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Abstract

We extend a theory of Biot to be applicable to nonlinear deformations of an elastic body which contains
pores saturated by a fluid. A detailed acceleration wave analysis is presented for the full nonlinear theory.
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1. Introduction

There is much interest in the propagation of waves in porous and acoustic media, see e.g. Biot [1],
Brunnhuber and Jordan [2], Christov [3], Christov and Jordan [4], Christov et al. [5], Ciarletta and Straughan
[6–8], Jordan [9–14], Jordan and Puri [15], Jordan and Saccomandi [16], Jordan et al. [17, 18], Paoletti [19],
Rossmanith and Puri [20, 21], Wei and Jordan [22]. This interest is driven by the many real life applications
this topic has.

Many of the early articles dealing with wave propagation in porous media were based on linear theories
developed by Biot, see e.g. Biot [1].

To develop a fully nonlinear theory of acoustic wave propagation in a porous medium Jordan [10] used
what may be termed an equivalent fluid theory and showed that we could analyze such propagation in a
completely nonlinear framework by using an acceleration wave analysis, see also Ciarletta and Straughan
[6]. These works assume the solid skeleton remains stationary.

In order to accommodate nonlinear wave motion in a porous medium with the skeleton allowed to deform
or vibrate, two approaches have been employed. One is to employ a theory of a mixture of a fluid and of a
solid, see e.g. De Boer and Liu [23]. The other is to employ a theory of nonlinear elasticity where the body
includes voids, see e.g. Iesan [24], Ciarletta and Straughan [7, 8]. Biot [25] is critical of employing a mixture
theory approach due to inherent difficulties with interacting continua based on a Eulerian description. He
writes such a theory. . . “ lacks the required sophistication to account for all significant and essential properties
of porous media.” Chen [26] also raises doubts about the validity of acceleration wave analysis in mixture
theories.

In this work we wish to address the issue of nonlinear wave motion in a porous body where we allow
the body to undergo a finite deformation with an approach which is consistent with the original linear
theory of Biot [1]. In order to achieve this we commence with work of Biot [25] where he develops a fully
nonlinear theory for a porous medium by incorporating an equation for the pressure inside the pores in the
material. Biot presents his theory in the quasi-static and isothermal context, and in particular he neglects
the acceleration term in the momentum equation for the elastic body. However, he writes that his theory
brings the mechanics of porous media. . . “to the same level of development of the classical theory of finite
deformations in elasticity.” In this paper we generalize Biot [25] work and include the acceleration into the
momentum equation.
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2. Generalized nonlinear Biot theory

To begin we employ standard indicial notation and the Einstein summation convention for repeated
indices. Points in the reference configuration are denoted by XA and these are mapped into the current
configuration by the mapping

xi = xi(XA, t). (1)

The deformation gradient FiA is defined by

FiA =
∂xi
∂XA

. (2)

The displacement vector ui is given by
ui = xi −Xi. (3)

We employ the ideas of Biot [25] but include acceleration in the momentum equation which may be
written

ρẍi =
∂ΠAi

∂XA
+ ρfi. (4)

In this equation ρ is the density, fi is the body force and ΠAi is the Piola-Kirchhoff stress tensor. In terms
of the Helmholtz free energy function ψ the Piola-Kirchhoff stress tensor is defined as

ΠAi = ρ
∂ψ

∂FiA
. (5)

Let the elastic body contain pores and denote the pressure in the pores by p(X, t). The theory of Biot
[25] assumes the constitutive relation

ψ = ψ(FiA, p,XR), (6)

where inclusion of XR allows the body to be inhomogeneous.
We essentially follow Biot [25] and write a conservation law for the pressure as

∂m

∂t
=
∂KB

∂XB
. (7)

Here m is a function based on the pressure distribution in the pores and KB is the associated flux. The
constitutive theory for m and KB is

KB = KB(FiA, p, p,C , XR),

m = m(FiA, p,XR).
(8)

The governing equations for the theory are thus (4), (7) and the balance of mass. By employing (5), (6)
and (8), equation (4) and (7) may be written in expanded form as

ρẍi =
∂ΠAi

∂FjB
FjB,A +

∂ΠAi

∂p
p,A, (9)

∂m

∂FiA
ḞiA +

∂m

∂p
ṗ =

∂KB

∂FiA
FiA,B +

∂KB

∂p
p,B +

∂KB

∂p,Q
p,QB . (10)

In equation (9) we have taken the externally supplied body force fi to be 0.
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3. Nonlinear acceleration waves

An acceleration wave S for equation (9) and (10) is a two-dimensional surface in R3 such that xi, p
are C1 in X and t everywhere whereas ẍi, ẋi,A, xi,AB , p̈, ṗ,A and p,AB suffer a finite discontinuity across S ,
along with their higher derivatives.

The jump of a function f(X, t) across S is defined by

[f(t)] = f−(X, t)− f+(X, t), X ∈ S ,

where
f−(X, t) = lim

X→S
f(X, t)

approaching S from the left, whereas

f+(X, t) = lim
X→S

f(X, t)

approaching S from the right.
Given the definition of an acceleration wave for equations (9) and (10) we take the jumps of these

equations to obtain

ρ[ẍi] =
∂ΠAi

∂FjB
[xj,AB ] (11)

and
∂m

∂FiA
[ẋi,A] =

∂KB

∂FiA
[xi,AB ] +

∂KB

∂p,Q
[p,QB ]. (12)

To progress from this point we need compatibility conditions across S , see Chen [27], section 4. In
particular compatibility relations and the Hadamard condition lead to the equation

[xj,AB ] =
NANB
U2
N

[ẍj ] (13)

where NA is the unit normal at a point on S referred to the reference configuration and UN is the speed of
S at that point.

