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In the constrained minimization method of Gidopoulos and Lathiotakis (J. Chem. Phys. 136,
224109), the Hartree exchange and correlation Kohn-Sham potential of a finite N -electron system is
replaced by the electrostatic potential of an effective charge density that is everywhere positive and
integrates to a charge of N − 1 electrons. The optimal effective charge density (electron repulsion
density, ρrep) and the corresponding optimal effective potential (electron repulsion potential vrep)
are obtained by minimizing the electronic total energy in any density functional approximation. The
two constraints are sufficient to remove the self-interaction errors from vrep, correcting its asymptotic
behavior at large distances from the system. In the present work, we describe, in complete detail,
the constrained minimization method, including recent refinements. We also assess its performance
in removing the self-interaction errors for three popular density functional approximations, namely
LDA, PBE and B3LYP, by comparing the obtained ionization energies to their experimental values
for an extended set of molecules. We show that the results of the constrained minimizations are
almost independent of the specific approximation with average percentage errors 15%, 14%, 13% for
the above DFAs respectively. These errors are substantially smaller than the corresponding errors
of the plain (unconstrained) Kohn-Sham calculations at 38%, 39% and 27% respectively. Finally,
we showed that this method correctly predicts negative values for the HOMO energies of several
anions.

I. INTRODUCTION

It is well known that approximations in density func-
tional theory (DFT) suffer from self-interaction (SI) er-
rors [1]. In the total energy, SIs arise in the Hartree (or
Coulomb) term that represents the electrostatic Coulomb
repulsion energy of the electronic charge density ρ with
itself. In theories that employ a non-interacting N -
particle (Slater determinant) state to represent the in-
teracting system, (like Hartree-Fock, Kohn-Sham-DFT),
the charge density ρ is the sum of the single-particle den-
sities of the orbitals that form the Slater determinant.

In Hartree-Fock theory, this self repulsion is cancelled
exactly for the occupied orbitals [2], by the Fock exchange
term. In KS DFT, the same happens with the exact
exchange energy functional, Ex[ρ], which is also based
on the Fock exchange energy expression in terms of the
KS orbitals. However, for approximate exchange energy
functionals the cancellation of the SIs is not complete.

Self interactions have a large impact on the accuracy of
many properties predicted by density functional approx-
imations. These errors include: artificial stabilization of
delocalized states [3], underestimating electron affinities
[4] and the underestimation of ionization energies and
band gaps[5–7].

The SI error is readily observed in the asymptotic be-
havior of the Kohn Sham (KS) potential [8]. For an N -
electron system, in a theory without SIs, the electron-
electron part of the KS potential should decay at a large
distance r away from the system as (N − 1)/r, corre-
sponding to the electrostatic potential of a charge of
N − 1 electrons. In DFT, the electron-electron inter-

action is given by the sum of the Hartree potential vH(r)
and the exchange and correlation potential vxc(r). The
asymptotic decay of the Hartree potential is N/r and
the exchange and correlation potential decays as −1/r
in a SI free approximation. Hence, SIs are evident when
vxc(r) does not decay as −1/r and in many popular den-
sity functional approximations (DFAs) vxc(r) is found
to decay exponentially fast. The result is that in these
approximations, the Hartree, exchange and correlation
(Hxc) part of the KS potential, vHxc(r), decays as N/r.
This asymptotic behavior of vHxc(r) reveals that an elec-
tron of the system interacts with the charge density of
all the electrons in the system including itself.

To expand on this point, Poisson’s law can be used
[9, 10] to define the charge density (denoted by ρHxc),
whose electrostatic potential is vHxc(r):

∇2vHxc(r) = −4πρHxc(r), vHxc(r) =

∫
dr′ ρHxc(r

′)

|r− r′|
.

