tensor potential ãml, Φ can be set equal to zero, resulting in the
identity

ul =−
1
η
∂mãml, (33)

via which the streamfunction vector is eliminated. The remaining fields are the symmetric ten-
sor potential ãml and the pressure p, the field equations for steady flow being simply (27)
and (29).

B. Traceless form

Two of the scalar fields, namely, the pressure p and the trace of the tensor potential, can be
eliminated as follows. The trace of Eq. (27),

∂k∂k ãii =−%uiui − 3(p + U), (34)

enables direct calculation of the pressure from the other fields; cf. Bernoulli’s equation in potential
theory. Equation (34) can be used to express p + U in terms of the square of the velocity and second
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order derivatives of the tensor potential; this allows elimination of the pressure from Eq. (27), resulting
in the following traceless symmetric tensor equation:

∂k∂k āij =−%
[
uiuj −

ukuk

3
δij

]
, (35)

in terms of the traceless tensor potential

āij = ãij −
ãkk

3
δij. (36)

Equation (35) is supplemented by Eq. (28) which in terms of the traceless tensor potential reads

%∂tΨn − η∂k∂kΨn =−εnkl∂k∂māml. (37)

Together, expressions (35) and (37) comprise eight independent equations for the eight independent
components of āij and Ψn, which is the minimum number in the case of unsteady flow.

1. Steady flow case

As above, a traceless and therefore reduced version of the field equations is achieved by inserting
the identity (33) into (35) and taking (29) as the second equation, leading to six independent PDEs
for six unknown fields.

C. Self-adjoint form

Finding variational formulations for physical systems is beneficial with respect to a deeper under-
standing of the system and for establishing new solution methods, both analytical and numerical. In
fluid mechanics, two major routes have emerged: (i) the stochastic variational description correspond-
ing to the Lagrangian equations of motion in terms of material path lines, making use of a statistical
treatment of kinetic models; see, e.g., Refs. 14–17; (ii) in the framework of a field description involv-
ing the recovery of the NS equations by variation of an action integral in the classical deterministic
sense. In terms of the latter, it was Millikan18 who showed the non-existence of a Lagrangian, in terms
of the velocity ui, the pressure p, and their first order derivatives, that would enable the NS equations
to be written as Euler-Lagrange equations. An analogue situation is found in Maxwell’s theory, where
it is not possible to establish a Lagrangian in terms of an electric field Ei and magnetic flux density
Bi; however, a Lagrangian can be found in terms of a scalar potential ϕ and vector potential Ai. It
is the latter that has prompted the search for a variational description for viscous flow in terms of
potentials rather than velocity and pressure.

A variety of suggestions from different authors have appeared based on different potential for-
mulations: Zuckerwar and Ash4 used the Clebsch transformation1,2 to establish a Lagrangian for
flows with volume viscosity, while latterly Scholle and Marner5 consider shear viscosity in a similar
manner. A variational description based on a vector potential for the velocity was proposed by Ben-
dali, Dominguez, and Gallic.19 In the present work, the field equations are comprised of vector and
tensor potentials, posing the question as to whether they are self-adjoint. As demonstrated below for
the case of steady flow, a special gauge criterion is required to achieve a self-adjoint first integral of
the NS equations.

When the flow is steady, ∂tΨn = 0, Eq. (16) is fulfilled identically by writing

ϕn = ηΨn, (38)

the insertion of which in Eq. (12) and making use of the relationship akq + aqk = 2ākq + 2annδkq/3
from Eq. (36) lead to the following tensor equation:

%uiuj + (p + U)δij = εilkεjpq∂l∂pākq +
1
3

[
∂l∂lannδij − ∂i∂jann

]
+ η

[
∂iuj + ∂jui

]
, (39)

as the most general form of the first integral for steady flow, valid for any gauging of the tensor
potential. On elimination of the isotropic part and hence the pressure, its associated traceless form
results
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%
[
uiuj −

ukuk

3
δij

]
− η

[
∂iuj + ∂jui

]
=

[
εilkεjpq − εnlkεnpq

δij

3

]
∂l∂pākq +

1
3

[
∂l∂lannδij − ∂i∂jann

]
,

(40)
in terms of the traceless symmetric tensor potential ākq, the trace ann of the tensor potential, and the
velocity field ui = εinm∂nΨm. Suggesting a Lagrangian of the form

` = %āijuiuj +

[
2ηuj −

1
3
∂jann

]
∂iāij +

1
2
εilkεjpq∂lāij∂pākq + f (ui, ann, ∂iann) , (41)

which, because ui = εinm∂nΨm, is a function of the fields ākq, ann, and Ψm and their associated first
order derivatives, i.e., ` = `

(
ākq, ann, ∂nΨm, ∂pākq, ∂iann

)
. f remains to be specified, its significance

being discussed below.
Variation of the action integral,

δ

∫∫∫
V
`
(
ākq, ann, ∂nΨm, ∂pākq, ∂iann

)
dV = 0, (42)

with respect to āij results in the required Euler-Lagrange equations (40), whereas variation with
respect to Ψm and ann lead to

−2εmni∂n

[
%āijuj + η∂jāji +

1
2
∂f
∂ui

]
= 0, (43)

1
3
∂i∂jāij +

∂f
∂ann

− ∂i

(
∂f

∂(∂iann)

)
= 0. (44)

The meaning of Eqs. (43) and (44) becomes much clearer after a substitution and rearrangement of
terms: use of the definitions (23), (24), and (36), together with εjlk∂lϕk = ηuj following from (3) and
(38), leads to the identity

∂jāji =Ai − ηui +
1
6
∂iann, (45)

which, when substituted into (43) and (44), yields

εmni∂nAi = εmni∂n

[
ηui −

1
2η

∂f
∂ui
−
%

η
āijuj

]
, (46)

∂iAi = ∂i

[
3

∂f
∂(∂iann)

−
1
2
∂iann

]
− 3

∂f
∂ann

. (47)

Since any vector field Ai can be reconstructed from its divergence ∂iAi and its curl εmni∂nAi, the
reformulated Euler-Lagrange equations (46) and (47) are identifiable as an alternative gauge to that
given by (26), the latter leading to the favourable formulation developed at the end of Sec. III A for
steady flow having a reduced number of unknown fields.

Hence, for steady flow a choice is available between the use of gauge (26) leading to a reduced
set of fields and a favourable mathematical form of the field equations or gauge (43) and (44) supple-
menting Eqs. (40) to form a self-adjoint set of equations. The availability of a self-adjoint form can be
useful for particular problems, e.g., when trying to compute normal forms around singular bifurcation
points since it is necessary to make projections onto the eigenfunction of an adjoint problem; see the
work of Dijkstra et al.20 and references therein.

