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Abstract Faults in the brittle crust constitute preexisting weakness zones that can be reactivated
depending on their friction, orientation within the local stress field, and stress field magnitude.
Analytical approaches to evaluate the potential for fault reactivation are generally based on the
assumption that faults are ideal planes characterized by zero thickness and constant friction. However,
natural faults are complex structures that typically host thick fault rocks. Here we experimentally
investigate the reactivation of gouge‐bearing faults and compare the resulting data with theoretical
predictions based on analytical models. We simulate preexisting faults by conducting triaxial experiments
on sandstone cylinders containing saw‐cuts filled with a clay‐rich gouge and oriented at different angles,
from 30° to 80°, to the maximum principal stress. Our results show the reactivation of preexisting
faults when oriented at 30°, 40°, and 50° to the maximum principal stress and the formation of a new
fracture for fault orientations higher than 50°. Although these observations are consistent with the fault
lock‐up predicted by analytical models, the differential stress required for reactivation strongly differs
from theoretical predictions. In particular, unfavorable oriented faults appear systematically weaker,
especially when a thick gouge layer is present. We infer that the observed weakness relates to the rotation
of the stress field within the gouge layer during the documented distributed deformation that precedes
unstable fault reactivation. Thus, the assumption of zero‐thickness planar fault provides only an upper
bound to the stress required for reactivation of misoriented faults, which might result in misleading
predictions of fault reactivation.

1. Introduction

Reactivation of preexisting faults in the brittle crust occurs when the shear stress acting on a fault over-
comes its strength (e.g., Copley, 2017; Sibson, 1985). A reliable estimate of fault strength and potential for
reactivation are crucial in the assessment of seismic hazard (e.g., Harris & Simpson, 1992; Sumy et al.,
2014). In the last decade, increasing attention has focused on the reactivation of preexisting faults due
to stress field perturbation during fluid injection (e.g., Gan & Elsworth, 2014; Moeck et al., 2009;
Rutqvist et al., 2007; Streit & Hills, 2004). This is because this procedure possibly causes induced seismi-
city (e.g., Ellsworth, 2013; Schoenball et al., 2018; Walsh & Zoback, 2016) and hydrocarbon leaks from
traps (e.g., Wiprut & Zoback, 2002). Analytical approaches are often used to evaluate the potential for
reactivation in both natural (e.g., Bolognesi & Bistacchi, 2016; Collettini & Trippetta, 2007; Leclère &
Fabbri, 2013; Lisle & Srivastava, 2004; Sibson, 1985) and induced stress field perturbations (e.g., Gan &
Elsworth, 2014; Moeck et al., 2009). These approaches consider faults as zero‐thickness planes embedded
in a homogenous and elastic medium. Consequently, the differential stress required for reactivation
depends on fault friction, maximum principal stress orientation, and minimum effective principal stress
magnitude (e.g., Jaeger, 1960; Morris et al., 1996; Sibson, 1985). Furthermore, the strength of the sur-
rounding rocks poses an additional limitation to the maximum differential stress required for reactivation
at a given minimum principal stress (e.g., Jaeger, 1960). The predictions resulting from these analytical
models have been successfully validated by triaxial experiments on foliated anisotropic rocks (i.e., gneiss,
schist, slate, and shale; e.g., Donath, 1961; Hoek, 1964; Jackson & Dunn, 1974; Jaeger, 1960; McLamore &
Gray, 1967; McCabe & Koerner, 1975; Shea & Kronenberg, 1993) and triaxial saw‐cut experiments on bare
surfaces (e.g., Hayward & Cox, 2017; Jackson & Dunn, 1974), where foliation and bare surfaces can be
confidently considered as zero‐thickness planes.
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Although considered planes at the crustal scale, mature faults are complex structures hosting fault cores
up to several hundred meters thick (e.g., Ben‐Zion & Sammis, 2003; Caine et al., 1996; Faulkner et al.,
2011; Shipton et al., 2006), which can be significantly weaker than the surrounding rocks (e.g.,
Collettini et al., 2009; Lacroix et al., 2015). Theoretical and experimental observations suggest that the
presence of a weak gouge layer along a fault results in the rotation of the stress field in proximity to
the fault (e.g., Byerlee & Savage, 1992; Gu & Wong, 1994; Lecomte et al., 2011; Lockner & Byerlee,
1993; Mandl et al., 1977; Rice, 1992), influencing fault reactivation and possibly enhancing slip on unfa-
vorably oriented faults (Lecomte et al., 2012). Notably, a fault gouge experiencing distributed deformation
behaves as a Coulomb material, within which the maximum principal stress rotates to an angle of 45° to
the fault boundaries (e.g., Byerlee & Savage, 1992; Lockner & Byerlee, 1993; Mandl et al., 1977). Thus, the
remaining key questions are as follows: how does the rotation of the far‐field stress influence fault reac-
tivation and are the analytical models applicable to thick, gouge‐bearing fault zones? Here we aim at
addressing these questions by conducting triaxial experiments with gouge‐filled saw‐cuts oriented at
different angles to the maximum principal stress.