(1)
Then, the presence of SIs in the approximate KS poten-
tial of a finite system can be quantified in terms of the
integrated charge of ρHxc(r) [10, 11]. If

∫
drρHxc(r) =

N − 1, the approximate KS potential is free from SIs,
while if

∫
drρHxc(r) = N , then there are full SIs in the

approximation.
There have been several attempts to correct for SI ef-

fects [1, 3, 5, 6, 10, 12–17]. The best known is the method
proposed by Perdew and Zunger in 1980 (PZ-SIC) [1], in
which the SI error for each orbital is subtracted from the
total energy, yielding a SI corrected total energy expres-
sion. A drawback of the PZ-SIC method is that its SI
correction term breaks the invariance of the total energy
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w.r.t unitary transformations of the occupied orbitals,
an issue that was addressed recently by Perdew and co-
workers [15]. In addition, there is a number of indepen-
dent SI corrections that keep unitary invariance of the
occupied orbitals, for a list see Ref. [18].

A method for correcting for SI effects in the KS poten-
tial (but without correcting the energy) was proposed by
Gidopoulos and Lathiotakis [10, 11]. In place of vHxc(r),
it employs a different effective local potential to repre-
sent the electronic repulsion, denoted by vrep(r). The
latter is variationally optimized, under two constraints,
which affect the effective potential everywhere, forcing it
to exhibit the correct asymptotic tail (N − 1)/r at large
distances from the system. The novelty of this propo-
sition is the constrained variational optimization of the
effective potential for DFAs (like LDA, GGA or hybrid),
for which the usual KS scheme would normally be em-
ployed to obtain the minimum of the total energy in an
unconstrained manner. By employing these constraints
in the optimization process, it becomes possible to incor-
porate in the resulting effective potential properties of
the exact KS potential that these approximations would
otherwise violate.

Since the potential is obtained variationally, the propo-
sition of Ref. [10] is similar to the OEP method. However,
until Ref. [10], the OEP method had been employed for
the minimization of implicit density functional (orbital
functionals), like exact exchange, and not for the more
common DFAs that are explicit functionals of the density,
as LDA or GGA.

In Ref. [10], the method was shown to correct the
asymptotics of the effective KS potential and gave im-
proved results for the ionization potentials (IPs), com-
pared with experiment. These improvements were
demonstrated for the local density approximation (LDA)
and for a small set of atoms and molecules. In addition,
in order to capture both static correlation effects (using
fractional occupations) as well as one-electron properties
(from the KS spectrum), the constrained minimization
technique of [10] was employed in the indirect minimiza-
tion of the total energy, expressed as a functional of the
one-body, reduced, density matrix [11, 19–21].

In the present work we describe in complete detail the
constrained minimization method including recent refine-
ments. We also validate our method and demonstrate its
applicability with two additional popular DFAs, the func-
tional by Perdew, Burke, Ernzerhof (PBE) [22] and the
B3LYP hybrid functional [23, 24]. Thus, we obtain sim-
ilarly improved results for the IPs of an extended set of
molecules, with the three DFAs: LDA, PBE and B3LYP.
The IP is found as the negative of the energy eigenvalue
of the highest occupied molecular orbital (HOMO)[25], a
quantity that is sensitive to the effects of SIs. These cal-
culations are carried out for both the unconstrained and
constrained methods and are compared to experimental
results for the IP.

II. METHOD

In Ref. [10], the Hartree, exchange and correlation po-
tential vHxc in the KS equations is replaced by an effec-
tive potential vrep that simulates the repulsion between
the electrons (similarly to vHxc). The single-particle (KS)
equations take the form:[

−∇
2

2
+ ven(r) + vrep(r)

]
φi(r) = εiφi(r), (2)

where ven is the attractive electron-nuclear potential.
The density of the N lowest orbitals of (2) is

ρ(r) =

N∑
i=1

|φi(r)|2 . (3)

The effective potential vrep is then represented as the
electrostatic potential of an effective charge density ρrep
giving rise to electron repulsion,

vrep(r) =

∫
dr′ ρrep(r′)

|r− r′|
. (4)