Via a proper choice of the yet unknown function f in (41), the gauge conditions (46) and (47)
are tuneable to some extent. For example, by choosing

f (ui, ∂iann)= η2u2
i +

1
12

(∂iann)2 , (48)

they simplify to
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εmni∂nAi =−
%

η
εmni∂n

(
āijuj

)
, (49)

∂iAi = 0. (50)

In principle any arbitrary choice of f is possible.
For completeness it is important to mention that for the case of 2D flow the first integral for-

mulation for steady, incompressible, and inviscid conditions proposed by He,21,22 with the aim of
establishing a variational formulation, features unresolved issues.23 By contrast, the variational prin-
ciple above recovers, for η → 0, the traceless version of the first integral of Euler’s equations for
steady flow.

IV. APPLICATION OF THE METHODOLOGY

Having derived the first integral and explored its versatility in detail and on different levels,
its use as a starting point to solve viscous fluid flow problems is now demonstrated. Not all of the
gauge variants described in Sec. III are analyzed further; rather the focus is on those formulated
in Sec. III A and the solution of three different classical, benchmark viscous flows, which exhibit
a hierarchy of sufficient complexity for such purposes—geometry, unsteadiness, non-linearity, and
inertia—and are solved analytically where analysis permits, otherwise numerically. The necessary,
and related, boundary conditions required to do so are outlined below.

A. Boundary conditions

Depending on the problem of interest, the physical boundary conditions involved have to be
formulated appropriately; a good example of this is the kinematic and dynamic boundary condi-
tions required to solve 3D free surface flow problems which, although not utilised, are included for
completeness.

1. Boundary conditions at solid walls, inlets, and outlets

Along solid walls, for the velocity field, the no-slip condition

ui =UBi (51)

has to be fulfilled, where UBi is the velocity of the boundary; inlet and outlet boundary conditions with
fixed velocity profile have the same mathematical form as does the specification and advantageous
use of symmetry and periodic boundary conditions. The latter type is discussed in more detail in
Sec. IV C 2.

2. Boundary conditions at a free surface

Although a free surface condition does not appear in the problems solved below, the required
attendant boundary conditions are provided. Their full derivation is given in Appendix B but in
summary two conditions must be fulfilled at a free surface: (i) the kinematic boundary condition, uini

= 0, related to mass conservation; (ii) the dynamic boundary condition related to stress equilibrium
at the surface. The latter can be described by the vector equation

Tijnj =σsκni, (52)

involving the stress tensor T ij, the normal vector ni, the surface tension σs, and the curvature κ. Using
the potential representation for the respective physical quantities, Eq. (52) can be reformulated into
a more convenient form—see Appendix B, where it is also shown that for steady flow a first integral
of the dynamic boundary itself can be constructed leading to a first order condition for the tensor
potential entries only

εikl

[
∂kalmdxm +

(
σsnk −

Uk

2

)
dxl

]
= 0, (53)

with the auxiliary functions Uk implicitly defined by (B11).
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3. Auxiliary boundary conditions

Irrespective of the physical boundary conditions present, e.g., walls or free surfaces, an insuf-
ficient number can be prescribed to ensure a uniquely solvable system. An example of this is flow
problems in which wall boundary conditions are prescribed on all parts of the boundary, as in the
case of the lid-driven cavity flow explored below. Exactly three velocity conditions exist, which is
less than the number of unknown fields. Even in the case of steady flow, where according to (33)
the velocity can be expressed via the divergence of the tensor potential, 6 independent fields have to
be considered—with at least three additional boundary conditions having to be formulated although
there are no more physical conditions to be fulfilled; these necessary additional boundary condi-
tions are subsequently termed auxiliary boundary conditions since they exert no influence on the
physics.

While the options available for specifying these auxiliary boundary conditions appear wide,
the two provided below are the only possible auxiliary Dirichlet conditions which appear
reasonable:

1. Let nj be the normal vector of the respective boundary. Then, three Dirichlet boundary conditions
are given by

ãijnj = 0. (54)

2. Let t(1)
i and t(2)

i be two orthogonal tangential vectors at the boundary. Then, three independent
Dirichlet boundary conditions are given by

t(1)
i ãijt

(1)
j = 0, (55)

t(1)
i ãijt

(2)
j = 0, (56)

t(2)
i ãijt

(2)
j = 0. (57)

The decisive criterion for the choice of auxiliary boundary conditions is that they must not contradict
the physically prescribed boundary conditions. For example, consider boundary conditions (54) for
a steady flow; by integration over the entire boundary ∂V of the system’s volume V and making use
of Gauss’s theorem the following identities

0=
∫∫
©
∂V

ãijnjdS =
∫∫∫

V
∂jãijdV =−η

∫∫∫
V

uidV (58)

are obtained, where relationship (33) has been utilised. Equation (58) implies the vanishing of the
global momentum, which is clearly an inadmissible physical restriction.

While the above example demonstrates the choice of auxiliary boundary conditions to be neither
arbitrary nor intuitive, heuristic considerations lead to conditions (55)–(57) which do not conflict with
the physics; although no proof is given at this point, the comparatively accurate numerical results
obtained below for the lid-driven cavity problem suggest the postulated conditions (55)–(57) to be
both admissible and sufficient to mathematically close the boundary value problem, at least in the
steady case.

B. Unsteady stagnation flow

Consider the unsteady non-axisymmetric stagnation flow, depicted in to Fig. 1, as a prototype
example embodying both inertia and time dependence. It is assumed that

~u= xf ′(z, t)~ex + yg′(z, t)~ey −
[
f (z, t) + g(z, t)

]
~ez =∇ ×

[
yg(z, t)~ex − xf (z, t)~ey

]
,

where the prime denotes differentiation with respect to z. Accordingly, the continuity equation (2)
is fulfilled identically and in which case the velocity can be obtained from a streamfunction vector,
according to Eq. (3), with

~Ψ= yg(z, t)~ex − xf (z, t)~ey, (59)
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FIG. 1. Schematic of the non-axisymmetric, unsteady stagnation flow problem.

and note also that the streamfunction vector fulfils the Coulomb gauge (18). The traceless form of
the first integral is utilised, Eqs. (35) and (37); written in component form Eq. (35) reads

−%−1
∆ā11 =

2
3

x2f ′2 −
1
3

y2g′2 −
1
3

(f + g)2, (60)

−%−1
∆ā22 =

2
3

y2g′2 −
1
3

x2f ′2 −
1
3

(f + g)2, (61)

−%−1
∆ā12 = xyf ′g′, (62)

