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Abstract

We employ recent ideas of C.I. Christov and of A. Morro to develop
a theory for diffusion of a solute in a Darcy porous medium taking con-
vection effects into account. The key point is that the solute evolution is
not governed by a parabolic system of equations. Indeed, the theory de-
veloped is basically hyperbolic. This still leads to a model wich allows for
convective (gravitational) overturning in a porous layer, but in addition
to the classical mode of stationary convection instability there is the pos-
sibility of oscillating convection being dominant for a lower salt Rayleigh
number, if the relaxation time is sufficiently large.

Keywords: Convection in porous media; Hyperbolic diffusion; Christov con-
centration flux equation; Linear Instability; Oscillatory convection.

1 Introduction

The problem of movement of a solute in a porous medium is one with many
applications in pollution, transport of radio-active waste, and many other things.
There are many models for movement of a solute but typically these are based
on Fick’s law and lead to a parabolic equation, or a system of such equations,
cf. Graffi [16], Prouse & Zaretti [26], Franchi & Straughan [12], Straughan
[28]. Also, there are many detailed numerical analyses and simulations of solute
transport in such systems, see e.g. Ewing et al. [7, 8, 9].

Recently, there has been a lot of interest in developing and analysing models
for solute transport which have hyperbolic characteristics rather than parabolic.
For example, the early work of Galenko & Danilov [13], Sobolev [27], and a very
useful review may be found in Galenko & Jou [14]. A parallel mathematical
analysis development has also taken place, see e.g. Gatti et al. [15], Bonetti et
al. [1], Grasselli et al. [17], Wu et al. [32], and a good review of the mathematical
literature is contained in Jiang [20], see also section 9 of Straughan [31]. The
development of hyperbolic transport equations follows the analogous hyperbolic
heat propagation theory which is analysed in the artcles of Christov & Jordan
[3], Christov & Jordan [6], Jordan [22], Jordan et al [21] and the many references
therein.

There are many novel applications of a hyperbolic theory of solute transport.
For example, we mention material transfer in stars, Herrera & Falcón [19],
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Falcón [10], Straughan [30], drug delivery in the human body, Ferreira & de
Oliveira [11], and other biological and medical applications are considered in
chapter 9 of the book by Straughan [31]. Thus, we believe there is strong
motivation to develop and analyse a hyperbolic theory of convective overturning
of a solute in a layer of a porous material. To do this we employ recent work
of Christov [4, 5] who advocate the use of a Lie derivative and Morro [23, 24]
who develops a thermodynamically consistent theory which is compatible with
Christov’s derivative.

2 The model

Let φ̂ be the porosity in a porous medium, cf. Straughan [28], p.1, and let Vi be
the actual velocity of fluid in the pores of a saturated porous medium. Denote
by vi = φ̂Vi the pore averaged velocity. Then, for a solute dissolved in the
fluid, with concentration C(x, t) Darcy’s law governing the velocity field is, cf.
Straughan [28], pp.10-12,

0 = − ∂p

∂xi
− µ

k
vi − ρ0gkiαC , (1)

where p, µ, k, ρ0, g, α are the pore averaged pressure, dynamic viscosity of the
fluid, the permeability, the constant density (employing a Boussinesq approxi-
mation), gravity, and the coefficient of salt dependence in the density law. Here
k = (0, 0, 1) and standard indicial notation will be employed throughout. In
addition the fluid is incompressible, so

vi,i = 0 . (2)

To describe solute movement in the pores we suppose the solute concentra-
tion satisfies the equations

∂C

∂t
+ Vi

∂C

∂xi
= −∂Ji

∂xi
, (3)

and

τ

(

∂Ji
∂t

+ Vj
∂Ji
∂xj

− Jj
∂Vi

∂xj

)

=

−kc
∂C

∂xi
− Ji + ξ1∆Ji + ξ2Jk,ki .

(4)

In these equations J is the solute flux, equation (3) expresses concentration
balance, and (4) is a generalization of Fick’s law. The parameter τ(> 0) is a
relaxation time, kc is a coefficient of solute diffusion, the derivative on the left
in (4) is proposed by Christov [4], ξ1, ξ2 > 0 are coefficients corresponding to
terms introduced by Morro [23]. (We remark that when τ = 0 and ξ1 = ξ2 = 0,
equations (3) and (4) reduce to the classical equation of Fick’s law and parabolic
transport of solute.)
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In keeping with equation (1), it is convenient to rewrite (3) and (4) in terms
of the pore averaged velocity vi so that we have

φ̂
∂C

∂t
+ viC,i = −φ̂Ji,i , (5)

τ

(

φ̂
∂Ji
∂t

+ vj
∂Ji
∂xj

− Jj
∂vi
∂xj

)

=

−φ̂Ji − φ̂kcC,i + φ̂ξ1∆Ji + φ̂ξ2Jk,ki .