1.1. Theoretical Background: The Single Plane of Weakness Theory

The simplest theory used to predict frictional fault reactivation is the single plane of weakness theory (e.g.,
Jaeger, 1960), which is a generalization of the Coulomb‐Mohr failure criterion. In this theoretical frame-
work, the minimum differential stress, σd= σ1− σ3, required for frictional reactivation of a preexisting cohe-
sionless fault is defined as follows (e.g., Sibson, 1985):

σd ¼ 1þ μs cotθ
1− μs tanθ

σ3 − σ3 (1)

where σ3 is the minimum principal stress, μs is the sliding friction of the preexisting fault, and θ is the fric-
tional reactivation angle, which is the angle between the fault and the maximum principal stress σ1. The fric-
tional lock‐up occurs when the σd approaches infinity, that is when θ = tan−1(μ−1). Moreover, frictional
reactivation occurs when the differential stress required for fault reactivation (equation (1)) is lower than
the differential stress required for the failure of the surrounding rock. The differential stress required for fail-
ure, and thus the upper bound of the differential stress for reactivation, depends on the rock strength, which
consists of the angle of internal friction, φi, and the cohesion, c, and on the minimum principal stress, σ3, as
follows:

σd ¼ 2c cosφi þ 2σ3 sinφi

1− sinφi
(2)

2. Methods

We studied the reactivation of gouge‐bearing faults that are experimentally simulated by a layer of gouge
sandwiched between intact rock blocks and placed at different angles θ to the maximum principal stress.
The experiments were designed to investigate the reactivation of preexisting faults that are weaker rela-
tive to the host rock. To ensure this, we used a clay‐rich gouge derived from the Marne a Fucoidi forma-
tion outcropping in the northeastern limb of the Monte Montiego anticline in the Northern Apennines of
Italy (Giorgetti et al., 2016), where this formation constitutes an important décollement level (e.g., Barchi
et al., 2001). The gouge is composed of 59 wt % of CaCO3 constrained by calcimetry (Giorgetti et al.,
2016), and the remaining percentage consists of a clay mineral assemblage of smectite, illite, and mixed
layer illite‐smectite (~50% smectite, ~30% illite, and ~20% mixed layer illite‐smectite; Coccioni et al.,
1989). The experimental fault is embedded within a lithic arkose sandstone (Pietraserena sandstone,
e.g., Fratini et al., 2014).

To investigate how the presence of gouge affects fault reactivation and to fully constrain the mechanical
properties of the involved lithologies, triaxial saw‐cut experiments have been complemented by two sets
of experiments with the following configurations (Table 1): (1) uniaxial and triaxial experiments conducted
on intact cylindrical samples of Pietraserena sandstone to characterize the strength of the rock surrounding
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the fault; (2) biaxial friction experiments on the clay‐rich marly gouge to characterize the frictional strength
of the fault.

Experiments were conducted using a servo‐controlled biaxial apparatus (BRAVA, Brittle Rock deformAtion
Versatile Apparatus) equipped with a pressure vessel (Collettini et al., 2014, for further details; Figure 1a).
The vertical and horizontal pistons were used to apply forces, which are measured using strain‐gauged load
cells located within the vessel with ±0.03‐kN accuracy. Vertical and horizontal load point displacements are
measured using linear variable differential transformer (LVDT) sensors with ±0.1‐μm accuracy. The servo‐
hydraulic system can be controlled in either pressure feedback, to maintain a constant force, or displacement
feedback, to advance the piston at a constant displacement rate. The pressure intensifier, connected to the
pressure vessel, applies the confining pressure via paraffinic oil. The pressure vessel is equipped with two
doors sealed with O‐rings to prevent confining oil leakage. The confining pressure is measured through pres-
sure transducers with ±7‐kPa accuracy and controlled via a pressure‐feedback control mode.

2.1. Double‐Direct‐Shear Experiments

Friction experiments were performed in double‐direct‐shear configuration, in which two layers of clay‐rich
gouge were placed between three grooved forcing blocks (Figure 1b). The gouge was prepared from outcrop-
ping clay‐rich marls (Giorgetti et al., 2016), which were crushed and sieved to <125‐μm grain size. The two
gouge layers, each with an initial ~3‐mm uniform thickness, were constructed to have a 5 cm × 5 cm area,
which is maintained constant throughout the experiment. Experiments were performed at room tempera-
ture and under dry (i.e., room humidity) conditions.

To evaluate the reactivation criterion, we conducted experiments at different normal stress σn ranging
between 10 and 50 MPa (Figure 1b). The normal stress was first applied and maintained constant

Table 1
List and Details of the Experiments

Experiment
number Configuration

Saw‐cut angle
to sample axisa

Layer
thickness hb (mm) Material

Confining pressure/
normal stress (MPa)

Displacement
ratec (μm/s)

b654 uniaxial ‐ ‐ Pietraserena sandstone Pc = 0 va = 0.1
b655 uniaxial ‐ ‐ Pietraserena sandstone Pc = 0 va = 0.1
b565 triaxial ‐ ‐ Pietraserena sandstone Pc = 10 va = 0.1
b584 triaxial ‐ ‐ Pietraserena sandstone Pc = 20 va = 0.1
b585 triaxial ‐ ‐ Pietraserena sandstone Pc = 30 va = 0.1
b652 triaxial ‐ ‐ Pietraserena sandstone Pc = 15 va = 0.1
b653 triaxial ‐ ‐ Pietraserena sandstone Pc = 25 va = 0.1
b599 double‐direct shear ‐ 3 clay‐rich marl σn = 10 – 20 − 30d vs = 0.5
b662 double‐direct shear ‐ 3 clay‐rich marl σn = 30 vs = 0.4
b663 double‐direct shear ‐ 3 clay‐rich marl σn = 30 vs = 0.4
b670 double‐direct shear ‐ 3 clay‐rich marl σn = 50 vs = 0.4
b586 triaxial saw‐cut 30° 3 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b588 triaxial saw‐cut 60° 3 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b596 triaxial saw‐cut 50° 3 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b597 triaxial saw‐cut 40° 3 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b598 triaxial saw‐cut 70° 3 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b610 triaxial saw‐cut 40° 3 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b611 triaxial saw‐cut 50° 3 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b617e triaxial saw‐cut 50° 3 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b619f triaxial saw‐cut 50° 3 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b628 triaxial saw‐cut 50° 1 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b629 triaxial saw‐cut 50° 5 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b646 triaxial saw‐cut 80° 3 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3
b648 triaxial saw‐cut 70° 3 Pietraserena sandstone + clay‐rich marl Pc = 10 va = 0.3

