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1 Introduction

The Skyrme model [1–3] is a field theoretical framework offering an approach for a consis-

tent and unified description of baryonic matter on all scales — from nucleons and atomic

nuclei to neutron stars — where baryons are realized as topological solitons in a purely

mesonic (pionic) theory. Recently two important steps have been made allowing us to treat

the model as an efficient tool in the quantitative description of nuclear matter. First of all,

some attemps have been made [4–15], to improve the long standing issue of unphysically

large binding energies of nucleons in nuclei as predicted by the standard Skyrme model.

This has involved modifying the original Skyrme model by bringing it closer to a near BPS

model. Secondly, an improvement of the standard rigid rotor quantization [16, 17], known

– 1 –



J
H
E
P
0
4
(
2
0
1
8
)
1
0
2

as the vibrational modes quantization, has led to a more complete description of the ex-

citation spectra of light nuclei which has brought them towards a much better agreement

with experimental data [18, 19].

Although the structure of static Skyrmions is fairly well understood both numeri-

cally and analytically (especially in the minimal Skyrme model [20, 21], the loosely bound

Skyrme models [11–15, 22] and the BPS Skyrme model [4, 5]), the time dependent solu-

tions are much more difficult to obtain and to analyse. On the other hand, time-dependent

configurations are needed in many physical applications of Skyrmions — especially in the

(vibrational) quantization procedure. For example, small amplitude radial perturbations

of static solitons contribute to some vibrational states, which have been interpreted as the

Roper resonances [23–35]. Furthermore, (iso)-rotations influence shapes of Skyrmions and

so can change their moments of inertia which in turn can modify the energies of quantum

states [36–40]. Finally, scattering of Skyrmions [41, 42] can be interpreted as scattering of

atomic nuclei (heavy ions) and teach us some physics of fusion/fission processes.

In the present paper we study something, which at first sight may appear very different,

namely, the existence, stability and various properties of a perturbed signum-Gordon model

in (1+1) dimensions. However, the model which we study is related to dimensionally

reduced submodel of the Skyrme model, namely, the so-called first BPS submodel of the

Skyrme model [43]. And this submodel, in turn, has been claimed to partially explain the

successes of the rational map approximation, or in other words, an almost rational map

structure of Skyrmions in some Skyrme type models. Since, some geometric properties

of static solutions of the full theory are encoded in the first BPS submodel one may ask

whether other solutions of this submodel may also teach us something useful about the

full Skyrme theory. In particular, one can look at non-trivial time-dependent solutions,

especially oscillons, of the submodel. As this submodel is a BPS theory there is a chance

that we may answer this question in a (partially) analytical manner. In fact, it has recently

been reported that the first BPS submodel has the signum-Gordon breathers (on R+) as

its approximate solutions [44]. The true solutions of this submodel get some corrections

from a subleading term in the potential resulting in a very special deformation of the

signum-Gordon breather.

For these reasons, analysis of oscillons in such a modified signum-Gordon model is

the main aim of this work. Of course, we hope that this work, in addition to being an

important study of oscillons by themselves, is also the first step in gaining some (analytical

and numerical) understanding of the time dependent solutions of the Skyrme model, in

its topologically trivial sector, which physically is related to the pionic sector, and which

therefore, has some influence on all possible interactions between Skyrmions.

Independently of all of this and looking from a wider field theoretic perspective, we

want to gain a better understanding of transitions from a breather (i.e., an infinitely long-

lived time periodic solution of a model) to an oscillon, once a small perturbation term has

been added to the signum-Gordon Lagrangian. Thus, we begin our analysis by considering

the signum-Gordon model as well as its modifications, on the full infinite line R and only

later restrict it to a half infinite line R+, relevant in the Skyrme considerations in which

R+ corresponds to the radial distance from the centre of a given Skyrmion.
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The paper is organized as follows. In section II we present the first BPS submodel

of the Skyrme model and discuss its relation to a modified signum-Gordon model on the

semi-real line R+. In section III we recall some known results on breathers as well as on

self-similar solutions of the signum-Gordon model on the real line R. In addition, in this

section we also discuss perturbed breathers. In section IV we describe modifications of the

previous discussion when the signum-Gordon model is defined on a semi-infinite line R+.

Section V is devoted to the investigations of oscillons in the modified signum-Gordon model

on R. In this section we also present an analytical construction of approximate oscillons in

this model and we compare them with the numerical solutions of the model. In section VI

we present similar results for the modified signum-Gordon model on R+ and we finish this

paper with a section describing our conclusions and indicating our plans for the future work.

2 The first BPS submodel of the Skyrme model

The first BPS submodel of the Skyrme model [43] is defined by the following Lagrangian

density:

L(1)
24 = 4 sin2 ξ

uµū
µ

(1 + |u|2)2
− 4 sin2 ξ

(
ξµξ

µ uµū
µ

(1 + |u|2)2
− ξµū

µ ξµu
ν

(1 + |u|2)2

)
, (2.1)

where ξ and u are, respectively, real and complex fields and uµ ≡ ∂µu, ξµ ≡ ∂µξ. These

field variables parametrize an SU(2) matrix field U = eiξ~τ ·~n, which is the commonly used

field of the Skyrme model. The unit vector field ~n is related to the complex field u by

the standard stereographic projection. Finally, the components of vector ~τ are the Pauli

matrices. The importance of the submodel stems from the observation that this model,

together with the so-called ‘second BPS submodel of the Skyrme submodel’, combine into

the massless Skyrme model [1–3]. Both submodels are separately BPS theories, i.e. their

relevant topological bounds are saturated for solutions of the corresponding Bogomolny

equations. Furthermore, the solutions of (2.1) are of the form of rational maps which, as it

was mentioned in [44], suggests a possible explanation of the success of the rational map

ansatz (RMA) approximation to the solutions of the full Skyrme model.

In fact, the first BPS submodel (2.1) possesses the following BPS solutions

ξ = ξ(r) =

{
π − r r ≤ π,
0 r ≥ π

(2.2)

and

u = u(z) =
p(z)

q(z)
, (2.3)

where z = tan θ
2e
iϕ is the stereographic coordinate on the unit sphere parametrized by the

standard spherical angles θ, ϕ and r is the radial coordinate. Here p, q are polynomials of

a (maximal) finite degree B ∈ Z (no common divisors). In other words, u is an arbitrary

rational map of a given degree. The baryon charge of the corresponding BPS Skyrmion is

inherited from the degree of this underlying rational map provided that the profile function

ξ obeys the boundary conditions:

ξ(0) = π, ξ(R) = 0, (2.4)
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where R is the geometric size of Skyrmion and can be infinite for usual infinitely extended

solitons or finite for compactons. For the static solution (2.2) we have R = π. So, as

discussed in (2.1) the size of Skyrmion of the first BPS submodel is fixed at π.

The large arbitrariness of the angular part of such a Skyrmion, related to the arbi-

trariness of the rational map, follows from an observation that the static energy functional

of the model (2.1) can be written as a product (if the spherical ansatz is assumed, i.e.

ξ = ξ(r), u = u(z)) of two terms, corresponding, respectively, to the static energy function

of the CP 1 model, Eu, on the unit two sphere described by the spherical angles and the

radial term Eξ given by

E
(1)
24 = 2EξEu, (2.5)

Eu =

∫
dΩS2

(1 + zz̄)2

(1 + uū)2
(uzūz̄ + uz̄ūz), Eξ =

∫
dr sin2 ξ(1 + ξ2

r ). (2.6)

It is quite remarkable that the same product form decomposition of the first BPS

submodel Lagrangian also holds if the profile function ξ is additionally a function of time

i.e., ξ = ξ(r, t) while u = u(θ, φ). First of all one can verify that this ansatz is compatible

with the full field equations. This can be seen as follows. Taking into account that ξµuµ =

ξµūµ = 0 one can factorize the Lagrange density in two parts which depend on fields u and ξ:

L(1) = LCP 1Lξ, (2.7)

where

LCP 1 =
4uµūµ

(1 + |u|2)2
, Lξ = sin2 ξ(1− ξµξµ). (2.8)

Then, the variation with respect to the complex field gives

δuL(1) = Lξ
(
∂

∂u
− ∂µ

∂

∂uµ

)
LCP 1 (2.9)

as Lξ part depends only on r and t. Therefore the complex scalar u obeys again the

CP 1 model equation of motion. Hence, as we assumed u to be a function of the angular

coordinates u = u(θ, φ), it is solved by any holomorphic (or antiholomorphic) map of z =

tan(θ/2)eiφ. Note that LCP 1 = r−2L̃CP 1(θ, φ) where L̃CP 1 is a function of the angles only.

Analogously, the variation with respect to the real scalar field results in

δξL(1) =

(
∂

∂ξ
− ∂µ

∂

∂ξµ

)
L(1) = r−2L̃CP 1

(
∂

∂ξ
− ∂µ

∂

∂ξµ
+

2

r

∂

∂ξr

)
Lξ. (2.10)

Effectively, due to the r−2 factor from the CP 1 part, the last term changes the usual

three-dimensional radial Laplacian ∂2
r + (2/r)∂r to the one dimensional Laplacian ∂2

r .

Since the ansatz satisfies the full field equations, we can insert it already in the Lagrange

density and find the equivalent symmetry-reduced theory∫
d3xL(1) = −2Eu

∫
dr sin2 ξ(1− ξµξµ), (2.11)
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Figure 1. Folding transformation R 3 η 7→ η̄ ∈ [0, 2].

where Eu is given by equation (2.6) and it is simply the static energy of the CP 1 part. Of

course, this part is minimized by rational maps of a finite degree B leading to Eu = 4π|B|.
Therefore, we finally arrive at the following reduced model∫

d3xL(1) = 8π|B|
∫
dr
[
sin2 ξ(ξ2

µ − 1)
]

= 16π|B|
∫
dr

[
1

2
η̄2
µ − η̄ +

1

2
η̄2

]
, (2.12)

where µ = (0, 1) and x0 = t, x1 = r and where we have introduced a new target space

coordinate η̄ = 1 − cos ξ. It should be underlined that solitonic solutions of this reduced

theory interpolating between ξ = 0 and ξ = π give rise to three dimensional solitons

(Skyrmion type solutions of the first BPS submodel) with the topological baryon charge

equal to the degree of the rational map. However, the main part of the paper is devoted

for investigation of trivial baryon charge sector. Similarly, the ansatz does not restrict

our considerations to spherically symmetric configurations. On the contrary, all presented

solutions can have nontrivial angular dependence of the energy density inherited from the

underlaying (in fact arbitrary) rational map.