In order to correct SIs, the following conditions are im-
posed on the effective electron repulsion density ρrep:∫

ρrep(r) dr = N − 1, (5)

ρrep(r) ≥ 0. (6)

The normalization constraint in (5) is a necessary con-
dition satisfied by the exact KS potential. When it is
satisfied the potential has the correct asymptotic behav-
ior. This condition has been considered previously by
Görling[9] in the framework of exact exchange OEP. In
that case, it was employed to correct inaccuracies related
to the finite basis expansion of the orbitals and of the
potential, since the exact exchange potential is correct in
the asymptotic region, but only for a complete basis.

The constraint (5) on its own is not sufficient to yield
physical potentials: in the minimization of the DFA to-
tal energy, it would be energetically favorable to yield the
charge density corresponding to Hxc potential of the DFA
(vDFA

Hxc , which decays exponentially fast), combined with
an opposite charge of −1 spread out at a large distance
away from the electronic system. Introducing the addi-
tional positivity constraint (6) ensures that the mathe-
matical problem of determining ρrep becomes well posed.
The two constraints, (5), (6), affect the electron repul-
sion density over all space and not just in the asymptotic
region away from the molecule; hence these constraints
do not merely correct the asymptotic tail of the electron
repulsion potential.

It should be noted that the potential vrep, which plays
the role of vHxc in the KS equations, is not defined as
the functional derivative of the approximate Hxc energy
w.r.t. the density.
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To proceed, we seek the effective potential vrep in
Eq. (2), whose orbitals φi give the density ρ (Eq. (3))
that minimizes the DFA total energy,

EDFA
ven [ρ] = Ts[ρ] +

∫
dr ven(r) ρ(r) + EDFA

Hxc [ρ] , (7)

where EDFA
Hxc [ρ] is the Hxc energy functional of the density

in the DFA. Since, the density in (7) depends on the
(N -lowest) orbitals of vrep, the total energy becomes a
functional of vrep. The functional derivative of the total
energy w.r.t. the potential is:

δEDFA
ven [vrep]

δvrep(r)
=

∫
dr′ χ(r, r′)

[
vDFA
Hxc [ρ](r′)− vrep(r′)

]
,

(8)
where χ(r, r′) is the density response function,

χ(r, r′) =

occ∑
i

unocc∑
a

φi(r)φ∗a(r)φ∗i (r
′)φa(r′)

εi − εa
+ c.c. , (9)

φk, εk are the KS orbitals and energies in (2) and

vDFA
Hxc [ρ](r) =

δEDFA
Hxc [ρ]

δρ(r)

∣∣∣∣
ρ

(10)

is the Hartree, exchange and correlation potential of the
DFA, evaluated at ρ.

Since χ does not have singular (or null) eigenfunc-
tions apart from the constant function [26], the effec-
tive potential vrep(r) for which the functional derivative
(8) vanishes is vrep = vDFA

Hxc [ρ], modulo a constant func-
tion. It is reassuring that before imposing the two con-
straints (4)-(6), the variationally optimal potential from
the minimization of the total energy turns out to be the
Hxc potential of the DFA, as expected. It is worth not-
ing that up to this point, our total energy minimization
follows the optimized effective potential (OEP) method,
even when we employ a benign approximation (such as
LDA/PBE) for the XC energy functional. We now pro-
ceed to enforce the two constraints on the effective po-
tential, which is where we deviate from the OEP method-
ology.