aApplicable only to triaxial saw‐cut configuration. bApplicable only to double‐direct‐shear and triaxial saw‐cut configuration. cAxial velocity (va) in triaxial
and triaxial saw‐cut experiments and sliding velocity (vs) in double‐direct‐shear experiments. dThe experiment consists in three shearing phases (shear
loading‐unloading) conducted at progressively higher normal stress values. e2.75‐mm total displacement along the saw‐cut to collect microstructures.
f1.50‐mm total displacement along the saw‐cut to collect microstructures.
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throughout the experiment. Then, the shear stress was applied by advancing the vertical piston at a constant
velocity of 0.4 or 0.5 μm/s. The values of shearing velocity were chosen to be comparable with the along saw‐
cut shearing velocities for reactivated orientations. The displacement values of the vertical and horizontal
load points were corrected for the elastic stretch of each load frame, taking into account that the machine
stiffness is 1,283 kN/mm on the horizontal axis and 928.5 kN/mm on the vertical axis.

In brittle fault reactivation, according to the Amontons‐Coulomb friction law, the shear stress τ linearly
depends on the applied normal stress σn (e.g., Bowden & Tabor, 1950; Jaeger & Cook, 1979) as follows:

τ ¼ μsσn (3)

where the sliding friction is a function of the angle of sliding friction φs, that is, μs = tan (φs). We measured
the shear stress at the onset of steady state sliding (τss in Figure 1b) to estimate the sliding friction of the
marly gouge at low strain conditions.

2.2. Uniaxial and Triaxial Experiments

In the following, we describe uniaxial experiments as a particular case of triaxial experiments in which con-
fining pressure is Pc= 0MPa. Triaxial experiments were conducted on cylindrical samples 37–38 mm in dia-
meter and 80–88 mm in height (i.e., 2:1 minimum aspect ratio, Paterson & Wong, 2005). Intact samples for

Figure 1. The BRAVA (Brittle Rock deformAtion Versitile Apparatus) rock deformation apparatus (after Scuderi & Collettini, 2016). (a) Experimental apparatus
(see text for details). (b) Evolution of shear stress plotted versus shear displacement and strain during a friction experiment. τss indicates the point at which the
shear stress value to estimate the sliding friction is picked. The inset shows the double‐direct‐shear configuration. (c) Evolution of differential stress plotted versus
axial displacement for a triaxial experiment. The black dot shows where the differential stress value to estimate failure strength is picked. The inset shows the
triaxial configuration. (d) Evolution of differential stress plotted versus axial displacement during triaxial saw‐cut experiments. The uppermost curve shows the
evolution of differential stress during an experiment in which the sample deformed through the development of a new fracture, whereas the lowermost curve
shows the evolution of differential stress during an experiment in which the sample deformed through the reactivation of the saw‐cut. The black dots show how σd
for data discussion is picked. The inset shows the triaxial saw‐cut configuration. (e) Predicted stress paths experienced by saw‐cuts oriented at different angles
to the maximum principal stress, assuming a constant confining pressure of 10 MPa.
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standard uniaxial and triaxial tests were 80 to 83‐mm height, whereas gouge‐bearing saw‐cut samples were
83 to 88‐mmheight. Triaxial saw‐cut experiments were conducted systematically changing the orientation of
the saw‐cut, that is, the angle θ between the experimental fault and the maximum principal stress, in the
range θ = 30–80°. The samples were prepared by cutting Pietraserena sandstone cylinders into two pieces
at given θ angles. The saw‐cut surfaces were roughened with #60 grit SiC abrasive paper (265‐μm average
abrasive grain size) to ensure frictional sliding to occur within the gouge layer (for further details on rough-
ness characterization see Table S1 and Figure S1 in the supporting information). For all the tested orienta-
tions (Table 1), an initial ~3‐mm thick layer of marly gouge was placed within the saw‐cut surface. To test the
effect of layer thickness on the mechanics of reactivation, we performed further experiments at θ = 50° with
an initial layer thickness of ~1 and ~5 mm, respectively. The marly gouge is the same gouge that was sheared
in friction experiments (see section 2.1). The samples (intact rock or intact rock + gouge layer) were placed
between two stainless steel end platens, eventually jacketed with one (standard triaxial experiment) or two
(triaxial saw‐cut experiment) layers of polyolefin heat‐shrink tube, and sealed with steel wires at the extre-
mities to avoid confining oil leakage. Experiments were performed at room temperature and under dry (i.e.,
room humidity) conditions.

To evaluate the failure envelope, we performed experiments on intact samples at different values of confin-
ing pressure Pc, in the range Pc = 0–30 MPa (e.g., Figure 1c). Saw‐cut experiments were conducted at
Pc = 10 MPa (Figure 1d) (Table 1). The following loading procedure was performed during the experiments.
Confining pressure was first applied and maintained constant throughout the experiment. The differential
stress was then applied by advancing the vertical piston at a constant velocity of 0.1 μm/s, corresponding
to axial strain rates of 1.2 × 10−6 s−1, and 0.3 μm/s, respectively, for standard triaxial and triaxial saw‐cut
experiments. Thus, the stress field acting on the sample is σ2 = σ3 = Pc, where σ3 and σ2 are the minimum
and intermediate principal stresses, respectively, and the maximum principal stress σ1 = Pc+ σd, where σd is
the differential stress measured by the load cell located inside the pressure vessel. The values of the vertical
load point displacement were corrected for the machine stiffness on the vertical axis which, depending on
the confining pressure, ranges between 757.7 and 771.2 kN/mm.