(6)

The complete model for solute transport in a porous material consists of equa-
tions (1),(2),(5) and (6), and is a system in the variables vi, p, C and Ji.

3 Overturning instability

Suppose a porous medium governed by equations (1),(2),(5) and (6) occupies
the region R

2×{z ∈ (0, d)}, with gravity acting in the downward direction. We
are primarily interested in whether a top heavy layer will be unstable.Thus, we
consider the situation with the boundary conditions

vini = 0 , z = 0, d, (7)

and
C = CL, z = 0 , C = CU , z = d , (8)

where C = CL and C = CU are constants and n is the unit outward normal.
For conditions on the flux J we assume zero tangential component of flux so
that, in general, ǫijkJjnk = 0. In the case of a plane layer this results in

J1 = J2 = 0 , z = 0, d . (9)

We seek a steady solution {v̄i, C̄, J̄i, p̄} to (1),(2), (5)-(9), such that v̄i ≡ 0 and
C̄ = C̄(z). Hence, v̄i ≡ 0

C̄ = CL + βz , (10)

where β = (CU − CL)/d , and J̄3 = −βkc, J̄1 = J̄2 = 0. For the most part
we consider β > 0, although the case β < 0 (which should be stable) is briefly
investigated.

Next, introduce perturbations {ui, φ, δi, π} to {v̄i, C̄, J̄i, p̄} such that

vi = v̄i + ui , C = C̄ + φ ,

Ji = J̄i + δi , p = p̄+ π .
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The perturbation equations are found to be

0 = −π,i −
µ

k
ui − ρ0gαkiφ ,

ui,i = 0 ,

φ̂φ,t + uiφ,i + βw = −φ̂δi,i ,

τ
(

φ̂δi,t + ujδi,j + βkcui,z − δjui,j

)

=

−φ̂δi − φ̂kcφ,i + φ̂ξ1 ∆δi + φ̂ξ2 δk,ki .

(11)

where w = u3.
These equations are non-dimensionalized by writing

ui = u∗

iV, φ = φ∗C♯, δi = δ∗i Ξ, π = π∗P ,

Ξ =
kcC

♯

d
, xi = x∗

i d, t = t∗T , Da =
k

d2
,

Sg =
τµ

ρ0d2
, P s =

µ

ρ0kc
, V =

φ̂kc
d

,

R =

√

d2βρ0gαk

φ̂µkc
, C♯ = V

√

d2βµ

φ̂ρ0gαkkc
,

T =
ρ0k

µ
, P =

µV d

k
, λ1 =

ξ1
d2

, λ2 =
ξ2
d2

,

the asterisks denoting non-dimensional quantities. Here, Da is the Darcy num-
ber, Ps is the salt Prandtl number, Ra = R2 is the salt Rayleigh number, and
Sg is a parameter introduced in Papanicolaou et al. [25].

For convenience we now drop all asterisks and the non-dimensional pertur-
bation equations become,

Sg

Da
δi,t +

Sg

Ps
(ujδi,j − δjui,j)

+
Sg R

Ps
ui,z = −δi − φ,i + λ1∆δi + λ2δk,ki ,

ui,i = 0 ,

P s

Da
φ,t + uiφ,i = −Rw − δi,i ,

0 = −π,i − ui − kiRφ .

(12)
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(When β < 0 the Rw term in (12)3 has a positive sign).
The appropriate boundary conditions become:

w = 0, θ = 0, δ1 = δ2 = 0, z = 0, 1 , (13)

and ui, θ, δi, π satisfy a plane tiling periodicity in x and y.
We next take ∂/∂xi of (12)1, set ζ = δi,i and then remove π by taking

curlcurl of (12)4 and retaining the third component. Next linearize and assume
forms w = eσtw(x), φ = eσtφ(x), ζ = eσtζ(x) , and this results in the system

0 = ∆w +R∆∗φ ,

σ
Ps

Da
φ = −Rw − ζ ,

σ
Sg

Da
ζ = −ζ −∆φ + (λ1 + λ2)∆ζ ,

(14)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2.
Now eliminate φ and ζ and then write w = W (z)f(x, y) where f is a plane

tiling planform such that
∆∗f = −a2f.