−%−1
∆ā13 =−x(f + g)f ′, (63)

−%−1
∆ā23 =−y(f + g)g′, (64)

while Eq. (37) gives

−y%
[
ġ − νg′′

]
= ∂1∂2ā13 − ∂1∂3ā12 + {∂2∂2 − ∂3∂3}ā23 + ∂2∂3[ā33 − ā22], (65)

x%
[
ḟ − νf ′′

]
= ∂1∂3[ā11 − ā33] + ∂3∂2ā12 − ∂1∂2ā23 + {∂3∂3 − ∂1∂1}ā13, (66)

0= {∂1∂1 − ∂2∂2}ā12 + ∂1∂2[ā22 − ā11] + ∂1∂3ā23 − ∂2∂3ā13, (67)

the dot above a symbol, here and subsequently, denoting differentiation with respect to time.
The boundary conditions at z = 0 are the usual no-slip/no-penetration conditions f ′(0, t) = g′(0, t)

= 0 and f (0, t) = g(0, t) = 0. Since stagnation flows are classified as boundary layer flows,24 they have
to match the associated potential flow as z → ∞. Accordingly, the tensor potential for an inviscid
boundary layer flow has to be constructed a priori.

1. Associated potential flow

In the case of 3D stagnation flow, the corresponding potential flow is given24 by f (z) = a1z, g(z)
= a2z, fulfilling the no-penetration condition f (0) = g(0) = 0, but not the no-slip condition. For the
construction of the associated traceless tensor potential, Eqs. (60)–(64) have to be solved. One such
particular solution is given by

āp
11 =−

%

6

[
2a2

1x2z2 − a2
2y2z2 −

1
6

(3a2
1 + 2a1a2)z4

]
, (68)

āp
22 =−

%

6

[
2a2

2y2z2 − a2
1x2z2 −

1
6

(3a2
2 + 2a1a2)z4

]
, (69)

āp
12 =−

%

2
a1a2xyz2 , āp

13 =
%

6
a1(a1 + a2)xz3 , āp

23 =
%

6
a2(a1 + a2)yz3, (70)
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which fulfils Eq. (67), but not Eqs. (65) and (66); a superposition of the form āij = āh
ij + āp

ij with∆āh
ij = 0

is required in order to fulfil all of the equations. By choosing āh
12 = āh

13 = āh
23 = 0 and

āh
11 =A1

[
x4 + z4 − 6x2z2

]
, āh

22 =A2

[
y4 + z4 − 6y2z2

]
,

Eqs. (65) and (66) results in 0= [48A2 + %a2
2]yz , 0=−[48A1 + %a2

1]xz, implying A1 =−%a2
1/48 and

A2 =−%a2
2/48; the other equations are not affected. Hence, the resulting solutions of the homogeneous

equations read

āh
11 =−%

a2
1

48

[
x4 + z4 − 6y2z2

]
, (71)

āh
22 =−%

a2
2

48

[
y4 + z4 − 6y2z2

]
. (72)

2. General case

Assume the following analogous form of the traceless tensor potential:

āp
11 =−%

[
F110(z, t) + x2F111(z, t) + y2F112(z, t)

]
,

āp
22 =−%

[
F220(z, t) + x2F221(z, t) + y2F222(z, t)

]
,

āp
12 =−%xyF12(z, t) , āp

13 = %xF13(z, t) , āp
23 = %yF23(z, t),

for the particular solution of (60)–(64), while remembering that as above the flow is of a boundary-
layer type. In order to fulfil the matching condition, this particular solution has to be supplemented
by Eqs. (71) and (72). In this way, Eqs. (60)–(64) are reduced as follows:

F ′′110 + 2F111 + 2F112 =−
1
3

(f + g)2 , F ′′111 =
2
3

f ′2 , F ′′112 =−
1
3

g′2, (73)

F ′′220 + 2F221 + 2F222 =−
1
3

(f + g)2 , F ′′221 =−
1
3

f ′2 , F ′′222 =
2
3

g′2, (74)

F ′′12 = f ′g′ , F ′′13 = (f + g)f ′ , F ′′23 = (f + g)g′, (75)

written in terms of functions F110, F111, F112, F220, F221, F222, F12, F13, F23. By inserting the above
solution into Eqs. (65)–(67), it is found that Eq. (67) is fulfilled identically, whereas Eqs. (65) and
(66) yield

ġ − νg′′ = a2
2z + F ′′23 − F ′12 − 4F ′222 − 2F ′112 = a2

2z + gg′ +
∫ [

fg′′ − 2g′2
]

dz, (76)

ḟ − νf ′′ = a2
1z + F ′′13 − F ′12 − 4F ′111 − 2F ′221 = a2

1z + ff ′ +
∫ [

gf ′′ − 2f ′2
]

dz, (77)

which, upon taking their derivative with respect to z, leads to a coupled set of third order equations
for the functions f (z, t) and g(z, t), namely,

ġ′ − νg′′′ = a2
2 − g′2 + (f + g)g′′, (78)

ḟ ′ − νf ′′′ = a2
1 − f ′2 + (f + g)f ′′. (79)

These have to be solved numerically; the special case of a steady flow, ḟ = ġ = 0, results in a set of
ODEs, as reported and solved by Howarth.25

C. Flow within a cubic domain
1. Steady flow within a lid-driven cavity

The case of stationary viscous flow in a square-sided 3D lid-driven cavity of equal edge length, L,
and a constant upper lid velocity of U0

26 is explored through the numerical solution of the primitive
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variable form of the first integral for steady flow tuned as per the corresponding gauge criterion of
Sec. III A—a key feature being that the essential equation (27) is devoid of mixed derivatives, with
the consequent benefit it simplifies and accelerates the use of iterative solvers. The equations to be
solved, namely, (27), (29), and (33), when non-dimensionalised in terms of L and U0, read

∂k∂k ãij + Re uiuj + (p + U)δij = 0 in Ω, (80)

∂l∂k ãkl = 0 in Ω, (81)

−∂k ãkl = ul in Ω, (82)

where Re= %U0L
η is the Reynolds number.Ω in Eq. (82) denotes the closed set of the solution domain

Ω = [0,1]3 with boundary ∂Ω (the moving lid lying in the plane z = 1) and indicates that (82) is
valid both in the inner domain defining the velocities from the known tensor potential entries and
at the boundary where the velocities are prescribed in the form of Dirichlet conditions, that is, by
ul = gl on ∂Ω for appropriate gl. Equations (80)–(82) are complemented by the three auxiliary
Dirichlet boundary conditions (55)–(57) for the tensor potential entries in order to obtain a uniquely
solvable equation set: although this remains to be proven formally, the numerical results indicate the
above system to be mathematically closed.

