
J
H
E
P
0
8
(
2
0
1
4
)
0
3
8

Published for SISSA by Springer

Received: May 22, 2014

Accepted: July 15, 2014

Published: August 7, 2014

The geometry of on-shell diagrams

Sebastián Franco, Daniele Galloni and Alberto Mariotti

Institute for Particle Physics Phenomenology, Department of Physics, Durham University,

South Rd., Durham DH1 3LE, U.K.

E-mail: sebastian.franco@durham.ac.uk, daniele.galloni@durham.ac.uk,

alberto.mariotti@durham.ac.uk

Abstract: The fundamental role of on-shell diagrams in quantum field theory has been

recently recognized. On-shell diagrams, or equivalently bipartite graphs, provide a natural

bridge connecting gauge theory to powerful mathematical structures such as the Grass-

mannian. We perform a detailed investigation of the combinatorial and geometric objects

associated to these graphs. We mainly focus on their relation to polytopes and toric geom-

etry, the Grassmannian and its stratification. Our work extends the current understanding

of these connections along several important fronts, most notably eliminating restrictions

imposed by planarity, positivity, reducibility and edge removability. We illustrate our ideas

with several explicit examples and introduce concrete methods that considerably simplify

computations. We consider it highly likely that the structures unveiled in this article will

arise in the on-shell study of scattering amplitudes beyond the planar limit. Our results

can be conversely regarded as an expansion in the understanding of the Grassmannian in

terms of bipartite graphs.

Keywords: Supersymmetric gauge theory, Scattering Amplitudes, Differential and Alge-

braic Geometry

ArXiv ePrint: 1310.3820

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2014)038

mailto:sebastian.franco@durham.ac.uk
mailto:daniele.galloni@durham.ac.uk
mailto:alberto.mariotti@durham.ac.uk
http://arxiv.org/abs/1310.3820
http://dx.doi.org/10.1007/JHEP08(2014)038


J
H
E
P
0
8
(
2
0
1
4
)
0
3
8

Contents

1 Introduction 1

2 Overview of bipartite graphs and related objects 2

2.1 Relation between perfect orientations, flows and perfect matchings 5

2.2 Oriented edge weights 5

2.3 Finding perfect matchings 7

2.4 On-shell diagrams 8

2.5 Bipartite field theories 8

3 The Grassmannian and its decompositions 10

3.1 Definition 10
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1 Introduction

We are in the midst of what might become a profound reformulation of quantum field

theory, one which privileges hidden infinite dimensional symmetries over manifest locality

and unitarity [1–5]. The main laboratory for the new ideas is planar N = 4 SYM. This

approach has led to a focus on on-shell diagrams, equivalently bipartite graphs, which de-

termine well-defined physical quantities exhibiting all the symmetries of the quantum field

theory [6]. On-shell diagrams can be used as building blocks of scattering amplitudes. In

addition, they reveal a profound and only recently explored role in physics of mathematical

concepts such as cluster algebras, the Grassmannian and matroids.1 Most probably this is

just the tip of an iceberg, with useful insights flowing between the physics and mathematics

worlds in both directions. The latest addition to this story is the amplituhedron, a new

type of geometric object whose volume gives the scattering amplitudes of the quantum field

theory [10].

The main goal of this article is to investigate the geometric structures associated to on-

shell diagrams. In particular, our work constitutes a concrete step in reducing several of the

1These ideas have been nicely extended to the ABJM theory [7] in [8, 9]. The main object in this context

is the orthogonal Grassmannian.
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assumptions often made in the interplay between bipartite graphs and the Grassmannian:

dropping the conditions of reducibility and removable edges often invoked when discussing

stratification, planarity of graphs and positivity. This paper also admits an alternative,

more formal, reading. It can be regarded as an investigation of the description of the Grass-

mannian in terms of bipartite graphs, extending it beyond the well-studied planar case.

The on-shell diagram approach to quantum field theories is part of an ambitious pro-

gram which starts from planar N = 4 SYM and might eventually lead to a new understand-

ing of gravity and even string theory. We expect that the new structures we develop in this

article should naturally appear when moving forward to the next stage, into non-planar

theories.

This paper is organized as follows. In section 2, we review bipartite graphs and related

concepts, including bipartite field theories. The Grassmannian and its different possible

decompositions are discussed in section 3. In section 4 we begin the discussion of the

parametrization of the Grassmannian in terms of edge weights of bipartite graphs, by means

of the boundary measurement. The relevance of the stratification of the Grassmannian for

the singularity structure of on-shell diagrams is briefly reviewed in section 5. In section 6, we

present various complementary perspectives and methods for determining the matching and

matroid polytopes, equivalently toric geometries, associated to general bipartite graphs.

Section 7 is dedicated to the notions of graph equivalence and reduction. A useful criterion

for quantifying the degree of reducibility of a graph is presented in section 8. In section 9,

we introduce a new decomposition of the Grassmannian in terms of bipartite graphs. For

planar graphs, this is a new way of obtaining its positroid decomposition. Including non-

planar graphs allows us to cover new regions of the Grassmannian, providing what can

be regarded as a partial matroid stratification. In section 10 we extend the boundary

measurement to graphs with an arbitrary number of boundaries. Our tools are applied

to explicit non-planar examples in section 11. Section 12 presents some thoughts on the

possibility of constructing the matroid stratification by considering multiple graphs, planar

and non-planar. We conclude in section 13. Three appendices collect auxiliary material.

2 Overview of bipartite graphs and related objects

In this section we review basic aspects of bipartite graphs and their combinatorial proper-

ties. We describe the notion of perfect matchings, perfect orientations, flows, and define

an edge parameterization that will be used in the rest of the paper. We also introduce two

relevant physics applications of such graphs: on-shell diagrams for scattering amplitudes

in N = 4 SYM, and an infinite class of N = 1 gauge theories.

Bipartite graphs. A graph is a collection of nodes and of edges connecting them. The

graphs we consider have two types of nodes, distinguished by a white or black color. If white

nodes are only connected to black nodes and vice-versa, the graph is bipartite. We denote

the number of edges connected to a given node as its valence. The framework introduced

in this paper deals with general bipartite graphs containing nodes of arbitrary valence.

In many applications, it can often be useful to consider embeddings of the graphs onto

Riemann surfaces with boundaries. We shall call planar a graph which can be embedded on

– 2 –
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Figure 1. All seven perfect matchings for a bipartite graph with four external nodes. Edges in the

perfect matchings are shown in red. The graph is embedded in a disk, the boundary is shown in

gray.

the disk without crossing. Instead, those graphs whose embedding involves edge crossings

or multiple boundaries are referred to as non-planar.

We divide nodes into two distinct categories: external nodes are defined as those nodes

which must lie on a boundary in any embedding of the graph, the remaining nodes are

internal. We shall only consider monovalent external nodes.

Once an embedding of the graph on a Riemann surface is specified, one can define

faces as those regions on the surface surrounded by edges and/or by boundaries. Faces

are also divided in two categories: internal faces are those which are only surrounded by

edges, and external faces are those whose perimeter includes at least one boundary.

Perfect matchings. Perfect matchings are key combinatorial objects of bipartite graphs.

A perfect matching is a sub-collection of edges such that every internal node is the endpoint

of only one edge, while external nodes may or may not contained in the perfect matching.2

Usually, there are several ways to select sub-collections of edges with this property, and

each of these is a different perfect matching. An example of a bipartite graph and its

perfect matchings is provided in figure 1.

In section 2.3 we will show how to find all perfect matchings for a given bipartite graph

in a systematic way.

Perfect orientations. A bipartite graph can equally be characterized by its perfect

orientations. A perfect orientation is a way of assigning arrows to the edges of a graph in

such a way that for 3-valent nodes we have:

• White node: 1 incoming and 2 outgoing arrows.

• Black node: 1 outgoing and 2 incoming arrows.

In addition, 2-valent nodes have one incoming and one outgoing arrow.

2Strictly speaking, this is known as an almost perfect matching. For brevity, we simply refer to these

objects as perfect matchings in what follows.
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Figure 2. Decomposition of a v-valent node into (v− 2) 3-valent and (v− 3) black 2-valent ones.

Figure 3. Perfect orientation resulting from integrating out 2-valent nodes.

General bipartite graphs with nodes of arbitrary valence v can be constructed in terms

of graphs containing only v = 2 and 3 nodes. We refer the reader to [11] for a detailed

discussion of how this is achieved. The rules controlling perfect orientations for arbitrary

v can thus be derived from those for v = 2, 3. For general graphs, a perfect orientation is

such that, for a node with valence v ≥ 3, we have:

• White node: 1 incoming and v − 1 outgoing arrows.

• Black node: 1 outgoing and v − 1 incoming arrows.

It is straightforward to prove this based on the behavior of 2 and 3-valent nodes. For

concreteness, consider a v-valent white node. As explained in [11], it can be decomposed

into (v − 2) white 3-valent nodes and (v − 3) black 2-valent nodes, as shown in figure 2.

The fact that this decomposition is in general not unique does not affect our conclusions.

The white nodes give 2(v − 2) outgoing and (v − 2) ingoing arrows. Out of these, (v − 3)

in-out pairs are contracted along the black nodes, giving the result shown in figure 3. The

reasoning for black nodes is identical up to inversion of arrows.

Figure 4 provides an example of a perfect orientation for a bipartite graph on a disk,

with 3-valent nodes.

Given a perfect orientation, external nodes can be naturally divided into sources and

sinks. The number of elements in each of these two sets does not depend on the choice of

the perfect orientation and is a characteristic of the graph itself.

Flows. Given a graph and a perfect orientation, it is possible to specify the latter by

listing all oriented non self-intersecting paths in it. We refer to such paths as flows and

denote them as pµ. Flows may involve more than one disjoint component. These compo-

nents can connect external nodes or correspond to closed loops. The trivial flow, i.e. the

one which does not involve any edge of the graph, is also included.

– 4 –
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Figure 4. A bipartite graph and a possible perfect orientation. Sources are marked in red and

sinks in blue.

2.1 Relation between perfect orientations, flows and perfect matchings

Perfect orientations are in bijection with perfect matchings. Given a perfect matching,

the way to obtain the corresponding perfect orientation is to assign arrows to the edges as

follows:

• Edges belonging to the perfect matching point from the black node to the white node.

• All other edges point out of white nodes and into black nodes.

Since a perfect matching only touches each internal node once, the above definition auto-

matically satisfies the rules for arrows in a perfect orientation. Conversely, it is possible to

obtain the perfect matching from a perfect orientation by selecting the incoming arrow for

white nodes and the outgoing arrow for black nodes.

There is also a bijection between flows and perfect matchings. In order to find it, we

begin by choosing a perfect matching pref, called the reference perfect matching (or just

reference matching for short), and assigning to all of its edges an orientation that points

from white nodes to black nodes. We orient the edges of all other perfect matchings in a

similar way. Subtracting pref from all perfect matchings, i.e. reversing the arrows in pref
before combining them, creates a set of oriented paths. These paths necessarily live in the

perfect orientation associated to pref, because all arrows point out of white nodes and into

black nodes except for the ones belonging to pref, which have opposite orientation. These

paths are thus precisely the flows in the perfect orientation defined by pref, i.e. we can think

about them as pµ = pµ − pref.
In summary, for each perfect matching there is an associated perfect orientation. The

number of flows in each perfect orientation is equal to the number of perfect matchings,

and they are found by subtracting the reference perfect matching from the corresponding

perfect matchings.

2.2 Oriented edge weights

We will often be interested in relating edge weights, which strictly speaking have no asso-

ciated orientation, to oriented paths. It is thus useful to devise a formalism that consis-
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Figure 5. Example of ordinary perfect matchings pi and oriented perfect matchings p̃i. Edges αi,j
are oriented from white nodes to the black nodes.

tently deals with such a connection. We will refer to edge weights as Xi, where the index

i = 1, . . . , E runs over all edges of the graph.

With the goal of describing oriented paths, we introduce new variables αi, which are

edge weights endowed with an orientation. In our convention the orientation goes from

white to black nodes. We can thus associate an oriented perfect matching p̃µ to every

perfect matching pµ. The oriented perfect matching is given by the product of the αi
variables over all edges in the corresponding perfect matching. For example, for figure 1

the oriented perfect matchings are3

p̃1 = α2,3α2,5α4,3α4,5 p̃5 = α2,5α3,1α4,5

p̃2 = α1,2α4,3α4,5 p̃6 = α1,2α1,4

p̃3 = α1,4α2,3α2,5 p̃7 = α3,1α5,1

p̃4 = α2,3α4,3α5,1

. (2.1)

Figure 5 shows two perfect matchings p3, p4 and their corresponding oriented perfect match-

ings p̃3, p̃4.

We can in fact write any oriented path on the graph as a product or ratio of these new

variables: if a segment of the path goes from a white node to a black node, the relevant

αi,j contributes to the expression of the path in the numerator; if the segment goes from

a black node to a white node, its αi,j contributes to the denominator. In particular, flows

can be written in terms of these variables; an example is provided in figure 6, where the

3Here we have switched to a convenient bifundamenal notation for the α’s, i.e. αi,j corresponds to an

edge separating faces i and j. We hope the reader is not confused by this choice.
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Figure 6. A flow in the perfect orientation corresponding to the reference perfect matching p4.

The flow shown is p3 = p̃3
p̃4

=
α2,5α1,4

α5,1α4,3
.

perfect orientation corresponds to the perfect matching p4. Here the flow is expressed as

α2,5α1,4

α5,1α4,3
. (2.2)

Moreover, in this parameterization all flows can be expressed as ratios pi = p̃i/p̃ref,

where p̃ref is the reference matching defining the underlying perfect orientation. In the

example in the figure, the flow is p3 = p̃3
p̃4

=
α2,5α1,4

α5,1α4,3
. Note that the trivial flow is pref = 1.

This parameterization is very convenient for the study of the connection between bi-

partite graphs and the Grassmannian, and will be extensively used in the rest of the paper.

2.3 Finding perfect matchings

Flows, perfect orientations and perfect matchings contain equivalent combinatorial infor-

mation about the bipartite graph. Among the three, perfect matchings are those which

are obtained most efficiently. This is done using a generalization of Kasteleyn matrix tech-

niques, which will be briefly outlined here. The reader is referred to [11] for a detailed

discussion of these techniques.

The starting point for finding the perfect matchings is the construction of a weighted

adjacency matrix, known as the master Kasteleyn matrix K0. When there are multiple

edges between two nodes their contributions are added. Denoting internal white and black

nodes Wi and Bi, respectively, and external white and black nodes We and Be, K0 takes

the form:

K0 =

 Bi Be

Wi ∗ ∗
We ∗ 0

 . (2.3)

The zero in the bottom-right corner arises because external nodes are only paired with

internal nodes. K0 is not necessarily square.

For any subsets We,del ⊆ We and Be,del ⊆ Be of the external nodes, we define the

reduced Kasteleyn matrix K(We,del,Be,del) as the matrix resulting from starting from K0 and

deleting the rows in We,del and the columns in Be,del.

– 7 –
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All perfect matchings in the graph are given by the polynomial:

P =
∑

We,del,Be,del

perm K(We,del,Be,del), (2.4)

where the sum runs over all possible subsets We,del and Be,del of the external nodes such

that the resulting reduced Kasteleyn matrices are square.4 Every term in this polynomial

corresponds to the product of edges in a perfect matching.

2.4 On-shell diagrams

Recently, a remarkable new formalism based on on-shell diagrams has been developed for

N = 4 SYM [6]. This approach naturally relates scattering amplitudes to the Grassman-

nian. The connection between gauge theory and the Grassmannian has been exhaustively

investigated in earlier works, such as [1–5].

On-shell diagrams are constructed by gluing 3-particle MHV (maximally helicity vio-

lating) and MHV amplitudes. They are characterized by k, the number of external particles

with negative helicity, and n, the total number of external particles. In these diagrams, all

lines represent particles whose momentum is on-shell. Integrating over the on-shell phase

space of internal particles, with helicity and momentum-conserving delta functions at each

vertex, they produce a function of the external kinematical data.

Being constructed in terms of two types of building blocks, on-shell diagram are natu-

rally bi-colored graphs. Indeed, as explained in [11], it is straightforward to relate general

on-shell diagrams to bipartite graphs. For this reason, we will simply regard the two classes

of objects as synonyms in what follows. Given an on-shell diagram, the possible assigna-

tions of helicity flows consistent with the rules for MHV and MHV vertices correspond to

perfect orientations.

Bipartite graphs are mapped to elements of the Grassmannian via a map known as the

boundary measurement, which we will study in section 4 and section 10. Hence we have a

connection among:

Bipartite Graphs/On-Shell Diagrams ⇔ Elements in the Grassmannian

Much of this article is devoted to investigating these relations.

2.5 Bipartite field theories

Bipartite Field Theories (BFTs) are a class of 4d, N = 1 gauge theories whose Lagrangians

are defined by bipartite graphs on (bordered) Riemann surfaces [11, 12].5 BFTs provide

an alternative, and sometimes very powerful, perspective on bipartite graphs. The BFT

associated to a graph is obtained using the following dictionary:

• Face: U(N) symmetry group.6

4The permanent of a matrix is the determinant where all signs in the final expression are positive.
5As we explain below, a certain sub-class of BFTs is independent of the underlying Riemann surface

which, nevertheless, is a helpful intermediate object for defining the theory.
6The case of general ranks, i.e. not equal for all faces, is extremely interesting. It is however not relevant

for the questions discussed in this article, so we do not pursue it.
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• Edge: chiral multiplet Xi,j in the bifundamental representation of the U(N)i×U(N)j
symmetry groups corresponding to the faces on both sides of the edge. Introducing an

orientation around nodes going clockwise around white nodes and counterclockwise

around black ones, the fields transform in the fundamental representation of the head

of the corresponding arrow and anti-fundamental representation of the tail. Chiral

fields associated to external legs, i.e. edges connected to external nodes, are taken to

be non-dynamical.

• Node: superpotential term given by the trace of the product of fields corresponding

to edges terminating on the node. The superpotential term bears a positive sign for

white nodes and negative sign for black nodes. External nodes, by definition, do not

map to any superpotential term.

In order to fully specify the BFT, it is also necessary to determine which symmetries

are gauged. There are two natural choices [12], which we now explain.7

Gauging 1. In this case, the U(N) symmetries associated to internal faces of the graph,

namely faces whose perimeter does not involve any boundary, are gauged. It is straightfor-

ward to see that bipartiteness guarantees that internal faces are even sided. This implies

that they are anomaly free and can be consistently gauged. The remaining symmetry

groups are global. We refer to the resulting class of gauge theories as BFT1. The theories

in this class are quiver gauge theories. Their quivers, including plaquettes representing the

superpotential terms, are obtained by dualizing the bipartite graph [11].

