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Abstract: We show how to obtain a consistent thermodynamic description of accelerating

asymptotically AdS black holes, extending our previous results by including charge and ro-

tation. We find that the key ingredient of consistent thermodynamics is to ensure that the

system is not over-constrained by including the possibility of varying the ‘string’ tensions

that are responsible for the acceleration of the black hole, yielding a first law of full coho-

mogeneity. The first law assumes the standard form, with the entropy given by one quarter

of the horizon area and other quantities identified by standard methods. In particular we

compute the mass in two independent ways: through a Euclidean action calculation and by

the method of conformal completion. The ambiguity in the choice of the normalization of

the timelike Killing vector can be fixed by explicit coordinate transformation (in the case

of rotation) to the standard AdS form or by holographic methods (in the case of charge).

This resolves a long-standing problem of formulating the thermodynamics of accelerating

black holes, opening the way to detailed studies of their phase behaviour.
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1 Introduction

Black holes provide us with an invaluable and unique tool for probing the relationship

between quantum physics and the gravitational force. From the early discoveries that

black hole area and surface gravity respectively behave as thermodynamic entropy [1, 2]

and temperature [3], a rich and varied range of thermodynamic behaviour of these objects

has been uncovered [4], providing new insight into the underlying microscopic degrees of

freedom that may be associated with quantum gravity.

Amongst the panoply of black hole solutions, accelerating black holes have been some-

what less well understood. Described by the so-called C-metric [5–8], they have a conical

singularity along one, or both, polar axes. Replacing this with a stress-energy tensor of a

finite width cosmic string [9], or magnetic flux tube [10], gives a concrete interpretation of

the force that accelerates the black holes. Although they have been used in a variety of

settings to demonstrate that the pair creation rate of black holes is proportional to their en-

tropy [9–15], their thermodynamics has remained perplexing, particularly when charge and

rotation are included. Conflicting results have appeared in the literature [16–20] concerning

the relationship between the conserved mass and its associated thermodynamic quantity,

the role of conical deficits in the first law, and the relationship between the action and the

free energy. Recently these inconsistencies were resolved for the non-rotating uncharged

accelerating black hole in [21], by exploring the holographic properties of the accelerating

black hole in AdS with no acceleration horizon, the slowly accelerating black hole [22].

Since there is only one horizon, the system has a unique temperature and thermodynamics

is straightforward to define.

Here we consider the full thermodynamics of slowly accelerating black holes, including

charge and rotation, and find all relevant thermodynamic variables showing that both the

extended first law [17]

δM = TδS + ΦδQ+ ΩδJ − λ+δµ+ − λ−δµ− + V δP , (1.1)
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and the Smarr relation [23]

M = 2(TS + ΩJ − PV ) + ΦQ , (1.2)

hold in all cases. We emphasize that both the string tensions µ±, as well as the cosmologi-

cal constant, Λ = −8πP , are allowed to vary, and we derive the associated thermodynamic

lengths, λ±, and the thermodynamic volume, V , as their respective conjugate quantities.

The scaling properties of µ± prevent their appearance in the Smarr relation (1.2). As we

shall see, the inclusion of the tension terms is absolutely crucial for the laws of thermody-

namics to take their natural form.

2 Generalized C-metric

We begin by introducing the generalized AdS C-metric solution as derived from the

Plebański-Demiański metric [6] in Boyer-Lindquist type coordinates [8] to include rota-

tion, charge, cosmological constant Λ = −3/`2, and the corresponding gauge potential

ds2 =
1

H2

{
− f(r)

Σ

[
dt

α
− a sin2θ

dϕ

K

]2

+
Σ

f(r)
dr2

+
Σr2

h(θ)
dθ2 +

h(θ) sin2θ

Σr2

[
adt

α
− (r2 + a2)

dϕ

K

]2}
,

(2.1)

F = dB , B = − e

Σr

[
dt

α
− a sin2θ

dϕ

K

]
+ Φtdt , (2.2)

where we choose

Φt =
er+

(a2 + r2
+)α

, (2.3)

so that the gauge potential, defined by −ξ · B, where ξ is the generator of the horizon,