Compared with Ref. [10], in the present work, we have
modified slightly the way we enforce the positivity con-
straint (6). In this work, to implement the two con-
straints (4)-(6), we employ a Lagrange multiplier λ to
satisfy (5), and a penalty term that increases the energy
of the objective function in all points r where the effective
charge density ρrep(r) is negative. The Lagrange multi-
plier λ and the penalty coefficient Λ have units of energy.
Since the effective potential vrep depends on the effective
density ρrep, the energy becomes a functional of ρrep and
the objective quantity to be minimized becomes:

Gven [ρrep] = EDFA
ven [ρrep]− λ

[∫
dr ρrep(r)− (N − 1)

]
+ Λ

[∫
dr |ρrep(r)| − (N − 1)

]
. (11)

At the minimum of Gven , the derivative must vanish:∫
dr

|r− x|

∫
dr′χ(r, r′)

[
vDFA
Hxc (r′)− vrep(r′)

]
− λ+ Λ sgn[ρrep(x)] = 0 , (12)

where sgn[x] is the signum function.
Introducing

b̃(x) =

∫
dr

|r− x|

∫
dr′ χ(r, r′) vDFA

Hxc (r′), (13)

and

χ̃(x,y) =

∫ ∫
dr dr′ χ(r, r′)

|r− x| |r′ − y|
, (14)

the equation determining the effective density ρrep(x) be-
comes:∫

dy χ̃(x,y) ρrep(y) = b̃(x)− λ+ Λ sgn [ρrep(x)] . (15)

We expand ρrep(r) in the auxiliary basis {χn(r)},

ρrep(r) =
∑
n

νn χn(r) , (16)

and the optimization w.r.t. ρrep(r) transform to the
search for the optimal expansion coefficients νn. Sub-
stituting the expansion (16) into Eq. (15), multiplying
by χk(x) and integrating over x, we have:

∑
n

νn

∫∫
dy dxχk(x)χ̃(x,y)χn(y) =∫
dx b̃(x)χk(x) − λ

∫
dxχk(x)

+ Λ

∫
dxχk(x) sgn[ρrep(x)] . (17)

We define:

Akn =

∫∫
dx dyχk(x) χ̃(x,y)χn(y) (18)

bk =

∫
dr b̃(r)χk(r) (19)

Xk =

∫
drχk(r) (20)

X̄k =

∫
drχk(r) sgn[ρrep(r)] , (21)

and Eq. (17) becomes:∑
n

Akn νn = bk − λXk + Λ X̄k . (22)

The solution is obtained by inverting the matrix Akn:

νm =
∑
k

A−1mk bk−λ
∑
k

A−1mkXk +Λ
∑
k

A−1mk X̄k . (23)
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From Eqs. (5), (20) we have
∑
mXm νm = N − 1. Then,

we obtain for the Lagrange multiplier λ:

λ =

∑
k,mXmA

−1
mk

[
bk + Λ X̄k

]
− (N − 1)∑

l,nXnA
−1
nl Xl

. (24)

Eqs. (23), (24) determine the expansion coefficients νn of
the effective charge density ρrep.

With a finite orbital basis, the matrix Akn has
vanishingly small eigenvalues requiring a singular value
decomposition (SVD) to remove the projections to the
(almost) null eigenvalues from the matrix. The choice
of cutoff point for the nonzero eigenvalues is often
ambiguous. Including too many small, but non-zero,
eigenvalues, leads to a slower and probably not conver-
gent calculation, while omitting them might result in
pure representation of the effective density. Both cases
may result in small differences in the calculated HOMO
energy. We found that a cutoff of ∼ 10−5 was a good
choice for most molecules. For a better way to determine
the cutoff point for the singular eigenvalues, see Ref. [27].

In our iterative procedure, shown in Fig. 1, we do not
need an initial guess for ρrep. Instead we start from an
initial guess for the KS orbitals, e.g. the LDA orbitals.
From these orbitals we calculate χ̃, Akn, bk, Xk, X̄k and
the initial ρrep. From Eq. (4), we obtain the effective
potential vrep and solve the KS equations (2). In the
inner loop, with these KS orbitals and eigenvalues we
find the response functions χ of Eq. (9) and χ̃ of Eq. (14)
and the matrix Akn in Eq. (18).