One should remember that the ansatz we are using here (and hence all presented

solutions) solves the equation of motions of the first BPS submodel while not necessary the

full Skyrme model. However, the rational map ansatz (which is the core of our solutions)

is known to describe well the solitonic solutions of the full Skyrme model. Therefore we

believe that our results may also provide new insights on the structure of time dependent

solutions of the full Skyrme theory.

Looking at L(1) we note that the restriction of the target space variable, η̄ to η̄ ∈ [0, 2],

can be incorporated into the form of the potential for L(1) to have infinite barriers at η̄ = 0

and η̄ = 2, namely:

V (η̄) =


∞ for η̄ < 0,

η̄ − 1
2 η̄

2 for 0 ≤ η̄ ≤ 2,

∞ for η̄ > 2.

(2.13)

The potential (2.13) has two minima at η̄ = 0 and η̄ = 2 and it belongs to the class of

so-called V-shaped potentials.

A formally identical Lagrangian (although in a different physical context) was studied

in [45]. Following the ideas of [45], we introduce a new scalar field η and extend its target

space to the full R and make the potential (2.13) (now considered as a function of η)

periodic. The change of the target space field R 3 η 7→ η̄ ∈ [0, 2], called the folding

– 5 –
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Figure 2. Periodic extension of the potential (2.13). For |η| � 1 the potential behaves as

V (η) ≈ |η|.

transformation, can then be cast in the form

η̄ =
∞∑

n=−∞
|η − 4n|Hn(η), (2.14)

where we have introduced a double step function

Hn(η) := θ(η − 4n+ 2)− θ(η − 4n− 2) (2.15)

defined as a combination of the Heaviside’s step functions such that Hn(η) = 1 for η ∈
(−2 + 2n, 2 + 2n) and Hn(η) = 0 outside this segment. The folding transformation is

plotted in figure 1.

The periodic potential is defined, as a function of η i.e. by

V (η) := η̄ − 1

2
η̄2, (2.16)

where η̄ is given by (2.14). Alternatively, one can take the periodic potential in the form

V (η) :=
∞∑

n=−∞

(
|η − 4n| − 1

2
(η − 4n)2

)
Hn(η). (2.17)

The potential (2.17) is sketched in figure 2.

The folding procedure is very useful because it allows us to avoid the inconvenience

of having to deal with infinite barriers. In such an approach, the folding transformation

maps the evolution of the auxiliary system onto the evolution of the original model.

In the next sections we will analyze the time-dependent solutions of the resultant

model, effectively, the (1+1) dimensional model

L(1) = 16πB

∫
dr

(
1

2
η2
µ − V (η)

)
, (2.18)

where V (η) is given by (2.16). This Lagrangian, for reasons that we will explain below, we

call the modified signum-Gordon model.

Some further comments should be added here. First of all we would like to stress that

the resulting Lagrangian (L(1)) describes effectively a (1+1) dimensional model with the

spatial variable being the radial coordinate r. Although the problem looks like an usual

scalar field theory in (1+1) dimension with a certain potential, one has to remember that

– 6 –



J
H
E
P
0
4
(
2
0
1
8
)
1
0
2

the solutions of this model describe objects living in (3+1) dimensional space-time with

the angular part defined by an appropriate rational map. Thus, we are dealing with the

time-dependent configurations in three spatial dimensions.

Secondly, the reduced model (2.18) is a theory on a semi-infinite line as r ∈ R+.

However, we will begin our analysis by replacing the radial coordinate by x ∈ R. As we

will see, due to the compact nature of the solutions, many features are independent of this

replacement. On the other hand, as we will discuss later, some properties hold only for the

model defined on R+.

Thirdly, the model (2.18) is a generalisation (specific perturbation) of the (1+1) di-

mensional signum-Gordon model

LsG =

∫
dx

(
1

2
φ2
µ − |φ|

)
. (2.19)

Indeed, in the small amplitude limit |η(t, r)| � 1 this model (2.18) simplifies to the signum-

Gordon model on R+

L(1) ≈ 16πB

∫
dr

(
1

2
η2
µ − |η|

)
. (2.20)

This shows that small amplitude solutions of (2.18), relevant for the zero-charge, i.e.

non-topological sector of the first BPS submodel of the Skyrme theory, are approximately

given by exact solutions of the signum-Gordon model on R+. Thus, we begin our discussion

here by recalling the analytical time dependent solutions of the signum-Gordon [46, 47].

3 Time dependent solutions of the signum-Gordon model

3.1 The signum-Gordon breather

The original signum-Gordon model [46] is a field theory defined by the following Lagrangian

density (here we use the notation x1 = x ∈ R as this model was considered in the usual

(1+1) dimensional space-time)

LSG =
1

2
(∂tφ)2 − 1

2
(∂xφ)2 − |φ|, (3.1)

where φ(t, x) is a real scalar field in (1+1) dimensions. Its classical solution field φ obeys

the second order differential equation:

∂2
t φ− ∂2

xφ+ sgn(φ) = 0. (3.2)

The model (3.1) possesses also a periodic compact solution (called ‘breather’) which satisfies

the conditions

φ(0, x) = 0, ∂tφ(0, x) = v(x). (3.3)

The function v(x) is determined from the boundary conditions:

φ(t, 0) = 0 = φ(t, 1), ∂xφ(t, 0) = 0 = ∂xφ(t, 1), (3.4)

– 7 –
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Figure 3. Partial solutions that, together, describe the exact breather of the signum-Gordon

model.

which lead to the following expression

v(x) =


0 for x ≤ 0,

|x− 1
2 | −

1
2 for 0 ≤ x ≤ 1,

0 for x ≥ 1.

(3.5)

This resulting exact breather, i.e. indefinitely long living oscillon which does not emit

any radiation, can be constructed as follows: (see different regions in figure 3). (We prefer

to call this solution as breather rather than oscillon. Note that here we differ from the

original terminology used in [46].) The analytical form of this solution consists of the

following partial solutions:

φ−L1
(t, x) =

t2

2
− tx, (3.6)

φ−L2
(t, x) = −x

2

2
, (3.7)

φ−L3
(t, x) =

t2

2
+ tx− t

2
− x

2
+

1

8
, (3.8)

φ−C(t, x) = t2 +
x2

2
− x

2
− t

2
+

1

8
(3.9)

and the further solutions that can be obtained from (3.6)–(3.9) by certain transformations.

Here L stands for left-hand-side partial solutions and C for central partial solutions. The

right-hand-side partial solutions are given in terms of the left-hand-side partial solutions by

φ−Rk
(t, x) = φ−Lk

(t, 1− x) where k = 1, 2, 3. (3.10)

– 8 –
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Similarly, further partial solutions valid for t ∈ [1
2 , 1] can be obtained from the ones men-

tioned above through the transformations

φ+
α (t, x) = −φ−α

(
t− 1

2
, x

)
, where α = {Lk, Rk}. (3.11)

The solutions φL1 and φR1 can be determined directly from the initial conditions. They

are given by the formula

φL1/R1
(t, x) =

t2

2
+

1

2

∫ x+t

x−t
dsv(s), (3.12)

where v(x) = −x for L1 and v(x) = 1−x for R1. The remaining solutions have the general

form

φ(t, x) =
t2

2
+ F (x+ t) +G(x− t), (3.13)

where the functions F (x+t) and G(x−t) are obtained from the matching conditions at the

surfaces of the light cones. For instance, the solution φ−C(t, x) must satisfy the conditions

φ−C

(
t,−t+

1

2

)
= φ−L1

(
t,−t+

1

2

)
, (3.14)

and

φ−C

(
t, t+

1

2

)
= φ−R1

(
t, t+

1

2

)
. (3.15)

Similarly, we require that

φ−L2
(t, 0) = 0 and φ−L2

(t, t) = φ−L1
(t, t). (3.16)

The solution φ−L3
(t, x) is obtained after imposing the conditions

φ−L3

(
t,−t+

1

2

)
= φ−L2

(
t,−t+

1

2

)
(3.17)

and

φ−L3
(t, t) = φ−C(t, t). (3.18)

All the remaining partial solutions can be obtained by applying transformations (3.10)

and (3.11).

Let us note that this breather solution is not unique. One can use a symmetry of the

signum-Gordon equation and construct an infinitely large family of breathers parametrised

by a scale parameter l

φl = l2φ

(
t

l
,
x

l

)
. (3.19)

It can be easily checked that the amplitude of the φ1 solution is l2/16 while the period

and the size (support) of the breather are given, respectively, by:

T = l, R = l. (3.20)

– 9 –
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Finally, their energy is

E =
1

24
l3. (3.21)

It is interesting to note that as one decreases l, (i.e. considers small amplitude

Breathers), they oscillate faster but carry smaller values of energy. Thus such breathers

probably dominate the interaction and radiation regimes and so play a crucial role in kink

anti-kink annihilation processes. In this behaviour the breather solutions of the signum-

Gordon model resemble breathers of the well known sine-Gordon model.

3.2 Self-similar components of oscillon solutions in the signum-Gordon model

3.2.1 The breather case

According to the previous section, the basic signum-Gordon breather, l = 1, exists on the

support x ∈ [0, 1]. Its strictly fixed size is a direct consequence of a very special form of

the partial solutions φL2/R2
that constitute borders of the breather, i.e. they match the

vacuum solution φ = 0 at x = 0 and x = 1. Let us discuss some properties of this solution

and its origin.