ξ = ∂t + ΩH∂ϕ (where ΩH is defined in (3.1) below), vanishes at the horizon. The metric

functions are given by

f(r) = (1−A2r2)

[
1− 2m

r
+
a2 + e2

r2

]
+
r2 + a2

`2
,

h(θ) = 1 + 2mA cos θ +

[
A2(a2 + e2)− a2

`2

]
cos2θ ,

Σ = 1 +
a2

r2
cos2θ , H = 1 +Ar cos θ .

(2.4)

As in past work [16–18], we focus on the slowly accelerating black hole that has no acceler-

ation horizon, i.e. the only relevant zero of f being the black hole horizon. The conformal

factor H then sets the location of the boundary at rbd = −1/A cos θ.

It is worth remarking on the various parameters appearing in the metric: m, a, e and

` are the usual parameters representing the mass, rotation, charge of the black hole and

the cosmological constant respectively. Loosely speaking, A encodes the acceleration of the

black hole, and K the conical deficit of the spacetime. Often, the K factor is absorbed in
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the azimuthal coordinate, which in turn would have an arbitrary periodicity, usually fixed

by a regularity condition at one of the poles. We include the explicit factor of K so that

the periodicity of ϕ is fixed at 2π. The conical deficit at each axis is then found by checking

the behaviour of the θ − ϕ part of the metric near θ = θ± = 0, π respectively:

ds2
θ,ϕ ∝ dθ2 + h2(θ) sin2 θ

dϕ2

K2
∼ dϑ2 + (Ξ± 2mA)2ϑ2dϕ2 , (2.5)

where ϑ± = ±(θ − θ±) gives a local radial coordinate near each axis, and

Ξ = 1− a2

`2
+A2(e2 + a2) . (2.6)

The definition of a conical singularity is that the circumference of a circle, C = ∆ϕ
√
gϕϕ, is

not equal to 2π times its proper radius, R = ϑ
√
gθθ. The deficit angle is this discrepancy:

δ = 2π − C/R. This is the reason for the parameter K: by fixing the periodicity of ϕ as

∆ϕ = 2π, the deficits at each axis are now given explicitly in terms of the parameters ap-

pearing in the metric. Since a deficit angle is typically interpreted as due to the presence of a

cosmic string, one deduces that the tensions of the strings along each axis, µ± = δ±/8π, are:

µ± =
1

4

[
1− Ξ± 2mA

K

]
. (2.7)

We therefore see that acceleration is due to a mismatch of conical deficits from the North

to South pole: µ− − µ+ = mA/K, whereas K tracks an overall deficit in the spacetime:

µ̄ = (µ+ + µ−)/2 = 1
4(1− Ξ/K).

Thus far we have related all parameters in the metric to physical charges. We empha-

size that α, the parameter rescaling t, is not a new parameter: since t is a noncompact

coordinate it is not a physical parameter. Rather it is a choice of gauge, anticipating that

the t coordinate natural to the (t, r) section of a black hole metric is not, in fact, the

correctly scaled coordinate when viewed from the perspective of an observer at infinity (for

the non accelerating Kerr-AdS, the presence of this rescaling was first noted in [24].) We

insert α at this stage to anticipate this rescaling — see (3.2) below.

To summarize, the general solution above is described by six independent parameters

{m, a, e, `,K,A}, which map to six physical charges {M,J,Q, P, µ+, µ−}, that all appear on

the r.h.s. of the First Law (1.1). As a consequence the first law has “full cohomogeneity”.

Finally, in order for the metric (2.1) to be well defined, and correspond physically

to a slowly accelerating black hole in the bulk, we must restrict the range of parameters

as follows:

1. For the obvious interpretation of the θ-coordinate, we must have h(θ) > 0 on [0, π],

which implies

mA <

{
1
2Ξ for Ξ ∈ (0, 2] ,
√

Ξ− 1 for Ξ > 2 .
(2.8)

(Other ranges of θ where h is positive yield, for example, hyperbolic black holes [25].)
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2. Since the range of r is constrained by the conformal factor, we have1 A cos θ ≤
1/r ≤ 1/r+, and to satisfy the requirement of slow acceleration, we must require that

f(−1/A cos θ) has no roots.