In standard triaxial experiments, the maximum differential stress preceding a brittle shear failure linearly
depends on the confining pressure (e.g., Paterson & Wong, 2005) and the linear correlation coefficients
between σd and Pc define the angle of internal friction φi and the cohesive strength c (e.g., Wood, 1990) as
follows (for equation derivation see Text S1 in the supporting information):

σd ¼ 6 sinφi

3−3 sinφi
Pc þ 6 cosφi

3−3 sinφi
c (4)

From equation (4), we evaluated the failure strength through the Coulomb failure criterion (Coulomb,
1776):

τ ¼ μiσn þ c (5)

where τ is the shear stress, σn is the normal stress on the failure plane, and μi= tan (φi) is the internal friction
of the intact rock.

In triaxial saw‐cut experiments (Figure 1d), differential stress was corrected for jacket strength (i.e.,
0.56 MPa/mm) and for the reduction in contact area during saw‐cut reactivation. When shear occurs within
the saw‐cut, the contact area continuously changes (e.g., Scott, Lockner, et al., 1994), as follows:

A ¼ r2 Θ− sinΘð Þ; Θ ¼ π−2 sin−1 Δl
2r

tanθ
� �

(6)

where Δl is the axial displacement and r is the radius of the cylindrical sample. Θ is the angle subtended by
the points of intersection of two overlapping circles of radius r and whose centers distance is Δl tanθ, at the
center of the circles. The normal stress acting on the gouge layer is a function of the differential stress σd, the
angle θ, and the confining pressure Pc. The shear stress acting on the gouge layer is a function of the differ-
ential stress σd and the angle θ. At constant Pc and θ, the stresses resolved on a saw‐cut evolve depending on
the differential stress as follows:

10.1029/2018JB016813Journal of Geophysical Research: Solid Earth

GIORGETTI ET AL. 4193



σn ¼ σd 1− cos2θð Þ þ 2Pc

2
(7)

τ ¼ σd sin2θ
2

(8)

Consequently, under the constant confining pressure of 10 MPa, saw‐cuts oriented at different θ angles
undergo different stress paths in a τ − σn plane (Figure 1e).

Additional experiments with different total amounts of displacement along a saw‐cut oriented at θ = 50°
(i.e., 1.5, 2.75, and 6 mm) were performed to investigate the evolution of shear localization during
fault reactivation.

Thin sections parallel to the sense of shear were realized by collecting and embedding in epoxy resin the
gouge layer at the end of triaxial saw‐cut experiments. Microstructural observations were performed with
a scanning electron microscope FEI Quanta 400 installed at the Scanning Electron Microscope Laboratory
of the Earth Sciences Department at Sapienza University of Rome (Italy) and a JEOL JSM‐6500F thermal
field emission scanning electron microscope installed at the Electron Microscopy Laboratory at the INGV
in Rome (Italy). All the microphotographs presented are backscattered electron images. The analyses were
performed using an acceleration voltage of 15 or 30 kV, a working distance of 10 or 11 mm, and carbon or
gold coating.

3. Results
3.1. Marl Friction and Sandstone Strength

Figure 2a summarizes the results for friction experiments on the clay‐rich marly gouge. The shear stress,
picked at the onset of the steady state sliding (Figure 1b), is linearly dependent on normal stress
(Figure 2a), consistent with the Amontons‐Coulomb friction law (equation (3)). The apparent friction, cal-
culated as the slope of the best fit line in shear stress versus normal stress plot, is μs = 0.59. Sliding friction
of gouges is commonly evaluated via the Coulomb‐Mohr criterion (Figure 2a; equation (3)), based on the
assumption that the deformation is localized along a thin through‐going shear zone that is active during
steady state frictional sliding in direct‐shear experiments (e.g., Logan et al., 1992; Marone et al., 1992;
Tchalenko, 1970). However, in the case of distributed deformation the maximum principal stress rotates
at 45° to the gouge boundaries (e.g., Mandl et al., 1977; Marone et al., 1992) and thus, the best fit line on shear
stress versus normal stress plot has a slope equal to tan−1[sin (φs)] (Figures 2a and 2b, e.g., Marone et al.,
1992; Scott, Marone, et al., 1994). The two friction values, estimated as tan−1(φs) and tan−1(sin [φs]),
represent the two end‐members for purely localized and purely distributed deformation, respectively, and
mixed‐mode deformation could result in intermediate friction values. During our double‐direct‐shear gouge
experiments microstructural observations show that the deformation is still highly distributed (Figure S2 in
supporting information), as also supported by the slight strain hardening trend characterizing the steady
state (Figures 1b S2 in the supporting information). Therefore, we suggest that the assumption of distributed
deformation is most appropriate, especially at the onset of the steady state sliding where the shear stress was
picked, and the friction coefficient of the gouge is μr = sin (φs) = 0.73.

Figure 2c summarizes the results for triaxial experiments on intact Pietraserena sandstone. The evolution of
differential stress σdwith progressive axial shortening (Δl) exhibits brittle behavior (Figure 1c, e.g., Paterson
& Wong, 2005; Wong et al., 1997), as shown by stress drop and localized shear fractures in failed samples.
The peak differential stress shows a linear increase with confining pressure (Figure 2c), further indicating
pressure‐sensitive brittle behavior (e.g., Paterson & Wong, 2005). The coefficients of internal friction and
the cohesion, estimated via the best fit line of peak σd versus Pc (equation (4)), are μi = 0.60 and
c = 45.19 MPa, respectively.