We also find the N -electron density ρ, the potential
vDFA
Hxc [ρ], the function b̃ of Eq. (13), and its projections

on the auxiliary basis functions (19) and finally X̄k of
Eq. (21). The latter differ from Xk of Eq. (20) when the
effective density changes sign. Using all these, we update
the effective density (Eq. (16)) by solving (23). Still in
the inner loop, keeping orbitals and eigenvalues fixed, we
update iteratively X̄k and the effective density (Eqs. (16),
(23)), until the following measure of negativity of ρrep

Qneg =

∫
dr
[
ρrep(r)− |ρrep(r)|

]
(25)

is sufficiently small. Practically, a criterion for positiv-
ity Qneg < 10−6 was used. In the inner loop we used
a mixing scheme for ρrep and the efficiency/convergence
were controlled by the values of the penalty parameter,
Λ, and the mixing parameter, xm. Typically, for Λ, we
used a value of the order of ∼ 100 a.u. combined with
a very small starting value for xm (∼ 10−8) which was
dynamically raised or lowered based on the change of
Qneg at each successive iteration. This loop is the bottle-
neck of our method at the present stage. An update of
our method that enforces positivity in a direct and more
efficient way is work in progress. When the positivity
criterion is satisfied, we recalculate the effective poten-
tial vrep of Eq. (4), solve the KS equations and iterate
the outer loop with updated orbitals.

Start with initial guess
for the KS orbitals

From the KS orbitals
find χ̃, Akn, bk, Xk, X̄k

Keeping the orbitals fixed
calculate νm via (23)

Use νm to find ρrep from (16)

Is the negative
component of ρrep
sufficiently small?

Recalculate vrep from ρrep

Update KS orbitals and
calculate total energy

Has the energy con-
verged sufficiently

Calculate final properties

yes

yes

no

no

FIG. 1. A flow diagram showing the procedure for a con-
strained calculation.

III. RESULTS

This method was implemented in the code HIPPO[28]
using Gaussian basis sets to expand both the orbitals and
the potentials; for the expansion of the orbitals we chose
the cc-pVDZ basis sets as a good compromise between
accuracy and speed for the calculations. Pairing the or-
bital basis with the corresponding uncontracted for the
auxiliary basis to expand ρrep was proven a successful
combination for all tests we have performed.

To demonstrate the improvement of the constrained
method vs the unconstrained approach, the highest oc-
cupied molecular orbital (HOMO) energies of large num-
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FIG. 2. Calculated IPs using the LDA compared with exper-
imental values. Blue stars show results from unconstrained
minimization; red boxes show results of the constrained min-
imization. Red and blue lines are guides to the eye. The IP
is found as the negative of the HOMO energy. The black dot-
ted line corresponds to the ideal correlation between an exact
calculation and experiment.

ber of molecules were calculated and compared to ex-
perimental results for the IPs from the NIST compu-
tational chemistry comparison and benchmark database
(CCCBDB) [29]. To show the applicability of our method
to different approximations, three DFAs were investi-
gated, LDA, PBE, and the hybrid functional B3LYP.
These DFAs are among the most popular functionals for
electronic structure calculations and they all contain self-
interaction effects, to some degree.

The results for the calculated HOMO energies are plot-
ted against the experimental results in Fig. 2 for LDA,
Fig. 3 for PBE and Fig. 4 for B3LYP. From these plots, it
is clear that the results of all the unconstrained methods
give poorer fits to the experimental results than the con-
strained, with the latter being closer to the ideal corre-
lation between calculation and experiment. For all three
approximate functionals, the calculated IP almost always
underestimates the experimental IP. This well-known un-
derestimation of the IP [30] continues to be present, but
substantially reduced, in the constrained results, except
in a handful of cases.