3. Finally, we must make sure that the spacetime admits a black hole in the bulk, that

is f(r) has to have at least one root in the range r ∈ (0, 1/A).

Once we establish that we are within these allowed parameter ranges, our solution

describes a single accelerating black hole that is suspended by strings at a constant radius

in asymptotically AdS space. We refer the reader to reference [37] for the (rather non-trivial

and θ-dependent) Penrose diagram of these spacetimes.

3 Slowly accelerating black hole thermodynamics

We begin by stating the thermodynamic charges and potentials for the accelerating

black hole:

M =
m(Ξ+a2/`2)(1−A2`2Ξ)

KΞα(1+a2A2)
,

T =
f ′+r

2
+

4πα(r2
++a2)

, S=
π(r2

++a2)

K(1−A2r2
+)
,

Q=
e

K
, Φ = Φt =

er+

(r2
++a2)α

,

J =
ma

K2
, Ω = ΩH−Ω∞ =

(
Ka

α(r2
++a2)

)
−
(
− aK(1−A2`2Ξ)

`2Ξα(1+a2A2)

)
,

P =
3

8π`2
, V =

4π

3Kα

[
r+(r2

++a2)

(1−A2r2
+)2

+
m[a2(1−A2`2Ξ)+A2`4Ξ(Ξ+a2/`2)]

(1+a2A2)Ξ

]
,

λ±=
r+

α(1±Ar+)
−m
α

[Ξ+a2/`2+ a2

`2
(1−A2`2Ξ)]

(1+a2A2)Ξ2
∓A`

2(Ξ+a2/`2)

α(1+a2A2)
,

(3.1)

which, together with the tensions µ± defined in (2.7), satisfy both the first law (1.1) and

the Smarr relation (1.2), provided we set

α =

√
(Ξ + a2/`2)(1−A2`2Ξ)

1 + a2A2
. (3.2)

Let us now turn towards the derivation of these quantities.

T and S. The most straightforward of the above parameters is the entropy, given by one

quarter of the horizon area [26],

S =
Area

4
=
r2 + a2

4K

∫
sin θ

H2
dθdϕ

∣∣∣
r=r+

=
π(r2

+ + a2)

K(1−A2r2
+)

. (3.3)

1Note that when cos θ < 0, 1/r crosses the origin and so the boundary is situated ‘beyond infinity’.
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Next, the Hawking temperature of the black hole, T , can be obtained as usual by regularity

of the Euclidean section2

ds2
τ,r ∝

r2Σ

r2 + a2

[
r2f

(r2 + a2)

dτ2

α2
+

dr2

r2f/(r2 + a2)

]
⇒ T =

f ′r2
+

4πα(r2
+ + a2)

. (3.4)

Q and Φ. The electric and magnetic charges of the black hole, Q and Qm, can be found

by the standard Gauss’ law integral

Q =
1

4π

∫
∗F =

e

K
Qm =

1

4π

∫
F = 0 . (3.5)

The conjugate electrostatic potential, Φ, is a little more interesting. The usual procedure is

to define the bulk potential B so that the corresponding electrostatic potential −ξ ·B van-

ishes on the horizon of a black hole, and its value at infinity then gives the thermodynamic

potential. Here, however, we have the problem that the potential and electric field are not

constant at the boundary due the acceleration giving a nontrivial θ−dependence, so we can-

not simply read off the potential there. Instead, as already noted in (2.2) and (2.3), we set

the electrostatic potential −ξ ·B to be zero on the horizon, and define the thermodynamic

potential using the Hawking-Ross prescription [27]

Φ =
1

4πQβ

∫
∂M

√
hnaF

abBb , (3.6)

where β = 1/T is the inverse periodicity in Euclidean time, and na is the outward pointing

unit normal to ∂M ≡ {H = 0}. This computation simply gives Φ = Φt, as in (2.3).