First of all, we note that the static character of the partial solutions, which together

generate the breather solution, permits them to preserve the time independence of the

points where the breathers match the vacuum solution. Secondly, solutions φL2/R2
(t, x)

together with solutions φL1/R1
(t, x) belong to the class of self-similar solutions of the

signum-Gordon model. This implies that such solutions can be obtained from the self-

similar initial data which are determined in terms of two constant parameters. This family

of self-similar solutions of the signum-Gordon model was studied in [48]. In this section we

will only discuss those of them that have a direct relation to the breathers.

The existence of self-similar solutions of the signum -Gordon equations is closely related

to the scaling symmetry (3.19). All such solutions have the following form

φ(t, x) = x2S

(
t

x

)
, (3.22)

where S(y) is a scalar function of y = t/x. The use of the ansatz (3.22) describing their

form allows us to reduce the signum-Gordon equation to an ordinary differential equation

(1− y2)S′′ + 2yS′ − 2S + sgn(S) = 0. (3.23)

The self-similar initial data have the form

φ(0, x) =

{
R0x

2 dla x ≤ 0

S0x
2 dla x ≥ 0

, ∂tφ(t, x)|t=0 =

{
Ṙ0x dla x ≤ 0

Ṡ0x dla x ≥ 0
. (3.24)

Such initial data, with constant R0, Ṙ0 and S0, Ṡ0 chosen independently, are self-

similar because the point x = 0 remains unchanged under the rescaling transformation

x→ x/λ.

In what follows we will restrict our considerations to the case R0 = 0 and Ṙ0 = 0.

Constants S0 and Ṡ0 determine the value of the function S(y) and its first derivative at

y = 0. Namely, S0 = S(0) and Ṡ0 = ∂yS|y=0.

– 10 –
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Note that the scale invariance of the self-similar solutions leads to the potential in-

finiteness of their total energy. This may seem to be bad but, in fact, it does not make

these solutions unphysical. In our case, only fragments of such solutions (partial solutions

restricted to a finite support) appear in physical configurations and their total energy is

finite. This is exactly what happens for the breather in the signum-Gordon model.

Solutions of (3.23) have the general form

Sk(y) =
(−1)k

2
[βk(y

2 + 1)− αky − 1], (3.25)

where coefficients αk and βk are constant parameters which must be determined by their

dependence on S0, Ṡ0 and by matching conditions at points ak such that S(ak) = 0. Since

the initial data possess the symmetry x → 1 − x, then it is enough to consider its partial

solutions in the segment x ∈ [0, 1
2 ]. Initial conditions (3.3) and (3.5) imply that S0 = 0 and

Ṡ0 = −1. This leads to the partial solutions (3.6) and (3.7). These partial solutions can

be cast in the form that makes their relation to the function S(y) explicit:

φ−L1
(t, x) = x2

[
1

2

(
t

x

)2

− t

x

]
, (3.26)

φ−L2
(t, x) = x2

[
−1

2

]
. (3.27)

Shaded regions in figure 3 represent all partial solutions of the breather which originate

in self-similar solutions or can be obtained from such solutions by the transformations

φ(t, x)→ φ(t, 1−x) and φ(t, x)→ −φ(t− 1
2 , x). Thus, the self-similar solutions govern the

behaviour of the breathers close to the boundary.

3.2.2 Perturbed breathers

In this section we look at the slightly modified initial conditions, namely

φ(0, x) = 0, ∂tφ(t, x)|t=0 = εv(x), (3.28)

where v(x) is given by (3.5) and ε is a free parameter, ε > 0. Such initial conditions, when

the discussion is restricted to the segment x ≤ 1
2 still correspond to the self-similar initial

data, S0 = 0 and Ṡ0 = −ε. Initial data on the remaining sector x ≥ 1
2 are given by the

transformation x → 1− x of the initial data for x ≤ 1
2 . According to [48], the self-similar

solutions determined by S0 = 0 and Ṡ0 6= 1 are not static. This implies that in the very

initial phase of its evolution the support of the oscillon is expected to expand or shrink.

The value of ε determines the class of self-similar solutions that appear shortly after the

initial instant. Such initial conditions are not suitable (except for the ε = 1 case) for the

studies of constant support breathers. Physically this implies that we have the unit size

breather with a perturbation on top of it. Thus, our investigations of such initial conditions

make a contribution to the stability analysis of exact signum-Gordon breathers. For that

we have to distinguish few qualitatively different cases.
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Figure 4. The signum-Gordon field for ε = 1.2 at (a) t = 0.2052, (b) t = 1.1350, (c) t = 5.4025,

(d) t = 5.6383, (e) t = 13.5579, (f) t = 27.5035.

1. Case ε ≥ 1
2 .

The solution is given by a piece of a self-similar solution, restricted to the region

x ≤ 1
2 − t

φL(t, x) =


0 for x ≤ v0t,

x2
[
− 1

2(1−v20)

(
1− v0

t
x

)2]
for v0t ≤ x ≤ t,

x2
[

1
2
t
x

(
t
x − 2ε

)]
for t ≤ x ≤ 1

2 − t,
(3.29)

where v0 = 1
ε − 1 is the velocity of the point at which a nontrivial partial solution

and the vacuum solution φ = 0 are sewn together. Let us note that there are further

subcases within the class of solutions described by (3.29).

(a) For ε > 1, the velocity v0 is negative, v0 < 0, and it has the limit v0 = −1 as

ε→∞.

In the very initial phase of the evolution, the vacuum solution and the oscillating

solution are matched at the point xL(t) = v0t which moves to the left with the

speed |v0|. The corresponding symmetric matching point xR(t) = 1 − xL(t)

moves to the right with the speed |v0|. This means that the support of the

solution expands. Such behaviour is sketched in figures 5(a) and 6(a) which

present numerical and analytic solutions for ε = 3.0, ε = 10.0. During the

initial part of the evolution the solution has self-similar components (dashed

lines). The initial configuration of the field on x ∈ [0, 1] has some extra kinetic

energy when compared to the energy of the exact breather and as one can expect

that this surplus of the energy would lead to the expansion of the oscillating

region. Moreover, there is also some radiation which has the form of some small

localized packages (small breathers or oscillons) that propagate outside of the

region occupied by the oscillon.
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Figure 5. Numerical perturbed breather solution (shadowed region under solid line) and self-

similar exact solution (dashed lines) for ε = 3.0. Snapshots correspond to (a) t = 0.15, (b) t = 1.01,

(c) t = 8.96, (d) t = 21.23.
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Figure 6. Numerical perturbed breather solution (shadowed region under solid line) and self-

similar exact solution (dashed lines) for ε = 10.0. Snapshots correspond to (a) t = 0.15, (b)

t = 1.67, (c) t = 20.79, (d) t = 41.03.

Speaking qualitatively, we see that the initially perturbed breathers are rather

surprisingly stable objects although there are no topological obstacles to prevent

their decay nor there is any mass gap in the energy spectrum.

For small perturbations represented here by ε = 1.2 the initial configuration

oscillates as a single smooth object performing 25 oscillations. Then, at t ≈ 13

small packages of energy (small oscillons) are emitted; this is the main mecha-

nism by which the system gets rid of its excess of energy. This emission is not

a continuous process. On the contrary, small oscillons are emitted only at a few

instances of time. We observe that the emission of oscillons with smaller energy
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takes place more often than the emission of more massive structures. All the

time central oscillon does not lose its identity and dominates over the emitted

little oscillons figure 4(d), (e). It would be interesting to evolve the system longer

and verify whether the final state of the evolution results in a signum-Gordon

breather with the unit support or if the emission of small oscillons leads to a

slow but unavoidable annihilation of the initial oscillon. We have found that

even for a quite large deformation of the initial condition (ε = 3.0) the same

qualitative picture is valid — figure 5.

For very large deformations the dynamics is drastically different. In this case the

final state decomposes into large substructures (large finite support oscillons)

which seem to stay together for some time. However, they slightly repel each

other. As they are compactons they do not interact directly but via the emission

of small oscillons which results in a week repulsion. For example, for ε = 10

one can see four such substructures, figure 6. The issue of the appearance of a

given number of oscillons in the final state is another very interesting problem

to investigate, which however, is beyond the scope of the present paper.

(b) For ε = 1, the velocity v0 vanishes, i.e. v0 = 0. This is exactly the case of the

pure breather. In this case the exact solution is known. The exact breather

exists for infinitely long time and does not radiate. We have made use of this

solution to check how far we can trust our numerical simulations. After 60

oscillations the discrepancy between analytical calculations and the results of

our numerics was still below 0.5%.

(c) For 1
2 < ε < 1, the velocity v0 is positive and is still less than unity, 0 <

v0 < 1. The matching points xL(t) and xR(t) move towards the centre of the

solution. This leads to the shrinking of the support in the very initial phase of

the evolution. An example of such a solution, that corresponds to ε = 0.8, is

shown in figure 7. The energy of initial field configuration is smaller than the

energy of the exact breather with unit support. On the other hand, we can treat

this initial configuration as a perturbation on the top of an exact breather with

smaller support and whose amplitude has been obtained from the l = 1 breather

by the scaling transformation. Then, again, such a solution seems to relax to a

sort of a breather state, from which some smaller oscillons are emitted during

the relaxation time.

(d) For ε = 1
2 , the velocity v0 = 1. In this case the support of the parabolic partial

solution vanishes. The self-similar partial solution consists of a single component

which is linear in variable x. The spatial derivative ∂xφ is discontinuous at the

matching points x = t and x = 1− t. Note, that discontinuity of the derivative

is admissible at light cones. The numerical solution for ε = 0.5 is shown in

figure 8.