A particular sub-class of BFT1’s has been the subject of intense activity in recent years.

These theories are known as brane tilings and correspond to BFTs on a 2-torus without

boundaries [17–19]. Brane tilings describe the theories on the worldvolume of D3-branes

probing toric Calabi-Yau 3-folds and have played a key role in the identification of infinite

families of explicit AdS/CFT dual pairs [19, 20]. More recently a physical realization in

terms of D3 and D7-branes on toric Calabi-Yau 3-folds has been introduced for a more

general class of BFTs, which includes graphs with boundaries [21].

Gauging 2. Internal faces are not the only source of symmetries which are automatically

anomaly-free. In fact any closed loop in the graph has this property. This leads us to a

second class of BFTs, which we denote BFT2, in which the symmetries associated to a

basis of all closed loops are gauged. Gauging 2 is then an extension of gauging 1, where

additional symmetries of the theory are gauged. Loops which cannot be expressed as faces

or collection thereof, i.e. loops with a non-trivial homology around the g > 0 Riemann

surface, are identified with U(1) gauged symmetries.8 The difference between BFT1 and

BFT2 is illustrated in figure 7.

For graphs on a disk there is no distinction between BFT1 and BFT2. The difference

between the two gaugings arises in the presence of multiple boundaries and/or higher genus

7A related, and partially overlapping, class of theories was defined in [13]. Its string theory embedding

was discussed in [14]. Additional interesting works on BFTs and related topics can be found in [15, 16].
8Whether and under what circumstances it is possible to promote some of these symmetries to non-

Abelian is an interesting question that we will not pursue in this paper.
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Figure 7. Difference between BFT1 and BFT2 in an example with two boundaries. The orange

loops are those which are gauged in each gauging. The surface has genus g = 0 and hence there are

no loops with non-trivial homology.

Riemann surfaces. For applications to on-shell diagrams, the relevant theories are classical

Abelian BFTs, in which all symmetries are U(1).9 In this context it is also natural to

focus on BFT2’s, since the additional gauging makes the resulting theory independent of

the underlying Riemann surface [12].

3 The Grassmannian and its decompositions

In this section we review basic aspects about the Grassmannian and its stratifications. We

refer the interested reader to [22–26] for more comprehensive discussions.

3.1 Definition

The Grassmannian Grk,n(R) is the space of k-dimensional planes in n dimensions that pass

through the origin. Elements of Grk,n(R) are typically represented by k×n matrices where

the plane is the span of the k n-dimensional row vectors. The action of GL(k) on the basis

vectors leaves the plane invariant, so the Grassmannian is the space of k × n matrices C

modulo GL(k). The GL(k) invariance can be used to fix any k columns to form a k × k
identity sub-matrix, e.g. for Gr2,4 we can fix C to the form

C =

(
1 0 −c3 −c4
0 1 c1 c2

)
, (3.1)

where the signs have been introduced for later convenience. When mapping bipartite

graphs to the Grassmannian, we will see that columns in this matrix correspond to all

9Since we focus on classical theories, we do not worry about issues concerning the UV completion of

Abelian BFTs.
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external nodes and rows correspond to those which are sources in a perfect orientation.

From here on, we will always present elements of the Grassmannian in a form that has

fixed the GL(k) invariance.

3.2 Plücker coordinates

The degrees of freedom of C can alternatively be expressed by its k × k minors ∆I , where

I is a set with k elements describing which columns participate in the minor; these are

known as Plücker coordinates. These minors are invariant under the action of SL(k) and

scale by a common factor under GL(k). Since there are
(
n
k

)
of these, it induces the Plücker

embedding of the Grassmannian Grk,n↪→ RP(nk)−1. The minors are not all independent,

they satisfy relations known as the Plücker relations

k+1∑
i=1

(−1)i−1∆J1∪ ai ∆J2 \ ai = 0, (3.2)

where J1 is any (k− 1)-element subset of [n], J2 is any (k+ 1)-element subset of [n] and ai
is the ith element of J2. In each term, ai is removed from J2 and appended to the right of

J1. In this embedding, the Grassmannian is simply the subvariety described by the Plücker

relations. For the example of Gr2,4 above, we have

∆12 = 1 ∆14 = c2 ∆24 = c4
∆13 = c1 ∆23 = c3 ∆34 = c1c4 − c2c3

(3.3)

and the single relation ∆14∆23 −∆13∆24 + ∆12∆34 = 0. The totally non-negative Grass-

mannian is given by those matrices C with all ∆I ≥ 0.

3.3 Schubert decomposition

There are many ways to decompose the Grassmannian into (possibly overlapping) sets,

according to certain properties. Schubert cells10 ΩI are defined as those C ∈ Grk,n where

∆I is the first non-zero Plücker coordinate, counted in lexicographic order,11 i.e.

ΩI = {C ∈ Grk,n | ∆I is the lexicographically minimal non-zero Plücker coordinate}.
(3.4)

For example,

C =

(
1 0 0 −c4
0 1 c1 c2

)
∈ Ω12, (3.5)

because there is no other non-zero Plücker coordinate with smaller lexicographic ordering

than I = 12. The cyclically shifted Schubert cell Ω
(i)
I is defined similarly, but the lexi-

cographic order is cyclically shifted to begin the counting at i, e.g. for the same example

in (3.5), C ∈ Ω12 but also C ∈ Ω
(2)
24 because the order is shifted to 2 < 3 < 4 < 1, and since

∆23 = 0, the lexicographically smallest (with respect to the shifted order) non-zero ∆I is

now I = 24. Similarly, C ∈ Ω
(3)
34 and C ∈ Ω

(4)
41 .

10A cell is homeomorphic to an open ball and must have Euler number 1.
11Lexicographic order is 1 < 2 < 3 < 4, e.g. 1243 < 1324, analogous to alphabetical order.
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Note that in each shifted Schubert cell Ω
(i)
I the Plücker coordinates lexicographically

larger (with respect to the shifted order i) than I are free to be zero or non-zero.

The permuted Schubert cell Ωw
I is defined as in (3.4) but with the lexicographic order

being with respect to a permuted order w(1) < w(1) < · · · < w(n), where w ∈ Sn.

3.4 Positroid stratification

The positroid stratification of the Grassmannian Grk,n introduced by Postnikov [22] defines

each stratum as

SI =

n⋂
i=1

Ω
(i)
Ii
, (3.6)

where I = {I1, . . . , In}, and Ii specifies which Plücker coordinates are non-zero, only

looking at those which are lexicographically minimal with respect to each shifted cyclic

ordering starting at i. Note in particular that the Plücker coordinates lexicographically

smaller with respect to each shifted order must be zero, following the definition of the

Schubert decomposition. For the example in (3.5), the non-zero Plücker coordinates are

∆12, ∆13, ∆14, ∆24 and ∆34. With respect to the first order i = 1, the lexicographically

minimal one is ∆12; for i = 2 the minimal one is ∆24; for i = 3, ∆34; and finally for i = 4,

∆41 = −∆14. Hence, this element of the Grassmannian is in the positroid stratum

SI = {C ∈ Gr2,4 | ∆12 6= 0,∆24 6= 0,∆34 6= 0,∆14 6= 0} . (3.7)

where ∆23 = 0 and we do not specify whether ∆13 is vanishing or not. Instead, consider

the following stratum

SI = {C ∈ Gr2,4 | ∆14 6= 0,∆24 6= 0} . (3.8)

This stratum contains those matrices for which lexicographically smaller Plücker coordi-

nates with respect to each shifted order are set to zero. For the shifted order i = 1, we

note that ∆12 = 0 and ∆13 = 0 since they are lexicographically smaller than ∆14. For the

shifted order i = 2, ∆23 = 0 since it is lexicographically smaller than ∆24. For the shifted

order i = 3, we additionally have ∆34 = 0 since it is lexicographically smaller than ∆14

(along with ∆31 and ∆32). Finally ∆41 6= 0 is the lexicographically smallest with respect

to the shifted order i = 4. So a matrix belonging to this positroid stratum is for instance(
c1 1 0 0

0 0 0 1

)
∈ SI = {C ∈ Gr2,4 | ∆14 6= 0,∆24 6= 0} . (3.9)

Since a positroid stratum is in general more restricted than a Schubert cell, the positroid

stratification refines the Schubert decomposition.

3.5 Matroid stratification

In order to describe this stratification, we have first to introduce the concept of matroids.

The study of matroids is the analysis of an abstract theory of dependences. We refer the

interested reader to [25] for a comprehensive introduction, here we review only some basic

aspects.
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Definition of a matroid. A matroid of rank k on a set [n] is a non-empty collection

M⊂
([n]
k

)
of k-element subsets in [n], called bases of M, that satisfy the exchange axiom:

For any I, J ∈M and i ∈ I, there exists a j ∈ J such that (I \ {i}) ∪ {j} ∈ M.

Matroid polytope. We can construct a polytope which efficiently encodes the linear

dependencies among the bases of a matroid. Given a matroid M of rank k on a set [n],

the matroid polytope P(M) is the convex hull of the indicator vectors of the bases of M

P(M) = convex{eI : I ∈M}

where by eI we denote eI =
∑

i∈I ei for any I ∈ M, and {e1, . . . , en} is the standard

Euclidean basis of Rn. Linear relations among matroid bases translate into linear relations

between position vectors of points in the matroid. The construction of matroid polytopes

is discussed in detail in section 6.

Matroid stratification. Now we can discuss the matroid stratification of the Grass-

mannian Grk,n, which further refines the positroid stratification.

Let M⊂
([n]
k

)
be a matroid. A matroid stratum is defined as follows

SM = {C ∈ Grk,n | ∆I 6= 0 if and only if I ∈M}. (3.10)

Note that each stratum is defined by which Plücker coordinates are non-zero and which

ones are zero; here all Plücker coordinates are specified. This stratification can also be

expressed as the common refinement of the n! permuted Schubert cells Ωw
I .

To give an example for Gr2,4, the positroid given in (3.7) only contains one matroid

stratum, {12, 13, 14, 24, 34}, which corresponds to elements C ∈ Gr2,4 with {∆12 6= 0,

∆13 6= 0,∆14 6= 0,∆24 6= 0,∆34 6= 0,∆23 = 0}; the matrix (3.5) belongs to this matroid

stratum. Note that there is no matroid stratum {12, 14, 24, 34}, i.e. where only ∆13 = 0 =

∆23. Indeed we observe that this object does not satisfy the exchange axiom and hence

is not a matroid: choosing I = 34 and J = 12, for i = 4 there is no j ∈ J such that

(I \ {i}) ∪ {j} = {3} ∪ {j} is in M. We can equivalently deduce this from the Plücker

relation ∆14∆23−∆13∆24 + ∆12∆34 = 0, which in this case reduces to ∆12∆34 = 0, which

is not compatible with both ∆12 6= 0 and ∆34 6= 0.

3.6 Positroid cells

Postnikov showed that intersecting the matroid stratification with the totally non-negative

Grassmannian Gr≥0k,n gives a cell decomposition of Gr≥0k,n [22]. Only one matroid stratum in

each positroid stratum has a non-empty intersection with Gr≥0k,n, and it is this intersection

which is the positroid cell.12 Equivalently, the positroid cell decomposition of Gr≥0k,n can

be obtained as the intersection of the positroid stratification with the totally non-negative

Grassmannian Gr≥0k,n. This cell is the only one for which non-negative Plücker coordinates

are compatible with the Plücker relations.

The positroid cell whose Plücker coordinates are all different from zero (and positive)

is the top-dimensional cell, which we refer to as the top-cell. Postnikov showed that the

positroid cells are indexed by

Γ

diagrams and planar bipartite graphs [22].

12These are called cells since they are homeomorphic to an open ball of appropriate dimensions.
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3.6.1 Deodhar decomposition

The Deodhar decomposition is a refinement of the positroid stratification, but in turn it is

refined by the matroid stratification, i.e. in general there are several Deodhar components in

each positroid stratum, but each Deodhar component contains several matroid strata. For

example, the refinement of the positroid stratum {∆12 6= 0,∆23 6= 0,∆34 6= 0,∆14 6= 0} is:

Positroid stratum ∆12 6= 0,∆23 6= 0,∆34 6= 0,∆14 6= 0

Deodhar components ∆13 6= 0 ∆13 = 0

Matroid strata ∆24 6= 0 ∆24 = 0 ∆24 6= 0 ∆24 = 0

Each Deodhar component was shown to be indexed by so-called Go-diagrams [27] and

subsequently by (generally non-planar) networks [24], which have a direct mapping to ele-

ments of the Grassmannian. The graph that represents a Deodhar component actually is in

a specific matroid stratum, but each Deodhar component will have only one representative.

As a result, these representatives can be chosen to represent the entire Deodhar component.

4 Bipartite graphs and the Grassmannian, a first encounter

In this section we review the map between planar bipartite graphs and the Grassmannian

introduced by Postnikov in [22] and begin its generalization to arbitrary bipartite graphs.

Further details of the generalization are developed in section 10. This map is known as the

boundary measurement, and maps a bipartite graph with k sources and n external vertices

to an element of Grk,n.

The boundary measurement is an important ingredient in the study of on-shell di-

agrams. As we review in section 5, the corresponding integrand is determined by the

Grassmannian element associated to the graph.

Given a bipartite graph, the boundary measurement is constructed as follows:

1) Choose an arbitrary perfect orientation of the diagram. This determines a source set.

We denote the number of external vertices by n, and the number of sources by k.

2) Construct the nv × nv path matrix M, where nv is the total number of nodes in the

graph. Each matrix entryMi,j entry contains the weights of the oriented paths in the

perfect orientation connecting node i and node j. An efficient way for constructing

M is presented in appendix A.

3) Construct the k × n dimensional matrix MC . This is a sub-matrix of M in which

columns are given by all external nodes and rows correspond to external nodes which

are sources of the perfect orientation.

4) Modify signs in the entries ofMC . We will discuss below the reasons for introducing

such signs and introduce a systematic prescription for their determination.

The discussion above is completely general and applies to arbitrary bipartite graphs.

There are three different kind of entries in MC . The entries which contain paths that

go from a source to the same source are always equal to 1. Some entries are 0, representing
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the fact that sometimes it is impossible to flow from a source to a given external node.

In particular, there are no oriented flows between two sources. The paths contributing to

entries in MC can be identified with single component flows, which in addition take the

form pµ = p̃µ/p̃ref for some oriented perfect matching p̃µ.13

The matrixMC is already extremely useful for some applications, which do not require

a precise knowledge of the sign assignments that take us to the boundary measurement C.

By studying the entries of the matrix, it is possible to determine the connectivity of external

nodes. This fact will be heavily used in section 6. Similarly, we can use it for determining

the number of its degrees of freedom: it is the number of non-zero minors minus the number

of relations between k×k minors, minus 1. This is equal to the number of degrees of freedom

of C, which is the dimensionality of the associated element of the Grassmannian.

Sign prescription

We are ready to discuss the sign prescription, to finally map MC 7→ C ∈ Grk,n. Here

we will focus on the case of planar graphs, i.e. graphs on a disk, and follow [22]. The

implementation of signs for non-planar graphs will be the topic of section 10.

For planar graphs, the signs in the boundary measurement are chosen such that two

nice properties are simultaneously achieved: all maximal minors of C are non-negative for

non-negative edge weights and, moreover, these minors are simply sums of products of flows.

In addition, we will pick signs such that denominators cannot vanish for strictly positive

edge weights.14 Such potentially vanishing denominators arise when formally summing the

geometric series that arise in the presence of closed oriented loops.15

In order to construct a matrix with definite non negative minors, we have to modify

some signs in the entries of MC . The prescription consists in first introducing a sign

(−1)s(i,j) to the entry MC
i,j , where s(i, j) is the number of sources strictly between i and

j, neglecting periodicity. Secondly, one has also to introduce a (−1) factor to every loop.

These two modifications conspire in such a way to obtain a matrix C whose minors are all

non-negative, and moreover such that its minors remain simple sums of flows.

Example. We now provide an example to illustrate this method. We begin with the dia-

gram displayed in figure 8, and the perfect orientation associated to the reference matching

consisting of edges X1,2, X1,4. The relevant subset of the path matrix, choosing the clock-

wise ordering starting at the edge X2,3, is

MC =


1 2 3 4

2
α2,3α4,3α5,1

α1,2α1,4

(
1−

α3,1α5,1
α1,2α1,4

) 1
α4,3α4,5

α1,4

(
1−

α3,1α5,1
α1,2α1,4

) 0

4
α2,3α2,5

α1,2

(
1−

α3,1α5,1
α1,2α1,4

) 0
α2,5α3,1α4,5

α1,2α1,4

(
1−

α3,1α5,1
α1,2α1,4

) 1

 =

 1 2 3 4

2 p4
1−p7 1 p2

1−p7 0

4 p3
1−p7 0 p5

1−p7 1

, (4.1)

13In the presence of loops, entries will in general have the form pi
1−ploop

.
14Here we consider the analytic continuation of the geometric series giving rise to a non-trivial

denominator.
15Another natural choice for which all minors are sums of flows corresponds to not introducing any signs

to MC [28]. However non-trivial signs have to be delicately chosen in order to simultaneously achieve the

other two properties mentioned in this paragraph.
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3
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3

4
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Figure 8. Bipartite graph for the top-cell of Gr2,4. The reference perfect matching is shown in

red. Arrows indicate the corresponding perfect orientation.

where the labeling of perfect matchings follows that of figure 1. Once the signs are intro-

duced, this is associated with the top-cell of Gr2,4, since all entries which can be non-zero

are generically non-zero. This example has a loop in the perfect orientation, which mani-

fests itself as several terms in the denominator, as explained in appendix A. The minors of

this matrix take on a very simple form:

m12 = − α1,4α2,3α2,5

α1,2α1,4−α3,1α5,1
m23 =

α2,5α3,1α4,5

α1,2α1,4−α3,1α5,1

m13 = − α2,3α2,5α4,3α4,5

α1,2α1,4−α3,1α5,1
m24 = 1

m14 =
α2,3α4,3α5,1

α1,2α1,4−α3,1α5,1
m34 =

α1,2α4,3α4,5

α1,2α1,4−α3,1α5,1

. (4.2)

Several remarks are in order. First, all the minors of MC have the form of sums of flows,

divided by possible loops, thanks to non-trivial cancellations. Secondly, all minors are

non-zero, reflecting the fact that the element of the Grassmannian associated to MC has

maximal dimension. Thirdly, some of the minors are negative, for positive edge weights.

We finally proceed in modifying the signs of the matrix MC to obtain the element

of the totally non negative Grassmannian. The (−1)s(i,j) factor implies that we have to

multiply the entryMC
2,1 by (−1). The (−1) factor for loops amounts to replacing p7 → −p7.