J and Ω. The angular momentum J can be computed (for example) by using the con-

formal method [28, 29]. The idea is to perform a conformal transformation on the metric,

ḡµν = H̄2gµν , to remove the divergence near the boundary, then to integrate a conserved

current associated with the Killing vector ξ, to get the corresponding conserved charge:

Q(ξ) =
`

8π
lim
H̄→0

∮
`2

H̄
NαNβC̄ναµβξνdS̄

µ , (3.7)

where C̄µανβ is the Weyl tensor of the conformal metric and

dS̄µ = δtµ
`2(1 + a2A2 cos4θ)

αK
d(cos θ)dϕ (3.8)

is the spacelike surface element tangent to H̄ = 0, with the normal to the boundary Nµ =

∂µH̄. The charge Q(ξ) is independent of the choice of conformal completion even though

the conformal completion is not unique. The choice H̄ = `Hr−1 provides a convenient

conformal completion, smooth as A→ 0.

2Note that when Wick rotating Kerr ia appears in the metric. However to check regularity at the horizon

one must approach in a locally co-rotating frame: (r2+ + a2)ϕ/K = −iaτ/α. This results in a manifestly

θ−independent answer following the usual procedure. Alternately, using the zeroth law, the temperature

is constant on the horizon, and hence can be evaluated at θ = 0 for simplicity.
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The angular momentum (3.1) is given by Q(−∂ϕ). As is well known [24], the angular

potential of a rotating black hole in AdS is not simply the angular momentum at the horizon

in Boyer-Lindquist coordinates, but must be corrected to allow for the relative rotation with

the boundary. In general, the angular velocity of the “Zero-Angular-Momentum-Observer”

any radius r is

Ωr = − gtϕ
gϕϕ

=
Ka[h(r2 + a2)− fr2]

α[h(r2 + a2)2 − fa2r2 sin2θ]
. (3.9)

Setting r = r+, this yields ΩH in (3.1) on the horizon but is not constant on the boundary

H = 0. However, one can define

Ω∞ = − aK(1−A2`2Ξ)

`2Ξα(1 + a2A2)
(3.10)

by evaluating (3.9) at conformal infinity with m = 0 (and cos θ = 1 for the charged black

hole). Similar to the Kerr-AdS case, it is the difference between the two, Ω = ΩH − Ω∞
that enters the first law of black hole thermodynamics.

M . Moving to the thermodynamic mass, we used three methods to find the expression

in (3.1). First, the conformal method with

M = Q(∂t + Ω∞∂ϕ) , (3.11)

yields the expression in (3.1).

We can check this result by computing the Gibbs free energy G = I/β = G(T,Ω,Φ)

from the action

I =
1

16π

∫
M
d4x
√
g

[
R+

6

`2
− F 2

]
+

1

8π

∫
∂M

d3x
√
h

[
K − 2

`
− `

2
R (h)

]
, (3.12)

where K andR (h) are respectively the extrinsic curvature and Ricci scalar of the boundary.

Computing this free energy is a bit lengthy, but straightforward, and yields

G =
m(1− a2A2 − 2A2`2Ξ)

2αK(1 + a2A2)
−

r+(a2 + r2
+)

2αK`2(1−A2r2
+)2
− e2r+

2Kα(a2 + r2
+)

, (3.13)

which satisfies G = M − ΩJ − TS − ΦQ [33], with the thermodynamic variables in (3.1)

as required.

The third cross-check is to use integration of the holographic stress tensor. In the fixed

potential ensemble (without the IQ term), varying the action (3.12) (for generic variations

that can include boundary diffeomorphisms [30]) gives

δI = −1

2

∫
∂M
Tabδhab

√
−h d3x, (3.14)

where

8πTab = `Gab (h)− 2

`
hab −Kab + habK . (3.15)
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In order to compute the quantities appearing in this expression, we require a systematic

expansion of the metric near the boundary. This is typically done via a set of asymptotic

Fefferman-Graham coordinates, in which the geometry takes a standard format

ds2 =
`2

z2
dz2 + z−2

(
γ

(0)
ab + z2γ

(2)
ab + . . .

