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Abstract: In this paper, the problem of Stackelberg game-theoretic low probability of intercept (LPI)
performance optimization in multistatic radar system is investigated. The goal of the proposed
LPI optimization strategy is to minimize the transmitted power of each radar while satisfying
a predetermined signal-to-interference-plus-noise ratio (SINR) requirement for target detection.
Firstly, a single-leader multi-follower Stackelberg game is adopted to formulate the LPI optimization
problem of multistatic radar system. In the considered game model, the hostile intercept receiver
plays a role of leader, who decides the prices of power resource first through the maximization
of its own utility function. The multiple radars are followers to compete with each other in a
non-cooperative game according to the imposed prices from the intercept receiver subsequently.
Then, the Nash equilibrium (NE) for the considered game model is derived, and the existence and
uniqueness of the NE are analytically proved. Furthermore, a pricing-based distributed iterative
power control algorithm is proposed. Finally, some simulation examples are provided to demonstrate
that the proposed scheme has remarkable potential to enhance the LPI performance of the multistatic
radar system.

Keywords: low probability of intercept (LPI); Stackelberg game; power control; Nash equilibrium (NE);
multistatic radar system

1. Introduction

With the recent technology development of advanced passive intercept systems, it is highly
important to find a solution to the problem of low probability of intercept (LPI) performance
enhancement for different radar systems caused by this trend [1]. In theory, low radiated power [2–4],
short dwell time [5,6], large revisit interval [7], adaptive beamforming [8–10], and waveform
optimization [11] will result in improved LPI performance. In recent years, researchers have developed
a great number of techniques to satisfy the LPI performance requirement. For example, in [2],
the revisit interval, transmit power, and waveform parameters are jointly optimized to improve
the LPI performance for radar networks. In [4], an LPI-bsaed joint transmitter selection and
resource management scheme is proposed for single target tracking in radar network, where the
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LPI performance criterion of radar network is minimized by optimizing the revisit interval, dwell
time, transmitter selection, and transmit power while maintaining a specified target tracking accuracy.
In [6], Wang X.L. et al. propose a joint revisit and dwell time management approach for target tracking
in phased array radar system, in which the time resource consumption is minimized for a given
target tracking performance. Lawrence D.E. in [8] introduces a novel transmit array beamforming
algorithm, which offers a better LPI performance for surveillance radars exploiting phased array
antennas. Reference [10] presents a cognitive LPI-based transmit beamforming algorithm by utilizing
frequency diverse array (FDA) and multiple-input multiple-output (MIMO) hybrid array antenna,
which minimizes the beam power at the target location while maximizing the power at the radar
receiver without degrading the target detection performance. The work in [11] addresses the problem
of power minimization-based robust orthogonal frequency division multiplexing (OFDM) radar
waveform design for radar and communication systems in spectral coexistence. It is shown that the
LPI performance of the radar system can be efficiently strengthened by employing the communication
waveforms scattered off the target at radar receiver.

Game theory provides a natural and efficient tool in modeling the interactions among
independent players [12–14]. A lot of work has been developed for radar systems and
made significant progress [15–20]. In [16], the authors model the interaction between a smart target
and a smart MIMO radar as a two-person zero-sum game. The non-cooperative game-based
code design approach in radar networks is proposed in [17], whose purpose is to maximize the
signal-to-interference-plus-noise ratio (SINR) of each radar. The work in [18] studies the game-theoretic
power allocation for a distributed MIMO radar network. Shi C.G. et al. in [19] propose a novel
non-cooperative game-theoretic power allocation strategy for multistatic radar in a spectrum sharing
environment. As an extension, a cooperative game-theoretic framework is proposed for power control
in multistatic radar underlaying a communication system [20]. However, the above game-theoretic
resource management protocols ignore the presence of hostile intercept receiver. The Stackelberg
game-theoretic model has been exploited in several research [21–24] to analyze the hierarchical
competition with different optimization purposes. In [25], the authors formulate a MIMO radar
and target Stackelberg game model in the presence of clutter, and various optimization criteria
at Stackelberg equilibrium (SE) of target dominant and radar dominant are obtained, respectively.
However, in view of the above studies, there are still no published references that investigate this
hierarchical interactions between the hostile intercept receiver and multistatic radar system. Therefore,
the problem of Stackelberg game-theoretic LPI performance optimization for multistatic radar system
should be addressed.