These two operations map MC into the relevant element of the Grassmannian C ∈ Gr2,4:

C =


1 2 3 4

2
α2,3α4,3α5,1

α1,2α1,4

(
1+

α3,1α5,1
α1,2α1,4

) 1
α4,3α4,5

α1,4

(
1+

α3,1α5,1
α1,2α1,4

) 0

4 − α2,3α2,5

α1,2

(
1+

α3,1α5,1
α1,2α1,4

) 0
α2,5α3,1α4,5

α1,2α1,4

(
1+

α3,1α5,1
α1,2α1,4

) 1

 . (4.3)

The maximal minors of C ∈ Grk,n are the Plücker coordinates ∆I . For the example above,

the Plücker coordinates are:

∆12 =
α1,4α2,3α2,5

α1,2α1,4+α3,1α5,1
= p3

1+p7
∆23 =

α2,5α3,1α4,5

α1,2α1,4+α3,1α5,1
= p5

1+p7

∆13 =
α2,3α2,5α4,3α4,5

α1,2α1,4+α3,1α5,1
= p1

1+p7
∆24 = 1

∆14 =
α2,3α4,3α5,1

α1,2α1,4+α3,1α5,1
= p4

1+p7
∆34 =

α1,2α4,3α4,5

α1,2α1,4+α3,1α5,1
= p2

1+p7

(4.4)

which are manifestly positive, for positive edge weights.
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5 Stratification and singularity structure of on-shell diagrams

In section 2.4 we discussed the connection between on-shell diagrams of N = 4 SYM, the

Grassmannian, and bipartite graphs. The authors of [6] explained how to construct the

integrand associated to a planar on-shell diagram using twistor space variables, in terms

of data associated to the bipartite graph. In the previous section we have reviewed how to

associate to on-shell diagrams the edge weights αij and the boundary measurement matrix

C(αij) ∈ Grk,n of the Grassmannian.

The edge weight parameterization of the Grassmannian is redundant. The independent

degrees of freedom are a subset βi of the edge weights of dimension d = F − 1, where F is

the number of faces of the graph.

The differential form associated to an on-shell diagram is [6]

dβ1
β1
∧ · · · ∧ dβd

βd
δk×4(C · η̃)δk×2(C · λ̃)δ2×(n−k)(λ · C⊥), (5.1)

where (η̃, λ̃, λ) are the kinematical variables of the scattered particles, in N = 4 twistor

space. The delta functions provide 2n− 4 constraints. Hence, depending on the degrees of

freedom in the matrix C, i.e. on d, different situations arise. If d = 2n− 4 the integral over

the differential form is fully localized, and the result is an ordinary function of the external

data; this is the so-called leading singularity. If d < 2n− 4 we have more constraints than

degrees of freedom βi, so the leftover constraints impose conditions on the external data;

this is a singularity. If d > 2n − 4 there are some degrees of freedom left unfixed by the

delta functions which can be integrated over. Moreover, in some cases the differential form

can be such that some of the dβi
βi

integrations factorize, leaving externals log βi factors.

This happens when the corresponding graph is reducible. We will discuss the notion of

graph reducibility in section 7.

Understanding the singularity structure of the differential forms associated to on-shell

diagrams is of great physical interest. For instance, in the case of planar N = 4 SYM, the

study of such singularities is connected to a generalization of the BCFW recursion relation

which fully determines the scattering amplitudes to all loop orders [6, 29, 30].

Given a differential form related to an on-shell diagram, the singularity structure

contains the information of the residues at the poles of the differential form, which are

generically located at some βi = 0.16 These singularities correspond to elements in the

Grassmannian where the number of degrees of freedom in the matrix C has been reduced,

by turning off some βi.

The singularity pattern can be organized in a layered partially ordered set (poset). At

the top level we have the original diagram and the associated differential form. At the next

level, there are the differential forms obtained at the poles of the original one, with one less

degrees of freedom, and so on. This procedure continues until it reaches the trivial configu-

ration with no poles left. We provide graphical realizations of this is section 9, e.g. figure 16.

In terms of the Grassmannian element determining the differential form, the number

of degrees of freedom in C is reduced by one when going from one level of the poset to the

16Many coordinate charts ~β are necessary to cover all the poles of the differential form.
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next one. In terms of the bipartite graph, each step coincides with the removal of so-called

removable edges, which are defined as those which yield subgraphs where d → d− 1. The

precise notion of removable edges and how to identify them will be discussed in section 8.1.

In summary, given a differential form related to an on-shell diagram, its singular-

ity structure can be understood from the corresponding bipartite graph by decomposing

the graph into subgraphs by removing only removable edges. This provides a lattice of

subgraphs, whose corresponding differential forms are the singularities of the original dif-

ferential form, organized by number of degrees of freedom.

In the planar case, if the original graph is top-dimensional, this graph decomposition

is equivalent to the positroid stratification of the associated Grassmannian. In section 11,

we will introduce a natural generalization of this decomposition which also applies to the

non-planar graphs.

6 From bipartite graphs to polytopes and toric geometry

In this section we will associate bipartite graphs to matching and matroid polytopes, which

will play a prominent role in the rest of the paper.17 Equivalently, these convex polytopes

can be interpreted as the toric diagrams defining certain toric, non-compact Calabi-Yau

(CY) manifolds which we denote master and moduli spaces for their relation to BFTs. We

will present various alternative approaches to these objects:

• Classifying matroid elements and their relations (perfect orientations).

• Giving a geometric description of flows (flows).

• As master and moduli spaces of BFTs (perfect matchings).

Interestingly, each viewpoint naturally emphasizes different objects, listed above in

parentheses. However, all of them are equivalent, as explained in section 2.1. It is important

to have multiple perspectives on the same objects, since they are best suited for addressing

different questions.

Part of the material presented in this section has previously appeared in the literature,

in some cases only for the case of planar graphs [31–33]. A key point of this article is that

these polytopes are also extremely useful beyond planar graphs.

We will use the explicit example in figure 9 for illustrating our ideas. This is an on-shell

diagram associated to the top dimensional cell of Gr2,5. This example is chosen because it

exhibits more richness than the simpler Gr2,4 considered so far. In general, the polytopes

we will define live in high dimensional integer lattices. It is thus typically impractical to

provide a graphical representation of them. Instead, we will describe them in terms of

matrices giving the position vectors of points in them.

6.1 Polytopes from matroids

Here we introduce the polytopes we want to study and a first perspective on them.

17Throughout this article, d-dimensional polytopes should be regarded modulo SL(d,Z) transformations.
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Figure 9. An on-shell diagram for the top dimensional cell of Gr2,5.

Matching polytope. The first polytope we will construct encodes the map between

edges and perfect matchings. Given a bipartite graph with E edges Xi, i = 1, . . . , E and

c perfect matchings pµ, µ = 1, . . . , c, we define the (E × c)-dimensional perfect matching

matrix P as follows:

Piµ =

{
1 if Xi ∈ pµ
0 if Xi /∈ pµ

(6.1)

This matrix can be interpreted as defining the matching polytope, in which there is a distinct

point for every perfect matching, with a position vector in ZE given by the corresponding

column vector [11, 31].18

Let us construct the matching polytope for the explicit example at hand. The graph

in figure 9 has 14 perfect matchings, which can be determined using (2.4). They are shown

in figure 10. The perfect matching matrix thus becomes:

P =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14

X1,3 0 0 1 0 0 0 1 0 0 0 1 0 0 0

X4,2 0 0 0 0 1 1 0 0 0 1 0 0 0 0

X2,5 0 0 0 1 0 0 0 0 0 0 1 1 0 1

X6,2 0 0 0 0 1 0 1 0 1 1 0 0 1 0

X1,6 0 0 1 0 0 1 0 1 0 0 1 0 0 1

X7,1 0 1 0 0 0 0 0 0 0 1 0 1 1 0

X2,1 1 1 0 1 0 0 0 0 0 0 0 1 0 0

X3,4 0 0 0 0 0 0 0 1 1 0 0 0 1 1

X5,4 1 1 1 0 0 0 1 1 1 0 0 0 1 0

X5,6 1 1 1 0 0 1 0 1 0 0 0 0 0 0

X6,7 1 0 0 1 1 0 1 0 1 0 0 0 0 0

X3,7 1 0 0 1 1 1 0 1 1 0 0 0 0 1



(6.2)

18Strictly speaking, we have not defined the matching polytope in terms of matroids. The connection to

the matroid polytope, which we introduce below, will become clear in coming subsections once we develop

other viewpoints on these objects.
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Figure 10. The 14 perfect matchings for the bipartite graph in figure 9.

Generically, the matching polytope lives in a lower dimensional subspace of ZE . This

fact can be made explicit by row-reducing P , which for (6.2) results in the following matrix:

Gmatching =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14

1 0 0 0 0 0 0 0 0 −1 −1 −1 −1 −1

0 1 0 0 0 0 0 0 0 1 0 1 1 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 0 1 1 0 0 1 0

0 0 0 0 0 1 −1 0 −1 0 0 0 −1 0

0 0 0 0 0 0 0 1 1 0 0 0 1 1


(6.3)

It is straightforward to verify that the points defined by the previous matrix actually

live in a 6d hyperplane at unit distance from the origin, and hence one of the dimensions

in (6.3) can be projected out. It is thus possible to neglect one dimension, by e.g. discard-

ing a row in G. From now on we refer to the dimension of the matching polytope as the

dimension of the hyperplane on which the points lie; in the example above this is 6 dimen-
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sions. Thus, for planar graphs the dimensionality of the matching polytope is equal to the

total number of faces minus one, i.e. F − 1. The dimensionality and how it generalizes to

non-planar graphs are best understood in terms of flows in a perfect orientation. This will

be discussed in section 6.2.1.

Matroid polytope. The matroid polytope was introduced in section 3.5 to encode the

elements of a matroid and their relations. The source sets Iµ, µ = 1, . . . c, of perfect

orientations in a planar graph are in one-to-one correspondence with elements of a matroid.

A central theme of the current paper is the extension of notions such as the matroid

polytope to non-planar graphs. Additional details of such generalizations will be given in

later sections. The discussion in this section will thus continue under the assumption of

completely general bipartite graphs, i.e. our matroid polytopes should be regarded as the

ones usually defined for planar graphs.

Matroid bases are in one-to-one correspondence with source sets of perfect orientations.

Given the external nodes n
(e)
i , i = 1, . . . , n and source sets Iµ of perfect orientations, the

matroid polytope is defined as follows:

Gmatroid,iµ =

{
1 if n

(e)
i ∈ Iµ

0 if n
(e)
i /∈ Iµ

(6.4)

where column vectors give the positions of points in the polytope. At this point, it is

important to emphasize a phenomenon which will later reappear in multiple incarnations.

In general, different perfect orientations can share the same source set, which in turn implies

they are mapped to the same point in the matching polytope. The precise sense in which

such perfect orientations imply multiple “contributions” to a given matroid element will

be clarified in section 6.2.3 in terms of Plücker coordinates.

Similarly to the matching polytope, the matroid polytope lies in a hyperplane at unit

distance from the origin, i.e. it has Fe− 1 independent dimensions. Interestingly, since the

dimensionality of the matroid polytope is only controlled by external nodes, it remains equal

to Fe−1 in the non-planar case. We present a further discussion of this point in section 6.2.2.

Returning to our explicit example, figure 11 gives the 14 perfect orientations associated

to the perfect matchings in figure 10. We denote oµ the perfect orientation corresponding

to a perfect matching pµ.

There are 10 possible source sets in this case, i.e. 10 matroid elements, and (6.4)

becomes:

G =



{45} {14} {35} {34} {15} {24} {25} {13} {12} {23}
o1 o2 o3 o4 o5 o6 o7 o8 o9 o10 o11 o12 o13 o14

1 0 1 1 0 0 0 1 0 0 1 1 1 1 1

2 0 0 0 0 0 0 0 1 1 0 0 0 1 0

3 0 0 0 1 1 1 0 0 0 1 1 1 0 1

4 1 1 1 0 0 1 0 1 0 0 0 0 0 0

5 1 0 0 1 1 0 1 0 1 0 0 0 0 0


(6.5)
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Figure 11. Perfect orientations for the perfect matchings in figure 10.

This example explicitly shows how source sets can be shared by more than one perfect

orientation. For example {14} corresponds to both p2 and p3. Similarly, {35} and {13}
arise from multiple perfect orientations.

It is convenient to introduce a more compact version of this matrix, which only provides

the positions of points in the matroid polytope and the multiplicities of perfect orientations

contributing to each of them. For (6.5), we have:

Gmatroid =



{45} {14} {35} {34} {15} {24} {25} {13} {12} {23}
0 1 0 0 1 0 0 1 1 1

0 0 0 0 0 1 1 0 1 0

0 0 1 1 0 0 0 1 0 1

1 1 0 1 0 1 0 0 0 0

1 0 1 0 1 0 1 0 0 0

1 2 2 1 1 1 1 3 1 1


, (6.6)

where the last row indicates the multiplicities of perfect orientations. The polytope lives

on a 4d hyperplane.
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Figure 12. An on-shell diagram for the top dimensional cell of Gr2,5 and a choice of perfect

orientation.

6.2 Polytopes from flows

Here we introduce a second route to matching and matroid polytopes, based on a geometric

description of flows. The thoughts in this section are a continuation of the ones introduced

in [12] and related ideas, albeit emphasizing slightly different issues, can be found in [33].

Similar descriptions of flows have appeared earlier in the literature, see e.g. [32].

The first step in order to discuss flows is to pick an underlying perfect orientation.

Alternative choices of the reference perfect orientation lead to trivial modifications of the

polytopes.

For the example at hand, let us focus on the perfect orientation o1, which we reproduce

in figure 12. Figure 13 shows all flows in it. As previously discussed, flows can be open,

closed or a combination of disjoint components.

6.2.1 Matching polytopes: a fully refined description of flows

Flows in a perfect orientation can be fully specified by expanding them in terms of a basis.

For graphs on a disk, a convenient basis is given by the loops circling clockwise around

faces, both internal and external. It is indeed useful to distinguish between the two types

of faces. We call the internal faces wi, i = 1, . . . , Fi, and the external ones xj , j = 1, . . . , Fe,

with Fi+Fe = F . These variables are subject to the constraint
∏Fi
i=1wi

∏Fe
j=1 xj = 1. This

implies that one of them is actually redundant which, without loss of generality, we can

take it to be one of the external faces. This is the manifestation, in the language of flows,

of the extra coordinate we discussed in the previous section. Flows pµ are thus mapped to

points in an (F − 1)-dimensional space with integer coordinates, according to:

pµ =

Fi∏
i=1

w
ai,µ
i

Fe−1∏
j=1

x
bj,µ
j 7→ Coordinates :

(a1,µ, . . . , nFi,µ, b1,µ, . . . , bFe−1,µ)
(6.7)

Since these coordinates allow a full identification between flows, each of them is mapped

to a distinct point. The resulting polytope is indeed the matching polytope.
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p13

p1 p2 p3 p4

p5 p6 p7 p8

p9 p10 p11 p12

p14

Figure 13. All flows corresponding to the perfect orientation in figure 12.

For the flows in figure 13, the points in the polytope can be summarized as the column

vectors of the following matrix:

Gmatching =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14

a1 0 0 −1 0 0 −1 0 −1 0 0 −1 0 0 −1

a2 0 0 0 0 1 0 1 0 1 1 0 0 1 0

b1 0 −1 −1 0 0 −1 0 −1 0 −1 −1 −1 −1 −1

b2 0 0 0 0 0 −1 1 −1 0 0 0 0 0 −1

b3 0 0 0 0 0 −1 1 0 1 0 0 0 −1 0

b4 0 0 0 1 1 0 1 0 1 1 1 1 −1 1


. (6.8)

This result coincides with (6.3).

Bipartite graphs with higher genus and zero or multiple boundary components can be

treated similarly. In such cases, the basis of cycles needs to be appropriately extended as

follows [12]:

• Higher genus: include αi and βi, i = 1, . . . , g pairs of fundamental cycles for a

genus g Riemann surface.
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x 2

x 4

5x

1w w2

Figure 14. An on-shell diagram for the top dimensional cell of Gr2,5, with a new labeling of faces

that is suitable for the analysis in this section.

• Boundaries: forB ≥ 1 boundaries, it is necessary to include pathsB−1 independent

paths connecting the different boundary components.

For clarity, the discussion that follows is centered on the case of the disk. Extending

it to general graphs along the lines just mentioned is straightforward.

6.2.2 Matroid polytope: keeping partial information about paths

For certain questions, having a full specification of flows, such as the one given in sec-

tion 6.2.1, is more than it is necessary. For example, in order to determine which entries

in the boundary measurement are non-vanishing, knowledge of which external nodes are

connected by a given flow is sufficient.19 The detailed trajectories of flows along the bulk

of the graph are unimportant. It is sufficient to identify the edges through which they

enter and exit the graph. In terms of the loop coordinates defined in section 6.2.1, this is

fully determined by keeping only those coordinates associated to the Fe − 1 independent

external faces. For planar graphs we drop the coordinates associated to internal faces. In

more general cases, we also discard those coordinates associated to paths between different

boundary components and fundamental cycles on higher genus Riemann surfaces.

Let us consider the Gr2,5 example. Keeping the bj,µ coordinates and discarding the

19Recall that determining the non-vanishing entries of C is equivalent to finding them for MC .
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two ai,µ associated to the internal faces, (6.8) reduces as follows:

Gmatching =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14

a1 0 0 −1 0 0 −1 0 −1 0 0 −1 0 0 −1

a2 0 0 0 0 1 0 1 0 1 1 0 0 1 0

b1 0 −1 −1 0 0 −1 0 −1 0 −1 −1 −1 −1 −1

b2 0 0 0 0 0 −1 1 −1 0 0 0 0 0 −1

b3 0 0 0 0 0 −1 1 0 1 0 0 0 −1 0

b4 0 0 0 1 1 0 1 0 1 1 1 1 −1 1


↓

Gmatroid =



π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

b1 0 −1 0 −1 0 −1 0 −1 −1 −1

b2 0 0 0 −1 1 −1 0 0 0 −1

b3 0 0 0 −1 1 0 1 0 −1 0

b4 0 0 1 0 1 0 1 1 −1 1

1 2 2 1 1 1 1 3 1 1



(6.9)

where the πi are the vertices obtained by only keeping the b coordinates. This is precisely

the matroid polytope given in (6.6), after projecting out a redundant dimension.

Flows provide an alternative perspective on the emergence of the non-trivial multi-

plicities for points in the matroid polytope. Such multiplicities arise because paths that

coincide on external legs but differ in the interior of the graph are projected down to the

same point after eliminating the extra coordinates.