)
dxadxb . (3.16)

The transformation between the C-metric and FG coordinates is then written as an expan-

sion in z, and expressions computed order by order. This process is straightforward but

lengthy, and determines the γ
(n)
ab in (3.16) above. Since hab = γ

(0)
ab /z

2 + γ
(2)
ab + . . . , it is now

straightforward to compute Kab in (3.15) leading to

8πTab = `Gab +
1

`

[
γ

(2)
ab +

3z

2
γ

(3)
ab − γ

(0)
ab γ

(0)cd
(
γ

(2)
cd +

3z

2
γ

(3)
cd

)]
. (3.17)

Inserting the computed values of γ(n), allows the computation of the expectation value of

the energy momentum of the CFT3,

〈Tab〉 = lim
z→0

Tab
`z

, (3.18)

yielding a relativistic fluid whose energy density can be integrated to give the mass. The

details on this procedure are given in appendix A.

α. The crucial step in formulating the correct thermodynamics is to determine the nor-

malization α in (3.2). For the uncharged and non-rotating black hole, this is straight-

forward to determine, as described in [21]: in the limit of vanishing black hole mass and

string tensions, the spacetime becomes pure AdS in Rindler coordinates. The coordinate

transformation between Rindler and global AdS then determines the rescaling of the time

coordinate of the C-metric.

Alternatively, note that in this same limit, the boundary metric becomes (see eq. (A.6)

in appendix A)

ds2
(0) = ω2

[
−dτ

2

`2
+

α2dx2

(1− x2)(1−A2`2(1− x2))
+

α2(1− x2)dϕ2

(1−A2`2(1− x2))

]
. (3.19)

The latter two terms should correspond to a unit S2, so we set

sin2 ϑ =
α2(1− x2)

(1−A2`2(1− x2))
. (3.20)

Computing the ϑ component of the metric then gives

α2 cos2 ϑdϑ2

α2 − (1−A2`2) + (1−A2`2) cos2 ϑ
(3.21)

hence α2 = 1−A2`2.

For non-zero rotation similar approaches apply. Set m = e = 0 in (2.1), and

K = 1 + a2A2 − a2/`2 so that there are no conical deficits present. We then rewrite
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the metric in a non-rotating frame by setting ϕ = φ̃ + Ω∞t, thus eliminating the gtφ̃
component of the metric:

ds2 =
1

H2

(
− f̃ h̃dt

2

α2Ξ̃
+

r2Σdr2

(r2 + a2)f̃
+
r2Σdθ2

h̃
+

sin2θ(r2 + a2)dφ̃2

Ξ̃

)
, (3.22)

where

f̃ = 1−A2r2 +
r2

`2
, h̃ = 1 +

(
a2A2 − a2

`2

)
cos2θ , Ξ̃ = K = 1 + a2A2 − a2

`2
. (3.23)

This is to be compared with the AdS metric:

ds2 = −
(

1 +
R2

`2

)
dt2 +

dR2

1 + R2

`2

+R2(dΘ2 + sin2Θdφ̃2) . (3.24)

Equality of the gtt and gφ̃φ̃ components in each case determines R(r, θ) and Θ(r, θ):

R sin Θ =
sin θ
√
r2 + a2

H
√

Ξ̃
, R = `

√
f̃ h̃

H2α2Ξ̃
− 1 . (3.25)

Then imposing that the remaining metric components agree yields α =
√

1−A2`2, as in

the non-rotating case.