Thus, analytical predictions for fault reactivation versus new fault development (Figure 2d, equations (1)
and (2); Jaeger, 1960) are built on the grounds of (1) the friction coefficient of the clay‐rich gouge filling
the saw‐cut, that is, the fault rock (Figures 2a and 2b); and (2) the failure strength of Pietraserena sandstone,
that is, the fault wall rock (Figure 2c).
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3.2. Fault Reactivation Versus New Fracture Development in Triaxial Saw‐Cut Experiments

Results from triaxial saw‐cut experiments exhibit two different deformation mechanisms depending on the
saw‐cut angle. Samples with saw‐cuts at θ = 60°–70°–80° deformed through the development of new frac-
tures (Figure 3), whereas reactivation occurs during the deformation of samples containing saw‐cuts at
θ = 30°–40°–50° (Figure 4).
3.2.1. New Fracture Development: Mechanical Data
Figure 3 summarizes the mechanical data from saw‐cut samples with a 3‐mm‐thick layer at θ= 60°–70°–80°
and Pc = 10 MPa. The σd versus Δl curves show an evolution that is typical of brittle deformation (Figure 3a,
e.g., Paterson&Wong, 2005;Wong et al., 1997), as further suggested by the development of localized fractures
(Figure 3b). The quasi‐linear elastic phase of loading is characterized by amodulus that tends to increase with
increasing θ angle. During the failure, we observe two or more stress drops separated by short strain‐
weakening stages. At the end of the experiment, visual inspection of the resulting samples shows a through‐
going fault in association with conjugate fractures that end at the boundary of the weak layer (Figure 3b).

The peak differential stress before failure ranges between 118 and 176 MPa, without showing any systematic
variation with the angle θ. The sample containing the 60° saw‐cut failed at the lowest observed σd value, and
the two samples containing the 70° saw‐cut show a difference of 41 MPa in peak σd. This variability could be
ascribed to the strength heterogeneity characterizing the lithic arkose sandstone (Figure 2c).
3.2.2. Fault Reactivation: Mechanical Data
When preexisting faults reactivate (Figure 4a), the evolution of differential stress with increasing displace-
ment shows three main stages for the ~3‐mm‐thick gouge layers (Figures 4b and 4c): (1) an initial stress

Figure 2. (a) Results from double‐direct‐shear friction experiments on clay‐rich marly gouges. The shear stress at the
onset of steady state sliding (Figure 1b) is plotted against normal stress. Linear regression results in sliding friction
μs = 0.59 and almost zero cohesion. (b) Stress state in the gouge layer in the case of distributed (red line) versus localized
(black line) deformation. At the low strains of our experiments, the gouge deforms via distributed shear (Figure S2 in
supporting information) and this results in the rotation of the maximum principal stress at 45° to the gouge boundaries
and μr = sin (φs) = 0.73. (c) Results from uniaxial and triaxial experiments on Pietraserena sandstone. Peak differential
stress is plotted against confining pressure. Linear regression results in an angular coefficient of 2.10 and an intercept
of 159.14MPa (equation (4)). The r2 = 0.602 is likely due to heterogeneities in the sandstone strength. (d) Analytical model
(equations (1) and (2)) based on the Pietraserena sandstone strength (μi = 0.60 and c = 45.19 MPa, equation (4);
Figure 2c) and the clay‐rich marl friction based on the assumption of distributed deformation during double‐direct‐shear
experiments (μr = 0.73, Figures 2a and 2b).
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versus displacement evolution that is typical of rocks failing in compression, that is, comprising initial
porosity closure, elastic loading, and yielding (e.g., Brace et al., 1966; Jaeger & Cook, 1979) (stage I); (2) an
almost linear strain hardening (stage II); and (3) one or more stress drops progressively dampened until
stable sliding is achieved (stage III). With increasing θ from 30° to 50°, the strain hardening (stage II) is
progressively larger, resulting in an overall higher σd required to promote the first stress drop (Figure 4c).
At θ = 30°, the first stress drop is small (Δσd ≈ 1.5 MPa), whereas at θ = 40°–50° the stress drop is
significantly larger (Δσd ≈ 4.5–6.8 MPa, Figure 4c). During stage III, after the initial stress drops the
differential stress required for stable sliding increases with progressive displacement depending on the θ,
from a subtle trend at 30° to an evident trend at 50°.

Figure 4d shows the effect of gouge layer thickness on saw‐cut reactivation at θ = 50°. The differential stress
supported by the sample systematically decreases with increasing thickness of the gouge layer. The deforma-
tion of the 1‐mm‐thick layer occurs at differential stress values that are almost twice the values required for
the reactivation of the 5‐mm‐thick layer (Figure 4d). Additionally, the experiment with the 5‐mm‐thick layer
does not show a clear distinction between stages I and II (Figure 4d).
3.2.3. Fault Reactivation: Microstructures
Microstructural investigations, conducted on sheared 3‐mm‐thick layers at θ = 50° and Pc = 10 MPa, give
insights into the micromechanical processes occurring during fault gouge reactivation (Figure 5a). After
1.5 mm of displacement along the saw‐cut (i.e., during stage I), the microstructure is characterized by clasts
of marl homogeneously distributed in a fine and porous matrix composed of clay flakes and calcite grains
(Figures 5b and 5c). The clasts have heterogeneous grain size, typically between 20 and 100 μm, and are con-
stituted by rounded calcareous microfossils and by clasts with an irregular boundary that consist of aggre-
gates composed of calcareous nannofossils and clay flakes (i.e., marly clasts, Figure 5c).