A corollary of the discussion in this section is that the matroid polytope encodes the

connectivity between external legs in a perfect orientation, i.e. it specifies which entries in

the boundary measurement are non-zero.

6.2.3 Perfect matchings and Plücker coordinates

In section 6.1 we observed that different perfect matchings can give rise to perfect orien-

tations with the same source set and hence provide multiple “contributions” to a given

matroid element. This phenomenon manifests as non-trivial multiplicities for points in the

matroid polytope. We are now ready to explain in what sense these objects contribute to

the same matroid element in more detail.

Matroid elements {i1 . . . ik} are in one-to-one correspondence with Plücker coordinates

∆i1...ik which, in turn, are given by minors of the boundary measurement matrix. All flows

associated to a given point in the matroid polytope contribute to the same entries in

the boundary measurement matrix. As a result, every perfect matching is mapped to a

specific Plücker coordinate [22, 31–33]. In summary, each point in the matroid polytope

is associated with a single Plücker coordinate, but may get contributions from multiple

perfect matchings.
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For the example in this section, (6.5) implies the following relation between perfect

matchings and Plücker coordinates:

Plücker coordinate ∆45 ∆14 ∆35 ∆34 ∆15 ∆24 ∆25 ∆13 ∆12 ∆23

PM p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14

6.3 Polytopes from BFTs

Interpreting bipartite graphs in terms of the corresponding BFTs, the matching and ma-

troid polytopes become two very natural geometries for a quantum field theorist. With the

goal of obtaining these geometries, we focus on classical Abelian BFTs. By this we mean

BFTs in which all symmetry groups are U(1) and gauge couplings are fixed and finite, with

no quantum RG running.20 Our discussion will be brief, and we refer the reader to [11, 12]

for a detailed presentation.

6.3.1 The matching polytope from the master space

The master space of 4d N = 1 is defined as the space of solutions to vanishing F-term

equations [34]. The special structure of BFT superpotentials, which are determined by

bipartite graphs, reduces the determination of the master space to a combinatorial problem.

F-terms automatically vanish with the following change of variables

Xi =
∏
µ

p
Piµ
µ , (6.10)

where Xi are the scalar components of chiral multiplets associated to edges, pµ are new

fields that are in one-to-one correspondence with perfect matchings and P is the perfect

matching matrix defined in (6.1).21 Perfect matchings can thus be interpreted as GLSM

fields parametrizing the master space. The master space of a BFT is a toric CY manifold

whose toric diagram is the matching polytope [11]. The positions of perfect matchings

in the matching polytope encode linear relations between the pµ variables associated to

F-term equations.

6.3.2 The matroid polytope from the moduli space

The moduli space of the BFT is obtained from its master space, by further demanding

vanishing of D-terms. In order to do so, it is necessary assign charges under all U(1) gauge

groups to the pµ fields. These charges are deduced from those of the edge fields via the

map (6.10). For every U(1)(α) factor of the gauge group and every edge chiral multiplet

20A full investigation of the quantum behavior of BFTs with general ranks is certainly a well-motivated

and interesting problem, but it is beyond the focus of this article.
21It is important to emphasize the difference between (6.10) and the definition of oriented perfect match-

ings introduced in section 2.2, which are given by p̃µ =
∏
i α

Piµ
i . While edge weights are naturally inter-

preted as products of perfect matchings for solving F-term equations, oriented perfect matchings should

be thought as the product of oriented edge weights. In both cases, the object controlling the map is the

P matrix. Avoiding inconsistencies associated with this subtle difference was one of the main reasons for

introducing the concepts of oriented perfect matchings and edge weights.
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Xi associated to an edge, we have:

Q(α)(Xi) =
c∑

µ=1

PiµQ
(α)(pµ). (6.11)

This set of equations can be used to determine an assignation of Q(α)(pµ) charges. Since the

system is not invertible, the resulting charges are generically not uniquely determined. The

moduli space is however independent of the chosen solution. It is obtained by projecting

the master space on the space of gauge invariants. The moduli space is also a toric CY

manifold and its toric diagram is obtained from the one of the master space by projecting

it onto the null space of the matrix of gauge charges of the perfect matchings.

The previous discussion holds in general. However, the specific toric CY obtained as

a result depends on whether the BFT is defined with gauging 1 or 2. When computed in

gauging 2, the toric diagram of the moduli space is the matroid polytope [12].22

Making contact with the discussion in section 6.2 in terms of a geometric description

of flows, eliminating a coordinate is physically achieved by gauging the corresponding U(1)

symmetry group in the BFT context. Gauging 2, the maximal gauging, corresponds to

keeping only the bi,µ coordinates.

6.4 A fast algorithm for finding the matroid polytope

Here we introduce a practical implementation of the ideas in previous sections leading to

an efficient algorithm for the determination of the matroid polytope of a bipartite graph.

There exists a one-to-one correspondence between external faces and external legs in

a bipartite graph. This correspondence underlies the identification of flow connectivity in

terms of external faces of section 6.2.1. Without loss of generality, in the case of a single

boundary, every external face can be traded by the external leg separating it from the

consecutive external face when going around the boundary clockwise. It is straightforward

to extend this map to graphs with multiple boundaries.

In analogy to the matching polytope, this correspondence implies the matroid polytope

is given by a reduced perfect matching matrix, with columns given by perfect matchings

but rows only associated to external legs. Denoting external edges by X
(e)
i and perfect

matchings by pµ, we have:

Gmatroid,iµ =

{
1 if X

(e)
i ∈ pµ

0 if X
(e)
i /∈ pµ

. (6.12)

This method for determining matroid polytopes is almost identical and trivially related to

the one given by (6.4), based on perfect orientations. In our opinion, (6.12) is even simpler

to implement computationally, since it is written directly in terms of perfect matchings,

which can be straightforwardly found via reduced Kasteleyn matrices.

22The BFTs resulting from gauging 1 and the associated moduli spaces are interesting in their own right.

Given the questions we want to address in this paper, we will strictly focus on gauging 2.
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7 Graph equivalence and reduction

In this section we introduce the notions of graph equivalence and reducibility, which concern

the possibility of using different graphs for describing the same element in the Grassman-

nian.

Equivalence. Two graphs are equivalent if they have the same matroid polytope, modulo

SL transformations and multiplicities. Following section 6, equivalent graphs cover the

same regions of the Grassmannian. They lead to the same set of generically non-zero

entries in the boundary measurement, and to the same set of non-zero Plücker coordinates.

This notion of equivalence is also well-motivated in the BFT interpretation, since it implies

that the corresponding theories have the same moduli space.23 Integrating out 2-valent

nodes, square moves and bubble reductions lead to equivalent theories. We refer the reader

to [11] for a detailed description of these graph transformations. In some cases, edge

removal can also lead to equivalent theories. In the specific case of planar bipartite graphs,

there is a one-to-one correspondence between equivalence classes of graphs and positroid

cells of the Grassmannian.

Reducibility. A graph is reduced or irreducible if it has the minimum number of inde-

pendent closed paths within a given equivalence class.24 Being defined up to equivalence

transformations, reduced graphs are clearly not unique. More practically, a graph is re-

ducible if it is possible to remove edges without changing its matroid polytope, modulo

multiplicities.25

There are various alternative interpretations of graph reducibility. From the perspec-

tive of section 6.2 we see that, given a perfect orientation, reducibility translates into

redundant connectivity between external legs of a graph. A graph is reducible if it is pos-

sible to remove edges, which results in the disruption of some oriented paths, such that

every originally connected pair of external nodes remains so after the removal. Following

section 6.2.3, reducibility can also be thought of as the ability to eliminate edges of the

graph while keeping contributions to all Plücker coordinates, i.e. without setting any of

them to zero.

Roughly speaking, reduced graphs possess the minimal amount of structure necessary

for describing the elements in the Grassmannian associated to the corresponding equiva-

lence class.

23In the non-Abelian case the equality of moduli spaces is a necessary condition for two theories to be

Seiberg dual [35–40]. Strictly speaking, the duality does not exist for Abelian theories, to which we restrict

in this paper, since the theories are not asymptotically free. The matching of moduli spaces is however a

well-defined mathematical question regarding natural geometric objects in the field theory.
24The notion of independent closed paths generalizes the one of internal faces, which is typically used for

planar graphs.
25We will assume this definition is equivalent to the one of irreducible graphs. This assumes that all

reductions can be implemented by edge removals. It would be interesting to prove rigorously that this is

the most general type of reduction, i.e. including those associated to bubble reductions and excluding any

other exotic possibility.
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Figure 15. A reducible bipartite graph corresponding to the top-dimensional cell of Gr2,5.

8 Quantifying graph reducibility

Heuristically, the more flows connecting external nodes that exist, the more likely connec-

tivity is preserved after removing an edge. In other words, the degree of reducibility of

a graph is correlated with the multiplicities of perfect matchings associated to the same

points in the matroid polytope. These multiplicities can thus be used as indicators of

(relative) reducibility.26

It is important to emphasize that multiplicities greater than one do not imply that a

graph is reducible. An efficient method for addressing this question will be introduced in

section 8.1.

In order to illustrate these ideas, let us consider the graph in figure 15, which is related

to figure 9 by reduction. The matroid polytope is given by the following matrix:

Gmatroid =



0 1 0 0 1 0 1 1 0 0

0 0 1 0 0 0 0 −1 1 1

0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 1 1 1 −1 0

0 0 0 0 0 0 0 0 0 0

5 3 2 3 2 1 1 1 1 1


. (8.1)

This polytope coincides with the one given by (6.9), but the new graph has 20 perfect

matchings and multiplicities are hence increased. As explained, this is a manifestation

of the redundant connectivity associated to reducibility. Similar examples were presented

in [11].

8.1 An efficient approach to reducibility

Determining whether a bipartite graph is reduced is an important question for various

applications. For planar graphs, there is a combinatorial diagnostic for reducibility based on

zig-zag paths (see e.g. [6] and references therein). Determining zig-zags and their properties

can however be rather impractical. Furthermore, whether and how this method generalizes

26These multiplicities have been extensively studied for dimer models, i.e. bipartite graphs on a 2-torus,

particularly in relation to Seiberg duality in the corresponding BFTs, see e.g. [17, 36, 37, 40].
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to non-planar graphs is currently unknown. In this section we introduce an alternative test

for reducibility with two salient features: it is straightforward to implement and it applies

to both planar and non-planar graphs.

The discussion in section 7 makes it clear that the matroid polytope is the central

player for determining graph equivalence and hence reducibility, which can be formulated

as follows:

A graph is irreducible if it is impossible to remove any edge without deleting points in

the matroid polytope, i.e. without at least one perfect matching surviving for each of them.

This approach, originally advocated in [11], leads to a practical procedure for deter-

mining whether a graph is irreducible.

1) Define Eα to be the set of edges that are present in all perfect matchings correspond-

ing to a point α in the matroid polytope, α = 1, . . . , np.

2) Combine them to form the set of edges that cannot be deleted Eund = ∪αEα. In

particular, Eund contains all edges in perfect matchings associated to multiplicity

one points in the matroid polytope.

Then, graph is reduced if and only if Eund is equal to the set Etot of all edges in the

graph. If Eund * Etot, removing any single edge in Etot−Eund results in a reduction of the

graph. Notice however that, in general, it is not possible to simultaneously remove more

than one edge Etot − Eund without eliminating points from the matroid polytope.

Matrix implementation

The previous procedure can be nicely implemented in matrix language. Let us consider the

perfect matching matrix P in terms of which, as seen in (6.10), edge removal is very trans-

parent. When an edge Xi is deleted, the perfect matchings pµ for which Piµ = 1 disappear.

Our main goal is to identify which edges, if any, can be deleted while keeping at least

one perfect matching per point in the matroid polytope. For this purpose, it is natural to

define a new matrix P, by multiplying the entries of P associated to each point πα in the

matroid polytope as follows:

Piα ≡
∏

pµ∈πα
Piµ. (8.2)

This results in a new m × np matrix P, where m is the number of edges, as it is for P ,

and np is the number of distinct points in the matroid polytope.

A vanishing entry Piα = 0 implies that removal of the edge Xi preserves the point α

in the matroid polytope, albeit not necessarily its multiplicity. Similarly Piα = 1 signifies

that the removal of Xi kills all perfect matchings at point πα. The construction of P is

very efficient given P and immediately displays the reducibility of a graph: if P has a row

of zeroes, the graph is reducible since it is possible to remove the corresponding edge while

preserving all points in the matroid polytope.
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Let us illustrate this construction for the example in figure 15, for which we obtain

P =



π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

X1,2 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 1

X1,8 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

X2,4 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0

X2,7 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0

X3,2 0 1 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0

X3,5 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0

X4,1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0

X4,3 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1

X6,3 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

X7,1 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0

X5,4 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0

X5,6 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1

X7,6 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1

X8,4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1

X8,7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1



(8.3)

where we have grouped the columns associated to perfect matchings that sit on the same

point of the matroid polytope. The horizontal line separates internal edges from external

legs.27 Using (8.2), we obtain:

P =



π1 π2 π3 π4 π5 π6 π7 π8 π9 π10

X1,2 0 0 0 0 0 0 0 0 0 1

X18 0 0 0 0 0 0 0 0 0 0

X2,4 0 0 0 0 0 1 1 1 0 0

X2,7 0 0 0 0 0 0 0 0 1 0

X32 0 0 0 0 0 0 0 0 0 0

X3,5 0 0 0 0 0 1 0 0 0 0

X4,1 0 0 0 0 0 0 0 0 1 0

X4,3 0 0 1 0 0 0 0 0 1 1

X6,3 0 0 0 0 0 0 0 1 0 0

X7,1 0 0 0 0 0 1 1 1 0 0

X5,4 0 1 0 0 1 0 1 1 0 0

X5,6 0 1 1 0 1 0 1 0 1 1

X7,6 0 0 1 0 0 1 1 0 0 1

X8,4 0 0 0 1 1 1 1 1 0 1

X8,7 0 0 0 1 1 0 0 0 1 1



(8.4)

This matrix contains rows of zeroes, so we conclude the graph is reducible. X1,8 or X3,2

can be removed without eliminating points from the matroid polytope.

Finally, we remark that P is also useful for finding those edges which, in the language

of [6], are removable edges. Removable edges are defined as those which, starting from a

reduced graph, yield a reduced graph after being removed.28 In order to identify remov-

able edges, we first generate a new perfect matching matrix P ′ from P , by removing the

corresponding row k and every column µ for which Pkµ = 1. Next, we construct the corre-

27This organization of rows and columns in P is not obligatory, but it is convenient for simplifying our

analysis.
28It is important not to confuse these edges with the ones discussed in previous paragraphs, which are

edges that can be removed from a reducible graph to produce an equivalent one.
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sponding P ′ matrix. Removable edges are those whose P ′ does not display reducibility.

This procedure applies to general, not necessarily planar, graphs.

9 Stratification: new regions and new methods

We have already had a glimpse that the connection between the Grassmannian and bi-

partite graphs provides interesting avenues for decomposing the former using the latter.

In section 5 we discussed a decomposition of planar bipartite graphs which is of physical

interest due to its connections to the singularity structure of scattering amplitudes. It can

be summarized as follows:

1) Start from a reduced graph.

2) Sequentially delete removable edges.

From a mathematical viewpoint such decomposition is interesting because, for planar

graphs, it corresponds to the positroid stratification of the totally non-negative Grass-

mannian. Recall that the positroid stratification can also be regarded as the intersection

between the matroid stratification and the totally non-negative Grassmannian. More gener-

ically, as we discuss in section 9.1.4, for arbitrary graphs the decomposition considered in

this section can be regarded as a partial matroid decomposition, which we shall call the

combinatorial decomposition.

It is reasonable to only focus on reduced graphs, since it avoids the redundancies in

the description of the Grassmannian associated to reducible graphs. It is natural to extend

the decomposition defined by the two steps above to arbitrary reduced bipartite graphs

and to investigate its implications. This will allows us to go beyond the positive regions

of the Grassmannian, which are specific to the planar case. In analogy with the reasoning

of section 5, it is reasonable to expect that this decomposition is a natural candidate for

capturing the singularity structure of on-shell diagrams beyond the planar limit.

The combinatorial decomposition can be nicely visualized in terms of a poset, in which

every node corresponds to a reduced graph and arrows indicate the deletion of a remov-

able edge. For planar graphs, every site in the poset corresponds to a positroid stratum,

represented by a specific matroid stratum. Figure 16 presents the simple example of the

positroid decomposition of the top-cell of Gr2,4, obtained by this procedure.29

In the following, we will first apply our ideas to planar graphs, which are well-known

to experts. In coming sections we will also consider the non-planar case, which deserves a

detailed study of its own, since it remains relatively unexplored. In practice, it is useful to

exploit the algorithm in section 8.1 for identifying removable edges.

9.1 Combinatorial decomposition via polytopes

In this section we introduce an alternative implementation of the combinatorial decomposi-

tion. It exploits the matroid and matching polytopes, making the connection to the Grass-

mannian more transparent. In addition, it does not rely on reducibility or removability.

29In the physics literature, this example has appeared in [6].
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35 26 36 46 5612 14 13 15 24 25 34

4 5 61 2 3

Figure 16. Positroid decomposition of Gr2,4. Each site corresponds to a positroid stratum, and

we indicate the associated graph and surviving perfect matchings.

9.1.1 Step 1: edge removal

The first step of the process corresponds to removing edges of the graph. This is done

in steps, and the process terminates when the surviving graph coincides with a perfect

matching of the original one, i.e. to a vertex in the matching polytope. Note however

that in general we do not remove only one edge at a time; it is sometimes necessary to

remove multiple edges in one step. The prescription for removing edges is simple: we

start by removing a single edge, and consequently those perfect matchings in which this

edge participates disappear. If after this operation there are other edges that no longer

participate in any of the remaining perfect matchings, those edges are removed as well.

Notice that any edge can be removed, i.e. there is no restriction to removable edges. The

graphs generated by this procedure and their relations can be organized into an Eulerian
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poset, which is different from the poset discussed in the previous section. An example of

this is provided in figure 18, which also contains cases where multiple edges are removed,

e.g. between the graph labeled as 124 and the graph labeled 12.

Interestingly, for planar graphs, removing edges is equivalent to constructing the face

lattice30 of the matching polytope [31]. In the next sections we argue and provide evidence

that this is also valid for non-planar bipartite graphs. Let us explain in more detail the

structure of the poset for the matching polytope. Consider a matching polytope of dimen-

sion dmatching. Its boundary has dimension equal to (dmatching− 1) and is a union of facets.