2. Case 0 < ε < 1
2 . In this case the solution is technically more complicated than the

solutions discussed before. This is due to the fact that for ε < 1
2 , the relevant self-
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Figure 7. Numerical perturbed breather solution (shadowed region under solid line) and self-

similar exact solution (dashed lines) for ε = 0.8. Snapshots correspond to (a) t = 0.15, (b) t = 0.44

and (c) t = 10.33.
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Figure 8. Numerical perturbed breather solution (shadowed region under the solid curve) and

self-similar exact solution (dashed lines) for ε = 0.5. Snapshots correspond to (a) t = 0.15, (b)

t = 0.32, (c) t = 7.76.
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Figure 9. Solutions Sk(y), k = 2, 3, · · · for ε = 0.1.

similar solution consists of infinitely many smoothly joined parabolic solutions Sk,

k ∈ N, given by (3.25).

The coefficients αk and βk and matching points ak are given in terms of parameters

of the first parabola S1(y). Here, S0 = 0 and Ṡ0 = −ε, so the first parabola is

parametrized by α1 = 2Ṡ0 = −2ε and β1 = 1− 2S0 = 1. Since the solution S1(y) =

−y
2 (y+2ε) ≥ 0 has the support y ∈ [−2ε, 0], it does not arise in the self-similar solution

which is considered for x ≥ 0. However, the partial solutions for k = 2, 3, · · · give

rise to the self-similar solutions because supports belong to the interval y ≥ 0. The

parameters of the partial solutions αk, βk and the matching points ak are determined

by the conditions Sk(ak) = 0 = Sk+1(ak) and S′k(ak) = S′k+1(ak).

In terms of the auxiliary quantities:

p :=
1− a0

1 + a0
, q :=

1− a1

1 + a1
, r :=

q

p
,
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Figure 10. (a,b) Numerical solution (shadowed region under solid line) and self-similar exact

components (dashed line) for ε = 0.1. (a,b) Field φ at t = 0.05, (c) field φ at t = 0.17, (d) field φ

at t = 1.18.

where a0 = −2ε and a1 = 0 are zeros of S1(y), the parameters of the solutions take

the form

αk =
1

1 + r

[
1

prk−1
− prk + (−1)k

(
1

p
− q
)]
− (−1)kα1, (3.30)

βk =
1

2
+

1

2(1 + r)

[
1

prk−1
+ prk + (−1)k

(
1

p
+ 1

)
(1 + q)

]
− (−1)kβ1, (3.31)

ak =
pk−1 − qk

pk−1 + qk
. (3.32)

In figure 9 we plot the parabolas Sk(y) for k = 2, 3, · · · and ε = 0.1. They give rise

to solutions φ(t, x). Such solutions are shown in figure 10. In this case the emitted

radiation becomes visible very soon. The numerical simulations have shows that

even only after the collision of two fronts of infinite waves the system exhibits a large

number of short-length oscillations. Such oscillations propagate outside of the region

where the oscillon is localized.

We conclude that self-similar solutions, restricted to compact supports, can appear

as partial solutions of some finite energy configurations of the signum-Gordon model. In

particular, they are components of the exact signum-Gordon breather and they also arise

in more complicated perturbed breather-like configurations. All such perturbed breathers

radiate, for which the main mechanism, at least for ε > 1, is the emission of smaller oscillons.

We have also observed that this radiation is more intense for solutions with ε < 1 than for

solutions with ε > 1. In the sector ε < 0.5 the whole solution gets very quickly converted

into radiation. This is certainly related to the infinite number of oscillations which are
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present in the self-similar components of the whole system. A collision of two such wave

trains leads to the transfer of energy into a large number of small-scale oscillations. We see

that a change of the initial data from ε > 1
2 to ε < 1

2 leads to a very significant difference

in the behaviour of the signum-Gordon fields.

4 The signum-Gordon model on a semi-infinite line

As we have mentioned before the Skyrme theory motivated model is defined on a semi-

infinite line as it involves the radial variable r ∈ R+. For small amplitude solutions, the

modified Lagrangian (2.18) coincides with the signum-Gordon model, again defined on R+.

So here we analyse properties of such a signum-Gordon theory

LsG+ =
1

2
(∂tφ)2 − 1

2
(∂rφ)2 − |φ|, r ≥ 0. (4.1)

First of all, due to the compact nature of the breather solutions in the model on R one

can also easily construct the corresponding breathers in the R+ case. The field equation

∂2
t φ− ∂2

rφ+ sgn(φ) = 0 (4.2)

has a compact breather solution with the usual initial

φ(0, r) = 0, ∂tφ(0, r) = v(r) (4.3)

and boundary conditions

φ(t, 0) = 0 = φ(t, 1), ∂rφ(t, 0) = 0 = ∂rφ(t, 1) (4.4)

where

v(r) =

{
|r − 1

2 | −
1
2 for 0 ≤ r ≤ 1,

0 for r ≥ 1.
(4.5)

The resulting exact breather shell solution on the unit segment r ∈ [0, 1] can be

constructed using the same partial solutions as for the model on R (3.6)–(3.9) and following

the same prescription summarised in figure 3.

Then, applying the translation r → r+R we can shift the breather shell to any position.

Now, we get our breather shell solutions with the support [R,R+ 1], where the vacuum is

in the inner ball r ∈ [0, R] and in the outer space r ∈ [R + 1,∞). Note that although the

volume of such a solution grows quadratically with R its energy remain unchanged. This

situation (energy being independent of the volume) is completely opposite to what happens

in topologically non-trivial BPS sectors, where energy of BPS solutions grows linearly with

the topological baryon charge B while the volume remains fixed (volume is independent of

the energy).

Let us note that we can still apply the scaling symmetry (3.19) with the positive scaling

parameter l. The period, size and the energy scale identically as in the R case.
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Figure 11. Perturbed breather in the signum-Gordon model on R+ for ε = 3.0 at (a) t = 2.97, (b)

t = 7.436, (c) t = 9.61, (d) t = 29.79.

A novel feature arises when the field does not approach the vacuum value at the origin.

This corresponds to a ball-like solution with support r ∈ [0, r0]. Specifically, the boundary

conditions are

φ(t, r0) = 0, ∂rφ(t, r0) = 0 (4.6)

and the behaviour of φ at the origin is arbitrary. Resultant solutions are just partial solu-

tions of the breather of the R theory. For example, if r0 = 1
2 , the relevant breather solution

can be obtained from solutions φ±α (t, x) which describe the right half of the breather (3.10).

Namely, the partial solutions have the form

φ±α (t, r) := φ±α

(
t, x = r +

1

2

)
, α = {C,Rk}, (4.7)

where φ+
α (t, x) = −φ−α (t− 1

2 , x) and φ−Rk
(t, x) = φ−Lk

(t, 1− x).

Finally, let us say a few words about perturbed breathers. For a shell breather with

any perturbation, the initial behaviour of the evolution is the same as in the R model. The

only qualitative difference arises when the left moving radiation gets to the origin where it

bounces off and returns to the breather. This leads to a more involved and faster relaxation

of the initial state.

5 Oscillons in the modified signum-Gordon model

5.1 The model

Let us now consider the modified signum-Gordon model

L =
1

2
(∂tη)2 − 1

2
(∂xη)2 − V (η), (5.1)

where V (η) is given by (2.16) or equivalently by (2.17). This time we go beyond the

(infinitesimal) small amplitude approximation and analyze the fate of the breathers of the
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Figure 12. Function V ′(η).

original signum-Gordon model in which a quadratic term has been added to the potential.

Again, we begin our consideration with the model defined on the full real line x ∈ R.

Modifications to the half-line model will be discussed later.

The field equation for the unfolded variable η is now of the form

(∂2
t − ∂2

x)η + V ′(η) = 0, (5.2)

where the derivative of the potential is described by a saw-shape function

V ′(η) =
∞∑

n=−∞
[sgn(η − 4n)− (η − 4n)]Hn(η). (5.3)

A plot of this function is presented in figure 12

As long as the amplitude of the field is smaller than the second vacuum |η| < 2, we can

restrict considerations to terms n = 0. This implies that (2.14) simplifies to η̄ = |η|, (2.16)

to V (η) = |η| − 1
2η

2 and (5.3) to V ′(η) = sgn(η)− η. The model can then be rewritten as

L =
1

2
(∂tη)2 − 1

2
(∂xη)2 − |η|+ 1

2
η2. (5.4)

Note that one can easily generalize this model and introduce a coupling constant in

the quadratic term. However, such a model can be always transformed to the form (5.4).

Indeed, in this case

L =
1

2
(∂tη)2 − 1

2
(∂xη)2 − |η|+ λ

2
η2 (5.5)

and we get a λ-dependent generalization of the signum-Gordon equation

(∂2
t − ∂2

x)η − λη + sgn(η) = 0. (5.6)

However, this equation can be brought to the λ = 1 form by the following simple change

of variables

η =
1

λ
η′(t′, x′), t′ =

√
λt, x′ =

√
λx. (5.7)

After this transformation has been performed (5.6) becomes

(∂2
t − ∂2

x)η − η + sgn(η) = 0, (5.8)

in which the primes have been removed. Hence, this extra coupling constant can always

be scaled away. So from now on we will use λ = 1.
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Let us note that our transformation has exactly the same form as the symmetry trans-

formation of the signum-Gordon equation. Here, it does not produce any new solutions

but it allows us to eliminate the coupling constant. Of course, the original symmetry of the

signum-Gordon model is broken by the quadratic term in the potential. This also results in

the lack of self-similar solutions. However, once the amplitude of the solution goes to zero,

the symmetry is effectively restored. Since this happens close to the boundary of the os-

cillons one can conclude that the self-similar solutions of the signum-Gordon model should

provide us with a good approximation to oscillons at least close to the compacton boundary.

5.2 Approximate oscillon solutions

In order to construct an approximate solution which would be the counterpart of the exact

breather of the signum-Gordon model we assume that the field η(t, x) satisfies the identical

initial conditions as the field φ(t, x) which describes the exact breather in the model (3.1).