With increasing shear displacement, up to 2.75 mm (i.e., during stage II), the experimental fault gouge
becomes increasingly denser and homogeneous. Although the deformation is still distributed, we observe
few decompression cracks oriented parallel and at low angles to the boundary, possibly developed during
sample unloading and recovery. These cracks suggest the incipient development of boundary and synthetic
Riedel shear bands (Figure 5d). The boundaries of the marly clasts are smoother than in stage I. Elongated
clasts, both calcareous microfossils, and marly aggregates are often observed imbricated parallel to the inci-
pient Riedels, according to the shear direction (Figures 5d–5e).

At the end of stage III, after a shear displacement of ~6 mm, the deformation is localized along shear bands
parallel and at a low angle to the saw‐cut, that is, boundary and Riedel shears, respectively (Figures 5f–5g;
Logan et al., 1992). These shear bands are characterized by the absence of marly aggregates, which are

Figure 3. (a) Evolution of differential stress plotted versus axial shortening during triaxial saw‐cut experiments with
3‐mm‐thick gouge layers at θ = 60°, θ = 70°, and θ = 80°. With increasing displacement, the differential stress is char-
acterized by an initial increase until the achievement of a peak stress value followed by two or more stress drops separated
by short strain‐weakening stages. Peak differential stress does not systematically depend on θ angle. The slope of the
linear elastic loading portion of the curve increases with increasing θ, suggesting that saw‐cut orientation influences the
sample bulk elasticity. (b) Through‐going faults develop during triaxial saw‐cut experiments at θ = 60°–70°–80°. These
major structures are associated with minor conjugate fractures, which end at the boundary of the weak layer.
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instead present in the surrounding gouge (Figure 5f). The fine‐grained
gouge along boundary and Riedel shear bands derives from the disaggre-
gation of marly clasts and comminution of calcite grains.

4. Discussion
4.1. Integration of Mechanical Data and Microstructures During
Saw‐Cut Reactivation

Saw‐cut experiments with θ = 30°–40°–50° show that the reactivation
occurs with peculiar stress versus displacement evolution. By integrating
mechanical data and microstructures, we propose the following microme-
chanical evolution of the fault during reactivation. Following sample
yielding occurring within stage I and during the strain hardening in stage
II, the fault gouge evolves from a loosely packed and randomly oriented
fabric to a densely packed state with incipient localization bands, as docu-
mented by the difference between microstructures after 1.5 (stage I) and
2.75 mm of displacement (stage II, Figures 5b and 5c versus Figures 5d
and 5e; e.g., Logan et al., 1992). This evidence suggests that irreversible
gouge deformation commences via shear‐enhanced compaction and por-
osity reduction occurring via distributed granular and potentially cata-
clastic flows, characterized by the partial comminution of calcareous
microfossils and the disaggregation of marly clasts. This shear‐enhanced
compaction is more efficient within misoriented faults resulting in steeper
strain hardening. Specifically, while loading via increasing σ1, the misor-
iented fault at 50° is subject to normal stress increments that are higher
relative to the corresponding shear stress increments (Figure 1e). Thus,
the progressive mean stress increase is more pronounced in faults lying
at high angles to σ1, resulting in higher compaction. Once the gouge is
effectively compacted elastic energy can be stored and then released dur-
ing the stress drop at the end of stage II. We interpret the sudden unstable
slip associated with the first stress drop as the full reactivation of the fault
and the differential stress right before the stress drop as the maximum
stress supported by the fault before reactivation. During stage II, the
retrieved microstructures are characterized by Riedel‐ and boundary‐
oriented stress relaxation fractures (Figures 5d and 5e), suggesting that
the localization of stress and the establishment of granular force chains
occur before the stress drop (e.g., Benson et al., 2007; Lockner et al.,
1992; Thompson et al., 2006). This inhomogeneous stress distribution
occurs in the absence of localized grain size reduction and thus potentially
favors granular dilatancy followed by stress release and sudden unstable
fault slip (e.g., Biegel et al., 1989; Thompson & Grest, 1991).

After the initial stress drops, fault slip proceeds via stable sliding within
increasingly localized shear bands undergoing cataclastic and granular
flow, as demonstrated by the occurrence of thin Riedel and boundary
shears (Figures 5f and 5g). The strong differential stress increase with
increasing displacement occurring during stage III in misoriented faults
at high angles to σ1 (Figures 4c and 4d), which is absent in well‐oriented
faults, possibly results from the different stress paths, and thus mean
stress increments, experienced by the faults (Figure 1e).

4.2. Fault Reactivation: Theory Versus Experimental Data

Figure 6 compares the analytically predicted (Figure 2d) and the experi-
mentally derived values of differential stress for both fault reactivation
and new failure development as a function of the θ angle. The