Newton’s method is employed to generate a sequence of n ∈N0 linearised systems based on the
following steps:

Step 1:

∂k∂k ã(n+1)
ij − Re

[
u(n)

i ∂k ã(n+1)
kj + u(n)

j ∂k ã(n+1)
ki

]
+ (p(n+1) + U)δij =Re u(n)

i u(n)
j in Ω, (83)

∂l∂k ã(n+1)
kl = 0 in Ω, (84)

−∂k ã(n+1)
kl = gl on ∂Ω. (85)

Step 2:
u(n+1)

l B−∂k ã(n+1)
kl in Ω, (86)

in which (82) has been used to replace the velocities in (83) as primary unknowns with index (n + 1);
the velocities u(n)

i in (83) are assumed known from the previous iterative step having been calculated
from the tensor potential via (86). As such, the above equations only involve the six tensor potential
entries and the pressure as independent primary variables, with the velocities appearing as secondary
variables. Iteration starts from n = 0 where the unknown fields are initialised with respect to the linear
Stokes flow solution.

For demonstration purposes, the cubic nature of the flow field is well suited to solution via a
finite difference methodology and structured Cartesian grid system which is the approach adopted.
In doing so the well-known oscillatory pressure instability problem linked with the discretisation of
flow problems in terms of primitive variables is avoided by employing a velocity-pressure staggered
grid arrangement27 which is extended to encompass the remaining unknowns, namely, the tensor
potential entries, in a consistent way. Accordingly, central difference stencils and therefore the discrete
equations are well defined everywhere. Although the numerical scheme itself is not the focus of the
present work, as it is the first such implementation of the same in the present context the details
are summarised in Appendix C. The above equations are similarly amenable to solution utilising,
for example, a more complex irregular grid structure and finite element methodology that satisfies a
compatibility condition between solution spaces when employing mixed finite elements.28 Solutions
are presented for three different Reynolds numbers up to and including Re = 1000.

Figure 2 shows the results obtained with a grid containing 30 × 30 × 30 points for Re = 100,
400, and 1000 which prove to be in very good agreement with those of Ding et al.,26 Ku, Hirsh,
and Taylor,29 and Jiang, Lin, and Povinelli.30 Figure 2(d) shows selected stream tubes for Re = 400,
while Fig. 3 visualises the corresponding tensor potential entries. Identification of the diagonal tensor
entries as volume quantities and the off-diagonal entries as edge quantities (see Appendix C), when
compared with the stress discretisation by Graves,31 suggests a close relationship between the tensor
entries and the stresses which opens up the opportunity to calculate the stresses from aij, an option
that would justify the additional effort in calculating the tensor entries; this is left as a topic for
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FIG. 2. 3D lid-driven cavity flow. Centerline velocity profiles for ux and uz in the plane intersections x = y = 0.5 and y = z =
0.5, respectively, for Reynolds numbers of (a) 100, (b) 400, and (c) 1000; the results from the present work are shown as solid
red curves and compared to those of Ding et al.26 shown as black crosses. (d) shows selected stream tubes for the case Re =
400, the arrow indicating the direction of motion of the upper moving lid.

future investigation. Finally Fig. 4 displays the projected streamlines on the three mid-planar cross
sections for Re = 100, 400, and 1000; the results are consistent with, for example, those of Wang
et al.32

2. Unsteady flow and periodic boundary conditions

In relation to the DNS of viscous flow problems using a primitive variable formulation of the
governing NS and continuity equations, the use of periodic geometries/domains—ones with bound-
aries that are periodic in each and every coordinate direction—can prove particularly advantageous.
The pressure can be readily eliminated from the NS equations leading to a Poisson equation for the
pressure which lends itself well to solution using pseudospectral methods since the pressure at the
boundaries is easily specified. It results in the NS equations preserving the divergence free nature of
the velocity field, as shown theoretically by Frisch33 for what he equivalently terms a 3D periodicity
cube.

Within the framework of the first integral, the problem of having to solve a Poisson equation
for the pressure can be avoided elegantly beginning with its traceless form, Eqs. (35) and (37), from
which the pressure field is completely absent.

Consider periodic boundary conditions for the stream function vector written as

Ψ (x1 + L, x2, x3, t)=Ψ (x1, x2 + L, x3, t)=Ψ (x1, x2, x3 + L, t)=Ψ (x1, x2, x3, t) ,
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FIG. 3. Visualisation of the six tensor potential entries for the 3D lid-driven cavity flow problem, for the case Re = 400: (a)
a11; (b) a22; (c) a33; (d) a12; (e) a13; (f) a23. The arrow indicates the direction of motion of the upper moving lid.

together with multi-index notation for Greek letters, e.g., λ = (λ1, λ2, λ3) ∈Z3 with λ2 = λpλp

= λ2
1 + λ2

2 + λ2
3, followed by adopting a Fourier representation for both the stream function vector and

the traceless tensor potential, namely,

Ψi(xj, t)=
∑
λ

Ψ
λ
i (t) exp

(
ik0λjxj

)
, (87)

āpq(xj, t)=
∑
λ

āl
pq(t) exp

(
ik0λjxj

)
+ ā0

pq(t)xmxm, (88)
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FIG. 4. Streamline projections onto fixed planes for flow in a 3D lid-driven cavity at different Reynolds numbers. The planes
y = 0.5, x = 0.5, and z = 0.5 are displayed from left to right; the Reynolds numbers concerned are Re = 100 (top), 400 (middle),
and 1000 (bottom). The arrow indicates the associated direction of motion of the upper moving lid.

with k0 = 2π/L, fulfilling periodic boundary conditions for the stream function vector automatically.
The velocity field (3) then takes the form

ui =
∑
λ

ik0εijnλjΨ
λ
n︸        ︷︷        ︸

uλi

exp
(
ik0λjxj

)
. (89)

Note that, the summation convention adopted for multi-indices is that summation is invoked only if
the entire index, e.g., λ, occurs twice in a product; a single component of it, e.g., λi, acts as a factor
only and therefore does not affect summation.