Then write W (z) = sinnπz. We may do this since we only seek the most
unstable mode, and from (14) by repeated differentiation and evaluation on
the boundaries z = 0, 1, a sin series representation suffices. In this manner we
reduce (14) to

σ2
PsSg

Da2
Λ + σ

[

Ps

Da
(λ1 + λ2)Λ

2 +
Ps

Da
Λ

− Sg

Da
R2a2

]

+ Λ2 = R2a2
[

(λ1 + λ2)Λ + 1
]

,

(15)

where Λ = n2π2 + a2.
For stationary convection one puts σ = 0. Then (15) yields

R2 =
Λ2

a2[(λ1 + λ2)Λ + 1]
. (16)

By taking ∂R2/∂n2 we see n = 1 is the most unstable and put n = 1. Then
dR2/da2 leads to the critical value ac of a as

a2c =
π2[(λ1 + λ2)π

2 + 1]

[1− (λ1 + λ2)π2]
(17)

and so we require λ1 + λ2 < π−2. Then substitution of (17) in (16) yields

R2

sc =
4π2

[1 + (λ1 + λ2)π2]2
(18)
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Remarks

1. When λ1 = λ2 = 0 we recover R2

sc = 4π2, cf Straughan [29].

2. When we consider CL > CU , (16) leads to R2 < 0 and the system is, as
expected, stable.

To study oscillatory convection we put σ = iσ1, σ1 ∈ R cf. Chandrasekhar
[2]. Then taking the imaginary part of (15) we find

R2 =
Ps

Sg
(λ1 + λ2)

(π2 + a2)2

a2
+

Ps

Sg

π2 + a2

a2
. (19)

By calculating dR2/da2 we then find

a2c = π

√

(λ1 + λ2)π2 + 1

λ1 + λ2

, (20)

and thus

R2
osc =

Ps

Sg







X
(

π2 +
√

π4 + π2/X
)2

√

π4 + π2/X
+

π2 +
√

π4 + π2/X
√

π4 + π2/X







=
Ps

Sg

(

π3X3/2

√
π2X + 1

+ 2π2X + π
√
X
√

π2X + 1 +
π
√
X√

π2X + 1
+ 1

)

,

(21)
where X = λ1 + λ2.

Remarks

1. When CU < CL, we are again led to R2 ≤ 0 in (19) and so no instability.

2. When X = 0 , R2

osc = Ps/Sg cf. Straughan [29].

4 Conclusions

We have developed a model for convective overturning of a top heavy fluid
saturated porous medium allowing hyperbolic diffusion of the salt field according
to the prescription of Christov [4] and of Morro [23].

Equations (18) and (21) show that for λ1, λ2 and Sg sufficiently small the
critical salt Rayleigh number is given by (18). However from (21) when X is
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small there is a critical value of Sg = Sgc (and hence τ) such that once Sg >
Sgc instability is by oscillatory convection rather than stationary convection.
For Sg > Sgc the critical value of R2 is given by (21) and R2

crit decreases
as Sg increases (other parameters fixed). This means that as τ increases the
system ceases to be governed by the parabolic character of the problem and
for τ sufficiently large the eigenvalues generating instability swap places and
the complex eigenvalue dominates. Thus, the hyperbolic nature of the system
is then dictating instability. However, we observe that the effect of the λ1, λ2

terms is to increase R2

osc and so make the likelihood of oscillatory convection
less probable. Thus, there is an important interplay between Sg, λ1 and λ2 in
determining whether stationary or oscillatory convection occurs.

At present accurate values of τ, ξ1, ξ2 are not easy to find. However, for
a binary alloy system one has 10−11s < τ < 10−7s, cf. Straughan [31],
p.253, whereas ξ1, ξ2 = O(ℓ2) where ℓ is the mean free path of the heat car-
riers (phonons). For carbon nanotubes ℓ = O(10−9m), cf. Hepplestone &
Srivastava [18], and for a layer of depth 1cm we might then expect values of
λ1, λ2 = O(10−8) while Sg = O(10−5). This suggests stationary convection is
still likely to be the dominant mechanism in laboratory experiments. However,
the situation may be very different in stars, Herrera & Falcón [19].
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