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We agree with Rahnev & Denison that to understand perception at a process level, we must investigate 

why performance sometimes deviates from idealised decision-models. Recent research reveals that such 

deviations from optimality are pervasive during perceptual development. We argue that a full 

understanding of perception requires a model of how perceptual systems become increasingly optimised 

during development. 

 
Perceptual abilities undergo major development during infancy and childhood – for example, for 

detecting low-contrast stimuli (Adams & Courage, 2002), noisy patterns of motion (Hadad, Maurer, & 

Lewis, 2011), or recognising complex stimuli such as faces (Mondloch, Le Grand, & Maurer, 2002). 

Classically, the focus of perceptual development research has been on improvements in sensitivity 

(likelihoods). As reviewed in the target article, decades of adult research show how sensitivity changes 

can result from changes within a decision-model framework that incorporates likelihoods, priors, cost 

functions, and decision rules. Applying this framework to development, we argue that perceptual 

improvements must be explained in terms of changes to these components. This will lead to a new 

understanding of how perceptual systems attain their more highly-optimised mature state.  

 

Specifically, we need to know:  
(1) Which elements of the observer model are changing (developing), leading to improvements in 

perceptual function? Recent evidence suggests that multiple components of the decision model are 

developing significantly during childhood. Until late into childhood, observers are still using decision-

rules less efficiently: mis-weighting informative cues (Gori, Viva, Sandini, & Burr, 2008; Manning, Dakin, 

Tibber, & Pellicano, 2014; Sweeny, Wurnitsch, Gopnik, & Whitney, 2015), or using qualitatively different 

decision-rules altogether (Jones & Dekker, 2017; Nardini, Bedford, & Mareschal, 2010; Nardini, Jones, & 

Bedford, 2008). Other studies show abilities to learn and use priors and costs also to be developing late 

into childhood (e.g. Dekker & Nardini, 2016; Stone, 2011; Thomas, Nardini, & Mareschal, 2010). The 

new, model-based approach to development pioneered in these studies paves the way for 

understanding how likelihoods, priors, cost functions, and decision-rules are shaped as children learn, 

and for testing which common processes can explain perceptual development across a range of 
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different tasks. Studies to date have successfully captured developmental changes in performance by 

fitting how parameters of specific components of the decision model change with age on single tasks. 

This usefully sets quantitative bounds on potential changes in these processes, but the data are often 

compatible with more than one account. For example, in a rewarded reaching task (Dekker & Nardini, 

2016), children up to the age of 11 years aim too close to a penalty region to maximise their score, 

reflecting overconfidence in likelihood of hitting the target, underestimation of cost, or a central 

pointing prior. An important way forward is therefore to evaluate the fit of developmental models to 

multiple tasks, and to test their predictions on new tasks.  

(2) How are more efficient and adult-like decision-rules, priors, and cost functions acquired during 

development?  Beyond characterising the changes in decision-model components underlying perceptual 

development, the ultimate aim is to understand the mechanisms driving these changes. A major 

contributing factor is likely to be experience, which shapes the sensitivity of neuronal detectors, 

determining likelihoods (Blakemore & Van Sluyters, 1975), changes priors (Adams, Graf, & Ernst, 2004), 

and is needed to learn the potential consequences of actions (cost factors). It is not clear in which 

circumstances such experience is generalizable (e.g. priors or costs learned during one task applied to 

another), how experience drives learning of decision-rules, or whether there are sensitive periods like 

those for sensitivities (likelihoods) in other parts of the decision model (e.g. for learning priors). A useful 

approach is investigating the neural changes supporting improvements in decision-model components 

as perception becomes more optimised, such as more precise representation of likelihoods (Van Bergen, 

Ji Ma, Pratte, & Jehee, 2015) and values (Wu, Delgado, & Maloney, 2011), or more precise computing of 

weighted averages, perhaps implemented via divisive normalisation (Ohshiro, Angelaki, & DeAngelis, 

2011).  The power of this approach is demonstrated by recent studies of developmental disorders, in 

which there are exciting developments in linking components of observer models to specific neural 

mechanisms (Rosenberg, Patterson, & Angelaki, 2015). For example, in autism, tasks that involve 

combining new evidence with prior knowledge are disproportionally affected, and this has recently been 

linked to the overweighting of sensory likelihoods vs priors, possibly due to altered neural operations 

mediated by noradrenaline and acetylcholine (Lawson, Mathys, & Rees, 2017). In addition, a new, 

model-based approach to developmental neuroimaging lets us disentangle components of the 

developing decision model across different neural processing stages. We recently showed that 

development of cue integration during depth perception was linked to a shift from using depth cues 

independently to combining them, by neural detectors in sensory cortex (adopting a ‘fusion’ rule; 

Dekker et al., 2015). This suggests that the late development of cue integration is driven by a change in 

how sensory information is combined (sensory decision-rule), rather than improved read-out of the 

fused estimate during task performance (higher-order decision-rule or cost function). These studies 

demonstrate how a developmental approach can provide computational-level understanding of the 

crucial ingredients for building a mature optimised observer.  

The end goal of this approach is an observer model incorporating processes of learning and 

development: a Developing Standard Observer Model. This will provide a more complete understanding 

of perceptual systems, and a basis for developing intelligent machines that can learn to perceive in novel 

environments. For example, understanding the structure of experience that scaffolds our ability to 
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transfer previous likelihoods, cost-functions, and decision-rules from one task to another can inform the 

development of more flexible AI agents (Wang et al., 2017). Similarly, significant improvements in 

robotic grasp performance have been gained from incorporating developmental stages such as motor 

babbling and gradual improvements in visual acuity into the training regime (Cangelosi, Schlesinger, & 

Smith, 2015). In addition, understanding which developmental changes in the decision-model (e.g. 

sensitivity vs decision-rule) drive perceptual improvements at different ages will provide a crucial basis 

for better training of perception and action in patients with sensory loss. 
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