In Fig. 5, we plot the error in the calculated ioniza-
tion potential ∆IP, where this error is given by the dif-
ference between the experimental and calculated values,
∆IP = IPexp − IPcalc. A positive value in ∆IP implies
an underestimation of the ionization potential. The in-
ferior performance of the unconstrained relative to con-
strained minimization, is seen clearly in this figure, with
IP errors of 4eV or more occurring frequently in the un-
constrained case. The improvement of (unconstrained)
B3LYP results over LDA and PBE is also evident, due
to the partial cancellation of SIs in B3LYP. This improve-
ment, however, is surpassed and offset by the constrained
minimization technique to obtain the effective potential,
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FIG. 3. Calculated IPs using the PBE functional compared
with experimental values. Blue stars show results from un-
constrained minimization; red boxes show results of the con-
strained minimization. Red and blue lines are guides to the
eye. The IP is found as the negative of the HOMO energy.
The black dotted line corresponds to the ideal correlation be-
tween an exact calculation and experiment.
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FIG. 4. Calculated IPs using the B3LYP hybrid functional
compared with experimental values. Blue stars show results
from unconstrained minimization; red boxes show results of
the constrained minimization. Red and blue lines are guides
to the eye. The IP is found as the negative of the HOMO
energy. The black dotted line corresponds to the ideal corre-
lation between an exact calculation and experiment.

with the three approximations giving similar results to
each other.

A quantitative summary of the observations of the
graphs in Figs. 2 - 5 can be found in Table I. There,
we show the average error, ∆̄, and the percentage error
δ̄, defined by averaging over the absolute value of ∆IP
from Fig. 5, and |∆IP|/IP. The standard deviations σ
and σ̄ of the absolute values of the ∆IP and |∆IP|/IP are
also shown. The improvements of the constrained meth-
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FIG. 5. The differences between the calculated HOMO energy level and the experimental values for the ionization potential,
comparing the unconstrained and constrained minimization of the LDA, PBE and B3LYP approximations. A positive value
corresponds to an underestimation of the IP.

ods amount to a reduction in the average error for LDA
and PBE by ∼ 2.5eV while the B3LYP average error is
halved to ∼ 1.5eV. For LDA and PBE these reductions
correspond to a percentage improvement of 25% and for

B3LYP the improvement is 14% over the unconstrained
result. The standard deviation of the constrained results
are smaller than the unconstrained for LDA and PBE or
almost equal for B3LYP. The quality of the results im-
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TABLE I. The average error, ∆̄, standard deviation of the
error, σ, average percentage error, δ̄, and standard deviation
of the percentage error, σ̄, from experimental results for the
ionization potential (IP) for the molecules in Fig. 5. The IP
was approximated by the energy of the HOMO calculated
using unconstrained functionals LDA, PBE, B3LYP and the
constrained functionals CLDA, CPBE, CB3LYP. The average
energy increase, ∆E, of the total energies of the constrained
calculations compared to the unconstrained are also shown.

LDA CLDA PBE CPBE B3LYP CB3LYP

∆̄ (eV) 4.08 1.61 4.20 1.51 2.94 1.42

σ (eV) 0.93 0.74 0.94 0.77 0.71 0.73

δ̄ 38% 15% 39% 14% 27% 13%

σ̄ 6% 6% 5% 7% 5% 6%

∆E (meV) 0.1 0.2 0.3

proves not only because the average error decreases but
also the standard deviation.

An important result that is evident in Fig. 5 and
Table I is the similarity of the results of the constrained
optimizations, with all three approximations giving
similar averages and similar deviations. One might
expect this for the CLDA and CPBE calculations, since
the unconstrained results are similar. However, although
the B3LYP results are shifted by approximately 1eV
compared to the LDA and PBE results, the CB3LYP
results show no such shift when compared to CLDA and
CPBE.