V, λ±. The remaining thermodynamic variables are the pressure, string tensions, and

their dual potentials. The definition of the charges P, µ± are fixed in terms of the physical

quantities: the cosmological constant determines P = 3/8π`2, and the tensions are fixed

by the conical deficits (2.7). The conjugate potentials, the thermodynamic volume and

lengths are then determined from the first law (1.1). This is computed by first looking at

how the location of the black hole event horizon changes as we vary the metric parameters

∂f

∂r+
δr+ +

∂f

∂m
δm+

∂f

∂e
δe+

∂f

∂a
δa+

∂f

∂`
δ`+

∂f

∂A
δA+

∂f

∂K
δK = 0 . (3.26)

Next, δr+ (conveniently multiplied by f ′+ ∝ T ) can be rewritten in terms of δS, δa, δA,

and δK. This now gives TδS in terms of δm, δe, δa δ`, δA, and δK. We then use the

expressions for M , Q, J , P in (3.1) and µ± in (2.7) to transform this into the form of the

first law. This procedure results in the expressions for V and λ± in (3.1).

4 On thermodynamics of the asymptotically flat C-metric

It is also interesting to consider what happens if there is an acceleration horizon. For

simplicity, we concentrate on the asymptotically flat limit of the accelerated black holes,3

obtained by setting Λ = 0 in (2.1). It describes a pair of accelerating black holes separated

3Alternatively, one could consider the ‘fast accelerating’ AdS black holes. Such spacetimes have both

accelerated and cosmological horizons extending all the way to conformal infinity and the standard holo-

graphic and conformal methods are not so readily applicable for their study.
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by an acceleration horizon, and we note that its conformal structure is analogous to de

Sitter spacetime, but with future/past infinity being null at the poles θ = 0, π and otherwise

spacelike [34].

Given this clear physical distinction, finding the thermodynamic variables is not a

matter of taking the limit ` → ∞ for each quantity in (3.1); indeed such a limit does

not exist. Rather we concentrate on an observer in the static patch of (2.1), between one

black hole and its acceleration horizon. Despite the fact that charged rotating black holes

emit gravitational and electromagnetic radiation at infinity [37, 38], observers using the

metric (2.1) should be able to undertake standard thermodynamic investigations, since

the radiation escapes into a region inaccessible to this observer [39]. Of course, due to

the presence of two horizons such a system is in general out of equilibrium. We expect

that similar to the de Sitter case, one may study the thermodynamics of each horizon

separately [40].

Leaving the thermodynamics of the accelerated horizon for future study (see [35, 36]),

with this in mind we find

M =
m(1− a2A2)

Kα(1 + a2A2)
, T =

f ′+r
2
+

4πα(r2
+ + a2)

, S =
π(r2

+ + a2)

K(1−A2r2
+)

,

α =

√
(1− a2A2)Ξ

1 + a2A2
, Q =

e

K
, Φ =

er+

(a2 + r2
+)α

,

J =
ma

K2
, Ω = ΩH − Ω∞ =

aK

α(r2
+ + a2)

− aA2K

α(1 + a2A2)
,

λ± =
r+

α(1±Ar+)
− MK

Ξ
∓ a2A

α(1 + a2A2)
,

(4.1)

form a consistent set of thermodynamic parameters for the Λ = 0 charged accelerating

black hole, satisfying (with P = 0) both the first law (1.1) and the Smarr relation (1.2)

at the black hole horizon, where Ξ = (1 + a2A2 + e2A2). The quantity M was computed

via a Komar-like integral over θ and ϕ at conformal infinity, using a Killing vector ∂t in a

rotation subtracted frame ϕ→ ϕ+ Ω∞t. Note that it is not possible to compute V in this

case, as no smooth limit exists for V as P → 0, similar to what happens for black holes in

d = 7 gauged supergravity [41].

A much greater measure of caution should be taken before the formulae in (4.1) are

accepted as thermodynamic quantities. In computing the mass the Killing vector ∂t was

used; this is a boost rotation Killing vector rather than the static vector at infinity. More-

over, spatial infinity is not well described in the static coordinates — it only corresponds

to θ = π/2 in these coordinates, calling into question the validity of the Komar integration.