Define the amplitudes across S , Ai(t) and P (t) by

Ai(t) = [ẍi] and P (t) = [p̈]. (14)

By employing (13) in (11) one may arrive at

(ρU2
Nδij −Qij)Aj = 0, (15)

where Qij is the acoustic tensor defined by

Qij =
∂ΠAi

∂FjB
NANB . (16)

We see that for an acceleration wave to propagate, the elastic wave amplitude Ai has to be an eigenvector
of the acoustic tensor Qij .

Let λi be the unit vector in the direction of Ai pointing to the right, so that Ai = A(t)λi. Truesdell [28]
has established existence theorems for the propagation of acceleration waves in classical nonlinear elasticity.
To relate these to (15) we note that the unit normals to S in the current and reference configurations are
connected by the formula

N =
FTn

|FTn|
(17)

3



see Chen [27], p. 317. Thus we can write Qij in (16) as either a function of N or of n. We follow Chen
and write Q̂(N) when referring to the reference configuration and Q̄(n) when the current configuration is
considered. Then one Truesdell result shows that if the body has positive longitudinal elasticity, i.e.

niQ̄ij(n)nj > 0

for all unit vectors ni there is at least one direction in which a longitudinal wave may exist and propagate,
see Chen [27], p. 317. In this case λi may be taken as ni.

While a longitudinal wave has λi = ni there are also transverse waves for which λi = ti with tini = 0. If
the material is strongly elliptic so that

miQ̄ij(n)mj > 0

for all unit vectors m and n, then another theorem of Truesdell [28] shows that there is at least one direction
in which a longitudinal wave and two transverse waves with orthogonal amplitude vectors will exist, see Chen
[27], p. 322.

Thus, there are definite conditions guaranteeing the propagation of an acceleration wave from (15). From
(15) the wavespeed UN is given by

ρU2
N = |Q̂(N)n| (18)

cf. Chen [27], p. 317, or if we know λi, then

ρU2
N = Qijλiλj . (19)

From equation (12) we may use the compatibility conditions and the definitions of Ai and P to derive
the equation

∂KB

∂p,Q
NQNBP = −

(
NAUN

∂m

∂FiA
+NANB

∂KB

∂FiA

)
Ai. (20)

Thus, once we know Ai, the pressure amplitude P is likewise known.
We turn next to calculate the wave amplitude. To do this we restrict attention to a plane wave propa-

gating in a single direction. This allows to work in one space dimension but we still retain key physics which
is not obscured by differential geometry as in the full three-dimensional scenario, cf. Lindsay and Straughan
[29].

4. Wave amplitudes

For a one-dimensional plane wave we may rewrite the governing equations (4) and (7) as

ρü =
∂Π

∂X
,

∂m

∂t
=
∂K

∂X
(21)

where u = x−X and Π,m andK are the one-dimensional counterparts of ΠAi,m andKA.With F = ∂x/∂X
the constitutive theory is

Π = ρψF , ψ = ψ(F, p), K = K(F, p, pX), m = m(F, p).

Then the wavespeed equation (15) is essentially replaced by

(ρU2
N −ΠF )[uXX ] = 0,

and so
U2
N = ΠF /ρ. (22)

The amplitudes are now given by

A(t) = [ü], P (t) = [p̈]

4



and P is given in terms of A by

P = −mFUN +KF

KpX

. (23)

To calculate the amplitude A (and hence P ) we differentiate (21)1 with respect to t and we suppose the
wave is moving into a region where FX and p are constant. Then p+ and F+ = u+X are constants. Upon
taking the jump of the differentiated form of (21)1 we then derive

ρ[
...
u ] = ΠF [u̇XX ] + Πp[ṗX ] + ΠFF [uXX u̇X ]. (24)

We next use the jump relation for a product

[fg] = f+[g] + g+[f ] + [f ][g]

in (24) together with the Hadamard relation and compatibility relations to derive from equation (24)

2ρ
δA

δt
= −Πp

P

UN
−ΠFF

A2

U3
N

, (25)

where δ/δt is the intrinsic derivative at the wavefront. Finally we substitute for P from (23) to derive

δA

δt
− αA+ βA2 = 0, (26)

where α and β are given by

α =
(mFUN +KF )Πp

2ρUNKpX

and
β =

ΠFF

2ρU3
N

.

Given the conditions ahead of the wave the coefficients α and β are constants and so we solve (26) to
obtain

A(t) =
A(0)

e−αt + {βA(0)/α}(1− e−αt)
. (27)

When A(0) < 0 equation (27) suggests that A(t) blows up in a finite time T where

T =
1

α
log

(
βA(0)− α
βA(0)

)
.

5. Conclusions

We have extended the development of Biot [25] for a fully nonlinear theory for a porous medium by
including the acceleration term in the momentum equation. This then yields a fully nonlinear theory which
is amenable to a complete analysis of wave motion by acceleration wave theory.

We analyzed wavespeed behaviour and determined the wavespeed exactly. The question of existence
of a propagation direction is discussed, and we then obtain the wave amplitude exactly for a plane wave
propagating in one dimension. It is noteworthy that our wave results are exact and no approximation nor
linearization is performed.

For the amplitude of the wave we find that if A(0) < 0 then A(t)→∞ in a finite time. To interpret this
we recall that

A(t) = [ü] = ü− − ü+.

From the compatibility relations one has

[ü] = −UN [u̇X ] = U2
N [uXX ].
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When the wave is moving into a region at rest one sees that

[ü] = U2
Nu
−
XX .

Thus A(0) < 0 is equivalent to u−XX(0) < 0 and under this condition we see that u−XX(t)→ −∞ in a finite
time. This suggests that blow up of the wave amplitude is leading to shock formation in a finite time.
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