As far as total energies are concerned, the replacement
of the KS potential with the constrained effective one is
expected to raise the obtained total energies. In the last
row of Table I we show the average increase in the total
energy, ∆E, from that of the corresponding KS calcula-
tion. We notice that the value of this increase is rather
small. In other words, by enforcing the constraints of
Eqs. (5), (6), we obtain total energies very close to the
unconstrained KS minimum while on the other hand the
orbital energies of the HOMO are substantially improved.
As we have mentioned, the price is that the optimal po-
tential is no longer the functional derivative of the po-
tential energy with respect to the electron density. An
interesting question of course is whether there exists a
modified total energy functional that yields the obtained
effective potential as its functional derivative w.r.t. the
density. The almost negligible size of the total energy
raise for the constrained calculation is consistent with
the observation[31] that potential terms with minimal
influence in the total energy are responsible for the large
deviation of the HOMO energies from the IPs. Thus,
a viable path for correcting the HOMO energies is the
identification and correction for such erroneous terms, as

we aim to do in this work.
Another consequence of the constraint of Eq (5) is the

introduction of a weak size inconsistency. Since the in-
crease of the total energy for the constrained minimiza-
tion has a very small value, the size inconsistency for
the total energies is also minor. The effect on IPs on
the other hand is more pronounced especially for small
systems and goes to zero as the size of the constituent
systems increases.

Calculations were also performed on a set of closed-
shell anions where the IP coincides with the electron
affinity (EA) of the neutral system. The advantages over
unconstrained functionals can be clearly seen, these re-
sults are found in Table II. Due to the expected diffuse
nature of the HOMO in anions the augmented cc-pVTZ
orbital basis set was used. With most approximate den-
sity functionals, the HOMO of the ions is found positive,
i.e. they are predicted to have unbound electrons in most
cases. This is a well known failure of many density func-
tional approximations. With the constrained minimiza-
tion method, we find that the same density functional
approximations correctly predict that these anions have
bound electrons, in agreement with experimental results.
These results demonstrate that the improvements in the
ionization energies are not limited to neutral molecules
but can also be applied to anions.

IV. CONCLUSIONS

We have presented in detail and investigated the per-
formance of the method by Gidopoulos and Lathiotakis
[10] to remove SI effects from the effective KS potential,
for three popular DFAs, LDA, PBE, and B3LYP. A nov-
elty of this method is the proposition that deficiencies of
approximate KS potentials can be corrected by replacing
the KS potentials with variationally optimized effective
potentials that satisfy certain properties. In our method,
these properties are that the electron repulsion density
integrates to N -1 and is everywhere positive, Eqs. (5),
(6).

The constrained minimization method was tested on
its prediction for the ionization potential of a large set of
molecules. Based on our results, the constrained method
is found to offer substantial improvements for all approx-
imate functionals tested, with a reduction of the average
error for LDA from 4.08eV in the unconstrained case to
1.61eV with the constrained method. Similar reductions
are found for PBE, while for the hybrid B3LYP func-
tional the average error is almost halved from 2.94eV
to 1.42eV. We also applied the method to the calcula-
tion of the HOMO energies of a group of anions which
were found correctly negative. These energies, however,
were found systematically smaller (by 20-38%) than the
electron affinities of the neutral system. In addition, we
found that, in all cases, the imposition of the constraints
only marginally affects the total energy of the system.
Finally, we point out that the corrected IPs obtained
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TABLE II. The calculated IPs (in eV) for a set of anions using both constrained and unconstrained methods for the functionals
LDA, PBE, B3LYP compared with experimental values for the electron affinities of the neutral systems. The average error, ∆̄,
the average percentage error, δ̄, and the average increase in the total energies, ∆E, are shown for each of the functionals.

system LDA CLDA PBE CPBE B3LYP CB3LYP Exp

CH−
3 - 0.30 - 0.26 - 0.51 0.08

CN− 0.17 2.96 0.05 2.78 1.33 3.45 3.86

Cl− - 2.62 - 2.63 0.86 3.07 3.61

F− - 2.24 - 2.16 0.01 2.62 3.40

NH−
2 - 0.23 - 0.15 - 0.50 0.77

OH− - 1.07 - 0.98 - 1.42 1.83

PH−
2 - 0.74 - 0.75 - 0.91 1.27

SH− - 1.57 - 1.57 - 1.91 2.31

SiH−
3 - 1.30 - 1.30 - 1.50 1.41

∆̄ (eV) 0.66 0.70 0.41

δ̄ (∗) 35% 38% 20%

∆E (meV) 0.015 0.052 0.15

(∗)The result for CH−
3 is excluded as it dominates the percentage error.

with our method are still not very accurate, reflecting
the limitations of the underlying DFAs. Improved re-
sults for the IPs can be obtained either by a more refined
DFA or by directly modeling the effective single particle
potential[31–33].