Third, the above quantities satisfy the first law only provided this Killing vector is normal-

ized by α above. Whereas there is a good reason to do this in the asymptotically AdS case

studied in the main text, such a normalization remains a question in the asymptotically

flat case. Finally, the physical status of the thermodynamic relations is not clear given the

presence of radiation [37, 38]; indeed even in the slowly accelerating AdS case radiation

patterns have been computed [37].
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5 Discussion and summary

To summarize, we have formulated the consistent thermodynamics of slowly accelerating

AdS black holes with charge and rotation. The crucial aspects of our result are the com-

putation of the thermodynamic mass and the normalization of the timelike Killing vector.

We computed the mass directly via the conformal method, and backed up this result by

checking it against the free energy from a calculation of the action and (for zero rotation)

by calculating the holographic energy momentum tensor and its associated energy. The

mutual agreement of these methods is not obvious, as the Dirichlet boundary conditions no

longer apply to the case in question [31]. The normalization of the timelike Killing vector

was cross-checked by finding explicit coordinate transformations and (for zero rotation) by

requiring the variation of the action (including boundary counterterms) to vanish.

The key insight in our approach is to consider the extended first law (1.1) with the

additional terms that allow us to vary the tension. This is in direct contrast to the approach

presented in [19] (see also [32]) where one tension is fixed (at zero) and all remaining

parameters are permitted to vary. This is perplexing, as a first law without varying tension

then has reduced cohomogeneity, i.e. fewer thermodynamic parameters than the number

of parameters being varied in the geometry. Given this mismatch of parameter space, we

suspect a lack of uniqueness, or a hidden constraint.

We have also proposed a set of thermodynamic parameters for the Λ = 0 charged and

accelerating black hole spacetime. This spacetime has an acceleration horizon, but (as is the

case with other black holes) the first law and Smarr formula hold at the black hole horizon.

Our results pave the way for a proper analysis of the phase behaviour of accelerating

black holes and raise a number of interesting questions for future study. Standard ther-

modynamic analysis seems to be possible for observers using the metric (2.1) (e.g. [43])

despite the fact that charged rotating black holes emit gravitational and electromagnetic

radiation at infinity [37, 38], since the coordinates from which we obtained our thermo-

dynamic parameters are analogous to those of an observer comoving with an accelerating

charged object, who sees no radiation because it escapes into a region inaccessible to this

observer [39]. It is an interesting future project to obtain a deeper understanding of this

relationship. Similar remarks apply to the Λ ≥ 0 cases as well as the fast accelerating AdS

case, though the loss of thermodynamic equilibrium (duel to the presence of additional

horizons) introduces new complications. The quantities in (4.1) were with regard to one

accelerated black hole in the static patch. It remains an interesting question whether one

should not rather treat the system of two black holes as a whole, reminiscent of the mass

dipole, and consider the associated boost mass [44].

It is also of interest to obtain a better understanding of these black holes from a

holographic perspective. While we have checked our expression for the mass using this

approach, a full understanding of the dual fluid interpretation for the charged and rotating

case remains to be found. It likewise would be preferable to obtain a clear understanding

of the conserved mass for the Λ ≥ 0 cases, since standard holographic methods do not

directly apply. It would also be interesting to see how changes in the boundary metric

affect the shape of these AdS black holes [45].
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A Holographic stress tensor

In this appendix we provide further detail, and gather the formulae for the holographic

stress tensor and boundary metric variations, concentrating mainly on the slowly acceler-

ating charged (non-rotating) AdS C-metric, as the expressions once rotation is included

are extremely cumbersome.

The first step is to write a coordinate transformation between the C-metric coordinates

in (2.1) and the FG coordinates of (3.16) in a series expansion4 as z → 0:

1

r
= −Ax−

4∑
n=1

Fn (x) zn , cos θ = x+

4∑
n=1

Gn (x) zn . (A.1)

One inserts this expansion (A.1) into (2.1) and inspects the terms order by order in z. The

functions Fn and Gn are then found by requiring that gzz ≡ `2/z2, and gza ≡ 0 at each

order in z; this determines all but the function F1, which appears as an overall conformal

factor as expected. The γ
(n)
ab are also determined by these expressions.