Each facet is defined as the intersection of the boundary with a (dmatching− 1)-dimensional

hyperplane. In turn, each of these facets has a (dmatching−2)-dimensional boundary, which

can also be decomposed into faces, and so on. The face lattice of the matching polytope is

generated by iterating the boundary operator until reaching 0-dimensional faces.

In this approach, faces are directly determined from the positions of points in the

matching polytope. Computer applications constructing the set of faces for arbitrary poly-

topes are publicly available, see e.g. Polymake [41]. Contrary to the method based on

removing edges, a single bipartite graph is only used at the initial step, for determining

the matching polytope.

Let us consider the planar graph associated to the top-cell of Gr2,4, which is shown

in figure 4. The matching polytope has seven different points corresponding to its perfect

matchings and is given by the following perfect matching matrix

P =



p1 p2 p3 p4 p5 p6 p7

X1,2 0 1 0 0 0 1 0

X1,4 0 0 1 0 0 1 0

X3,1 0 0 0 0 1 0 1

X5,1 0 0 0 1 0 0 1

X2,3 1 0 1 1 0 0 0

X2,5 1 0 1 0 1 0 0

X4,5 1 1 0 0 1 0 0

X4,3 1 1 0 1 0 0 0


. (9.1)

This matrix defines a 4d polytope. This becomes clearer by row-reducing it, after which

we obtain

Gmatching =



p1 p2 p3 p4 p5 p6 p7

1 0 0 0 0 −1 −1

0 1 0 0 0 1 0

0 0 1 0 0 1 0

0 0 0 1 0 0 1

0 0 0 0 1 0 1


. (9.2)

Let us briefly discuss the relation between edge removal and lower dimensional faces of

the matching polytope. Recall that removing an edge Xi results in eliminating the perfect

matchings pµ for which the corresponding entry Piµ is equal to 1. In this example, we

30In the face lattice we do not include the empty set.
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(a) (b)

Figure 17. Two types of identifications: a) horizontal and b) vertical. Here we show the action on

points in the matching polytope. Points, i.e. perfect matchings, to be identified are shown in blue

and red. Purple dots indicate the resulting points after identification.

obtain eight different subgraphs at the first level, corresponding to eight 3d faces. We

then continue removing additional edges, successively obtaining lower dimensional faces

until reaching the vertices of the matching polytope, which correspond to the 7 perfect

matchings. The resulting face lattice is shown in figure 18. The previous discussion was

phrased in terms of edge deletions. As we explained, the face lattice can be determined

directly, without referring to edge removals.

9.1.2 Step 2: identification

The final step in the combinatorial decomposition involves identifying perfect matchings

associated to the same point in the matroid polytope, equivalently to the same Plücker

coordinate. This results in the identification, or more precisely merging, of nodes in the

poset for the face lattice of the matching polytope we constructed in the previous section.

The identification of perfect matchings can give rise to two qualitatively different types

of identifications. We refer to them as horizontal and vertical identifications, following their

effect on points on the poset. They are defined as follows:

• Horizontal identifications: they merge nodes in the poset that sit at the same

level. Their effect on the matching polytope is to identify different faces without

affecting their dimensionalities.

• Vertical identifications: from the viewpoint of the poset, they merge nodes at

different levels. They identify different points in a given face of the matching polytope

and result in a lower dimensional one.

Figure 17 shows simple examples of each class of identification at the level of the

matching polytope. Generically, more than two perfect matchings can be simultaneously

involved in identifications.

This approach to decomposition makes certain general properties of the final poset

obtained after identifications rather clear. In particular:

• The number of levels is equal to the dimensions of the matching polytope of a reduced

graph in the equivalence class of the starting point plus one. This number is invariant

under graph equivalence, and does not depend on the initial graph being reduced.
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Figure 18. Face lattice of the matching polytope for the graph in figure 4. At each point,

we indicate the corresponding graph and the surviving perfect matchings. When p6 and p7 are

identified, green and blue nodes in the poset are subject to horizontal and vertical identifications,

respectively.

• The number of sites in the lowest level of the poset is equal to the number of points

in the matroid polytope.

Returning to the Gr2,4 example, the matroid polytope in this case is given by:

Gmatroid =


p1 p2 p3 p4 p5 p6 p7

X2,3 1 0 1 1 0 0 0

X2,5 1 0 1 0 1 0 0

X4,5 1 1 0 0 1 0 0

X4,3 1 1 0 1 0 0 0

 . (9.3)

The 7 perfect matchings are mapped to 6 points, with p6 and p7 becoming coincident.

Figure 18 shows the face lattice for the matching polytope. Colored nodes need to be

merged with some of the white ones, following the identification of p6 and p7: green and

blue nodes are subject to horizontal and vertical identifications, respectively. White nodes

correspond to the nodes in figure 16. It is straightforward to verify that the entire structure

of figure 16, i.e. including its arrows, is recovered by the identifications.
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Figure 19. A reducible graph for the top-cell of Gr2,4.

9.1.3 Reducible starting points

It is important to stress that the combinatorial decomposition does not require irreducibility

at any step. Not only restricting to removable edges, i.e. to reduced graphs at intermediate

steps, is not necessary, but the starting point does not need to be a reduced graph. As

we explained in section 8, the redundancy in reducible graphs is accounted for by the

identification of perfect matchings according to the matroid polytope.

To see how things work in an explicit example, let us consider the reducible graph in

figure 19 which is equivalent to the single square box graph studied in the previous sections,

and corresponds to the top-dimensional cell of Gr2,4.

This graph has 10 perfect matchings, a relatively small increase with respect to the

7 perfect matchings of the single box graph. However, there is an explosion in the num-

ber of possibilities for removing edges. The corresponding poset is shown in figure 29 of

appendix B.

The matching polytope is 5d. The difference in dimensions with respect to an equiva-

lent reduced graph, which has a 4d matching polytope as in (9.2), is equal to the number of

additional faces. This implies that, before identifications, the face lattice has an additional

level.

The matroid polytope coincides with the one for the reduced graph given by (9.3), but

with larger multiplicities. Perfect matchings are identified as follows:

{p1, p7, p9} {p4}
{p2, p8} {p5}
{p3, p10} {p6}

(9.4)

from which we determine the horizontal and vertical identifications shown in figure 29.

These identifications lead to a vast reduction of the poset. The result contains only the

white sites in figure 29 and agrees, once again, with figure 16.

9.1.4 Relation to the matroid stratification

In the previous section we introduced the combinatorial decomposition of a bipartite dia-

gram and discuss different implementations.

Here we consider another natural decomposition we can relate to a bipartite graph,

which is the matroid stratification of the associated Grassmannian element, and comment

on their relations. The boundary measurement provides the necessary map between a graph
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and the Grassmannian. For planar graphs, we obtain the non-negative Grassmannian from

non-negative edge weights. Explicit details of its generalization to non-planar graphs are

given in section 10. In both cases perfect matchings can be mapped to Plücker coordinates

by referring to the source set specified by them, as already reviewed in section 6. Multiple

perfect matchings can correspond to the same Plücker coordinate, which is associated to a

point of the matroid polytope. This prescription results in a map

∆I ↔ {pIi }, (9.5)

where i runs over the multiplicity of the corresponding vertex in the matroid polytope. The

map identifies the non-vanishing Plücker coordinates of the element of the Grassmannian

associated to a bipartite graph. Next, we can follow section 3.5 and construct the matroid

stratification of this element of the Grassmannian.

For instance, let us return to the square box diagram in figure 4 and figure 1 for the

top-cell of Gr2,4. With the methods in section 6, we can easily obtain:

∆24 ↔ {p6, p7} ∆34 ↔ {p2} ∆12 ↔ {p3}
∆14 ↔ {p4} ∆23 ↔ {p5} ∆13 ↔ {p1}

(9.6)

It is now possible to produce the matroid stratification, which is given by:

d = 4 {12, 13, 14, 23, 24, 34}
d = 3 {12, 13, 14, 23, 24}, {12, 13, 14, 23, 34}, {12, 13, 14, 24, 34}

{12, 13, 23, 24, 34}, {12, 14, 23, 24, 34}, {13, 14, 23, 24, 34}
d = 2 {12, 13, 14}, {12, 13, 23}, {12, 14, 24}, {12, 23, 24}, {13, 14, 34}, {13, 23, 34}

{14, 24, 34}, {23, 24, 34}, {12, 13, 24, 34}, {12, 14, 23, 34}, {13, 14, 23, 24}
d = 1 {12, 13}, {12, 14}, {12, 23}, {12, 24}, {13, 14}, {13, 23}, {13, 34}, {14, 24}

{14, 34}, {23, 24}, {23, 34}, {24, 34}
d = 0 {12}, {13}, {14}, {23}, {24}, {34}

(9.7)

Note that we have used the Plücker relation

∆12 ∆34 + ∆23 ∆14 = ∆13 ∆24 (9.8)

in order to recognize the dimension of each matroid stratum and to arrange it at the correct

level.

We are now in a position to discuss the relation between the combinatorial decom-

position and the matroid stratification. Components in the combinatorial decomposition

are matroid strata, i.e. they are defined by specifying sets of non-vanishing Plücker coor-

dinates. However, generically not all matroid strata can be generated by removing edges

from a fixed starting graph. The combinatorial decomposition can thus be regarded as a

partial matroid decomposition. In section 12, we speculate on possible ways to achieve the

complete matroid stratification in terms of bipartite graphs.

In practical terms, the combinatorial decomposition is given by the intersection be-

tween the matroid stratification and the lattice generated by all possible edge removals.

– 39 –



J
H
E
P
0
8
(
2
0
1
4
)
0
3
8

For planar graphs, this reduction can be alternatively obtained by intersecting the matroid

stratification with the totally non-negative Grassmannian, as explained in section 3.6.

The matroid interpretation of the polytope implementation in section 9.1 for the com-

binatorial decomposition is clear. The first step restricts the space of strata to those which

are reachable by removing edges. The second step eliminates the redundancy in the de-

scription of these strata arising from equivalent graphs.

Returning to the example, let us take (9.7) and keep only objects appearing in figure 18.

In order to do so, we use the map between perfect matchings and Plücker coordinates given

by (9.6). The strata indicated in red in (9.7) disappear, and we are left with:

d = 4 {12, 13, 14, 23, 24, 34}
d = 3 {12, 13, 14, 23, 24}, {12, 13, 14, 24, 34},

{12, 13, 23, 24, 34}, {13, 14, 23, 24, 34}
d = 2 {12, 13, 14}, {12, 13, 23}, {12, 14, 24}, {12, 23, 24}, {13, 14, 34}, {13, 23, 34},

{14, 24, 34}, {23, 24, 34}, {12, 13, 24, 34}, {13, 14, 23, 24},
d = 1 {12, 13}, {12, 14}, {12, 23}, {12, 24}, {13, 14}, {13, 23}, {13, 34}, {14, 24}

{14, 34}, {23, 24}, {23, 34}, {24, 34}
d = 0 {12}, {13}, {14}, {23}, {24}, {34}

(9.9)

This is indeed the positroid stratification depicted in figure 20, which is identical to fig-

ure 16. For each graph we show its matroid labels (dark green) and its positroid labels

(light green).

10 Boundary measurement for non-planar graphs

In this section we extend the definition of the boundary measurement beyond the planar

case. This is a crucial element necessary for extending the map between general bipartite

graphs and the Grassmannian. The boundary measurement has been already defined for

planar graphs [22] and the annulus [42]. Here we generalize it to the case of graphs on the

plane with an arbitrary number of boundaries.

Figure 21.a shows an example with two boundaries. Figure 21.b illustrates how crossing

external legs can be traded by additional boundaries.

A desirable property of a well-behaved boundary measurement is that the matroid poly-

tope derived from the graph should coincide with the one for the corresponding Grassman-

nian element. This in particular implies that the boundary measurement should realize the

map between Plücker coordinates and perfect matchings already mentioned in section 6.2.3.

As we show in the next subsections, our generalization of the boundary measurement

to multiple boundaries obeys this property and, moreover, nicely contains as subcases the

boundary measurement for graphs on the disk and the annulus.

It is important to note that in the non-planar case the Plücker coordinates are no longer

positive definite, given positive edge weights, as will be shown explicitly in the following

examples. Thus, the image of the map is no longer restricted to the positive part of the

Grassmannian.
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{12,13,14,23,24,34}

{12,23,34,14}

{12,13,14,23,24}{12,13,14,24,34,} {12,13,23,24,34} {13,14,23,24,34}

{12,14,24} {12,23,24}{13,14,34} {13,23,34} {12,13,14} {12,13,23}{12,13,24,34}{13,14,23,24}{14,24,34} {23,24,34}

{12,23} {24,34} {12,24} {14,24} {23,24}{13,34} {13,14} {12,13} {13,23} {14,34} {23,34} {12,14}

{14} {23} {24}{13} {34} {12}

{12,24,34,14} {12,23,34,24} {13,23,34,14} {12,23,13,14}

{13,34,14} {13,23,34} {12,13,14} {12,23,13} {12,24,34} {13,23,14} {14,24,34} {23,34,24} {12,24,14} {12,23,24}

{23,24}{13,34} {13,14} {12,13} {13,23} {14,34} {23,34} {12,14} {12,23} {24,34} {12,24} {14,24}

{13} {34} {12} {14} {23} {24}

Figure 20. Positroid stratification of Gr2,4. Each graph maps to a matroid stratum whose

matroid is indicated in dark green. The positroid stratum containing the matroid stratum is shown

in light green. We see that all positroid strata are present, and no two graphs are in the same

positroid stratum.

10.1 Boundary measurement for the annulus

Initiating our discussion of multiple boundaries, in this subsection we shall review a method

by Gekhtman, Shapiro and Vainshtein [42] that maps graphs on the annulus to elements

of the Grassmannian. Every perfect matching gives rise to a perfect orientation. As in

the planar case, we construct a matrix C whose rows correspond to sources of the perfect

orientation and columns correspond to all external nodes. In analogy with what discussed

in section 4, C is constructed by selecting certain entries of the more general path matrix.

Each matrix entry in C may be composed of several terms, reflecting the fact that there may

be multiple ways to flow along the perfect orientation from a given source to a given sink.
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Figure 21. (a) A graph with two boundaries. (b) Crossing external legs can be eliminated by

introducing a new boundary.

For non-planar graphs the boundary measurement needs to deal with two subtle points:

• The ordering of external edges follows a specific prescription when there are multiple

boundaries.

• The signs assigned to the matrix entries require a careful treatment.

For the annulus, tackling these issues demands the introduction of a cut connecting the

two boundaries, shown as a green dotted line in figure 21.

Regarding the first point, the canonical ordering on the annulus is to start from the

cut and go clockwise around the outer boundary, followed by counterclockwise counting

from the cut around the inner boundary.31 In the next subsection we will introduce a

generalization for graphs with an arbitrary number of boundaries.

To address the second point, signs in the matrix C have two distinct origins. The first

type of signs is the same as that present in the planar case; these are overall signs which

all terms in a given matrix entry Cij are subject to. As in the planar case, the overall sign

of each entry is (−1)s(i,j), where s(i, j) is the number of sources strictly between i and j,

neglecting periodicity.

The second type of sign comes from the rotation number of the actual path connecting

a source and a sink. In order to find the sign for each path it is necessary to first complete

the path to form a closed loop. The prescription for closing the loop is as follows:

31Note that this convention is opposite to the one presented in [42] and was chosen in order to be consistent

with the case of the disk.
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Figure 22. A non-planar graph for a top-dimensional region of Gr3,5. The cut is indicated by a

green dotted line. Arrows show the perfect orientation associated to the perfect matching p1, which

contains edges X1,3, X1,6, X2,3 X5,4 and X5,6.

• If the source and the sink are both on the same boundary, the path is closed by adding

a segment from the sink to the source which runs clockwise along the boundary.

• If the source and the sink are on different boundaries, the path is closed by adding a

segment that runs clockwise from the sink to the cut, traverses along the cut to the

other boundary, and runs clockwise along this boundary until reaching the source.

The sign of a path P is given by (−1)r(P )+1, where r(P ) is the rotation number of the

closed path [42], which can be easily calculated by splitting it at each self-intersection. This

gives a number of closed loops that have clockwise or counterclockwise orientation. The

rotation number is given by the difference of the number of clockwise loops with the number

of counterclockwise loops. Note that this sign automatically accounts for the sign (−1)

introduced for a path which runs over a loop in a perfect orientation, reviewed in section 4.

The cut essentially measures the non-planarity of a path, by counting how many times

it goes around the non-trivial direction of the annulus. For this reason, it is heuristically

clear that the results cannot depend on the choice of cut. This is shown to be the case in [42].

Example 1. We shall illustrate the method using the example in figure 21.a, which is

shown in more detail in figure 22.
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The perfect matchings for this case are given by:

P =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

X1,3 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

X1,6 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0

X3,6 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1

X6,1 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0

X1,5 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1

X2,1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1

X4,1 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0

X6,2 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0

X2,3 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0

X5,4 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0

X5,6 1 0 1 1 0 0 1 0 0 0 1 0 1 0 0

X3,2 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0

X6,4 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1



. (10.1)

We take as reference perfect matching p1, which leads to the perfect orientation dis-

played in the figure, and hence the source set {2, 3, 5}. Thus, C takes the form

C =


1 2 3 4 5

2 ∗ 1 0 −∗ 0

3 −∗ 0 1 ∗ 0

5 ∗ 0 0 ∗ 1

 , (10.2)

where generically non-zero entries have been marked with an asterisk, and the signs

(−1)s(i,j) have been inserted. We now proceed to introduce relative signs for the matrix

entries. Computing the path matrix, we see that there are precisely two paths between

source 2 and sink 1:
α1,5

α5,4α5,6
and

α2,1α4,1α6,1

α1,3α1,6α5,4α5,6
. In both cases the closed loop is formed as

described above, and since this forms a single circle, there are no additional signs.

The C14 entry is different. Again, there are two paths between source 2 and sink 4:
α2,1α3,6α4,1

α1,3α1,6α2,3α5,4
and

α4,1α6,2

α1,6α2,3α5,4
. Closing the path following the prescription above, we obtain

the loops shown in figure 23.