Specifically, the major contributions of this study are as follows:

(1) The problem of Stackelberg game-theoretic LPI performance optimization strategy for multistatic
radar system is investigated. Mathematically, the LPI optimization strategy can be formulated
as a problem of minimizing the radiated power of each radar for a specified target detection
performance. In earlier literature, although both non-cooperative game [19] and cooperative
game [20] have been utilized to control the transmit power of multistatic radar system,
as aforementioned, the hostile intercept receiver is not considered in such a scenario. Therefore,
we take the hierarchical interactions between intercept receiver and multiple radars into
consideration and formulate the LPI performance optimization between them as a single-leader
multiple-follower Stackelberg game. In the underlying game model, the hostile intercept
receiver plays a role of leader, who decides the prices of unit power resource first through
the maximization of its own utility. The multiple radars are followers to compete with each other
in a non-cooperative game according to the imposed prices from the interceptor subsequently.

(2) We incorporate the total received power at intercept receiver, the unit power prices, the specified
SINR requirement, and the transmit power of each radar to define the novel utility functions for
the single leader and multiple followers. Then, we analyze the followers’ non-cooperative game
model with the released prices from the leader, and the Nash equilibrium (NE) solution for the
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considered game model is derived. Additionally, the existence and uniqueness of the NE solution
are strictly proved.

(3) A pricing-based distributed iterative power control method is presented to solve the resulting
optimization problem, which guarantees the convergence to the Stackelberg equilibrium
(SE) points.

(4) Some numerical examples are provided to confirm the convergence of the approach to the
unique SE solution and verify the effectiveness of our proposed strategy in terms of LPI
performance enhancement.

The rest of this paper is structured as follows: Section 2 provides the system model and
assumptions. In Section 3, the Stackelberg game model for the LPI performance optimization is
formulated. Section 4 provides the numerical results and analyses to demonstrate the proposed
strategy. Finally, Section 5 concludes this paper.

2. System Model and Assumptions

In this work, we consider a multistatic radar system composed of QR radars, whose purpose is to
minimize the radiated power of each radar while guaranteeing a predetermined SINR requirement for
target detection. As illustrated in Figure 1, the ith radar receives the echoes from the target due to its
emitted waveforms as well as the waveforms from the other radars, both scattered off the target and
through a direct path. The signals transmitted from different radars might not be orthogonal due to
various reasons, including the absence of radar transmission synchronization [18], which could induce
significant mutual interference. It is supposed that successive interference cancellation (SIC) technique
is employed at each radar receiver to remove both direct and target scattered communication signals
from the observed signal [26].

Figure 1. Illustration of the system model.

In the considered multistatic system, each radar performs target detection autonomously and
sends its local decision to the fusion center, which takes a global decision once the data coming from
all the radars is collected. It is also assumed that each radar can determine the presence of a target
by employing a binary hypothesis testing on the received signal based on the generalized likelihood
ratio test (GLRT) [18,20,26]. Thus, the M time-domain samples of the received signals for the ith radar,
withH0 corresponding to the target absence hypothesis andH1 corresponding to the target presence
hypothesis, can be expressed by:
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
H0 : ri =

QR

∑
j=1,j 6=i

ξi,j

√
Pjsj + ni,

H1 : ri = $i
√

Pisi +
QR

∑
j=1,j 6=i

ξi,j

√
Pjsj + ni,

(1)

where si = φibi denotes the transmitted waveform from radar i, bi = [1, ej2π fD,i , · · · , ej2π(M−1) fD,i ]T ∈
CM×1 denotes the Doppler steering vector of radar i with respect to the target, fD,i is the Doppler
shift associated with the radar i, M is the number of received pulses during the dwell time, and φi
is the predesigned waveform emitted from radar i. $i represents the channel gain at the direction
of the target, Pi is the transmit power of radar i, ξi,j stands for the cross gain between radar i and j,
and ni denotes a zero-mean white Gaussian noise with variance σ2