From now on we shall use η to denote the field of the modified signum-Gordon model while

φ will refer to its undeformed version.

We are interested in a solution with support x ∈ [0, l] where l describes the character-

istic size of the oscillon. The signum-Gordon breathers characterized by l can be obtained

from the basic breather by the scaling transformation (3.19). Since the perturbed model

has no scaling symmetry, its solutions cannot be obtained from the solution with l = 1.

Thus the solution of the perturbed model must depend on l from the very beginning. For

this reason we consider the initial condition

η(0, x) = 0 and ∂tη(t, x)|t=0 = vl(x), (5.9)

where vl(x) = |x− l
2 | −

l
2 for x ∈ [0, l] and vl(x) = 0 outside this segment.

The fundamental difficulty which we have to face is the fact that we do not know the

general form of the solution of (5.6) (as general as (3.13)). To make any progress with this

problem we make an approximation which is similar in nature to what was made in [49].

This approximation led to the study of the evolution of some self-similar initial data in a

model with a broken scaling symmetry [49]. We have to stress, however, that, in general, it

is not possible to construct any analytical solution which is valid for all times. This origin

of this difficulty lies in problems with the determination of trajectories of some zeros of

the partial solutions and resides in problems with analytical calculation of some integrals.

The analytical solutions presented in this section contain all partial solutions which can be

obtained without having to determine their zeros.

5.2.1 Solution for t ∈ [0, l
2
]

The partial solutions, which follow directly from the initial conditions, can be obtained by

the reduction of the partial differential equation (5.6) to a system containing three ordinary

differential equations. As it was pointed out in [49], the perturbative method applied to a

self-similar initial data leads to an exact solution. However, it also requires some extremely

lengthy computations.
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Fortunately, a solution can be obtained almost immediately with the help of the fol-

lowing ansatz:

η(t, x) = a(t)x2 + b(t)x+ c(t), (5.10)

where the coefficients a(t), b(t) and c(t) obey, respectively, the equations:

a′′(t)− a(t) = 0, (5.11)

b′′(t)− b(t) = 0, (5.12)

c′′(t)− c(t) = 2a(t) + 1, (5.13)

and where sgn(η) = −1 at the beginning of the evolution due to the initial condition

∂tη(0, x) = vl(x) < 0.

The equations (5.11)–(5.13) have solutions

a(t) = a1 sinh(t) + a2 cosh(t), (5.14)

b(t) = b1 sinh(t) + b2 cosh(t), (5.15)

c(t) = c1 sinh(t) + c2 cosh(t) +

∫ ∞
0

dt′D(t− t′)(2a(t′) + 1), (5.16)

where D(t) = θ(t) sinh(t) is the fundamental solution of the equation c′′(t) − c(t) = δ(t).

The integration constants a1, · · · , c2 must be chosen so that (5.9) holds.

Such partial solutions are the counterparts of l2φ−L1/R1
( tl ,

x
l ) of section (3.1), and so

we denote them as η−L1/R1
(t, x). Note that the solutions φ−L1/R1

(t, x) are self-similar and so

expressions l2φ−L1/R1
( tl ,

x
l ) and φ−L1/R1

(t, x) are equal. The initial conditions (5.9) fix the

free constants and we get:

η−L1
(t, x) = −x sinh(t) + cosh(t)− 1, (5.17)

η−R1
(t, x) = η−L1

(t, l − x). (5.18)

The partial solutions (5.17) and (5.18) have supports x ∈ [t,−t + l
2 ] and x ∈ [ l2 +

t,−t+ l]. The supports shrink to single points at t = l
4 .

Note that, these are the exact partial solutions of the perturbed model. Solutions (5.17)

and (5.18) tend to φ−L1/R1
(t, x) in the limit of small amplitudes (t� 1 for l� 1).

The counterpart of the solution l2φ−C( tl ,
x
l ), which we will call η−C (t, x), where x ∈ [−t+

l
2 , t+ l

2 ], must have a more general form than the solution given by (5.10). As the general

solution of the perturbed equation is not known we approximate it by a solution of the

non-homogeneous wave equation replacing term proportional to η−C (t, x) by l2φ−C( tl ,
x
l ). A

similar approximation can be made for other partial solutions η−L2/R2
(t, x) and η−L3/R3

(t, x).

For this reason we consider the following approximate equation

(∂2
t − ∂2

x)η−α (t, x) = 1 + l2φ−α

(
t

l
,
x

l

)
, (5.19)

where α = {C,L2, R2, L3, R3}. It is easy to see that equation (5.19) possesses a solution of

the form

η−α (t, x) = Fα(x+ t) +Gα(x− t) + hα(t, x), (5.20)

– 21 –



J
H
E
P
0
4
(
2
0
1
8
)
1
0
2

where hα(t, x) is a particular solution of the nonhomogeneous equation (5.19) and has the

form:

hα(t, x) = −1

4
(x2 − t2) + Iα(t, x), (5.21)

where

Iα(t, x) = − l
2

4

∫ x+t

0
du

∫ x−t

0
dw φ−α

(
u− w

2l
,
u+ w

2l

)
. (5.22)

The functions Fα(x+ t) and Gα(x− t) are determined by the matching conditions at

surfaces of the light cones x = ±t+ l
2 , x = t and x = −t+ l. We need to compute explicitly

only the solutions η−C , η−L2
and η−L3

. The remaining partial solutions can be obtained by

performing the transformation x → l − x applied to the left-hand-side partial solutions.

The integrals (5.22) take the form

IC(t, x) = − 1

64
(x2 − t2)

(
2l2 − 4l(x+ t) + 3x2 + 5t2

)
, (5.23)

IL2(t, x) =
1

192
(x2 − t2)(t2 + 7x2), (5.24)

IL3(t, x) = − 1

192
(x2 − t2)(6l2 − 12l(t+ x) + 7t2 + 16tx+ x2). (5.25)

The solution η−C (t, x) satisfies the boundary conditions

η−C

(
t,−t+

l

2

)
= η−L1

(
t,−t+

l

2

)
, η−C

(
t, t+

l

2

)
= η−R1

(
t, t+

l

2

)
,

and so takes the form

η−C (t, x) = cosh

(
x+ t

2
− l

4

)
+ cosh

(
x− t

2
− l

4

)
− 2 (5.26)

+

(
x+ t

2
− 3l

4

)
sinh

(
x+ t

2
− l

4

)
+

(
x− t

2
+
l

4

)
sinh

(
x− t

2
− l

4

)
− 1

4

(
x+ t− l

2

)(
x− t− l

2

)[
1 +

1

64
(3l2 − 16lt+ 20t2 − 12lx+ 12x2)

]
.

The solution η−L2
(t, x) has to match the partial solution ηL1(t, x) on the light cone x = t

so we require that η−L2
(t, t) = η−L1

(t, t). At the other end it must match the vacuum solution

η = 0. If the matching point x0(t) belongs to the light cone then there is no condition on

∂xη of the partial solution at x0(t). Otherwise, the derivative with respect to x must vanish.

In such a case we have two conditions at x0(t) and one condition at x = t. Such a problem

can be solved if another partial solution is taken into account. In general x0 is a function of

time. In order to avoid such difficulties we choose boundary condition η−L2
(t, 0) = 0. This

condition is very simple and consistent with our small amplitude approximation. According

to our numerical analysis such a condition is well satisfied for l up to l ≈ 1.3. The partial

solution which satisfies matching conditions at x = 0 and x = t is of the form

η−L2
(t, x) = cosh

(
x+ t

2

)
− cosh

(
x− t

2

)
− x+ t

2
sinh

(
x+ t

2

)
+
x− t

2
sinh

(
x− t

2

)
+

1

48
x(x− t)

(
2x2 + tx+ t2 − 24

)
. (5.27)

The right hand side partial solution is given by η−R2
(t, x) = η−L2

(t, l − x).
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Figure 13. The exact breather φ(t, x) in the signum-Gordon model (shadowed region) and the

approximated oscillon solution η(t, x) (dashed line) in the perturbed model with l = 1. The figures

correspond to (a) t = 0.15, (b) t = 0.25, (c) t = 0.45, (d) t = 0.5.

The solution η−L3
(t, x) has to satisfy the boundary conditions η−L3

(t,−t+ 1
2) = η−L2

(t,−t+
1
2) and η−L3

(t, t) = η−C (t, t). A partial solution which satisfies these conditions is of the form

η−L3
(t, x) = cosh

(
x+ t

2
− l

4

)
− cosh

(
x− t

2

)
+ cosh

(
l

4

)
− 1

+

(
x+ t

2
− 3l

4

)
sinh

(
x+ t

2
− l

4

)
+
x− t

2
sinh

(
x− t

2

)
− l

4
sinh

(
l

4

)
+

1

3072
(2t− l)[9l3 − 26l2t+ 64t3 + 8l(24− 5t2)]

+
x

768
[48t(t2 + 8)− 12l(t2 − 8)− 54l2t+ 19l3]

+
x2

256
[28lt− 17l2 − 128] +

5x3

192
(3l − 4t). (5.28)

In figure 13 we present four time snapshots which compare the evolution of the an-

alytical approximate solutions for l = 1 in the perturbed model and the exact solution

in the non-perturbed model. For t being close to zero, the breather φ and the oscillon η

remain close to each other. The difference between them becomes visible only for larger

t, approximately t > 0.25. Note, that the partial solutions η−L3
(t, x) and η−R3

(t, x) do not

vanish at t = 1
2 , figure 13(d).

The non-vanishing of the approximate solution at t = 1
2 suggests that the period of

the oscillon in the perturbed model is higher that the period of the exact signum-Gordon

breather. As the approximate solution is quite close to zero at t = l/2 we expect that its

period is slightly larger than this period in the signum-Gordon model. We will come back

to this feature in the next subsection.
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5.2.2 Solution for t ∈ [ l
2
, t∗]

The instant of time t∗ is defined by the condition η(t∗, x = l
2) = 0 i.e. it corresponds to the

instant of time in which the solution starts to change its sign at the centre of the oscillon

i.e. at x = l
2 . Such behaviour of the field is observed in numerical simulations that will

be the subject of the next section. In this subsection we will estimate the value of t∗.