As we see, for the first path there is a clockwise loop and a counterclockwise loop,

together forming rotation zero. Hence, we get a sign (−1)0+1 = −1. For the second path

we get a single clockwise loop, which gives (−1)1+1 = 1. Following this procedure for all

paths in the path matrix gives

C =


α1,5

α5,4α5,6
+

α2,1α4,1α6,1

α1,3α1,6α5,4α5,6
1 0

α2,1α3,6α4,1

α1,3α1,6α2,3α5,4
− α4,1α6,2

α1,6α2,3α5,4
0

−α2,1α6,1α6,4

α1,3α1,6α5,6
0 1

α6,2α6,4

α1,6α2,3
− α2,1α3,6α6,4

α1,3α1,6α2,3
0

α3,2α6,1

α1,3α5,6
0 0

α3,2α3,6

α1,3α2,3
1


=

 p2 + p10 1 0 p13 − p4 0

−p9 0 1 p3 − p11 0

p6 0 0 p7 1

 , (10.3)
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Figure 23. Closing the loop for the paths
α2,1α3,6α4,1

α1,3α1,6α2,3α5,4
(left) and

α4,1α6,2

α1,6α2,3α5,4
(right).

where all signs have been included, and the paths have been written as ratios of oriented

perfect matchings with the oriented reference matching pi = p̃i/p̃1. This is the element of

the Grassmannian associated to this specific graph on an annulus. Note that only pi’s asso-

ciated to single paths are contained in C. Those consisting of multiple disjoint components

are absent. All perfect matchings will however contribute to the Plücker coordinates.

It is a non-trivial fact that the Plücker coordinates of (10.3) can be written as sums

of perfect matchings (or more precisely flows given by the ratio between perfect matchings

and the reference matching), whose source set is precisely the set of columns involved in the

Plücker coordinate in question. For example, ∆123 is given by a sum of contributions from

perfect matchings whose flows have source set {1, 2, 3}. In fact, it is a requirement of a well-

behaved boundary measurement that its Plücker coordinates have this property.32 This

is because we identify Plücker coordinates ∆I with elements I ∈ M of a matroid, which

in turn are identified with points of the matroid polytope arising from the graph. These

points are formed by the union of perfect matchings which share the same source set I.

The Plücker coordinates are:

∆123 = p6 ∆145 = p5 − p15
∆124 = p12 ∆234 = p7
∆125 = p9 ∆235 = p1
∆134 = p8 + p14 ∆245 = p3 − p11
∆135 = p2 + p10 ∆345 = p4 − p13

. (10.4)

Multiplying all Plücker coordinates by the oriented reference matching p̃1 we obtain

the desired map between Plücker coordinates and perfect matchings. It is straightforward

32As mentioned in section 4 for planar graphs, this property is also achieved by not adding any sign to

theMC matrix. A delicate choice of non-trivial signs is however needed for Plücker coordinates to become

sums of contributions from perfect matchings while other nice properties are realized.
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to check that all perfect matchings contributing to a Plücker coordinate have the correct

source set.

As an additional check, we will now show that the removable edges found using the

technique expounded at the end of section 8.1 are the correct ones, i.e. are those that

only kill one Plücker coordinate each, thus decreasing the dimension by 1. The predicted

removable edges are X1,3, X3,6, X1,5, X2,1, X4,1 and X6,2. Removing them results in:

Edge
Deleted perfect

matchings

Vanishing Plücker

coordinate

X1,3 p1, p2, p3, p4, p5 ∆235

X3,6 p7, p8, p11, p13, p15 ∆234

X1,5 p2, p5, p8, p15 ∆145

X2,1 p9, p10, p11, p13, p15 ∆125

X4,1 p4, p10, p13, p14 ∆345

X6,2 p3, p4, p5, p12, p14 ∆124

It is easy to verify that there are no other edges that only kill a single Plücker coordinate.

Example 2. For the example shown in figure 21.b we have the perfect matchings:

P =



p1 p2 p3 p4 p5 p6 p7

X1,2 1 1 0 0 0 0 0

X1,4 1 0 1 0 0 0 0

X3,1 0 0 0 0 0 1 1

X4,1 0 0 0 0 1 0 1

X2,3 0 0 1 1 1 0 0

X2,4 0 0 1 1 0 1 0

X1,1 0 1 0 1 0 1 0

X4,3 0 1 0 1 1 0 0


. (10.5)

Choosing as reference perfect matching p2, the boundary measurement maps the graph

to the Grassmannian element

C =

(
α2,3α2,4

α1,2

α2,4α3,1

α1,2α4,3
1 0

α2,3α4,1

α1,1α1,2

α3,1α4,1

α1,1α1,2α4,3
− α1,4

α1,1α4,3
0 1

)
=

(
p4 p6 1 0

p5 p7 − p1 0 1

)
(10.6)

which gives rise to the following Plücker coordinates:

∆12 = −p3 ∆23 = p1 − p7
∆13 = −p5 ∆24 = p6
∆14 = p4 ∆34 = p2

. (10.7)

Note that contrary to the planar diagram of Gr2,4 studied in section 4, here the Plücker

coordinates are no longer positive definite for positive edge weights.
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10.2 Boundary measurement beyond the annulus

In this section we introduce a boundary measurement for graphs on the plane with an

arbitrary number of boundaries. The new map reduces to the previously known cases when

restricted to the disk or the annulus. As previously mentioned, the map must be insensitive

to graphical equivalences and its minors must be identifiable with linear combinations of

perfect matchings.33 Additionally, for diagrams on the disk we require that all minors are

manifestly non-negative, for positive edge weights.

As we saw in the previous subsection, the success of the boundary measurement is

crucially reliant on a delicate assignment of signs to entries in the path matrix. When

going from the disk to the annulus, the difficulties of introducing an additional boundary

were twofold: first, the ordering of external nodes was sensitively fixed according to the

prescription in [42]; secondly, it was necessary to complete the path (possibly using the

cut) and form a loop in order to count additional loops which are not naturally present in

the chosen perfect orientation.

Introducing more boundaries has similar difficulties. The ordering of the external

nodes for a generic number of boundaries can be fixed in a way which is reminiscent of

going around cuts in complex analysis. The algorithm is as follows:

• Start at a cut on one of the boundaries. We will preferably choose the outer one.

• Follow the boundary in a clockwise fashion, until reaching a cut.

• Follow it to the next boundary, without crossing over it.

• Follow the next boundary until reaching another cut.

• Follow the cut to the next boundary, once again without crossing it, and continue in

this fashion until reaching the starting point.

For the disk and annulus, this procedure fixes a clockwise ordering for the external bound-

ary, followed by a counter-clockwise ordering for the internal boundary, in agreement with

the previous section.

The assignment of signs in the matrix C works similarly to our discussion for the

annulus: there is the usual overall sign (−1)s(i,j) to the entry Cij , where s(i, j) counts the

number of sources strictly between i and j, neglecting periodicity. There is also a sign

related to the loops which compose the path. In order to compute it, we close the path

by going from the sink clockwise around the corresponding boundary, and then following

the necessary cuts and boundaries, always going clockwise, until reaching the source. The

sign is then (−1)r(P )+1, where r(P ) is the rotation number of this closed path, obtained

by counting the number of clockwise loops minus the number of counterclockwise loops, as

already explained in the previous section.

For computational convenience, there is a significantly faster way to compute these

second type of signs, which does not involve drawing and analyzing the path. Each time a

path runs across a cut, it picks up a minus sign iff it is going between two boundaries that

33Whether such a map is unique is an interesting question, beyond the scope of this article.
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Figure 24. A graph with 3 boundaries. The perfect orientation shown corresponds to the oriented

perfect matching p1, which contains edges X1,4, X3,7, X3,10, X6,4, X6,7, X8,2 and X8,10.

can only be reached using this cut. Each entry in C is specified by its source and sink; it is

easy then to identify which cuts are going to be actively used in this matrix entry. Thus,

each matrix entry activates sign flips for only those edges that run across the relevant cuts.

In addition to these signs, it is necessary to add signs to closed loops that are present in the

perfect orientation. From a computational standpoint, it is then only necessary to provide

information on how nodes are distributed over the different boundaries, which cuts are

activated by each pair of boundaries, and which edges are crossed by the respective cuts.

Example: 3 boundaries. To illustrate the method above let us consider the example

in figure 24. This is a reduced graph with three boundaries. This is the minimum number

of boundaries for this graph, i.e. it is impossible to reduce it by flipping external legs. We

will later investigate the effect of redistributing external edges over boundaries.

The ordering of external nodes is determined by starting at the upper cut on the outer

boundary and proceeding according to the algorithm above. This is shown in figure 25.

This diagram has 88 perfect matchings. For amusement, and to show it is straight-

forward to explicitly deal with such large graphs using our tools, we provide the perfect

matching matrix in appendix C.

The reference perfect matching was chosen to be p1, which gives rise to the perfect

orientation in figure 24. This example exhibits an interesting phenomenon: the perfect

orientation contains a closed oriented loop
α6,3α9,3

α3,7α3,10
= p3.

34 When this happens, path

connecting two nodes can circle an arbitrary number of times around the internal loop.

The sum of contributions to entries in the path matrix thus takes the form of a geometric

34This fact is totally unrelated to the multiplicity of boundaries. It did not appear in the previous,

simpler examples due to our specific choices of perfect orientations.
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Figure 25. Fixing the ordering for three boundaries. The starting point is marked by the large

yellow dot.

series, leading to non-trivial denominators containing the loop (see appendix A). The piece

of the path matrix contributing to the boundary measurement takes the form
1 2 3 4 5 6 7

2 p11 + p19 1 p33 + p47 0 0 p6 0

4 p13
1−p3 + p23

1−p3 0 p36
1−p3 + p37

1−p3 + p41
1−p3 + p51

1−p3 1 0 p4
1−p3 + p7

1−p3 0

5 p15
1−p3 + p27

1−p3 0 p34
1−p3 + p38

1−p3 + p40
1−p3 + p58

1−p3 0 1 p2
1−p3 + p10

1−p3 0

7 p18 0 p45 0 0 p5 1

 , (10.8)

where the (1− p3)
−1 factors arise due to the infinite number of paths involving the closed

loop.

Signs are introduced in three steps: first to overall entries according to (−1)s(i,j), then

to loops that are present in the perfect orientation, in this case p3, and finally to the edges

that cross the cuts, in the relevant entries.35

After introducing the first two types of signs, the matrix becomes
1 2 3 4 5 6 7

2 p11 + p19 1 p33 + p47 0 0 p6 0

4 − p13
1+p3

− p23
1+p3

0 p36
1+p3

+ p37
1+p3

+ p41
1+p3

+ p51
1+p3

1 0 − p4
1+p3

− p7
1+p3

0

5 p15
1+p3

+ p27
1+p3

0 − p34
1+p3

− p38
1+p3

− p40
1+p3

− p58
1+p3

0 1 p2
1+p3

+ p10
1+p3

0

7 −p18 0 p45 0 0 p5 1

 . (10.9)

For the third type of signs there are two cuts, the one to the left cL which reaches

between the outer boundary and the left-most boundary, and the one to the right cR which

reaches between the outer boundary and the right-most boundary. To go from the right-

most and the left-most boundary it is necessary to use both cuts. The relevant cuts for

35The first step is straightforward, but the second step can in general be subtle; sometimes there are

flows pi which contain loops, and can be written as a product pi = pjploop. In these cases, when replacing

ploop → −ploop, we should also replace pi → −pi. This does not happen in the specific example at hand.
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each entry are summarized in the following matrix
1 2 3 4 5 6 7

2 • • cL cL • cR cR
4 cL cL • • cL cL, cR cL, cR
5 • • cL cL • cR cR
7 cR cR cL, cR cL, cR cR • •

 . (10.10)

The action of the cuts are cL : {α7,2, α2,9} → {−α7,2,−α2,9} and cR : α4,10 → −α4,10.

Applying the action to the path matrix, we finally obtain the desired element of the Grass-

mannian:

C =


1 2 3 4 5 6 7

2 p11 + p19 1 p33 + p47 0 0 −p6 0

4 p13
p3+1 + p23

p3+1 0 p36
p3+1 + p37

p3+1 + p41
p3+1 + p51

p3+1 1 0 − p4
p3+1 −

p7
p3+1 0

5 p15
p3+1 + p27

p3+1 0 − p34
p3+1 + p38

p3+1 + p40
p3+1 + p58

p3+1 0 1 p2
p3+1 −

p10
p3+1 0

7 −p18 0 −p45 0 0 p5 1

 . (10.11)

We note that p58, despite containing both α2,9 and α4,10, only changes sign once because

it is only subject to the action of cL; p4, on the other hand, is subject to both cuts and

does not change sign.

The Plücker coordinates become:

∆1234 = p67
p3+1 + p83

p3+1 −
p75
p3+1 −

p78
p3+1 ∆1467 = p12

p3+1 + p22
p3+1

∆1235 = p70
p3+1 + p72

p3+1 + p79
p3+1 −

p74
p3+1 ∆1567 = p16

p3+1 + p31
p3+1

∆1236 = p80
p3+1 + p87

p3+1 ∆2345 = −p45
∆1237 = p64

p3+1 + p88
p3+1 ∆2346 = − p53

p3+1 −
p57
p3+1

∆1245 = p18 ∆2347 = p34
p3+1 −

p38
p3+1 −

p40
p3+1 −

p58
p3+1

∆1246 = p21
p3+1 + p30

p3+1 ∆2356 = p48
p3+1 + p50

p3+1

∆1247 = p15
p3+1 + p27

p3+1 ∆2357 = p36
p3+1 + p37

p3+1 + p41
p3+1 + p51

p3+1

∆1256 = p28
p3+1 −

p24
p3+1 ∆2367 = p42

p3+1 + p44
p3+1

∆1257 = − p13
p3+1 −

p23
p3+1 ∆2456 = p5

∆1267 = − p17
p3+1 −

p32
p3+1 ∆2457 = 1

∆1345 = p65 − p66 ∆2467 = p2
p3+1 −

p10
p3+1

∆1346 = p68
p3+1 −

p82
p3+1 ∆2567 = p4

p3+1 + p7
p3+1

∆1347 = p59
p3+1 + p69

p3+1 −
p61
p3+1 −

p77
p3+1 ∆3456 = p46

∆1356 = p73
p3+1 + p84

p3+1 ∆3457 = p33 + p47

∆1357 = p60
p3+1 + p62

p3+1 + p71
p3+1 + p85

p3+1 ∆3467 = p35
p3+1 + p56

p3+1

∆1367 = p63
p3+1 + p86

p3+1 ∆3567 = p43
p3+1 −

p49
p3+1

∆1456 = p20 ∆4567 = −p6
∆1457 = p11 + p19

(10.12)

Modulo the denominators, the Plücker coordinates take a remarkably simple form, becom-

ing sums of pi contributions from individual perfect matchings. Recalling that Plücker

coordinates are given by maximal sub-determinants of the boundary measurement, it is
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worthwhile to note that the cancellations required to achieve this result are highly non-

trivial and are very sensitive to the sign assignment. It is thus, in particular, extremely

sensitive to the ordering of external nodes, which indirectly affects the signs (−1)s(i,j).

At first sight, (10.12) does not include contributions from all perfect matchings. For

example, p25 does not appear anywhere. This is a result of the fact that the flow p1
associated to the reference perfect matching we chose, has the same sources and sinks as

the flow p3, which corresponds to a different perfect matching. Equivalently, p1 and p3
correspond to the same point in the matroid polytope. In order to accurately obtain the

map between Plücker coordinates and perfect matchings it is necessary to multiply (10.12)

by p̃1 + p̃3, after which we obtain:

∆1234 ↔ p67 − p75 − p78 + p83 ∆1467 ↔ p12 + p22
∆1235 ↔ p70 + p72 − p74 + p79 ∆1567 ↔ p16 + p31
∆1236 ↔ p80 + p87 ∆2345 ↔ −p45 − p52
∆1237 ↔ p64 + p88 ∆2346 ↔ −p53 − p57
∆1245 ↔ p18 + p25 ∆2347 ↔ p34 − p38 − p40 − p58
∆1246 ↔ p21 + p30 ∆2356 ↔ p48 + p50
∆1247 ↔ p15 + p27 ∆2357 ↔ p36 + p37 + p41 + p51
∆1256 ↔ p28 − p24 ∆2367 ↔ p42 + p44
∆1257 ↔ −p13 − p23 ∆2456 ↔ p5 + p8
∆1267 ↔ −p17 − p32 ∆2457 ↔ p1 + p3
∆1345 ↔ p65 − p66 + p76 − p81 ∆2467 ↔ p2 − p10
∆1346 ↔ p68 − p82 ∆2567 ↔ p4 + p7
∆1347 ↔ p59 − p61 + p69 − p77 ∆3456 ↔ p46 + p54
∆1356 ↔ p73 + p84 ∆3457 ↔ p33 + p39 + p47 + p55
∆1357 ↔ p60 + p62 + p71 + p85 ∆3467 ↔ p35 + p56
∆1367 ↔ p63 + p86 ∆3567 ↔ p43 − p49
∆1456 ↔ p20 + p29 ∆4567 ↔ −p6 − p9
∆1457 ↔ p11 + p14 + p19 + p26

(10.13)

All perfect matchings nicely appear now. It is straightforward to verify that all perfect

matchings indeed have the source sets associated to the corresponding Plücker coordinate.

Example: 4 boundaries. To illustrate our methods, let us consider the example with

4 boundaries shown in figure 26. This is basically a formal exercise, mainly intended to see

once again the general techniques at work, since, as the alert reader might easily realize,

the new example only differs from figure 24 by changing the distribution of external nodes

over boundaries. Such reorganization can be regarded as an elaborate generalization of

external leg crossing. Having noticed the relation to the previous example, our discussion

will be briefer.