Figure 4. Results from triaxial saw‐cut experiments in which deformation
occurs via saw‐cut reactivation. (a) Sheared gouge at the end of a triaxial
saw‐cut experiment showing Riedel shear bands (red dashed lines).
(b) Characteristic evolution curve of differential stress versus axial displa-
cement during the reactivation of saw‐cuts with 3‐mm‐thick gouge layers
(exp. b597). During stage I the stress versus displacement evolution suggests
initial porosity closure, elastic loading, and yielding. During stage II the
stress increases linearly. During stage III the stress evolves through pro-
gressively dampened stress drops to stable sliding. (c) Differential stress
plotted versus axial displacement for 3‐mm‐thick saw‐cuts at different
orientations to the maximum principal stress. The slope of stage II increases
with increasing saw‐cut angle. (d) Differential stress plotted versus axial
displacement for saw‐cut samples characterized by different layer thickness
at θ= 50°. The differential stress supported by the sample strongly decreases
with increasing layer thickness.
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Figure 5. SEM (scanning electron microscope) micrograph showing microstructures developed in samples with different
amount of total displacement. (a) Shear stress versus displacement along saw‐cut plot showing at which displacement and
during which stage microstructures were collected. (b) Microstructure after 1.5 mm of displacement along saw‐cut
(experiment b619, Table 1) characterized by isotropically distributed clasts of marl. (c) Detail of microstructure after
1.5 mm of displacement in Figure 5b showing marly clasts in a fine and loose matrix composed of clay flakes and cal-
careous nannofossils. The inset shows marly clasts which are angular and irregular in shape. (d) Microstructure after
2.75 mm of displacement along saw‐cut (experiment b617, Table 1) characterized by elongated clasts oriented consistently
with the shear direction and incipient boundary and Riedel shears. (e) Detail of microstructure after 2.75 mm of displa-
cement in Figure 5d showing elongated clasts oriented accordingly to the shear direction. The inset shows a rounded clast
in a dense and well‐packed matrix. (f) Microstructure after ~6 mm of displacement along saw‐cut (experiment b611,
Table 1) characterized by localized Riedel (R1) and boundary (B) shear bands (Logan et al., 1992). (g) Details of a boundary
shear band in Figure 5f. The inset shows the concentration of fine clay and calcite fragments along the B shear band.
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experimentally derived values are picked as shown in Figure 1d.
Particularly, the differential stress required for fault reactivation corre-
sponds to the differential stress right before the stress drop, at the end of
stage II (see section 4.1).

The range of reactivation angles of gouge‐bearing faults is well predicted
by the analytical model, which predicts frictional lock‐up at θ = 51.5°,
with fault slip for θ < 51.5° and surrounding rock failure for θ > 51.5°
(Figure 6). Accordingly, samples with saw‐cuts oriented at θ = 30°–40°–
50° experience fault reactivation, whereas for θ = 60°–70°–80° new opti-
mally oriented faults, often in conjugate sets, develop within the host
rock (Figure 3b).

The differential stress for the failure of samples with severely misoriented
faults (i.e., θ = 60°–70°–80°) in most of the cases is lower than model pre-
dictions. The elastic moduli variations as a function of the θ angle
(Figure 3a) suggest that the gouge layer compaction, which depends on
its orientation, influences the overall sample elasticity. Indeed, confining
pressure being equal, more misoriented faults undergo higher normal
stress increments, and thus higher compaction during loading, resulting
in overall stiffer samples. Moreover, the development of a through‐going
fracture along with conjugate fractures could explain the occurrence of
two or more stress drops during sample failure (Figure 3). We infer that
the gouge layer initially accommodates the deformation by compacting
through granular flow. When the stress is sufficiently high, a fracture
develops in one of the two brittle sandstone halves (e.g., Welch et al.,

2009), resulting in a first stress drop, and subsequently propagates in the other sandstone half, resulting in
a second stress drop (Figure 3). Consistently, further smaller stress drops are observed only in samples con-
taining conjugate faults. The prefailure concentration of stress and strain within the gouge layer could also
be responsible for the lower differential stress for failure with respect to the estimated sandstone strength.
However, the high variability in differential stress for failure in both fault‐bearing (Figures 3a and 6) and
intact samples could also arise from the strength heterogeneity of the arkose sandstone (Figure 2c).

Coherent with the model, samples with saw‐cuts oriented at θ= 30°–40°–50° accommodate deformation via
frictional reactivation of the preexisting fault (Figure 4a). However, fault reactivation occurs at levels of differ-
ential stress that are substantially different from theoretical predictions (Figure 6c). In particular, 3‐mm‐thick
gouge layers require differential stresses that are higher than theoretically predicted at θ= 30°–40° and lower
at θ= 50°, which is in line with the findings of previous triaxial experiments on gouge‐filled saw‐cut samples
with variable θ (e.g., Rutter & Hackston, 2017; Savage et al., 1996). Remarkably, at θ = 50°, the differential
stress necessary for the reactivation of the 1‐mm‐thick gouge layer (i.e., σd≈ 80 MPa) is twice the differential
stress necessary for the reactivation of the 5‐mm‐thick gouge layer (σd ≈ 40 MPa), suggesting that the layer
thickness strongly influences the differential stress required for reactivation of the misoriented fault.

Microstructural observations suggest that fault shear deformation starts with distributed shear‐enhanced
compaction, which accommodates ≤2 mm of shear displacement (Figures 5b–5e). This granular flow pro-
motes the progressive rotation of the maximum principal stress within the fault zone from its far‐field orien-
tation (i.e., from the vertical σ1 imposed by the apparatus) to 45° to the boundary of the saw‐cut within the
gouge shear zone (e.g., Figures 7a and 7b, Byerlee & Savage, 1992; Lockner & Byerlee, 1993; Mandl et al.,
1977). This stress rotation results in slightly higher differential stress for reactivation when θ < 45° and sig-
nificantly lower differential stress for 45° < θ < fault lock‐up (Figures 7a–7c). Consequently, shear and nor-
mal stresses for reactivation are higher than predicted when θ < 45° and lower than predicted at θ > 45°
(Figure 7b). Thus, the differential stress required for reactivation of a thick fault zone is modulated accord-
ingly to the stress state developed within the gouge layer and, consequently, to whether the slip is distributed
or localized during reactivation, and this is supported by experimental data (Figure 7c).