Although we are not able to construct the analytical solution for one complete oscillation,

we can use the value of the time t∗ to estimate the period of the oscillon as T = 2t∗.

In order to compute t∗ one needs to find a solution η(t, x) in the region containing the

point x = l
2 . Since η( l2 , x)� η( l4 , x) then in the interval [ l2 , t

∗] we have −η � 1. In such a

case the absolute value of the perturbation −η in the field equation is much smaller than

absolute value of the term sgn(η). This justifies the approximation of the field equation by

the signum-Gordon equation. The evolution of the field η(t, x) in the interval [ l2 , t
∗) can

be approximated by the solution of the non-homogeneous wave equation (∂2
t − ∂2

x)η = 1

which satisfies the initial conditions

η(
l

2
, x) =

{
f(x) for 0 ≤ x ≤ l

2

f(l − x) for l
2 ≤ x ≤ l

where f(x) := ηL3

(
l

2
, x

)
(5.29)

and

∂tη(t, x)| l
2

=

{
g(x) for 0 ≤ x ≤ l

2

g(l − x) for l
2 ≤ x ≤ l

where g(x) := ∂tηL3(t, x)| l
2
. (5.30)

Let us denote by ηL4(t, x) the partial solution on the segment x ∈ [t − l
2 ,−t + l] and

by ηR4(t, x) the partial solution on x ∈ [t,−t+ 3l
2 ]. Note that ηR4(t, x) = ηL4(t, l−x). The

solution ηL4(t, x) is given by the expression

ηL4(t, x) =
l2

8
+
t

2
(t−l)+

1

2

[
f

(
x+ t− l

2

)
+ f

(
x− t+

l

2

)]
+

1

2

∫ x+t− l
2

x−t+ l
2

dw g(w). (5.31)

The function g(w) is quite complicated so the analytical integration of the integral in (5.31)

is not possible in this case. Fortunately, for l not too large (comparing it with l = 1), the

initial velocity at t = l
2 is very close to the expression −v(x), where v(x) is given by (3.5).

Thus we see that g(x) ≈ x and so (5.31) becomes

ηL4(t, x) =

(
t− l

2

)(
x+

t

2
− l

4

)
+

1

2

[
f

(
x+ t− l

2

)
+ f

(
x− t+

l

2

)]
. (5.32)

The partial solution ηD(t, x) emerges at the segment x ∈ [−t+ l, t] and it matches the

solutions ηL4/R4
(t, x) at the light cones. After some further computations we find that

ηD(t, x) =
1

2

[
f

(
−x− t+

3l

2

)
+ f

(
x− t+

l

2

)]
− 1

8
[3l2 − 4lt+ 4x(x− l)]. (5.33)

The other partial solutions that match ηL4/R4
(t, x) at x = t − l

2 and x = −t + 3l
2 are not

needed for our purpose so we do not present them here.
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Figure 14. (a) The expression ∆t, where the solid line is a numerical solution of (5.34) whereas

the dashed line represents the expression (5.37). (b) The period of the oscillon T (l). The solid

line with dots stands for result obtained from numerical simulation. The dashed line represents

analytical expression (5.38). The dotted straight line stands for the period of the exact breather.

Using the expressions presented above we note that the condition ηD(t∗, l2) = 0 takes

the form

f(l − t∗) +
1

4
l(2t∗ − l) = 0. (5.34)

Unfortunately, we cannot solve (5.34) exactly due to its complexity. However, it is still

possible to obtain its numerical and approximate analytical solutions. In order to get an

analytical expression for t∗ we expand the left hand side of (5.34) around t∗ = l
2 up to the

linear term and solve the resultant linear equation

b0 + b1

(
t∗ − l

2

)
+O

((
t∗ − l

2

)2
)

= 0. (5.35)

The solution of (5.35) gives us

t∗ =
l

2
+ ∆t, (5.36)

where

∆t := −b0
b1

=
3

4

2048
[
cosh

(
l
4

)
− 1
]

+ 512l sinh
(
l
4

)
+ 3l3 − 64l2

96l cosh
(
l
4

)
− 768 sinh

(
l
4

)
− l3 + 48l

> 0. (5.37)

In figure 14(a) we present the plot of the solutions of equation (5.34) as functions of l.

The solid line represents the numerical solution of this equation, whereas the dashed line

corresponds to the expression (5.37). It turns out that our approximation of the solution

by means of a power series expansion is quite good. The error of this approximation takes

the value of 3.35 % for l = 3, 0.73 % for l = 2 and only 0.048 % for l = 1.

The period of oscillation can be approximated by

T = 2t∗ = l + 2∆t. (5.38)

In figure 14(b) we plot the period of the oscillation (5.38). This period is represented

by the dashed curve. The dotted straight line represents the period of the exact breather in
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the signum-Gordon model. One can see from this plot that the period of the oscillon grows

faster than linearly with the parameter l. Moreover, we have also compared this expression

with the period obtained from the numerical simulations. This is represented by the solid

curve which interpolates between the dots. We see that our analytical approximation is

quite good for l not being significantly larger than l = 2. We also note that the analytical

computation gives the period which is shorter then the period obtained by the numerical

calculations.

Naturally, one can ask how close or far away is the approximate solution from the true

solution? In order to try to answer this question and get some ideas about correctness of

our approximate solutions we have solved the equation (5.6) numerically and in the next

section we present and discuss some of our results.

5.3 Numerical solutions

In this section we discuss our numerical studies of the solutions in the perturbed model.

In this discussion we concentrate our attention on initial configurations which differ from

each other by values of the scale parameter l or of the parameter ε.

5.3.1 Oscillons

The first class of initial data is given by the configuration which is appropriate to obtain an

exact breather in the signum-Gordon model i.e. this is exactly the configuration (5.9), which

has been already studied in the previous section in the context of approximate analytical

solutions. The initial configuration is of the form

η(0, x) = 0, ∂tη(t, x)|t=0 = ε vl(x). (5.39)

In this section we put ε = 1 and vl(x) is nontrivial on the segment x ∈ [0, l]. More

general configurations (with ε 6= 1) are discussed in the next section. In other words,

here we present the results of evolving the exact signum-Gordon breather in the modified

model (5.8). As the exact breather of the signum-Gordon model with the size l has am-

plitude A = l2/16 one may expect that for not too large values of l the true solution of

the modified theory would not differ too much from the original signum-Gordon breather.

These expectations are based on the fact that the analyzed modification is a subleading

term for small amplitude solutions. On the other hand we know that even a small perturba-

tion of the signum-Gordon model could strongly influence the stability of the topologically

unprotected solutions.

In figure 15 we present our results obtained for the initial data (5.39) and compare

them with the analytical approximate solution for ε = 1 and l = 1. Our choice of the initial

data leads to the exact breather solution when η is the signum-Gordon field. The presence

of an extra term −η in the equation of motion (5.8), results in the discrepancy between

the oscillon solution and the exact breather. The dashed curve represents the analytical

approximate solution. We conclude that our analytical approximate solution provides a

surprisingly good approximation to the numerically derived data for 0 ≤ t ≤ l
2 . The

difference between these two curves is very small and visible only when the field is close to
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Figure 15. The numerical solutions η(t, x) (shadowed region under the solid curve) and the

approximated oscillon solution (dashed curve) in the perturbed model (5.6) for ε = 1 and l = 1 at

(a) t = 0.15, (b) t = 0.25, (c) t = 0.45, (d) t = 0.5. (e) The derivative ∂tη at t = 0.5. (f) The

solution at t = 0.5059.
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Figure 16. The numerical solutions (shadowed region under the solid curve) and the approximated

oscillon solution (dashed curve) in the perturbed model (5.6) for ε = 1 and l = 1.2 (a,b,c) and l = 2.0

(d,e,f) where (a,d) show the field η(t, x) at t = l
2 , (c) at t = 0.611, (f) at t = 1.059. (b, e) The

derivative ∂tη at t = l
2 .

its change of sign, i.e. when the amplitude of the field is very small, as in the figure 15(f).

The difference between the numerical and the analytical approximate solutions increases

for oscillons with higher amplitudes i.e. for l > 1. In figure 16 we present the cases of l = 1.2

and l = 2.0. As expected, the approximate analytical solution for l = 2.0 and t > 1.0 begins

to differ quantitatively from the numerical one. However, the analytical approximation still

provides a very good qualitative picture of the evolution of the true solution.

As expected from the previous analytical considerations the numerical oscillon solution

oscillates slower than the exact breather in the signum-Gordon model. In figure 17 we
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Figure 17. Numerical solution η(t, 12 ) (solid line) in the perturbed model with l = 1 and ε = 1.

The exact breather solution φ(t, 12 ) (dashed line) is given by dashed line. The figures correspond to

(a) t ∈ [0, 10] and (b) t ∈ [50, 58].
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Figure 18. The numerical solution η(t, x) in the perturbed model with l = 1 and ε = 1 at

t = 10.344 + 0.15 = 10 × period + 0.15. The solution is very similar to the solution shown in

figure 15(a).

present plots representing the trajectory of the centre x = l
2 of the oscillon with l = 1,

which form a very regular oscillating curve. This means that the exact small amplitude

breathers are very weakly deformed by the new term in the Lagrangian. The long living

solutions continue to exist and there is no visible emitted radiation within our numerical

accuracy. The numerical solution is amazingly periodic in the sense that the oscillations

are very regular. Plots a) and b) show that even after sixty periods of oscillations the two

are very similar to what they were at the very beginning of the simulations. The solution

at t = 10.494 is presented in figure 18. The plot represents the field shown in figure 15(a)

after N = 10 oscillations.