Perfect matchings are the same as for the previous example. Even choosing the same

reference perfect matching, the sign assignment is completely changed due to the new

cuts and ordering of external nodes. The new signs however conspire to generate simple

expressions for the Plücker coordinates in terms of perfect matchings. The boundary
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Figure 26. A bipartite graph with 4 boundaries. It is related to the one in figure 24 by redistribut-

ing external nodes over boundaries. As before, we pick a perfect orientation given by the perfect

matching p1, which contains the edges X1,4, X3,7, X3,10, X6,4, X6,7, X8,2 and X8,10.

measurement is given by:

C =


1 2 3 4 5 6 7

2 p11 + p19 1 0 0 −p6 −p33 − p47 0

3 − p15
p3+1 −

p27
p3+1 0 1 0 p10

p3+1 −
p2

p3+1 −
p34
p3+1 + p40

p3+1 + p58
p3+1 −

p38
p3+1 0

4 p13
p3+1 + p23

p3+1 0 0 1 − p4
p3+1 −

p7
p3+1

p36
p3+1 −

p37
p3+1 −

p41
p3+1 −

p51
p3+1 0

7 −p18 0 0 0 p5 p45 1

 , (10.14)

which gives the following map between Plücker coordinates and perfect matchings:

∆1234 ↔ p18 + p25 ∆1467 ↔ p59 + p61 + p69 + p77
∆1235 ↔ p24 − p28 ∆1567 ↔ −p63 − p86
∆1236 ↔ p70 − p72 + p74 − p79 ∆2345 ↔ p5 + p8
∆1237 ↔ p13 + p23 ∆2346 ↔ p45 + p52
∆1245 ↔ p21 + p30 ∆2347 ↔ p1 + p3
∆1246 ↔ p67 + p75 − p78 + p83 ∆2356 ↔ p50 − p48
∆1247 ↔ p15 + p27 ∆2357 ↔ −p4 − p7
∆1256 ↔ p87 − p80 ∆2367 ↔ p36 − p37 − p41 − p51
∆1257 ↔ −p17 − p32 ∆2456 ↔ p57 − p53
∆1267 ↔ −p64 − p88 ∆2457 ↔ p2 − p10
∆1345 ↔ p20 + p29 ∆2467 ↔ p34 + p38 − p40 − p58
∆1346 ↔ −p65 + p66 − p76 + p81 ∆2567 ↔ p44 − p42
∆1347 ↔ p11 + p14 + p19 + p26 ∆3456 ↔ p46 + p54
∆1356 ↔ p84 − p73 ∆3457 ↔ −p6 − p9
∆1357 ↔ −p16 − p31 ∆3467 ↔ −p33 − p39 − p47 − p55
∆1367 ↔ p60 − p62 + p71 − p85 ∆3567 ↔ p43 + p49
∆1456 ↔ −p68 − p82 ∆4567 ↔ p56 − p35
∆1457 ↔ p12 + p22

(10.15)
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Before closing, let us briefly discuss the effect of two operations that can affect the

ordering of external nodes: modification of cuts and redistribution of external nodes over

boundaries, including the possibility of creating new ones. Changing cuts has no net effect:

once the labels of Plücker coordinates have been permuted to the original order, one finds

the same map between minors and perfect matchings. Changing the actual distribution of

external nodes over boundaries by flipping external legs produces a new map, in which the

relative signs of the perfect matchings are different.

For planar graphs the latter operation has a simultaneously strong and irrelevant effect.

Such a change in general implies the loss of positivity. The decomposition of the flipped

diagram will not be the positroid stratification, because each irreducible subgraph will not

correspond to a different positroid. However, it would be positroid-like: apart from the

matroid labels of each irreducible subgraph, the poset for the non-planar case would be

identical to that of the positroid stratification. In fact, permuting the labels of the matroid

strata will reproduce the positroid stratification. This is further discussed in section 12,

where the case of Gr2,4 is shown explicitly.

11 Combinatorial decomposition of non-planar graphs

In this section we will apply the techniques introduced in section 9 to non-planar diagrams.

We present in detail a few examples and construct their decomposition. As we will show

in these examples, the combinatorial decomposition of non-planar on-shell diagrams does

not correspond to the positroid stratification of the Grassmannian, but is still a subset

of the matroid stratification. Section 12 collects some ideas about how the full matroid

stratification might be achieved by combining different graphs.

Example 1: graph on the annulus

We begin by illustrating our techniques with the example displayed in figure 22. This

example has 15 perfect matchings. The matching polytope is given by (10.1) and is 6-

dimensional. The matroid polytope is

Gmatroid =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15

X2,3 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0

X5,4 1 0 1 0 0 1 1 0 1 0 1 1 0 0 0

X5,6 1 0 1 1 0 0 1 0 0 0 1 0 1 0 0

X3,2 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0

X6,4 0 0 1 0 1 0 0 0 1 0 1 1 0 0 1


(11.1)
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and has dimension 4. This example has 10 non-vanishing Plücker coordinates, and the

following Plücker relations:

∆125∆134 −∆124∆135 + ∆123∆145 = 0

∆125∆234 −∆124∆235 + ∆123∆245 = 0

∆135∆234 −∆134∆235 + ∆123∆345 = 0

∆145∆234 −∆134∆245 + ∆124∆345 = 0

∆145∆235 −∆135∆245 + ∆125∆345 = 0 (11.2)

of which only 3 are independent.

The face lattice of the matching polytope contains 412 elements of various dimensions;

it is therefore very impractical to draw the full poset. Below we present the first level in

detail, subsequent levels follow analogously.

First level: dimension 5. This example has 13 edges. We now proceed by removing

them to obtain the first level of the face lattice of the matching polytope, which contains

the following faces:

Removed
Face

edge

X1,3 p6, p7, p8, p9, p10, p11, p12, p13, p14, p15
X1,6 p3, p4, p5, p9, p10, p11, p12, p13, p14, p15
X3,6 p1, p2, p3, p4, p5, p6, p9, p10, p12, p14
X6,1 p1, p2, p3, p4, p5, p7, p8, p11, p13, p15
X1,5 p1, p3, p4, p6, p7, p9, p10, p11, p12, p13, p14
X2,1 p1, p2, p3, p4, p5, p6, p7, p8, p12, p14
X4,1 p1, p2, p3, p5, p6, p7, p8, p9, p11, p12, p15
X6,2 p1, p2, p6, p7, p8, p9, p10, p11, p13, p15
X2,3 p3, p4, p5, p7, p8, p11, p12, p13, p14, p15
X5,4 p2, p4, p5, p8, p10, p13, p14, p15
X5,6 p2, p5, p6, p8, p9, p10, p12, p14, p15
X3,2 p1, p2, p3, p4, p5, p9, p10, p11, p13, p15
X6,4 p1, p2, p4, p6, p7, p8, p10, p13, p14

(11.3)

where the faces in the table show the surviving perfect matchings after removal of the

corresponding edge. In order to find the decomposition we are interested in, we proceed by

identifying perfect matchings which have the same coordinate in the matroid polytope, as

explained in section 9. This can be done by looking at (11.1), or directly from (10.4), and is:

{p1} {p2, p10} {p3, p11} {p4, p13} {p5, p15}
{p6} {p7} {p8, p14} {p9} {p12}

. (11.4)
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The faces then become:

Removed
Face Plücker Coordinates

edge

X1,3 p6, p7, p8, p9, p10, p11, p12, p13, p15 ∆123,∆234,∆134,∆125,∆135,∆245,∆124,∆345,∆145

X3,6 p1, p2, p3, p4, p5, p6, p9, p12, p14 ∆235,∆135,∆245,∆345,∆145,∆123,∆125,∆124,∆134

X1,5 p1, p3, p4, p6, p7, p9, p10, p12, p14 ∆235,∆245,∆345,∆123,∆234,∆125,∆135,∆124,∆134

X2,1 p1, p2, p3, p4, p5, p6, p7, p8, p12 ∆235,∆135,∆245,∆345,∆145,∆123,∆234,∆134,∆124

X4,1 p1, p2, p3, p5, p6, p7, p8, p9, p12 ∆235,∆135,∆245,∆145,∆123,∆234,∆134,∆125,∆124

X6,2 p1, p2, p6, p7, p8, p9, p11, p13, p15 ∆235,∆135,∆123,∆234,∆134,∆125,∆245,∆345,∆145

X1,6 p3, p4, p5, p9, p10, p12, p14 ∆245,∆345,∆145,∆125,∆135,∆124,∆134

X6,1 p1, p2, p3, p4, p5, p7, p8 ∆235,∆135,∆245,∆345,∆145,∆234,∆134

X2,3 p3, p4, p5, p7, p8, p12 ∆245,∆345,∆145,∆234,∆134,∆124

X5,4 p2, p4, p5, p8 ∆135,∆345,∆145,∆134

X5,6 p2, p5, p6, p8, p9, p12 ∆135,∆145,∆123,∆134,∆125,∆124

X3,2 p1, p2, p3, p4, p5, p9 ∆235,∆135,∆245,∆345,∆145,∆125

X6,4 p1, p2, p4, p6, p7, p8 ∆235,∆135,∆345,∆123,∆234,∆134

.

(11.5)

In the table above we show the surviving perfect matchings after removing the corresponding

edge in the graph, and after the identifications in (11.4). We also show the non-vanishing

Plücker coordinates for each subgraph.

As a consequence of the identifications, the faces in the lower half of the table are

of dimension lower than 5 and get identified with other lower-dimensional ones, i.e. they

are subject to vertical identifications. This can be deduced by counting the surviving

Plücker coordinates and relevant Plücker relations (11.2). Hence X1,6, X6,1, X2,3, X5,4,

X5,6, X3,2 and X6,4 are not removable edges. For the remaining 6 boundaries there is no

horizontal identification at this level, so the 6 removable edges are X1,3, X3,6, X1,5, X2,1,

X4,1 and X6,2. The removal of any of these edges yields a 5-dimensional element of the

Grassmannian. Each of these corresponds to a differential form which is a singularity in

the sense explained in section 5. Moreover, each of the boundaries also corresponds to a

matroid stratum with 9 elements each, where the elements are given by the indices of the

Plücker coordinates in (11.5).

Full combinatorial decomposition. To represent the boundaries of the entire poset,

we group the elements in each level of the poset by how many perfect matchings they have,

thus presenting the information of each level by pairs of numbers, where the first specifies

the number of faces of a certain type and the second specifies the type. For example,

14[6] means there are 14 faces, each containing 6 perfect matchings. This information is

presented in table 1.

After the identification (11.4), 272 of the faces get identified with other boundaries, to

yield a poset with 140 elements, described by table 2. It is straightforward to verify that

these tables agree with the detailed analysis of the first level presented before.
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d Faces of matching polytope

5 1[8], 2[9], 8[10], 2[11]

4 11[5] 14[6], 23[7], 12[8]

3 67[4], 46[5], 13[6]

2 112[3], 19[4]

1 67[2]

0 15[1]

Table 1. Faces of the matching polytope. At each level of dimension d, a pair of numbers m[n]

indicates that there are m boundaries consisting of n perfect matchings.

d Matroids

5 6[9]

4 5[6], 6[7], 6[8]

3 5[4], 5[24], 6[6]

2 30[3], 12[4]

1 30[2]

0 10[1]

Table 2. Matroids in the decomposition of the diagram shown in figure 22. At each level, a pair

of numbers m[n] indicates that there are m matroids consisting of n bases.

As a further check, using the methods introduced in section 8 and applying the iden-

tification (11.4) it is straightforward to check that table 2 is consistent with the poset

obtained by deleting only removable edges.

Example 2: graph with 3 boundaries

To further illustrate the computational power of these techniques, we treat the example

presented in figure 24, which has 88 perfect matchings. The matching polytope has in total

74670 faces, which after identification reduces to 8585 faces. The face lattice information,
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before and after identification, is presented in the table below.

d Faces of matching polytope Matroids

10
2[48], 4[52], 1[56], 2[58], 4[59], 1[30], 2[31], 5[33], 6[34]

1[60], 2[64], 4[65], 1[68], 2[70]

9

4[24], 6[28], 4[29], 8[30], 15[32], 6[20], 5[25], 20[28], 6[29], 22[30],

2[34], 4[35], 9[36], 16[37], 8[38], 4[31], 20[32], 4[33]

16[39], 17[40], 8[41], 16[42], 8[43],

30[44], 12[45], 4[46], 12[47], 6[48],

8[49], 6[50], 9[52], 2[54]

8

4[10], 4[12], 16[14], 12[16], 16[17], 7[15], 60[19], 5[20], 12[22], 42[23],

10[18], 8[19], 51[20], 44[21], 54[22], 12[24], 8[25], 38[26], 80[27], 16[28],

52[23], 98[24], 40[25], 92[26], 112[27], 32[29], 8[31]

83[28], 60[29], 122[30], 52[31], 98[32],

60[33], 100[34], 16[35], 66[36], 8[37],

18[38], 20[39], 3[40]

7

40[8], 48[9], 36[10], 24[11], 204[12], 77[14], 114[16], 154[18], 74[19], 5[20],

48[13], 182[14], 216[15], 251[16], 488[17], 106[21], 62[22], 58[23], 48[24], 68[25],

518[18], 264[19], 602[20], 284[21], 432[22], 20[26]

292[23], 265[24], 140[25], 246[26], 72[27],

84[28], 36[29], 8[30]

6

424[7], 292[8], 216[9], 988[10], 724[11], 63[10], 100[12], 163[13], 292[14], 274[15],

1079[12], 1720[13], 1742[14], 1296[15], 849[16], 24[16], 146[17], 140[18], 100[19], 22[20],

656[17], 728[18], 236[19], 226[20], 192[21], 70[21]

32[22]

5

1880[6], 892[7], 2636[8], 2656[9], 4618[10], 611[9], 90[10], 230[11], 352[12], 396[13],

2012[11], 1686[12], 952[13], 410[14], 228[15], 66[14], 68[15], 68[16]

177[16]

4
4452[5], 3170[6], 5876[7], 3859[8], 788[9], 21[5], 105[6], 534[7], 731[8], 140[9],

908[10], 116[12] 322[10], 41[12]

3 6242[4], 4044[5], 2622[6], 135[8] 140[4], 586[5], 534[6], 61[8]

2 4260[3], 1077[4] 350[3], 293[4]

1 1134[2] 210[2]

0 88[1] 35[1]

11.1 Non-Eulerian posets

The face lattice of a convex polytope is a graded poset. Moreover this poset is Eulerian,

which means that the number of elements of even dimension is one more than the number

of elements of odd dimension, i.e.

d∑
i=0

(−1)iN
(i)
B = 1, (11.6)
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where d is the dimension of the polytope and N
(i)
B is the number of faces of the polytope

of dimension i.36

As a check that the face lattice of the matching polytope for non-planar graphs can

be obtained through successive edge removal, we evaluate the Eulerian number in the two

previous examples:

Example 1:
6∑
i=0

(−1)iN
(i)
B = 15− 67 + 131− . . .+ 1 = 1 (11.7)

Example 2:
11∑
i=0

(−1)iN
(i)
B = 88− 1134 + . . .− 1 = 1. (11.8)

While the positroid stratification was shown to be Eulerian [43], for non-planar cases

the combinatorial decomposition is in general not Eulerian. This can be seen for example

by computing the Eulerian number for the two examples above:

Example 1:

6∑
i=0

(−1)iN
(i)
B = 10− 30 + 42− . . .+ 1 = −1, (11.9)

Example 2:
11∑
i=0

(−1)iN
(i)
B = 35− 210 + . . .− 1 = 14. (11.10)

The appearance of non-Eulerian posets should not be surprising. Due to the identifica-

tions involved in the combinatorial decomposition, the resulting poset might not describe

the face lattice of a geometric polytope.

12 Matroid stratification from multiple graphs

As already explained in section 9.1.4, the combinatorial decomposition yields a subset of

the matroid stratification: only certain strata appear in the decomposition. It is then

natural to ask whether it is possible to extend it such that it produces the full matroid

stratification. This leads us to the following reasonable conjecture:

• Conjecture: the full matroid stratification can be obtained by simultaneously con-

sidering the combinatorial decomposition of multiple bipartite graphs associated to

Grassmannian elements with a maximal number of degrees of freedom. Some of

these graphs are non-planar. The matroid stratification is given by the union of the

resulting strata.

This proposal follows from the definition of the matroid stratification in section 3.5.

Analogously to the positroid stratification, where we take the common refinement of n

cyclically permuted Schubert cells, hence n cyclic permutations, the matroid stratification

is in general the refinement over all n! permutations. Here we remind that every permu-

tation specifies a lexicographic order that characterizes the Schubert cell, analogously to

36If we were to include the empty set in our face lattice, the number of boundaries would sum to 0 rather

than 1.
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section 3.3. The distribution of external nodes over boundaries gives rise, following the

discussion in section 10, to different orderings, which we map to these permutations.

In essence, to access all the permutations and hence all the matroids, we have to

consider permutations which cannot be obtained by cyclic rotations of 1, 2, . . . , n, which

are the only ones that can be realized on planar graphs. The other permutations can be

obtained only by introducing new boundaries, thus making the graphs non-planar.

To illustrate this idea, let us consider the decomposition of the diagram in figure 21.b

which, after introducing an additional boundary and the corresponding cut, is the same

as the square box but with ordering 1243. The decomposition is obtained through the

procedure explained in section 9 and is shown in figure 27, where the matroid label is given

in dark green and the positroid label is in light green. The matroid labels are identical to

those of figure 16, but with 3 and 4 interchanged, as mentioned at the end of section 10.2.

The fact that we no longer have the positroid stratification is confirmed by the fact that

the positroid stratum {C ∈ Gr2,4 | ∆12 6= 0,∆23 6= 0,∆34 6= 0,∆14 6= 0} has multiple

representatives, and some positroid strata are missing, e.g. {C ∈ Gr2,4 | ∆12 6= 0,∆24 6=
0,∆34 6= 0,∆14 6= 0}. However, we note that the decomposition just obtained is precisely

the same as that of section 3.4 but where each component is the simultaneous refinement

of 4 cyclically permuted Schubert cells with respect to the lexicographic order specified by

the permutation 1243.

In the decomposition of the non-planar graph, the matroid strata that were missing

from the decomposition of the planar case with ordering 1234, marked in red in (9.7), are

now present. Hence we conclude that the union of the matroid strata of the decomposition

in figure 16 and figure 27 gives the entire matroid stratification, at least at the combinatorial

level. We provide in figure 28 a depiction of how the two decompositions together form the

entire matroid stratification. The matroid strata are marked by a green circle, where the

matroid labels have been included underneath.

Generally, including all n! permutations of external edges modulo cyclicity will include

all matroid strata, but in practice it can be sufficient to consider fewer permutations.

Let us explain why this is the case and show how to determine the diagrams required

for the matroid stratification in the case of Gr2,4, whose matroid contains the 6 bases 12, 13,

14, 23, 24 and 34. We begin by only discussing the problem in terms of permutations and

lexicographic orders, and explain how the graphs fit into this picture at a secondary stage.

Each permutation of 1, 2, 3, 4 specifies a lexicographic order, to which we can associate

a Schubert cell analogously to the definition in section 3.3. The positroid stratification

uses n permutations, related to each other by cyclic shifts, and the corresponding Schubert

cells, and is then specified by n entries. To put a label in each entry, we select the lexi-

cographically minimal non-zero element with respect to the permutation in question. For

example, the permutation 2413 will select the matroid element (24), if present, otherwise

select (21), if present, etc.

The matroid stratification generically uses n! permutations. However, in order to find

all the strata, it is sufficient to refine over the set of Schubert cells such that for each base

there exists a Schubert cell whose lexicographic order has that base as minimal element.

Thus, to specify all matroids in the example at hand, we will need 6 permutations, each
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Figure 27. Decomposition of the square box with flipped legs and two boundaries. It corresponds

to the permutation 1243. The dark green label indicates the matroid stratum corresponding to the

graph, the light green label indicates the positroid stratum.

permutation having a different lexicographically minimal order of the form:

12XX, 13XX, 14XX, 23XX, 24XX, 34XX, (12.1)

where XX may be any order of the remaining two digits, e.g. it does not matter whether

we choose 1342 or 1324. For example, the first lexicographic order will always find the

matroid base 12, regardless of the presence or absence of other bases; the second one will

always find 13 regardless of the other matroid bases, and so on. Strictly speaking the

order of the first two digits is also irrelevant, since either order specifies the same matroid

element. In this way, each matroid base, if present, will appear in one of the six entries

associated to the different lexicographic orders. A set of 6 permutations as in (12.1) are

sufficient for labeling all matroids with the correct matroid labels.
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Figure 28. Matroid stratification of Gr2,4 via a pair of graphs, both planar and non-planar.