Next, from Eqs. (35) and (37), the following set of equations result:

6ā0
ij =−%


u−µi uµj −

u−µp uµp
3

δij


, (90)

−k2
0λ

2āλij =−%

uλ−µi uµj −

uλ−µp uµp
3

δij


, (91)

%Ψ̇λn + ηk2
0λ

2
Ψ
λ
n = k2

0εnpqλpλmāλmq. (92)

Note that via Eq. (91) the coefficients of the traceless tensor potential can be expressed in terms
of the coefficients of the velocity. Hence, all occurrences of āλmq in Eq. (92) can be replaced,



043101-17 Scholle, Gaskell, and Marner J. Math. Phys. 59, 043101 (2018)

leading to

%Ψ̇λn + ηk2
0λ

2
Ψ
λ
n =

%

λ2
εnpqλpλm


uλ−µm uµq −

uλ−µk uµk
3

δmq



=
%

λ2


εnpqλpuµq λmuλ−µm − εnpqλpλq︸     ︷︷     ︸

0

uλ−µk uµk
3


.

In addition, making use of the following identities

εnpqλpuµq = ik0εnpqεqjkλpµjΨ
µ
k = ik0

[
δjnδkp − δjpδkn

]
λpµjΨ

µ
k = ik0

[
λpµnΨ

µ
p − λjµjΨ

µ
n

]
,

λiu
λ−µ
i = ik0εijqλi(λj − µj)Ψ

λ−µ
q =−ik0εijqλiµjΨ

λ−µ
q

leads to

%Ψ̇λn + ηk2
0λ

2
Ψ
λ
n −

%k2
0

λ2

[
λpµn − λk µkδnp

]
εqijλiµjΨ

λ−µ
q Ψ

µ
p = 0 (93)

and therefore a set of quadratic equations for the coefficient functions Ψλn (t). By truncating the set of
equations after a finite number of modes corresponding to the values of the multi index λ, it can be
solved numerically, to reveal the time evolution of the flow for a given initial state, e.g., a Taylor-Green
vortex,33 a topic of fundamental interest and for future exploration.

The attractiveness associated with periodic geometries has been mirrored in the interest
shown in the use of pseudospectral methods for the solution of 3D viscous flows in non-periodic
ones based on a primitive variable formulation - see, for example, the work of Ku, Hirsh and
Taylor29 - having at least one coordinate direction in which the boundaries are not periodic. The
key related issues of deriving equations and boundary conditions for the pressure there which ensure
satisfaction of the divergence free constraint on the velocity are comprehensively discussed by Tuck-
erman34 with particular emphasis on the influence matrix method. However, as is rightly pointed
out in the same article, the solution of a Poisson equation for the pressure can be avoided com-
pletely by solving for the governing equations for the velocity and pressure fields together in a
manner similar to the numerical scheme outlined in Appendix C, augmented with a suitably accurate
temporal discretisation of the relevant terms in the governing equations. The same is clearly true
if a solution based on a primitive variable formulation is preferred for unsteady flow in a periodic
geometry.

D. Steady Stokes flow

The well-known problem of the broadside translation of a thin disc through a viscous fluid,35 is
considered. The unit disc D= {x ∈R3 | (x2

1 + x2
2)1/2 ≤ 1 , x3 = 0} is located in the plane P= {x ∈R3 | x3

= 0} and a constant disc velocity U0 is assumed so that a steady unbounded and decaying velocity
field (33) under conditions

u3(x)=U0 , x ∈D, and ∂3u3(x)= 0 , x ∈ P \ D (94)

is sought.
By assuming the potential energy density U to be zero and the vector A to be defined by

Al =−ηul − ∂kD(ã)kl = ∂k ãkl − ∂kD(ã)kl, (95)

with D(ã) denoting the diagonal part of the tensor ã, then, from (27), it follows that ∂k∂kAl = 0.
The remaining gauge freedoms in (33) signify ã11 = ã22 = ã33, reducing the number of unknown
fields from six to just four. As a consequence, using (29), the divergence of (95) results in
∂lAl =−∂l∂kD(ã)kl =−∂k∂k ã11 = p, providing a useful guide for the construction of a particular
solution ã11, which is that the relationship

∂k∂kxlAl = xl∂k∂kAl + 2∂lAl = 2p (96)

facilitates the following decomposition involving an arbitrary harmonic field χ: ã11 =−
1
2 xlAl + χ.

What remains to be found is an overall solution procedure for obtaining four harmonic unknown
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fields Al and χ for which the continuity equation is fulfilled identically and the velocity components
are given by

ul =−
1
η

[
Al + ∂l

(
χ −

1
2

xkAk

)]
. (97)

The pressure can be reconstructed subsequently via p= ∂lAl. Equation (97) is equivalent to the
Papkovich-Neuber representation known from elasticity theory36 which generally allows for the ana-
lytical solution of various axis-symmetric problems as, for instance, shown by Rudge,37 Woodhouse
and Goldstein,38 or Tran-Cong and Blake;39 moreover, it is closely related to the Clebsch transfor-
mation.1,2,40 The above considerations lead to the representation of Papkovich and Neuber directly
as a special case of the first integral of the NS equations, illustrating the elegance of this generalised
theory.

Inspection of the flow geometry and imposition of the missing azimuthal dependency in the
solution being sought lead to a reduced approach, that is, Eq. (97) withA1 =A2 = χ = 0; a manageable
task utilising potential theory which can conveniently be written in cylindrical coordinates as

∆A(r, z)=
∂2A
∂r2

+
1
r
∂A
∂r

+
∂2A
∂z2
= 0 and

{
A=−ηU0 , z= 0 , r ≤ 1
∂A
∂z = 0 , z= 0 , r > 1

(98)

involving ABA3, rB
√

x2
1 + x2

2 , and zB x3. Problem (98) can be solved by either Hankel transform

methods, see, e.g., the work of Tanzosh and Stone35 and references therein, or through a Green’s
function representation combined with a clever reformulation of the fundamental singularity as pro-
vided by Ramm and Fabrikant.41 A Hankel transform involving Bessel functions of the first kind
leads to

Hν[A]=
∫ ∞

0
ArJν (tr) dr , Hν[∆A]=

(
∂2

∂z2
− t2

)
Hν[A], (99)

resulting in Hν[A]=A(t) exp(−tz) + B(t) exp(tz) with A and B independent of z. Symmetry consider-
ations enable the calculation to be restricted to z > 0, giving B = 0 due to the decay condition. After
performing an inverse Hankel transform

A(r, z)=H−1
ν [A(t) exp(−tz)]=

∫ ∞
0

A(t)t exp (−tz) Jν (tr) dt, (100)

the boundary conditions on the right-hand side of (98) become

A(r, 0)=
∫ ∞

0
A(t)tJν (tr) dt =−ηU0 , r ≤ 1, (101)

∂A
∂z

(r, 0)=−
∫ ∞

0
A(t)t2Jν (tr) dt = 0 , r > 1, (102)

which, with reference to Gradshteyn and Ryzhik42 (6.671 and 6.693) gives A(t)=− 2ηU0
π

sin(t)
t2 in the

case of ν = 0. Making use of integral calculus, see again the work of Gradshteyn and Ryzhik42 (6.752),
an analytical solution of the form (100) is finally obtained,