When comparing this numerical solution to the exact breather we note the existence

of some subtle differences. They are especially visible when the field changes its sign. In

figure 19 we show a sequence of snapshots of the field that correspond with the moments of

time in which the oscillon solution changes its sign. The arrows indicate directions of the

oscillation. Unlike for the signum-Gordon breather the change of the sign does not occur

simultaneously in the full support of the solution. The evolution of the field in figure 19(c)

is qualitatively different from that shown in figure 19(a). However, one can see that config-

urations of the field that differ by the period equal to three periods of the oscillations are

more alike (although not identical). This can be checked by comparing subfigures that form

pairs (a,g), (b,h) and (c,i). Similarly, a qualitatively similar behaviour of the field is visible
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Figure 19. Numerical solutions in the perturbed model for ε = 1.0 and l = 1 at instants of time

tn ≈ n t1, where n = 1, 2, · · · , 12. (a) t1 = 0.5090, (b) t2 = 1.0197, (c) t3 = 1.5291, (d) t4 = 2.0387,

(e) t5 = 2.5492, (f) t5 = 3.0579, (g) t7 = 3.5672, (h) t8 = 4.0781, (i) t9 = 4.5872, (j), t10 = 5.0970,

(k), t11 = 5.6072, (l), t12 = 6.1159. The arrows indicate direction of oscillation.

in graphs that constitute the pairs (d,j), (e,k) and (f,l). Obviously, there are some small

differences between corresponding plots. This is to be expected because the initial config-

uration of the field is only proper for the breather in the signum-Gordon model. A more

carreful analysis shows that the oscillon expands and shrinks very little when oscillating.

We have studied oscillons of this type with the size l ∈ [0.5, 3]. The observed oscillations

of the central point x = l
2) are described by the black dotted curve in figure 14(b). We

have calculated the corresponding period of the oscillations and we have found that, for

the solution with l = 1, the Fourier analysis of the numerical data gave us the value of

T as being approximately equal to T = 1.0224. Overall, it is clear that our analytical

approximation works quite well — especially for l < 1.2. Once the amplitude of the initial

signum-Gordon breather is chosen to be larger, the nonlinear effects begin to modify the

solution in a more significant way, which requires higher orders of approximation. This is

manifested by a deformation of the sinus-like oscillation curve for higher l — see figure 20.
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Figure 20. Numerical solution η(t, l
2 ) (black line) in the perturbed model. The exact breather

solution φ(t, l
2 ) is given by dashed red line. The figures correspond to (a) l = 2.0, (b) l = 3.0.

If the amplitude of the initial configuration is large enough, and so the system possesses

sufficiently large amount of energy, a new phenomenon does occur. This comes from the

fact that our modification of the signum-Gordon model introduces a new vacuum at η = 2

(or infinitely many vacua in the unfolded variable η). Therefore, topological compact

solitons (kink and anti-kink) can exist

ηkink(x) =


0 x ≤ 0

1− cosx x ∈ [0, π]

2 x ≥ π
, ηanti−kink(x) =


2 x ≤ 0

1 + cosx x ∈ [0, π]

0 x ≥ π
. (5.40)

Note that these kink and anti-kink solutions also arise in the folded target space variable η̄.

Due to this, the signum-Gordon breathers with sufficient large amplitude, if taken as

initial states of the modified model, do nontrivially feel the second vacuum and, in a con-

sequence, a collection of kink-antikink states can be created. This is exactly what we have

observed in our simulations. In the next subsection we say a few words about such states.

5.3.2 Kink-antikink pairs

Following the above observation we have studied the process of generation of kink-antikink

pairs when the initial configurations (which produce the exact breather in the unmodified

signum-Gordon model) have sufficiently large energy. Assuming that such a pair has no

extra kinetic energy and putting the solution (5.40) into the expression for the energy we get

Epair = 2

∫ π

0
dx

[
1

2
(∂xη)2 + V (η)

]
= π. (5.41)

On the other hand, the energy of the initial configuration strongly depends on l and is

given by El = l3

24 (which is of course the energy of the signum-Gordon breather of the size

l, see (3.21)). So we see that the value of the parameter l must not be less then

lmin =
3
√

24π ≈ 4.225. (5.42)

In fact, the true critical value of the parameter l is always larger than this minimal

value lmin established by (5.42). There is always some radiation emitted during the very
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Figure 21. The metastable bounded state for l = 4.3146 at (a) t = 7.595, (b) t = 17.274, (c)

t = 32.609.
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Figure 22. The stable bound state of two kinks for l = 4.3156 at (a) t = 19.030, (b) t = 73.534,

(c) t = 237.208. The dotted line represents derivative of the field with respect to time ∂tη.

initial phase of the evolution. For this reason the energy of the initial configuration must be

a somewhat larger than E = π. In consequence, l = lcrit > lmin. In figure 21 we plot a kink

and antikink state which exists for a short period of time and then decays into an oscillon

and some radiation. This configuration was obtained for l = 4.3146. Such a pair had been

created with very little kinetic energy and therefore the constituents did not have enough

energy to escape before they formed an oscillon and stabilised with the energy below the

creation threshold. If we increase l, i.e. add more energy, the created kink and antikink pair

stays forever (in our simulation tmax ≈ 237). Such a configuration is plotted in figure 22

and it was obtained for l = 4.3156. This time the solitons have sufficient energy to escape

from each other to a finite distance, which due to their compacton nature, guarantees that

now they interact weekly via emitting small oscillons. The initial kink-antikink state loses

some energy in the form of radiation and the system evolves to a configuration plotted in

figure 22(c). An interesting fact about this ‘final’ state is that kinks are not static (although

their centres do not move). We have also studied the time derivative of the field ∂tη and this

has shown us that the kinks wobble — shrinking and expanding periodically around their

own centers. This means that the extra energy has excited some of their internal modes.

We have also looked at simulations which started with even a little more energy. Of

course, we have also got the kink-antikink pair. This time the surplus of energy has been

transformed into i) the kinetic energy of the kinks (they move apart), ii) the appearance

of the oscillon at the centre, and iii) some radiation which escapes from the region where

the kinks are localized. Such a configuration was obtained for l = 4.3246. In figure 23 we

present a snapshot of the field taken at t = 14.272.
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Figure 23. Two kinks and oscillon for l = 4.3246 at t = 14.272. The dotted line represents

derivative of the field with respect to time ∂tη.
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Figure 24. Four pairs of kink-antikink states and the oscillon in the centre for l = 9.2346 at (a,c)

t = 23.879, (b,d) t = 27.829. Figures (c,d) represent folded (original) field η̄(t, x).

When the initial configuration has the energy which is significantly larger then this

energy can be used to create many pairs of kinks and antikinks. A configuration contain-

ing four such pairs is presented in figure 24. In this figure we also present the plots of the

auxiliary unfolded field η and of the original (folded) field η̄. The observed process has pro-

ceeded in stages. The pair of kinks created first had higher velocities than pairs that arose

later. This is clearly visible from the Lorentz contraction of the kinks in motion. A part of

energy was also transformed into the creation of an oscillon at the centre (at l
2). We also

see a small amount of radiation in the vicinity of the oscillon (pictures in folded variable).

5.3.3 Perturbed oscillons

We have also looked at the solutions for ε 6= 1 which represents the original signum-Gordon

breather plus a perturbation on top of it, immersed into the modified model. In this section

we report the results of our studies with initial configurations (5.39) started with the scale

parameter l fixed at l = 1. This means that our initial configuration had energy ε2/24.

We begun our studies by looking at small perturbations of the pure signum-Gordon

breather. For this reason we have chosen ε = 1.2, which corresponded to the case studied

– 32 –



J
H
E
P
0
4
(
2
0
1
8
)
1
0
2

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-0.08

-0.06

-0.04

-0.02

0.00

(a)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.000

0.005

0.010

0.015

0.020

(b)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

(c)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

(d)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

(e)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-0.04

-0.03

-0.02

-0.01

0.00

(f)

Figure 25. The perturbed signum-Gordon model for ε = 1.2 at (a) t = 0.2052, (b) t = 1.1350, (c)

t = 5.4025, (d) t = 26.9678, (e) t = 27.5035, (f) t = 32.8919.
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Figure 26. Numerical solutions in the perturbed model for ε = 0.1 at (a) t = 0.05, (b) t = 0.17,

(c) t = 1.18.

in the pure signum-Gordon model. In figure 25 we present a few snapshots of the fields

seen in our numerical simulations. Comparing these results with those obtained for the

pure signum-Gordon model (see figure 4) we conclude that the oscillations in the per-

turbed model are more regular than in the pure signum-Gordon one. This may appear

to be a rather unexpected result. The radiation in the perturbed model becomes visible

approximately at t = 30 whereas in the pure signum-Gordon model it is already present

at t = 13. This suggests that the modification of the potential can enhance the stability of

the solutions with respect to small perturbations.

Another observation we have made involves noting that for very small ε the field η

has a very small amplitude and so the term −η in the field equation has no practical

significance by comparison with the term sgn(η). As an example we have considered the

case of ε = 0.1. We have plotted the snapshots of the corresponding field in figure 26 and

we note that are very similar to the plots of the solution obtained for the signum-Gordon

model which were presented in figure 10.

Once again, we have noted that, if we increase the perturbation, the modification of the

model begins to nontrivially influence its solutions. In figure 27 we present the snapshots of

the field seen in the simulation corresponding to ε = 10. There are significant quantitative
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Figure 27. Numerical solutions in the perturbed model for ε = 10.0 at (a) t = 0.15, (b) t = 1.67,

(c) t = 20.79.
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Figure 28. Numerical solutions in the perturbed model for ε = 20.0 at (a) t = 1.0030, (b)

t = 3.0180, (c,d) t = 11.6490. Dashed lines correspond to minima at η = −2.

differences in behaviour of this solution from the solution of the signum-Gordon model

presented in figure 6. We observe that for such high values of the parameter ε the solutions

expand; however, they do not radiate significantly. In contradistinction to the solutions

with ε = 0.1 we do not see any small waves that escape from the oscillating region and

propagate with constant velocity.