Matroid strata are indicated by green circles. Red and yellow arrows belong to the combinatorial

decompositions of the planar and non-planar graphs, respectively.

Graphs fit into this picture as follows. Each graph specifies an ordering, dictated by

the arrangement of the external edges. Because of cyclicity of the starting point, the graph

actually specifies n orderings, related to each other by cyclic shifts. In this example, the

planar graph has the ordering 1234, which specifies the permutations

1234, 2341, 3412, 4123, (12.2)

which simply differ in which edge of the graph we call “1”. We see that such a graph contains

4 of the required lexicographic orders.37 We are however still missing a permutation of the

form 13XX and one of the form 24XX. If we introduce a second graph with the ordering

1243, we obtain the permutations

1243, 2431, 4312, 3124, (12.3)

which contain the lexicographic orders given by 3124 and 2431 as desired, and two more

which were already covered by the previous graph. Thus, we see that the two graphs with

ordering 1234 and 1243 are sufficient to cover all lexicographic orders and correspond-

ing Schubert cells which are required to specify the matroids. We then argue that their

decomposition will cover the combinatoric structure of the entire matroid stratification.

37We remind once more that it does not matter whether it is 4123 or 1423: either way the lexicographically

minimal element will be the one corresponding to the Plücker coordinate ∆14.
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As a check at the first level, we indeed see that the decomposition of the two diagrams

does indeed overlap in the matroids obtained by removing 12 or removing 34, which are

precisely the lexicographically minimal sets of those permutations which in the arguments

above were covered by both orders 1234 and 1243, and by 3412 and 4312, respectively.

Likewise, at the first level the decompositions do not overlap precisely on the matroid labels

which are lexicographically minimal to those permutations which do not overlap for the

two orderings. This is also true at the second level, where {12, 13, 24, 34} is missing 14 and

23, which are precisely those which are not lexicographically minimal of any permutation

in equation (12.3). Also, {12, 14, 23, 34} is missing 13 and 24, which are precisely those

which are not lexicographically minimal of any permutation in equation (12.2).

It is reasonable to expect that it might be possible to find which graphs are necessary

to cover the entire matroid stratification by simply listing the set of all possible matroid

elements, a set of permutations for which these elements are the lexicographically minimal

subsets, and finding graphs whose ordering can achieve these permutations. We leave a

detailed study of this interesting possibility for future investigation.

13 Conclusions

We presented a detailed investigation of the geometric and combinatorial structures, such as

the Grassmannian and toric Calabi-Yaus, which are ingrained in quantum field theory at a

fundamental level. Such objects become manifest when formulating gauge theories in terms

of on-shell diagrams, equivalently bipartite graphs. We extended these correspondences

along various directions, most notably by the inclusion of non-planarity. In our opinion,

the new structures we uncovered are natural candidates to arise in scattering amplitudes

beyond the planar limit. This is certainly one of the most interesting questions in this area

worth pursuing in the future.

As part of our investigation, we introduced a new combinatorial decomposition of the

Grassmannian, which reduces to its positroid stratification for planar graphs. We explained

how this decomposition can be directly obtained from the matching and matroid polytopes.

We also extended the boundary measurement, which maps bipartite graphs to the Grass-

mannian, to graphs with an arbitrary number of boundaries. We discussed a quantitative

measurement of graph reducibility and introduced several efficient algorithms for comput-

ing the boundary measurement, and for constructing the matroid and matching polytopes.

Our work suggests that general bipartite graphs, i.e. including non-planar ones, can

lead to a more refined description of the Grassmannian. It would be extremely interesting

to continue investigating, along the lines of section 12, how they can be exploited for the

matroid stratification of the Grassmannian.

Finally, it would also be interesting to determine whether our ideas are relevant for the

most recent geometric understanding of scattering amplitudes based on the amplituhedron.
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A The path matrix

In this appendix we describe an efficient algorithm to extract the paths for a given perfect

orientation of a bipartite diagram, planar or non-planar. This is an important step of the

boundary measurement which maps bipartite graphs to elements of the Grassmannian.

The path matrix M is an nv × nv matrix, where nv is the number of vertices in the

diagram. Given a perfect orientation, each entryMab contains the sum of edge weights for

all oriented paths connecting vertices a and b. We shall now show how this matrix can be

obtained using the Kasteleyn matrix.

The perfect orientation is determined in terms of a reference perfect matching pref as

explained in section 2.1. We now construct two matrices as follows: we define Kr as the

Kasteleyn matrix where we have set to zero the edge weights Xi,j ∈ pref and replaced all

other Xi,j → αi,j ; we define K̃r as the Kasteleyn matrix where we have set to zero all the

edge weights not belonging to pref, and sent Xi,j → 1/αi,j for the edge weights Xi,j ∈ pref.
We then arrange the following nv × nv matrix:

C =

(
Inw×nw −Kr

−(K̃r)T Inb×nb

)
, (A.1)

where nw and nb is the number of white and black nodes, respectively. The path matrix

is M = C−1.

The entries Mab are generally sums of ratios of edge weights αi,j , where the denomi-

nator contains those αi,j in p̃ref which are relevant to the path. We remind the reader that

an edge in the numerator signifies that the direction of that edge is from the white node

to the black node, an edge in the denominator signifies the opposite direction.

Sometimes a path from a vertex a to a vertex b contains a loop. This results in an

infinite number of paths from a to b, which differ in the number of times the path runs

over the loop. The entry Mab will thus contain the infinite sum of paths: (1− loop)−1 =

1 + loop + (loop)2 + . . . .

Let us consider the non-planar bipartite graph associated with Gr3,5, displayed in

figure 22. The Kasteleyn matrix is

K =



X6,2 X2,1 X1,6 0 0

X3,6 X1,3 0 X6,1 0

0 0 X4,1 X1,5 X5,4

X2,3 0 0 0 0

0 X3,2 0 0 0

0 0 X6,4 0 0

0 0 0 X5,6 0


. (A.2)
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Let us consider the perfect orientation in figure 22. The two auxiliary matrices become

Kr =



α6,2 α2,1 0 0 0

α3,6 0 0 α6,1 0

0 0 α4,1 α1,5 0

0 0 0 0 0

0 α3,2 0 0 0

0 0 α6,4 0 0

0 0 0 0 0


K̃r =



0 0 1
α1,6

0 0

0 1
α1,3

0 0 0

0 0 0 0 1
α5,4

1
α2,3

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1
α5,6

0


.

The path matrix is

M = C−1 =



1
α2,1

α1,3
0

α2,1α3,6+α1,3α6,2

α1,3α2,3
0 0

0 1 0
α3,6

α2,3
0 0

α4,1

α1,6

α2,1α4,1

α1,3α1,6
1

α4,1(α2,1α3,6+α1,3α6,2)
α1,3α1,6α2,3

0 0

0 0 0 1 0 0

0
α3,2

α1,3
0

α3,2α3,6

α1,3α2,3
1 0

α6,4

α1,6

α2,1α6,4

α1,3α1,6
0

(α2,1α3,6+α1,3α6,2)α6,4

α1,3α1,6α2,3
0 1

0 0 0 0 0 0

0 0 0 1
α2,3

0 0

0 1
α1,3

0
α3,6

α1,3α2,3
0 0

1
α1,6

α2,1

α1,3α1,6
0

α2,1α3,6+α1,3α6,2

α1,3α1,6α2,3
0 0

0 0 0 0 0 0
α4,1

α1,6α5,4

α2,1α4,1

α1,3α1,6α5,4

1
α5,4

α4,1(α2,1α3,6+α1,3α6,2)
α1,3α1,6α2,3α5,4

0 0

. . .

. . .

α2,1α6,1

α1,3α5,6

α2,1α3,6

α1,3
+ α6,2 α2,1 0

α2,1α6,1

α1,3
0

α6,1

α5,6
α3,6 0 0 α6,1 0

α1,5+
α2,1α4,1α6,1
α1,3α1,6

α5,6

α4,1(α2,1α3,6+α1,3α6,2)
α1,3α1,6

α2,1α4,1

α1,6
α4,1 α1,5 +

α2,1α4,1α6,1

α1,3α1,6
0

0 0 0 0 0 0
α3,2α6,1

α1,3α5,6

α3,2α3,6

α1,3
α3,2 0

α3,2α6,1

α1,3
0

α2,1α6,1α6,4

α1,3α1,6α5,6

(α2,1α3,6+α1,3α6,2)α6,4

α1,3α1,6

α2,1α6,4

α1,6
α6,4

α2,1α6,1α6,4

α1,3α1,6
0

1 0 0 0 0 0

0 1 0 0 0 0
α6,1

α1,3α5,6

α3,6

α1,3
1 0

α6,1

α1,3
0

α2,1α6,1

α1,3α1,6α5,6

α2,1α3,6+α1,3α6,2

α1,3α1,6

α2,1

α1,6
1

α2,1α6,1

α1,3α1,6
0

1
α5,6

0 0 0 1 0

α1,3α1,5α1,6+α2,1α4,1α6,1

α1,3α1,6α5,4α5,6

α4,1(α2,1α3,6+α1,3α6,2)
α1,3α1,6α5,4

α2,1α4,1

α1,6α5,4

α4,1

α5,4

α1,5+
α2,1α4,1α6,1
α1,3α1,6

α5,4
1



.

B Combinatorial reduction for a reducible graph

Figure 29 shows the face lattice of the matching polytope for the reducible graph in fig-

ure 19. We list the surviving perfect matchings for every point in the poset. Due to space
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Figure 29. Face lattice of the matching polytope for figure 19. At each point, we indicate the

surviving perfect matchings. Following the identifications in (9.4), green and blue nodes in the

poset are subject to horizontal and vertical identifications, respectively.

limitations, we do not provide the corresponding bipartite graphs. Green and blue dots

are merged with white ones under horizontal and vertical identifications, respectively. The

identifications are determined by (9.4).
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C Perfect matching matrix for an example with 3 boundaries

For those readers interested in following the details of our calculations, here we provide the

perfect matching matrix for the graph in figure 24, which has 88 perfect matchings.

P =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17

X1,4 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1

X3,7 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0

X3,10 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0

X6,4 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0

X8,2 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

X6,3 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0

X9,3 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0

X4,10 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

X5,1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0

X5,6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X2,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X1,8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

X2,9 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1

X10,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X7,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X10,6 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1

X6,7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

X8,10 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

X4,5 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1

X9,8 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0

X7,6 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1

X10,9 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1

Y4,5 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

. . .

. . .

p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31 p32 p33 p34 p35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0

1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0

1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0

0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 0

1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1

0 1 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1

0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0 1 1

1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0

. . .
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. . .

p36 p37 p38 p39 p40 p41 p42 p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 p53

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0

0 1 0 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1

0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0

1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0

0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1

. . .

. . .

p54 p55 p56 p57 p58 p59 p60 p61 p62 p63 p64 p65 p66 p67 p68 p69 p70 p71

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0

0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1

0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0

1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0

1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 0 1

0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1

0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0

1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0

. . .
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. . .

p72 p73 p74 p75 p76 p77 p78 p79 p80 p81 p82 p83 p84 p85 p86 p87 p88

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0

0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0

0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1

0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1

1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0

0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1

1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1

0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0

0 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0

1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1

0 0 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1

1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0



.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP

03 (2010) 020 [arXiv:0907.5418] [INSPIRE].

[2] L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and

Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].

[3] N. Arkani-Hamed, F. Cachazo and C. Cheung, The Grassmannian origin of dual

superconformal invariance, JHEP 03 (2010) 036 [arXiv:0909.0483] [INSPIRE].

[4] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop

integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041

[arXiv:1008.2958] [INSPIRE].

[5] J.L. Bourjaily, J. Trnka, A. Volovich and C. Wen, The Grassmannian and the twistor string:

connecting all trees in N = 4 SYM, JHEP 01 (2011) 038 [arXiv:1006.1899] [INSPIRE].

[6] N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian,

arXiv:1212.5605 [INSPIRE].

[7] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

– 68 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP03(2010)020
http://dx.doi.org/10.1007/JHEP03(2010)020
http://arxiv.org/abs/0907.5418
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.5418
http://dx.doi.org/10.1088/1126-6708/2009/11/045
http://arxiv.org/abs/0909.0250
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0250
http://dx.doi.org/10.1007/JHEP03(2010)036
http://arxiv.org/abs/0909.0483
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0483
http://dx.doi.org/10.1007/JHEP01(2011)041
http://arxiv.org/abs/1008.2958
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2958
http://dx.doi.org/10.1007/JHEP01(2011)038
http://arxiv.org/abs/1006.1899
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1899
http://arxiv.org/abs/1212.5605
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5605
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218


J
H
E
P
0
8
(
2
0
1
4
)
0
3
8

[8] Y.-T. Huang and C. Wen, ABJM amplitudes and the positive orthogonal Grassmannian,

JHEP 02 (2014) 104 [arXiv:1309.3252] [INSPIRE].

[9] Y.-t. Huang, C. Wen and D. Xie, The positive orthogonal Grassmannian and loop amplitudes

of ABJM, arXiv:1402.1479 [INSPIRE].

[10] N. Arkani-Hamed and J. Trnka, The amplituhedron, http://susy2013.ictp.it/,

http://media.scgp.stonybrook.edu/presentations/20131210 Trnka.pdf, (2013).

[11] S. Franco, Bipartite field theories: from D-brane probes to scattering amplitudes, JHEP 11

(2012) 141 [arXiv:1207.0807] [INSPIRE].

[12] S. Franco, D. Galloni and R.-K. Seong, New directions in bipartite field theories, JHEP 06

(2013) 032 [arXiv:1211.5139] [INSPIRE].

[13] D. Xie and M. Yamazaki, Network and Seiberg duality, JHEP 09 (2012) 036

[arXiv:1207.0811] [INSPIRE].

[14] J.J. Heckman, C. Vafa, D. Xie and M. Yamazaki, String theory origin of bipartite SCFTs,

JHEP 05 (2013) 148 [arXiv:1211.4587] [INSPIRE].

[15] S. Franco, Cluster transformations from bipartite field theories, Phys. Rev. D 88 (2013)

105010 [arXiv:1301.0316] [INSPIRE].

[16] K. Baur, A. King and R.J. Marsh, Dimer models and cluster categories of Grassmannians,

arXiv:1309.6524 [INSPIRE].

[17] A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149

[INSPIRE].

[18] S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver

gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

[19] S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128

[hep-th/0505211] [INSPIRE].

[20] A. Butti, D. Forcella and A. Zaffaroni, The dual superconformal theory for Lpqr manifolds,

JHEP 09 (2005) 018 [hep-th/0505220] [INSPIRE].

[21] S. Franco and A. Uranga, Bipartite field theories from D-branes, JHEP 04 (2014) 161

[arXiv:1306.6331] [INSPIRE].

[22] A. Postnikov, Total positivity, Grassmannians and networks, math.CO/0609764 [INSPIRE].

[23] A. Postnikov, Positive Grassmannian,

http://www-math.mit.edu/∼ahmorales/18.318lecs/lectures.pdf, (2013).

[24] K. Talaska and L. Williams, Network parameterizations for the Grassmannian,

arXiv:1210.5433.

[25] J. Oxley, Matroid theory, Oxford graduate texts in mathematics, Oxford University Press,

Oxford U.K. (2006).

[26] A.R. Fink, Matroid polytope subdivisions and valuations,

http://www.maths.qmul.ac.uk/∼fink/thesis.pdf, University of California, Berkeley U.S.A.

(2010).

[27] Y. Kodama and L. Williams, A Deodhar decomposition of the Grassmannian and the

regularity of KP solitons, arXiv:1204.6446 [INSPIRE].

[28] K. Talaska, Determinants of weighted path matrices, arXiv:1202.3128.

– 69 –

http://dx.doi.org/10.1007/JHEP02(2014)104
http://arxiv.org/abs/1309.3252
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.3252
http://arxiv.org/abs/1402.1479
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.1479
http://susy2013.ictp.it/
http://media.scgp.stonybrook.edu/presentations/20131210_Trnka.pdf
http://dx.doi.org/10.1007/JHEP11(2012)141
http://dx.doi.org/10.1007/JHEP11(2012)141
http://arxiv.org/abs/1207.0807
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0807
http://dx.doi.org/10.1007/JHEP06(2013)032
http://dx.doi.org/10.1007/JHEP06(2013)032
http://arxiv.org/abs/1211.5139
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5139
http://dx.doi.org/10.1007/JHEP09(2012)036
http://arxiv.org/abs/1207.0811
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0811
http://dx.doi.org/10.1007/JHEP05(2013)148
http://arxiv.org/abs/1211.4587
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4587
http://dx.doi.org/10.1103/PhysRevD.88.105010
http://dx.doi.org/10.1103/PhysRevD.88.105010
http://arxiv.org/abs/1301.0316
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0316
http://arxiv.org/abs/1309.6524
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.6524
http://arxiv.org/abs/hep-th/0503149
http://inspirehep.net/search?p=find+EPRINT+hep-th/0503149
http://dx.doi.org/10.1088/1126-6708/2006/01/096
http://arxiv.org/abs/hep-th/0504110
http://inspirehep.net/search?p=find+EPRINT+hep-th/0504110
http://dx.doi.org/10.1088/1126-6708/2006/01/128
http://arxiv.org/abs/hep-th/0505211
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505211
http://dx.doi.org/10.1088/1126-6708/2005/09/018
http://arxiv.org/abs/hep-th/0505220
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505220
http://dx.doi.org/10.1007/JHEP04(2014)161
http://arxiv.org/abs/1306.6331
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6331
http://arxiv.org/abs/math.CO/0609764
http://inspirehep.net/search?p=find+EPRINT+math/0609764
http://www-math.mit.edu/~ahmorales/18.318lecs/lectures.pdf
http://arxiv.org/abs/1210.5433
http://www.maths.qmul.ac.uk/~fink/thesis.pdf
http://arxiv.org/abs/1204.6446
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.6446
http://arxiv.org/abs/1202.3128


J
H
E
P
0
8
(
2
0
1
4
)
0
3
8

[29] R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons,

Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

[30] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in

Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

[31] A. Postnikov, D. Speyer and L. Williams, Matching polytopes, toric geometry, and the

non-negative part of the Grassmannian, J. Alg. Comb. 30 (2009) 173 [arXiv:0706.2501].
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