n . It is assumed that $i ∼ CN (0, hT
i,i),

ξi,j ∼ CN (0, ci,j(hT
i,j + hD

i,j)) and ni ∼ CN (0, σ2
n), where ht

i,i represents the variance of the channel gain

for the radar i-target-radar i path, ci,jhT
i,j represents the variance of the channel gain for the radar

i-target-radar j path, ci,jhD
i,j represents the variance of the channel gain for the direct radar i-radar j

path, and ci,j denotes the cross correlation coefficient between the ith radar and jth radar.
The propagation gains of the corresponding paths are defined as follows:

hT
i,i =

GTGRσRCS
i,i λ2

(4π)3R4
i

,

hT
i,j =

GTGRσRCS
i,j λ2

(4π)3R2
i R2

j
,

hD
i,j =

G
′
TG

′
Rλ2

(4π)2d2
i,j

,

gD
i =

G
′
TGIλ

2

(4π)2d2
i

,

(2)

where hT
i,i represents the propagation gain for the radar i-target-radar i path, hT

i,j represents the

propagation gain for the radar i-target-radar j path, hD
i,j represents the direct radar i-radar j path,

gD
i represents the direct radar i-intercept receiver path. GT is the radar main-lobe transmitting antenna

gain, GR is the radar main-lobe receiving antenna gain, G
′
T is the radar side-lobe transmitting antenna

gain, G
′
R is the radar side-lobe receiving antenna gain, and GI is the interceptor receiving antenna gain.

σRCS
i,i is the RCS of the target with respect to the ith radar, σRCS

i,j is the RCS of the target from radar i to
radar j, λ denotes the wavelength, Ri denotes the distance from radar i to the target, Rj denotes the
distance from radar j to the target, di,j denotes the distance between radar i and radar j, and di denotes
the distance between radar i and intercept receiver. It is supposed that all the path propagation gains
are fixed during observation period.

3. Problem Formulation

3.1. Stackelberg Game Formulation

Stackelberg game is a strategic game, which is composed of a single leader and multiple followers
competing with each other [21,22]. In this study, the hostile intercept receiver plays a role of leader, who
decides the prices on per unit of received power from different radars first through the maximization of
its own profit. While the radars are multiple followers, which move subsequently and compete selfishly
in a non-cooperative Nash game in view of the assigned prices. In the considered LPI optimization
problem, multiple radars in the multistatic system are selfish, which act solely according to their own
strategies. From the hostile interceptor’s point of view, those selfish moves lead to inefficient power
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resource utilization and degradation of the LPI performance of multistatic radar system. In this sequel,
our propose is to formulate a Stackelberg game-theoretic power contorl strategy among different
radars subject to a specified SINR requirement for target detection.

3.1.1. Leader-Level Game

Under the Stackelberg game model, the principal aim of the intercept receiver is to maximize
its own utility from selling the received power to different radars. Mathematically, the utility of the
intercept receiver can be written as:

uINT(ϕ, P) =
QR

∑
i=1

ϕiPigD
i · u

(
Smin −

QR

∑
i=1

Pigd
i

)
, (3)

where ϕ is the price vector with ϕ = [ϕ1, · · · , ϕQR ]
T ∈ RQR×1, P is the transmit power vector with

P = [P1, · · · , PQR ]
T ∈ RQR×1, ϕi is the unit power price for the ith radar, u(·) denotes step function,

and Smin denotes the sensitivity of the interceptor. It should be pointed out that the transmit power of
the ith radar Pi depends on the imposed price ϕi in the Stackelberg game formulation. To this end, the
intercept receiver needs to find the best price ϕi to maximize its own revenue. Hence, the optimization
problem of the intercept receiver can be expressed as:

P3.1 : max
ϕ

uINT(ϕ, P),

subject to : ϕ≥ 0.
(4)

where 0 = [0, · · · , 0]T ∈ RQR×1.