Additionally, at θ = 50°, we observe a significant decrease in the differential stress required for reactivation
with increasing layer thickness. We relate this to the fact that the rotation of the stress field is more efficient

Figure 6. Results from triaxial saw‐cut experiments compared with the sin-
gle plane of weakness theory (equations (1) and (2)). The predicted sand-
stone strength is reported along with the confidence interval (two sided,
98%) calculated on the base of the residuals of the linear regression
(Figure 2c). The maximum σd supported by triaxial saw‐cut samples before
fault reactivation or new fracture development is plotted against the saw‐cut
angle. Slip within the fault occurs for θ = 30°–40°–50°, whereas the devel-
opment of a new fracture occurs for θ = 60°–70°–80°, in agreement with
theoretical predictions. The σd required for reactivation differs from theo-
retical predictions.
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within thicker gouge layers, as also outlined by the previous studies (e.g., Marone, 1995). The dependence of
differential stress on gouge layer thickness has been previously documented (e.g., Anthony &Marone, 2005;
Dieterich, 1981; Karner & Marone, 2001). Particularly, in our experiments, differential stress is sustained by
the clast‐supported fabric of the gouge layer. This clast‐supported fabric contains a number of load‐bearing
contacts across the layer, which depends on the layer thickness. Consequently, a thicker layer contains a
higher number of contacts resulting in more points of potential failure and, since the force is distributed

Figure 7. (a) Conceptual model for reactivation of gouge‐bearing faults. Before reactivation, distributed deformation
occurs and causes the progressive rotation of the stress field within the gouge. Thus, reactivation occurs accordingly to
the stress state developed within the gouge. If the full stress rotation occurs, the differential stress for fault reactivation is
independent on fault orientation and it is equal to the differential stress for reactivation at θ = 45° (horizontal red dashed
line). If the stress does not fully rotate, the fault reactivates at intermediate values of differential stress, between the
far‐field and the fully rotated stress state (blue shaded area). (b) Deviation of the stress path (lines with arrows) from the
prediction based on far‐field stress orientation (gray dashed line). This deviation results from stress field rotation at 45°
to the boundary of the saw‐cut. Faults oriented at θ = 30°–40° reactivate at shear stress higher than predicted but lower
than the shear stress for reactivation at θ = 45°, whereas faults oriented at θ = 50° reactivate at shear stress lower than
predicted but higher than the shear stress for reactivation at θ = 45°. The stress path at θ = 45° is reported as well.
(c) The experimental data are in agreement with this conceptual model, and the increase in layer thickness further reduces
the differential stress required for reactivation of a severely misoriented fault at θ = 50°.
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on a larger number of contacts, a thick layer supports lower differential stress than a thinner one (e.g.,
Anthony & Marone, 2005). Moreover, the 5‐mm‐thick fault reactivates for a differential stress value that
approaches the minimum differential stress for reactivation, suggesting the possible development of newly
favorably oriented shear fractures within the gouge layer.

4.3. Implications for Natural Faults

Predictions based on the frictional fault reactivation theory (e.g., Sibson, 1985) have been used to give a first‐
order interpretation of the dip distribution of moderate and large earthquakes occurring in the intraconti-
nental crust (Collettini & Sibson, 2001) or to characterize the strength of the brittle crust (Townend &
Zoback, 2000). In this work, we experimentally validated the applicability of the frictional fault reactivation
theory (e.g., Sibson, 1985) for gouge‐bearing faults, showing that the theoretically predicted fault lock‐up
angle controls the occurrence of reactivation versus the formation of a new optimally oriented fault within
the applied stress field (Figure 6). Beyond confirming this first‐order prediction, our experiments also high-
light that the differential stress for reactivation might significantly differ from analytical predictions, with
strong implications for the evaluation of the reactivation potential of preexisting faults. A strong assumption
of this analytical approach is that faults are planes of weakness, characterized by zero thickness, whose reac-
tivation is controlled by their friction (e.g., Morris et al., 1996; Sibson, 1985). Though such an assumption
seems reasonable at crustal scale, natural faults are not zero‐thickness surfaces and host more or less thick
fault cores and damage zones (e.g., Ben‐Zion & Sammis, 2003; Caine et al., 1996; Choi et al., 2016). Our
results highlight that the presence of fault gouge and its mode of deformation strongly control the amount
of stress required for reactivation (Figure 7). We document that the gouge promotes the reorientation of
the far‐field stress at 45° to the fault plane. Our conceptual model suggests that the stress rotation within
the fault gouge weakens unfavorably oriented faults that lie at angles between θ = 45° and the frictional
lock‐up. For these fault orientations, the assumption of a zero‐thickness, planar fault provides only an upper
bound on the stress required for reactivation, possibly leading to an overestimation of fault strength. In nat-
ural faults, stress rotation is proven by seismological observations (e.g., Hardebeck & Hauksson, 1999;
Provost & Houston, 2001), supported by theoretical models (e.g., Rice, 1992; Scholz, 2000), and claimed to
be an effective mechanism to enhance slip along misoriented faults (e.g., Axen, 1992; Rice, 1992).

5. Conclusions

We investigated the reactivation of preexisting gouge‐bearing faults at a different orientation to the maxi-
mum principal stress, simulating experimental faults from optimally oriented to severely misoriented for
reactivation. We experimentally validate the frictional lock‐up for gouge‐bearing faults, reporting that the
reactivation is mainly controlled by the interplay between the friction of the gouge and the strength of the
surrounding sandstone. However, the differential stress required for reactivation strongly differs from theo-
retical predictions, especially for unfavorably oriented gouge‐bearing faults that appear systematically
weaker. We ascribe this weakening to the rotation of the maximum principal stress within the gouge layer
during distributed deformation, which precedes reactivation. Our results also show that the thickness of the
fault gouge reduces the differential stress for reactivation. As applied to tectonic faults, we suggest that thick
shear zones of distributed deformation might be weaker than theoretically predicted.
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