To illustrate the process, note that

gzx = 0 ⇒ 1

h

∂θ

∂z

∂θ

∂x
= −r

2

f

∂r−1

∂z

∂r−1

∂x
, (A.2)

which implies

1

`2

(∑
nGnz

n−1
)(

A+
∑

G′n(x)zn
)

Υ2
a

[
x+

∑ Fn
A
zn
]

= −
(∑

nFnz
n−1
)(

A+
∑

F ′n(x)zn
)
X
[
x+

∑
Gnz

n
]
,

(A.3)

where
X[ξ] = (1− ξ2)

(
1 + 2mAξ + (e2 + a2)A2ξ2 − a2ξ2/`2

)
,

Υa[ξ] =
√

1 + a2A2ξ4 −A2`2X(ξ) ,
(A.4)

4Note that the r-coordinate in (2.1) only covers half of the boundary, since r →∞ at θ = π/2, therefore

we use y = 1/r as an alternate radial coordinate.
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have been written to keep notation concise. A systematic expansion, order by order, then

determines the Gn in terms of the Fn. For example, at leading order, O(z−2), gives

G1(x) = −A`
2F1(x)X(x)

Υ2
a(x)

. (A.5)

This then is sufficient to ensure gzz = `2/z2 to this order, and gives the boundary metric as:

ds2
(0) =

Υ4
a

Σ3
FGF

2
1

(
X

[
aA2x2dt

α
−(1+a2A2x2)

dϕ

K

]2

−Υ2
a

`2

[
dt

α
−a(1−x2)

dϕ

K

]2
)

+
Υ2
a

F 2
1X

dx2 ,

(A.6)

where, again for conciseness, we write

ΣFG = (1 + a2A2x4) , (A.7)

and the arguments of all the functions are understood now as being ‘x’. Note that the

transformation (A.1) is valid in general only when Υ2
a > 0, which precisely translates into

the condition that acceleration horizons are absent, i.e. we are working with the slowly

accelerating C-metric.

To proceed further, we must now Taylor expand the functions X and Υ2
a in (A.3),

and the expressions rapidly become rather lengthy for a 6= 0. Setting a = 0, which sets

ΣFG = 1, Υa = Υ =
√

1−A2`2X, and further writing F1(x) = −Υ3/αω(x) in order

to elucidate the conformal degree of freedom in the boundary metric, ω, allows a more

tractable computation of the γ(n), and hence the stress tensor. In coordinates (t, x, ϕ), the

expectation value of the energy momentum of the CFT3 reads

〈T ab 〉 = lim
z→0

1

`z
T ab = − X ′′′(x)Υ3

96πAα3ω3
diag

[
−(2− 3A2`2X) , 1 , (1− 3A2`2X)

]
. (A.8)

This can be interpreted as an energy momentum tensor of a thermal perfect fluid with no

dissipation terms plus a non-hydrodynamic correction [21, 42]. With respect to the static

observer at infinity, U = ω−1∂τ , this yields the following energy density:

ρE =
(m+2e2Ax)

8π`2α3ω3
Υ3(2− 3A2`2X) , (A.9)

which upon integration, yields the holographic mass

M =

∫
ρE`

3
√
−γ(0) dxdϕ =

m(1−A2`2 −A4e2`2)

Kα
, (A.10)

in agreement with (3.1). Finally, we find the variation of the boundary metric with respect

to the parameters,

δγab =
∂γab

∂K
δK +

∂γab

∂A
δA+

∂γab

∂m
δm+

∂γab

∂e
δe , (A.11)

keeping ` and µ’s constant, and calculate

δI =

∫
∂M

√
−γτabδγabd3x . (A.12)

Imposing that the variation vanishes we find that the unknown parameter α must be

α =
√

(1 +A2e2)(1−A2`2 −A4`2e2) , (A.13)

which agrees with (3.2) in the case a = 0.
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