3.1.2. Follower-Level Game

At the multistatic radar system’s side, the GLRT is adopted to determine the appropriate
detector [26]. The probabilities of detection pD,i(αi, γi) and false alarm pFA,i(αi) can be written as:pD,i(αi, γi) =

(
1 +

αi
1− αi

· 1
1 + Mγi

)1−M
,

pFA,i(αi) = (1− αi)
M−1,

(5)

where αi is the detection threshold, M is the total number of received pulses during the dwell time.
γi denotes the SINR received at the ith radar expressed by:

γi =
ht

i,iPi

∑QR
j=1,j 6=i ci,j

(
hD

i,j + hT
i,j

)
Pj + σ2

n

=
hT

i,iPi

I−i
, (6)

where σ2
n represents the background noise at the ith radar, I−i denotes the total interference and noise

received at the ith radar, that is,

I−i =
QR

∑
j=1,j 6=i

ci,j

(
hD

i,j + hT
i,j

)
Pj + σ2

n. (7)

As mentioned before, the multiple radars take the part of followers to maximize their individual
utilities through power control in a non-cooperative Nash game. Thus, the utility of each radar can be
defined as:

uMRS,i(Pi, P−i, ϕi) = ln(γi − γmin)︸ ︷︷ ︸
Profit Part

+
√

Pmax
i − Pi − ϕiPigD

i︸ ︷︷ ︸
Cost Part

, (8)
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where P−i = [P1, · · · , Pi−1, Pi+1, · · · , PQR ]
T ∈ R(QR−1)×1 denotes the vector of power allocation for

all radars apart from radar i, γmin is the desired SINR threshold for target detection, and Pmax
i is the

maximum transmit power of radar i. From (5), it is noticed that the utility function of each radar is
composed of profit part and cost part. If each radar increases its transmit power, the target detection
performance improves, and thus the profit goes up. However, as the transmit power increases, the
power consumption and the received power at intercept receiver are increased, and so does the
cost [21,22]. Hence, there exists a trade-off between the profit and cost in each radar. Mathematically,
for radar i, the optimization problem can be expressed by:

P3.2 : max
P uMRS,i(Pi ,P−i ,ϕi),

subject to :

{
γi ≥ γmin, ∀i,

0 ≤ Pi ≤ Pmax
i , ∀i.

(9)

Therefore, the sub-problems P3.1 and P3.2 together form a Stackelberg game-theoretic model for
the considered problem scenario. The purpose of the Stackelberg game is to find the SE points, which
is studied in the following sub-section.

3.2. Analysis of the Proposed Stackelberg Game

For our formulated Stackelberg game model, the SE is defined as follows:

Definition 1. The point (ϕ∗, P∗) is the SE for the considered Stackelberg game model if for any (ϕ, P), the
following conditions are satisfied [21,22]:

uINT(ϕ
∗, P∗) ≥ uINT(ϕ, P), (10)

uMRS,i(ϕ
∗, P∗) ≥ uMRS,i(ϕ, P), (11)

where ϕ∗ denotes the optimal solution for P3.1, and P∗ denotes the optimal solution for P3.2.

Generally speaking, the SE point for a Stackelberg game model can be achieved by obtaining the
NE for the follower-level sub-game [21]. It has been shown that the different radars in multistatic radar
system compete in a non-cooperative Nash game. On the other hand, the best response function of the
intercept receiver can be obtained by solving the sub-problem P3.1. To achieve the SE point, the best
response functions for the different radars (followers) should be obtained first, while the intercept
receiver (leader) derives its best response function based on those of the radars subsequently.

Lemma 1. For a given price of power resource ϕi, the optimal solution for sub-problem P3.2 can be expressed by:

P(k+1)
i =

γmin
P(k)

i

γ
(k)
i

+
1

1

2
√

Pmax
i −P(k)

i

+ ϕ
(k)
i gD

i


Pmax

i

0

, (12)

where {x}b
a = max{min{x, b}, a}, and k denotes iteration index.

Proof. Taking the first derivative of uMRS,i(Pi, P−i, ϕi) with respect to Pi, we can obtain:

∂

∂Pi
uMRS,i(Pi, P−i, ϕi) =

1
γi − γmin

hT
i,i

I−i
− 1

2
√

Pmax
i − Pi

− ϕigD
i , (13)
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Let ∂ui(pi ,p−i)
∂pi

= 0 and rearrange terms, we have:

1
γi − γmin

hT
i,i

I−i
=

1
2
√

Pmax
i − Pi

− ϕigD
i , (14)

thus,

γi = γmin +
hT

i,i

I−i

1
1

2
√

Pmax
i −Pi

+ ϕigD
i

. (15)

Since γi =
PihT

i,i
I−i

, then we can obtain:

Pi =
I−i

hT
i,i

γmin +
1

1
2
√

Pmax
i −Pi

+ ϕigD
i

. (16)

Finally, the following equation can be obtained to achieve the NE through iterations:

P(k+1)
i =

γmin
P(k)

i

γ
(k)
i

+
1

1

2
√

Pmax
i −P(k)

i

+ ϕ
(k)
i gD

i


Pmax

i

0

, (17)

which completes the proof.