A(r, z)=−
2ηU0

π

∫ ∞
0

sin(t)
t

exp (−tz) J0 (tr) dt

=−
2ηU0

π
arcsin *

,

2√
z2 + (r + 1)2 +

√
z2 + (r − 1)2

+
-

, (103)

enabling the velocity components to be written down via (97), leading to the same result as reported
by Tanzosh and Stone.35
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V. SUMMARY AND OUTLOOK

At outset, the principal aim was to derive a first integral representation of the full unsteady
incompressible NS equations, for use as an alternative starting point for the solution of 3D viscous
flow problems. Although representing a novel achievement in itself, not unexpectedly the emphasis
was broadened to encompass a number of related topics; these have been explored and reported in
tandem, in some cases representing a future research area in its own right and thus left as such with
a constructive way forward having been provided.

The first integral is derived in an analogous fashion to Maxwell’s use of potential fields in
developing his classical electro-magnetic theory and governing equations.12 A tensor potential is
introduced as an auxiliary unknown allowing the NS equations to be recast as the divergence of a
tensor quantity set to zero. Integration leads to a tensor equation that splits conveniently into symmetric
and skew-symmetric parts. Following this it is shown that the gauge freedoms present can be exploited
in an astute way leading to a re-ordering of the first integral via the elimination of mixed derivatives
resulting in a more tractable equation set consisting of a vector-valued linear inhomogeneous diffusion
equation and a tensor-valued generalised Poisson equation possessing the distinguishing feature of
reduced non-linearity for both unsteady and steady flows. Furthermore, traceless forms of the same
are derived, leading for unsteady (steady) flow to just eight (six) independent PDEs for eight (six)
unknowns. Steady Stokes flow leads to a further reduction still, to simply four independent PDEs for
four unknowns.

The inviscid (zero viscosity) limit of the first integral is investigated showing that, starting with
its re-ordered form, the Euler equations are recovered proving that it satisfies this important subset
together with the requirement that energy, momentum (in the absence of external forces), angular
momentum, and helicity are all conserved. In addition, for the case of steady flow it is shown in the
context of finding a variational formulation how the first integral can be used to define a Lagrangian
enabling it to be written in a self-adjoint form which can be useful in relation to representing particular
flow problems.

Starting with the first integral, three well-known 3D classical benchmark viscous flow problems
are solved for. The boundary conditions required to do so are defined, and although not featuring
in the present work, the boundary conditions to be applied at a free surface are derived in full with
the dynamic condition itself taking the form of a first integral. Two of the problems investigated are
amenable to analysis—that of (i) a translating disc in a viscous fluid and (ii) a non-axisymmetric
stagnation flow. In both cases, the new approach leads to a non-conventional but straight forward
solution procedure yielding results consistent with counterparts available in the open literature. In
addition, for the translating disc problem the well-known potential representation of Papkovich and
Neuber,36 known from linear elasticity theory, is reproduced, validating the calculations carried out
and demonstrating the use of such a general formulation as a versatile means of representing viscous
flow.

The third problem, that of viscous flow in a cubic domain, is considered from two perspectives:
(iii) as a classical lid-driven cavity; (iv) from the point of view of evolving flow in periodic geometries
synonymous with the DNS of viscous flow. Both situations require a numerical approach to solve
them. Since (iii) involves the satisfactory use of a discrete version of the equation set defining the
first integral—finite difference, volume, or element, any one of which will suffice—attention was
directed at this problem for validation purposes. A finite difference methodology was used to obtain
solutions for three different Reynolds number flows, yielding results in very good agreement with,
for example, the corresponding predictions of Ding et al.26 A satisfactory outcome in itself, but
just as importantly the auxiliary boundary conditions for the tensor potential entries, derived in
Sec. IV A 3, are shown to confirm the establishment of a system of equations that are uniquely
solvable. For (iv) the traceless form of the first integral proves to be extremely beneficial since
the pressure, in addition to typically causing regularity problems in the numerical treatment34 of
evolving flows in non-periodic geometries, is not involved pointing to an alternative formulation. By
Fourier decomposition, a set of uniquely solvable quadratic equations for the coefficient functions is
obtained, describing the time evolution of the flow and therefore a promising starting point for future
exploration.
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It is clear that there remains considerable scope for further advancement since the principle focus
of the present work has been the new approach and theory underpinning the establishment of the first
integral and its subsequent validation via the solution of a number of benchmark test problems; the
investigation of a problem requiring the application of a free-surface boundary condition, such as that
of thin film flow over surface topography,43,44 represents an obvious avenue to explore. Similarly,
the new approach promises to be other than just useful for deriving different existing potential
formulations from within a unified framework but able to serve as a source for further representative
formulas with reference to specific applications, as sketched out for the case unsteady flow involving
periodic boundary conditions. Such formulas can serve as the starting point for both new analytical
solutions and numerical techniques; in this sense the variational principle established in Sec. III C
points a promising way forward for further research.
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APPENDIX A: DERIVATION OF THE 2D FORM OF THE FIRST INTEGRAL
FROM ITS 3D COUNTERPART

In the following, proof is given that the equations derived in Refs. 7 and 11 for 2D flow uniquely
result from Eq. (22) as a special case of general 3D flow. For steady flow with ∂tΨn = 0, Eq. (16) is
fulfilled via the identity ϕn = ηΨn, while the auxiliary vector field defined by (24) reads

Aj = ∂k ãkj + εjlk∂lϕk = ∂k ãkj + ηεjlk∂lΨk = ∂k ãkj + ηuj.

Thus, Eq. (22) yields

%uiuj + (p + U)δij =−∂k∂k ãij − ∂l∂k ãklδij + ∂i

[
∂k ãkj + ηuj

]
+ ∂j

[
∂k ãki + ηui

]
. (A1)

Considering now u3 = 0 and a completely vanishing x3-dependence of all fields for a 2D flow,
i.e., ∂3 (· · · )= 0, it is obvious that in the case of the special choice ãij = �Φδij for i, j = 1,
. . ., 2 for the modified tensor potential, the three field equations for steady 2D flow are
reproduced.

For the remaining components of the modified tensor potential, on the assumption that
ã13 = ã23 = 0 and ã33 = �ζ(x1, x2), Eq. (A1) is fulfilled identically for indices i = 1, j = 3 and i
= 2, j = 3, whereas when the indices are i = j = 3 it gives

∂k∂kζ = p + U − ∂k∂kΦ, (A2)

which is a Poisson equation for ζ and therefore solvable. Note that ζ has no influence on the other
equations and therefore has no physical effect.