These results show the importance of correcting for
SI effects when calculating ionization potentials, and
demonstrate the applicability of the constrained method
in order to remove these self interaction effects in the KS
potential. The constrained local potential is found to be
a powerful method for improving the results of approxi-
mate functionals that contain self interactions.

Importantly, the constrained minimization results ap-
pear to be independent of the particular approximation,
as can be seen from Fig. 5 and Table I, where the con-
strained optimization results for the three DFAs give sim-
ilar results. This property can be used to allow for more

efficient calculations using a DFA that has a low com-
putational cost but is of similar accuracy, once the con-
strained minimization method is used.

ACKNOWLEDGMENTS

The work was supported by The Leverhulme Trust,
through a Research Project Grant with number RPG-
2016-005. NNL acknowledges support by the project
“Advanced Materials and Devices” (MIS 5002409) im-
plemented under the “Action for the Strategic Develop-
ment on the Research and Technological Sector”, funded
by the Operational Programme “Competitiveness, En-
trepreneurship and Innovation” (NSRF 2014-2020) and
co-financed by Greece and the European Union (Euro-
pean Regional Development Fund).

[1] J. P. Perdew and A. Zunger, Physical Review B 23, 5048
(1981).

[2] A. I. Blair, A. Kroukis, and I. N. Gidopoulos, J Chem
Phys 142, 084116 (2015).

[3] M. Lundberg and P. E. Siegbahn, The Journal of Chem-
ical Physics 122, 224103 (2005).
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[18] S. Kümmel and J. P. Perdew, Molecular Physics 101,
1363 (2003).

[19] N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gi-
dopoulos, Phys. Rev. A 90, 032511 (2014).

[20] N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gi-
dopoulos, The Journal of Chemical Physics 141, 164120
(2014).

[21] I. Theophilou, N. N. Lathiotakis, N. I. Gidopoulos,
A. Rubio, and N. Helbig, The Journal of Chemical
Physics 143, 054106 (2015).

[22] J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Re-
view Letters 77, 3865 (1996).

[23] A. D. Becke, The Journal of chemical physics 98, 5648
(1993).

[24] C. Lee, W. Yang, and R. G. Parr, Physical Review B 37,
785 (1988).

[25] C.-G. Zhan, J. A. Nichols, and D. A. Dixon, The Journal
of Physical Chemistry A 107, 4184 (2003).

[26] S. Hirata, S. Ivanov, I. Grabowski, R. J. Bartlett,
K. Burke, and J. D. Talman, J Chem Phys 115, 1635
(2001).

[27] N. I. Gidopoulos and N. N. Lathiotakis, Phys. Rev. A
85, 052508 (2012).

[28] N. Lathiotakis and M. A. Marques, The Journal of Chem-
ical Physics 128, 184103 (2008).

[29] R. D. Johnson III (2011), URL http://cccbdb.nist.

gov.
[30] G. Zhang and C. B. Musgrave, The Journal of Physical

Chemistry A 111, 1554 (2007).
[31] O. V. Gritsenko, L. M. Mentel, and E. J. Baerends, The

Journal of Chemical Physics 144, 204114 (2016).
[32] O. Gritsenko, R. van Leeuwen, E. van Lenthe, and E. J.

Baerends, Phys. Rev. A 51, 1944 (1995).
[33] P. Schipper, O. Gritsenko, S. Van Gisbergen, and

E. Baerends, The Journal of Chemical Physics 112, 1344
(2000).