Proposition 1. The non-cooperative Nash game model P3.2 has at least one NE.

Proof. According to [19,26], the conditions for the existence of NE are listed as follows:

(i) Pi is a non-null, convex and tight subset in a finite Euclidean space;
(ii) uMRS,i(Pi, P−i, ϕi) is continuous and quasi-concave with Pi.

Each power element is limited between 0 and Pmax
i , and Pi is a convex tight subset. Thus, the

condition (i) is easily met. For condition (ii), we take the second order derivative of uMRS,i(Pi, P−i, ϕi)

with respect to Pi and obtain

∂2

∂P2
i

uMRS,i(Pi, P−i, ϕi) = −
(

hT
i,i

I2
−i

)2
1

(γi − γmin)3 −
1

4
√
(Pmax

i − Pi)3
< 0. (18)

Thus, uMRS,i(Pi, P−i, ϕi) is a concave function of Pi. Both conditions (i) and (ii) hold. Therefore, there
exists at least one NE in P3.2, which completes the NE existence proof.

Proposition 2. The NE of the non-cooperative Nash game model P3.2 is unique.

Proof. In order to show that the NE of the game model P3.2 is unique, we need to prove that the ith
radar’s best response strategy function

y(Pi) = γmin
Pi
γi

+
1

1
2
√

Pmax
i −Pi

+ ϕigD
i

(19)

should be standard, which satisfies the following conditions [26]:

(i) Positivity: For ∀i, y(Pi) > 0;
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(ii) Monotonicity: If Pm
i > Pn

i , then y(Pm
i ) > y(Pn

i );
(iii) Scalability: For ∀ζ > 1, ζy(Pi) > y(ζPi).

For Condition (i), since for ∀i, it is obvious to obtain

y(Pi) = γmin
Pi
γi

+
1

1
2
√

Pmax
i −Pi

+ ϕigD
i

> 0, (20)

thus Condition (i) is satisfied.
For Condition (ii), if Pm

i > Pn
i , we can obtain:

y(Pm
i )− y(Pn

i ) =
[

γmin
γi

(√
Pmax

i − Pn
i +

√
Pmax

i − Pm
i
)
−W

]
·
(√

Pmax
i − Pn

i +
√

Pmax
i − Pm

i
)

, (21)

where

W ,
1[

1
2
√

Pmax
i −Pm

i
+ ϕigD

i

] [
1

2
√

Pmax
i −Pn

i
+ ϕigD

i

] × 1
2
√

Pmax
i − Pm

i
√

Pmax
i − Pn

i
. (22)

Since we have ∑QR
i=1 PigD

i ≤ Smin, that is:

Pi ≤
(

Smin −
QR

∑
j=1,j 6=i

PjgD
j

)
/gD

i , η. (23)

Thus: √
Pmax

i − Pn
i +

√
Pmax

i − Pm
i ≥ 2

√
Pmax

i − η. (24)

When γmin
γi
· 2
√

Pmax
i − η > W, we can obtain:

y(Pm
i ) > y(Pn

i ). (25)

In such a case, Condition (ii) is satisfied.
For Condition (iii),

ζy(Pi)− y(ζPi) = V ×
[

ζ
√

Pmax
i − Pi −

√
Pmax

i − ζPi

2
√

Pmax
i − Pi

√
Pmax

i − ζPi
+ ζϕigD

i

]
, (26)

where

V ,
1[

1
2
√

Pmax
i −Pi+ϕi gD

i

] [
1

2
√

Pmax
i −ζPi+ϕi gD

i

] . (27)

Owing to ζ > 1, it is apparent that:

ζ
√

Pmax
i − Pi −

√
Pmax

i − ζPi > 0. (28)

Therefore, we can obtain:

ζy(Pi)− y(ζPi) > 0, (29)

and Condition (iii) is satisfied.
As a result, all the above conditions are met, which completes the NE uniqueness proof.
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3.3. Distributed Approach for Calculating Stackelberg Equilibrium

Based on the above theoretical derivations and analyses, we develop a distributed iterative
power control method to perform LPI performance optimization for multistatic radar system.
As aforementioned, to achieve the SE point, the sub-problem P3.2 must be solved first for a given
price of power resource ϕi. Then, we solve the sub-problem P3.1 for the optimal price ϕ∗i with the
calculated transmit power P∗i of multiple radars. The detailed steps of the pricing-based distributed
iterative power control approach is provided in Algorithm 1, where (·)∗ is the SE solution, and ∆ϕ is
the step size.

Algorithm 1: Pricing-Based Distributed Iterative Power Control Approach

Input: Set γmin, Smin, P(1)
i , ϕ

(1)
i , k = 1, ∆ϕ > 0, ε > 0

Output: P∗i , ϕ∗i (∀i)
1 repeat
2 repeat
3 for i = 1, · · · , QR do
4 Calculate P(k)

i according to (12);
5 end

6 until
∣∣∣u(k+1)

MRS,i − u(k)
MRS,i

∣∣∣ < ε;

7 ϕ
(k+1)
i ← ϕ

(k)
i + ∆ϕ;

8 k← k + 1;

9 until
∣∣∣u(k+1)

INT − u(k)
INT

∣∣∣ < ε;

10 Output the final solutions;

4. Numerical Examples and Performance Evaluation

In this section, some numerical examples are presented to evaluate the performance of our
proposed LPI optimization strategy. For ease of exposition, we consider a target detection scenario
similar to Figure 1, which consists of a multistatic radar system, a target, and a intercept receiver. It is
assumed that the multistatic radar system consists of QR = 6 widely deployed radar nodes, which
are located at (50, 0) km, (25, 25/

√
3) km, (−25, 25/

√
3)km, (−50, 0) km, (−25,−25/

√
3) km, and

(25,−25/
√

3) km, respectively. The position of the intercept receiver is (30, 30)km. In each time slot,
each radar receives M = 512 pulses. The probabilities of target detection and false alarm are set as
pD,i = 0.9973 (∀i) and pFA,i = 10−6 (∀i), respectively. Thus, the corresponding detection threshold
αi (∀i) and the SINR threshold γmin can be computed as 0.0267 and 10 dB, respectively. The other
system parameters are given in Table 1.

Table 1. Coexisting DMRS and Wireless Communication System Parameters.

Parameter Value Parameter Value

GT 30 dB GR 30 dB
G
′
T −30 dB G

′
R −30 dB

GI 0 dB σ2
n 10−18 W

Smin −102 dBmW ci,j 0.01
λ 0.10 m Pi,max(∀i) 5000 W

To evaluate the influence of target reflectivity on the power allocation results, we consider
two different target RCS models. In the first case, σRCS,1 = [1, 1, 1, 1, 1, 1]m2. In the second case,
σRCS,2 = [0.5, 20, 5, 0.25, 16, 50]m2. On the other hand, in order to reveal the effect of system
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configuration on resource allocation results, we consider two different target locations, that is, [0, 0] km
and [−30,−40] km.

Figure 2 depicts the convergence behavior for the transmit power of
each radar in the first case with different initial power allocation values
P(1) = [3600, 800, 300, 1500, 600, 4000] W and P(1) = [100, 2300, 1500, 280, 4600, 900] W, respectively.
Similarly, Figure 3 shows the convergence behavior for the transmit power of each radar in the second
case with P(1) = [2500, 2500, 2500, 2500, 2500, 2500] W and P(1) = [1000, 1500, 1000, 1500, 1000, 1500] W,
respectively. The proposed algorithm stops when

∣∣∣u(k+1)
INT − u(k)

INT

∣∣∣ < ε is within the desired accuracy.
It can be observed that our presented Stackelberg game-based LPI performance optimization strategy
converges fast to the unique NE points for all initial values of transmit power.
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Figure 2. Convergence behavior for the transmit power of each radar in the first case: (a) Target
position is [0, 0] km; (b) Target position is [−30,−40] km.
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Figure 3. Convergence behavior for the transmit power of each radar in the second case: (a) Target
position is [0, 0] km; (b) Target position is [−30,−40] km.