APPENDIX B: FREE SURFACE BOUNDARY CONDITIONS

Consider the kinematic and dynamic boundary conditions at a free surface. Assuming a
parametrisation of the free surface in terms of

xi = fi(s1, s2, t) , i= 1, 2, 3, (B1)

the two tangential vectors t(1)
i , t(2)

i given by

t(λ)
i B

∂fi
∂sλ

(B2)
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are orthogonal and normalised. Together with the normal vector~n, an orthonormal basis exists locally
fulfilling the relations

nj = εjpqt(1)
p t(2)

q , (B3)

t(1)
i =−εiklnk t(2)

l , (B4)

t(2)
i = εiklnk t(1)

l . (B5)

The kinematic boundary condition at a free surface is given by

0= [ḟj − uj]nj = ḟjnj − [δkpδlq − δkqδlp]t(1)
p t(2)

q ∂kΨl = ḟjnj + {fl,Ψl}, (B6)

with Poisson brackets defined as

{f , g}B
∂f
∂s1

∂g
∂s2
−
∂f
∂s2

∂g
∂s1

. (B7)

The classical form of the dynamic boundary condition

Tijnj =σsκni, (B8)

involving the stress tensor T ij, surface tension σs, and curvature κ, can be reformulated in terms of
the tensor potential: substituting the term � pδij in the stress tensor (6) by means of (12) and then
replacing εjlk∂lϕk according to (26) by �∂k ãkj, the identity

Tij = %uiuj + Uδij − εilkεjpq∂l∂pakq + ∂i

[
ηuj + ∂k ãkj

]
+ ∂j

[
ηui + ∂k ãki

]
(B9)

results. Inserting (B9) into (B8) results in the general form of the dynamic boundary condition for
unsteady flows.

In the case of steady flow, the kinematic boundary condition simplifies to 0= uini = {fl,Ψl}.
Utilising this and (33), the dynamic boundary condition resulting from (B8) and (B9) takes the
form

εiklεjpq∂k∂palqnj = (U − σsκ)ni. (B10)

Next, the left-hand side of Eq. (B10) can be written as

εiklεjpqεjnm∂k∂palqt(1)
n t(2)

m = εikl

[
δpnδqm − δpmδqn

]
∂k∂palqt(1)

n t(2)
m

= εikl

[
t(2)
m

∂

∂s1
(∂kalm) − t(1)

n
∂

∂s2
(∂kaln)

]
= εikl

[
∂

∂s1

(
∂kalmt(2)

m

)
−

∂

∂s2

(
∂kalmt(1)

m

)]
,

in which the relationships

t(λ)
m ∂m(· · · )=

∂

∂sλ
(· · · ) ,

∂t(1)
m

∂s2
−
∂t(2)

m

∂s1
= 0

have been used. Making use of the following relationship for the curvature:

−κni =
∂2fi
∂s2

1

+
∂2fi
∂s2

2

=
∂t(1)

i

∂s1
+
∂t(2)

i

∂s2
=−εikl

[
∂

∂s1

(
nk t(2)

l

)
−

∂

∂s2

(
nk t(1)

l

)]
,

together with the introduction of auxiliary functions U j(s1, s2) implicitly as solutions of the
condition

Uni = εijk

[
∂Uj

∂s1
t(2)
k −

∂Uj

∂s2
t(1)
k

]
, (B11)

enables the dynamic boundary condition (B10) to be written mathematically in the following integral
form

∂

∂s1

{
εikl

[
∂kalmt(2)

m +

(
σnk −

Uk

2

)
t(2)
l

]}
−

∂

∂s2

{
εikl

[
∂kalmt(1)

m +

(
σnk −

Uk

2

)
t(1)
l

]}
= 0,
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yielding

εikl

[
∂kalmt(λ)

m +

(
σsnk −

Uk

2

)
t(λ)
l

]
=
∂ χi

∂sλ
, λ = 1, 2, (B12)

as the first integral of the dynamic boundary condition, containing the yet to be determined integration
function χi = χi(s1, s2). On applying the gauge transformation (20),

εikl∂kalmt(λ)
m → εikl∂kalmt(λ)

m + εikl∂k∂lαmt(λ)
m + t(λ)

m ∂mεikl∂kαl

= εikl∂kalmt(λ)
m +

∂

∂sλ
(εikl∂kαl) ,

Eq. (B12) becomes

εikl

[
∂kalmt(λ)

m +

(
σsnk −

Uk

2

)
t(λ)
l

]
=

∂

∂sλ

[
χi − εikl∂kαl

]
, λ = 1, 2. (B13)

Via a proper choice of αl, the right-hand side of Eq. (B13) can be gauged to zero, leading to the
simplified form

εikl

[
∂kalmt(λ)

m +

(
σsnk −

Uk

2

)
t(λ)
l

]
= 0 , λ = 1, 2. (B14)

From a numerical standpoint, the above formulation of the dynamic boundary condition contains
an inconvenience, namely, the necessity of having to construct the two tangent vectors t(λ)

i . A more
convenient and therefore more general formulation is obtained by contraction of (B14) with dsλ,
resulting in

εikl

[
∂kalmdxm +

(
σsnk −

Uk

2

)
dxl

]
= 0, (B15)

where the fact that t(λ)
l dsλ = dxl has been introduced. Note that the above parametrisation (B1) of the

free surface is not required for the general form (B15) of the first integral of the dynamic boundary
condition. For instance, the free surface may equally well be given in an explicit form such as
x3 = f (x1, x2), leading to dx3 = (∂f /∂x1) dx1 + (∂f /∂x2) dx2.

APPENDIX C: FINITE DIFFERENCE SCHEME

A classical velocity-pressure staggered-grid scheme for the finite difference solution of viscous
flow problems27 is extended to encompass the tensor entries aij in a consistent way which is partly
inspired by a common numerical method for solving the velocity-stress-formulation of wave propa-
gation through elastic media, as, for example, utilised by Graves.31 As well as the stabilising effect
inherent with the use of a staggered grid arrangement, the method also economises on the number of
unknowns in contrast to the use of any alternative non-staggered grid scheme. The resulting 3D grid
arrangement, see Fig. 5, is such that the diagonal tensor components and the pressure are discretised
at identical cell centred grid points (i, j, k), the velocities at face centred grid points (i + 1, j, k),
(i, j + 1, k), (i, j, k + 1), and the off-diagonal tensor components at cell edges (i + 1, j + 1, k), (i, j
+ 1, k + 1), (i + 1, j, k + 1).