As before, for sufficiently large ε the second vacuum is visible and again, pairs of

kink-antikink states get created. In figure 28 we present four snapshots of the field η

for ε = 20.0. We note that this time the kink and the antikink that have been created

propagate in opposite directions. Clearly, a part of the energy of the initial configuration

has been transformed into oscillations of the field around η = −2. Qualitatively, this

process of kink-antikink pair creation is very similar to the process formerly considered for

large l initial configurations.

6 Solutions of the modified signum-Gordon model on R+

We have also looked at oscillon solutions in the radial modified signum-Gordon model.

Again, there are two main new features. The first one is due to the backward scattering of

left hand moving small oscillons and waves at the origin. In this case, they can travel back
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Figure 29. The shell-type oscillon at R+ for l = 3.0 at (a) t = 0.931, (b) t = 13.799, (c) t = 25.765.

to the initial oscillon and interact with it. The second feature is related to the existence of

ball shaped oscillons — inherited from the signum-Gordon model on R+.

In figure 29 we present the evolution of the shell oscillating structure obtained for

l = 3.0. During the evolution the structure became more and more irregular. We have

observed that the radiation emitted from the oscillon reflected at the centre r = 0 and then

returned to the oscillon. Of course, the part of the radiation that was emitted towards

spatial infinity has never returned.

We know that by gradually increasing the value of the parameter l we can reach the

threshold of production of kink-antikink pairs. One of the more intriguing facts about the

solution containing bound states of kinks (l = 4.3156) in the model on R is that only “half”

of such a configuration would appear in the model on R+. So, such a configuration would

describe a ball-shape solution whose border is provided by a wobbling kink.

Finally, in figure 30 we present the results seen in our evolution of a shell type config-

uration that soon thereafter consisted of a kink-antikink pair. After the pair was created

both objects started to move apart. Then the kink reflected at r = 0 and started to move

in the same direction as the antikink. This, effectively, resulted in the expansion of the

shell. Comparing pictures figure 30(e) with figure 30(f) we observe a very interesting phe-

nomenon. The oscillon which existed at the second minimum η̄ = 2 has collided with the

kink. After the passage of the kink the oscillon ‘had jumped’ to the first minimum.

7 Conclusions

The main aim of this work has been the study of the fate of the signum-Gordon breathers

in a modified model, whose modification was motivated by very recent results obtained in

some analytical investigations of the BPS structures of the Skyrme model.

To accomplish this program we started with a careful study of the stability of perturbed

breathers in the signum-Gordon model. We have found that such breathers, although not

stabilized by topological considerations and with a continuous spectrum of energies, are

remarkably stable under small perturbations. Our studies have shown that for initial con-

figurations involving a breather with a small perturbation, the perturbed breather oscillates

for quite long time (as long as 25 oscillations) as one object without emission of any de-

tectable radiation. Afterwards, it starts to emit small packages of energy (small oscillons).

To get a better understanding of this process we have performed two long time simulations

of the field configuration with ε = 1.0 and l = 1.0 and then other ones with ε = 1.3 and
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Figure 30. The shell-type structure containing kinks at R+ for l = 5.224 at (a,d) t =, (b,e) t =,

(c,f) t =. Figures (d,e,f) represent folded (original) field η̄(t, x).

l = 1.0. The first one involved an unperturbed (exact) breather, the second one a slightly

perturbed breather.

The main reason for the numerical study of the exact breather was to check our numeri-

cal procedures; to see and to assess whether and to what extent the small inherent numerical

errors could destroy the breather by inducing radiation. We have found that the numerical

solution started to differ visibly from the exact one only for times larger than t = 50. We

have performed the simulation up to t = 130 and have found that by then the energy of

the solution decreased from the initial value E = 1
24 ≈ 0.0416 to the value E = 0.0381. Of

course this was a purely numerical artefact. In the case of the simulation of configurations

with ε = 1.3 (i.e. of the perturbed breather) the initial energy E = ε2

24 = 0.0704 decreased

to the value E = 0.0462 at t = 130 and to the value E = 0.0418 at t = 200 which is

very close to the value of the energy for the exact breather. We have concluded that, in

spite of small numerical errors (smaller than expected), the slightly perturbed breathers

have a tendency to emit the surplus of their energy and tend to a breather solution. Our

numerical calculations involved the use of 4th order Runge-Kutta method of simulating

the time evaluation of the fields and working in double precision. We were satisfied with

our results and we feel we can trust them; getting smaller numerical errors would require

more sophisticated numerical techniques and clearly lies beyond the scope of this paper.

We have also found that if the initial state represented a strongly deformed breather

then the evolution was more involved. For large amplitude perturbations (large ε) we

observed a decay into a collection of (still perturbed) breathers. Again, one could study

the pattern of the formation of such substructures: their number, mutual interactions and

their stability. For a significant amplitude suppression (ε < 1
2) we reach a regime where the

boundary of the compacton is approached by an infinite number of oscillations of a self-

similar solution. This destabilises the solution rather strongly and the energy is emitted

very quickly from the region of the initial oscillon.
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Having established the stability of the signum-Gordon breathers we have moved to

the modified signum-Gordon model. In this case we first used the initial condition of the

signum-Gordon breather. This is equivalent to an insertion of a signum-Gordon breather

into the modified theory. As the modification breaks the scaling invariance of the signum-

Gordon model we had to consider initial breather states with different supports l to get

some meaningful results.

Thus, first of all, we have found that small amplitude breathers (l < 2.0) in the modified

model still behave as breathers (or very long living oscillons) i.e., they are oscillating

solutions (with a compact support as in the original signum-Gordon model) without any

detectable radiation. Hence, not too large breathers undoubtedly survive in the modified

model. The new term in the Lagrangian increases the period of the oscillations and modifies

the local form of the oscillating solutions, which now develops a richer structure with a non-

simultaneous changing sign transitions, i.e. different parts of the solution change its sign

at slightly different times. Furthermore, using an approximate description of the field we

have found the local structure of the solution in an analytical way which agrees remarkably

well with the true numerical results during the first period of oscillation. This also allowed

us to obtain an analytical description of the relation between the period and size of the

oscillon T = T (l).

We have studied the evolution of the initial l = 1 breather with a small perturbation

in the modified theory. Surprisingly, we have found that the modification increases the

stability of the breathers against small perturbations. Initially perturbed breather oscillates

as one unit longer than in the original signum-Gordon model and the emission of energy,

again via small oscillons, takes place less frequently and possesses a more regular pattern.

Secondly, we have found that the modification can introduce a second vacuum in the

theory and so may lead to the existence of topological compact solitons — absent in the

original signum-Gordon model. This shows that for large enough initial configurations a

pair of kink-antikink states can be created. Such a phenomenon has been analyzed in

many (1 + 1) dimensional scalar field theories, however, with usual infinitely extended

solitons [52–54] rather than compactons. We studied such a creation mechanism in two

ways: with large enough l and ε = 1 (initial conditions for the signum-Gordon bretahers)

and with l = 1 and large enough ε (a large perturbation of the unit support signum-

Gordon breather). In both cases a creation of such pairs of compact kink-antikinks has

been observed. Usually, constituents of the pair (kink and antikink) have some kinetic

energy which allows them to escape from each other leaving an oscillon at the origin. The

process can repeat itself until the central oscillon has too little energy to create such a pair.

In addition some small radiation waves (probably in the form of small oscillons) are also

emitted. For very special initial conditions it is possible to find a non-moving kink-antikink

pair with a constant distance between the constituents of the pair. Such a solution can be

described as a wobbler which shrinks and expands periodically.

In the final part of our work we have considered the modified theory on a semi-infinite

line which corresponds to the radial coordinate r. Due to the compact nature of solitons in

the modified signum-Gordon model, the transition from R to R+ does not change anything

as long as the (breather) oscillon does not reach the origin.
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We want to stress that all results obtained for the R+ space directly apply to the first

BPS submodel of the Skyrme theory. Namely, corresponding oscillons in ξ field, together

with an arbitrary rational map solution of u field describe oscillating shell structures in the

first BPS Skyrme submodel in topologically trivial sector. Their time evolution is analogous

to the properties of oscillons in the modified signum-Gordon theory. Moreover, the ball

type oscillons are also possible. They are just partial oscillons located at the origin (i.e.

one of the structures is located at the origin). Note that the full three dimensional energy

density of the solutions of the first BPS Skyrme submodel can have nontrivial angular

dependence inherited from the underlying rational map.

In addition, we have briefly studied time dependent solitons with nontrivial baryon

charge, i.e. Skyrmions in the first BPS submodel. Again, they are described by a rational

map solutions (describing their angular dependence) and by a compact kink which now

interpolates between two vacua. Again, these Skyrmions can have nonspherically symmet-

ric energy (baryon) density dictated by the rational map. We have briefly investigated the

interaction of such Skyrmions with previously found oscillons as well as the issue of their

creation from initial states.

From the dynamical point of view the only difference in the semi-infinite line case,

resides in the fact that the left moving perturbations emitted by an oscillon come back to

it after a reflection at the origin. This leads to slightly more involved relaxation pattern as

emitted small oscillons and waves can travel many times between the oscillon and the origin.

All this shows that the first BPS Skyrme submodel has solutions which are described

by small amplitude oscillons of both shell and ball types. They are stable (at least to within

our numerical accuracy) within our ansatz where only the profile function of Skyrmions

depends on radial and temporal coordinates while the S2 part of the Skyrme field is “frozen”

in a given rational map. Whether they remain to be stable in the full first BPS submodel

without any restrictions on the form of the solution is an open problem. In this case, the

dynamics does not follow the modified signum-Gordon and the complex field can have a

nontrivial impact on the existence and features of the oscillons. Another question is the

fate and a possible role of this oscillon in the full Skyrme model.
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