In Figures 4 and 5, we illustrate the convergence process for the transmit power allocation in
both cases. Here, we define the ratio of transmit power as κi = Pi/ ∑QR

i=1 Pi [21,22]. One can see from
Figure 3b that the proposed LPI optimization scheme would like to assign more transmit power to
Radar 1, Radar 2 and Radar 6, which are farther from the target. In addition, from Figure 3a, it can be
noticed that more power resource is allocated to Radar 4 and Radar 1, whose RCS with respect to the
target is much smaller than other radars. Hence, we can conclude that the transmit power allocation
results depend on the system geometry between target and multistatic radar and target reflectivity [26].
Furthermore, as shown in Figure 3b, the proposed optimization algorithm tends to distribute less
transmit power to the radars with larger path propagation gains.

Figures 6 and 7 show the convergence behavior for the achieved SINR of each radar in both cases.
As can be interpreted in these figures, by employing our proposed strategy, the achieved SINR value
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of each radar tends to converge to the predefined SINR threshold after 6–8 iterations, and thus the
desired target detection requirement can be satisfied.
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Figure 4. Convergence behavior for the transmit power allocation in the first case: (a) Target position is
[0, 0] km; (b) Target position is [−30,−40] km.
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Figure 5. Convergence behavior for the transmit power allocation in the second case: (a) Target position
is [0, 0] km; (b) Target position is [−30,−40] km.
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Figure 6. Convergence behavior for the achieved SINR of each radar in the first case: (a) Target position
is [0, 0] km; (b) Target position is [−30,−40] km.
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Figure 7. Convergence behavior for the achieved SINR of each radar in the second case: (a) Target
position is [0, 0] km; (b) Target position is [−30,−40] km.

Moreover, the convergence performance for the normalized utility function of intercept receiver
in both scenarios is illustrated in Figures 8 and 9. The results indicate that, as the number of iterations
increase, the revenues of intercept receiver eventually converge to the SE points in both cases.
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Figure 8. Convergence behavior for the normalized utility of intercept receiver in the first case:
(a) Target position is [0, 0] km; (b) Target position is [−30,−40] km.
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Figure 9. Convergence behavior for the normalized utility of intercept receiver in the second case:
(a) Target position is [0, 0] km; (b) Target position is [−30,−40] km.

Figures 10 and 11 show the convergence behavior for the received power at intercept receiver.
It is evident that the total transmit power received at intercept receiver from the multistatic radar
system is below the sensitivity of interceptor Smin. This is due to the fact that the proposed strategy can
coordinate the radiated power from the radar transmissions through updating the unit power prices.
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In such a case, the LPI performance of the multistatic radar system can be guaranteed by minimizing
the power consumption of each radar. To conclude, our proposed Stackelberg game-theoretic LPI
optimization scheme is effective to enhance the LPI performance of the multistatic radar system.
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Figure 10. Convergence behavior for the received power at intercept receiver in the first case: (a) Target
position is [0, 0] km; (b) Target position is [−30,−40] km.
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Figure 11. Convergence behavior for the received power at intercept receiver in the second case:
(a) Target position is [0, 0] km; (b) Target position is [−30,−40] km.

5. Conclusions

This paper studies the problem of Stackelberg game-theoretic LPI performance optimization
in multistatic radar system, whose purpose is to minimize the radiated power of each radar for a
specified target detection performance. A single-leader multi-follower Stackelberg game is established
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to systematically formulate the intercept receiver and the multiple radars’ behaviors, where the hostile
intercept receiver acts as a leader and the multiple radars are followers, respectively. The Stackelberg
game model jointly investigates the utility maximization of the interceptor and multiple radars. Based
on our theoretical findings on the existence and uniqueness of the NE in the game model, we present a
pricing-based distributed iterative power control method, and its convergence to the NE is verified
by numerical simulations. Moreover, the results of this work are useful to practically strengthen the
LPI performance for target detection in multistatic radar system. In future work, the derivations and
simulation results will be extended to the cooperative-theoretic case.
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