In contrast to classical discretisation of the vector-valued Navier-Stokes equations, in the
present case the “mapping” between equations and unknown fields is less obvious. Here, the
six equations of (83) are discretised at the grid points of the corresponding tensor potential
entries, Eq. (84) at the pressure grid points and Eq. (85) at the boundary velocity grid points
only; correspondingly, recovery of the velocities, Eq. (86), is also performed at the velocity grid
points. Boundary conditions are incorporated via an appropriate ghost cell method involving two
grid levels of additional boundary points where conditions (55)–(57) are similarly specified. Fig-
ure 5(a) highlights a section of the solution domain, shaded red, with the associated boundary
region, shaded blue, illustrating the staggered grid arrangement in terms of the various grid point
locations.
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FIG. 5. Schematic of the 3D staggered grid arrangement used to solve the lid-driven cavity problem. (a) shows three contiguous
grids with the pressure and the diagonal tensor entries located at, and identified by, the red spheres, velocities at the sites
indicated by green arrows, and the off-diagonal tensor entries at the corresponding black squares and triangles. The solution
domain of interest is shaded red while the associated boundary region containing the necessary ghost points is shaded blue.
(b) View of just one xy-plane, with the dependencies of selected finite difference stencils highlighted at different grid points
for the sake of clarity: the stencil for Eq. (83) (for a12) is shown in green, that for Eq. (84) in red, and that for Eq. (86) (for u2)
in blue.

With reference to the above defined correlation between equations and unknowns, Eqs. (83)–
(85) are discretised at different subgrids as indicated in Fig. 5(a) and all occurring derivatives are
approximated by second order central difference stencils in which the nearest available grid points
are utilised; the staggered grid arrangement accounts for varying step lengths for the diverse stencils,
as illustrated in Fig. 5(b). The velocities ui, used iteratively in Eq. (83), are calculated from the tensor
potential entries subsequent to each iteration step, which is achieved by application of Eq. (86) at all
points indicated by a green arrow. The resulting velocity field is then interpolated onto the remaining
grid points by a simple weighting of neighbouring points.

The finite difference analogues of the system (83)–(86) can be written in a compact way by
defining a number of discrete operators for an arbitrary three-dimensional scalar function f :Ω→R;
these are valid point-wise for a given set of indices [i, j, k] belonging to grid coordinates (xi, yj,
zk). Note that in the finite difference description provided a grid with uniform step length h in all
three coordinate directions is assumed for convenience only (see Fig. 5), generalisation to a more
complex grid pattern follows in a straightforward manner. The standard second order central difference
operators for the first and second order partial derivatives of f are given by

∂h,1[i, j, k]f B
1
h
[
f (xi + h/2, yj, zk) − f (xi − h/2, yj, zk)

]
, (C1)

∂h,2[i, j, k]f B
1
h
[
f (xi, yj + h/2, zk) − f (xi, yj − h/2, zk)

]
, (C2)

∂h,3[i, j, k]f B
1
h
[
f (xi, yj, zk + h/2) − f (xi, yj, zk − h/2)

]
, (C3)

∂h,11[i, j, k]f B
1

h2

[
f (xi + h, yj, zk) − 2f (xi, yj, zk) + f (xi − h, yj, zk)

]
, (C4)

∂h,22[i, j, k]f B
1

h2

[
f (xi, yj + h, zk) − 2f (xi, yj, zk) + f (xi, yj − h, zk)

]
, (C5)

∂h,33[i, j, k]f B
1

h2

[
f (xi, yj, zk + h) − 2f (xi, yj, zk) + f (xi, yj, zk − h)

]
, (C6)
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which allows the discrete Laplacian to be written as

∆h[i, j, k]f B
3∑

l=1

∂h,ll[i, j, k]f . (C7)

Second order discretisation of the mixed derivatives is performed in the standard way, giving

∂h,12[i, j, k]f B
1

h2

[
f (xi + h/2, yj + h/2, zk) − f (xi + h/2, yj − h/2, zk)

− f (xi − h/2, yj + h/2, zk) + f (xi − h/2, yj − h/2, zk)
]
, (C8)

∂h,13[i, j, k]f B
1

h2

[
f (xi + h/2, yj, zk + h/2) − f (xi + h/2, yj, zk − h/2)

− f (xi − h/2, yj, zk + h/2) + f (xi − h/2, yj, zk − h/2)
]
, (C9)

∂h,23[i, j, k]f B
1

h2

[
f (xi, yj + h/2, zk + h/2) − f (xi, yj + h/2, zk − h/2)

− f (xi, yj − h/2, zk + h/2) + f (xi, yj − h/2, zk − h/2)
]
. (C10)

In addition to the above well-known finite difference stencils, the following interpolation operators
for functions and their first order derivatives are introduced for convenience:

Ih,1[i, j, k]f B
1
2
[
f (xi + h/2, yj, zk) + f (xi − h/2, yj, zk)

]
, (C11)

Ih,2[i, j, k]f B
1
2
[
f (xi, yj + h/2, zk) + f (xi, yj − h/2, zk)

]
, (C12)

Ih,3[i, j, k]f B
1
2
[
f (xi, yj, zk + h/2) + f (xi, yj, zk − h/2)

]
, (C13)

Jr,s
h [i, j, k]f B Ih,r[i, j, k]∂h,sf , (C14)

with (C14) in particular facilitating a very compact discrete form of the tensor-valued equation (83),
i.e., for α, β = 1, 2, 3, it is

∆h[γ]a(n+1)
αβ − Re


Ih,β[γ]u(n)

α

3∑
l=1

Jα,l
h [γ]a(n+1)

βl + Ih,α[γ]u(n)
β

3∑
l=1

Jβ,l
h [γ]a(n+1)

αl


+

[
p(n+1)(xi, yj, zk) + U(xi, yj, zk)

]
δαβ =Re Ih,β[γ]u(n)

α Ih,α[γ]u(n)
β , (C15)

with the abbreviation γ = (i, j, k) used for a given index set. Recall that Eqs. (C15) are not formed at
all grid points (i, j, k), but rather at the respective subsets of grid points belonging to aαβ according
to Fig. 5, whereas the discrete form of Eq. (84)

3∑
k,l=1

∂h,kl[γ]a(n+1)
kl = 0 (C16)

is collocated at the pressure grid points only. Finally, the discrete form of the vector-valued equation
(86), similar to that of (85), is given by

u(n+1)
α =−

3∑
l=1

∂h,l[γ]a(n+1)
αl , (C17)

for α = 1, 2, 3 and collocated at the uα velocity grid points.
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