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Abstract

A bidispersive porous material is one which has usual pores but ad-

ditionally contains a system of micro pores due to cracks or fissures in

the solid skeleton. We present general equations for thermal convection

in a bidispersive porous medium when the permeabilities, interaction co-

efficient, and thermal conductivity are anisotropic but symmetric tensors.

In this case we show exchange of stabilities holds and fluid movement will

commence via stationary convection, and additionally we show the global

nonlinear stability threshold is the same as the linear instability one. At-

tention is then focussed on the case where the interaction coefficient and

thermal conductivity are isotropic, and the permeability is isotropic in the

horizontal directions, although the permeability in the vertical direction

is different. The nonlinear stability threshold is calculated in this case

and numerical results are presented and discussed in detail.

1 Introduction

Double porosity, or bidispersive, materials are occupying much research atten-
tion. A double porosity material is one where there are the usual pores, known
as macro pores, but there are also cracks or fissures in the solid skeleton and
these give rise to a micro porosity. Theories for non-isothermal fluid flow in a
bidispersive porous material were developed by Nield & Kuznetsov [1, 2, 3], see
also Nield [4], and these theories which allow for independent velocity, pressure
and temperature fields in the macro and micro phases are described in detail
in the books by Straughan [5, 6]. A simpler theory which retains independent
velocity and pressure fields but restricts attention to a single temperature field,
T (x, t), where x is a spatial variable and t denotes time, is developed from the
Nield & Kuznetsov [1] model in Falsaperla et al. [7] and further studies in this
theory are analysed in Gentile & Straughan [8, 9].
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Fluid flow, and in particular, thermal convection in a single porosity fluid
saturated porous medium has been the subject of much recent research. Partic-
ular interest has been in cases where the permeability is anisotropic, cf. Capone
et al. [10, 11, 12], Harfash [13], Harfash & Hill [14], Hill & Morad [15], Kar-
makar & Raja Sekhar [16], Rees et al. [17, 18], Straughan & Walker [19]. A
case of special practical interest is where the permeability is isotropic in the
horizontal, x, y, directions but has a different value in the vertical, z, direction.
This is known as horizontally isotropic permeability and thermal convection in
this theory is analysed in e.g. Capone et al. [10, 11, 12], and in Hill & Morad
[15]. In general when the permeability in one direction is different from that
in the orthogonal directions the material is known as transversely isotropic.
We adopt the notation horizontally isotropic permeability to distinguish with
the general case of transverse isotropy where the axis is not necessarily in the
vertical direction, cf. Tyvand & Storesletten [20], Straughan & Walker [19].

The major reason for the interest in horizontally isotropic permeability is
that many real life porous materials possess this property, such as soils or rocks,
and as Karmakar & Raja Sekhar [16] point out, analysis of such porous media
are important in hydrocarbon recovery.

Let us denote by KV the value of the vertical permeability and by KH the
value of the horizontal permeability in a horizontally isotropic porous medium.
We define the ratio ℓ2 by ℓ2 = KH/KV . Fazelalani [21] analyses various real
rocks and while KV /KH is often less than one there are cases where KV /KH =
2.4484 and KV /KH = 82.624. Ayan et al. [22] study many routine core samples
and find KV /KH often has small values, for example, for limestone they report
values of 0.0362, 0.03679 and 0.270. They also write that, ...the importance

of permeability anisotropy to sound reservoir management is not in dispute ...

so that reservoir models may be refined, leading to better field development

strategies, such as enhanced oil recovery programs and infill well placement.
Widarsono et al. [23] analyse rock samples from Indonesia and they report a
range of KV /KH values for sandstone and for carbonate rocks, the values they
find being typically in the range 0 < KV /KH < 1.2 for sandstone, whereas
0 < KV /KH < 4.2 for carbonate rocks.

Application areas for double porosity media, and especially those with anisotropic
permeability, are many and include carbon sequestration, Hill & Morad [15],
Carneiro [24]; landslides, Borja et al. [25], Montrasio et al. [26], Scotto di San-
tolo & Evangelista [27]; hydraulic fracturing for natural gas (“fracking”), Kim
& Moridis [28]; drinking water recovery from an aquifer, Zuber & Motyka [29],
Ghasemizadeh et al. [30]; oil recovery from an underground reservoir, Olusola
et al. [31], Karmakar & Raja Sekhar [16]; and nuclear waste treatment, Said
et al. [32]. These and many other applications are discussed in the books by
Straughan [5, 6].

The purpose of the present work is to present what we believe is the first
analysis of thermal convection in a bidispersive porous medium allowing for an
anisotropic permeability. We begin with a general case where the permeability
tensors for the macro and micro phases are symmetric along with the interaction
coefficients between the macro and micro velocities. We show in the general
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case that the onset of convection is by stationary convection and oscillatory
convection will not occur. We then show that an analysis of the theory of linear
instability will also guarantee nonlinear stability. This is a powerful result which
shows the linear theory is correctly capturing the physics of the onset of thermal
convection. To establish the coincidence of the linear instability and nonlinear
global stability threshold we employ an energy method. Such techniques are very
much in vogue in the literature, see e.g. Hill & Morad [15], Hill & Malashetty
[33], Hill & Carr [34, 35], Matta et al. [36], Amendola & Fabrizio [37], Amendola
et al. [38], Deepika & Narayana [39], Nandal & Mahajan [40]; see also the
books by Straughan [5, 41]. We conclude with a detailed numerical analysis
of thermal convection in a horizontally isotropic bidispersive porous medium
where we study the effects of the term ℓ2 = KH/KV , the constant interaction
parameter which arises due to fluid interactions between the macro and micro
pores, and the ratio of permeabilities in the macro and micro phases.

2 Equations of motion

We let the porous medium be contained in the horizontal layer 0 < z < d and
the temperatures on the boundaries are kept at fixed constant values, T = TL

at z = 0, T = TU at z = d, where TL > TU , where all unscaled temperatures
are in degrees Celsius.

Let the porosity of the macropores be φ, i.e. φ is the ratio of the volume of
the macropores to the total volume of the fluid saturated porous material. The
microporosity is denoted by ǫ, i.e. ǫ is the volume occupied by the micropores to
the volume of the porous body which remains once the macropores are removed.
Hence, the fraction of volume occupied by the micropores is ǫ(1 − φ) and the
fraction of volume occupied by the solid skeleton is (1 − ǫ)(1− φ).

We let Uf
i and Up

i be fluid velocities in the macropores and micropores, re-
spectively. In general, a sub or superscript f denotes fluid in the macropores
whereas a sub or superscript p denotes fluid in the micropores. The temperature
in the porous medium is T . If we allow for general anisotropic permeabilities
and interaction coefficients then the governing equations for non-isothermal flow
in an anisotropic bidispersive porous medium, employing a Boussinesq approx-
imation, may be derived from Gentile & Straughan [8] as

−Mf
ijU

f
j − ζij(U

f
j − Up

j )− pf,i + ρFαgTki = 0, Uf
i,i = 0,

−Mp
ijU

p
j − ζij(U

p
j − Uf

j )− pp,i + ρFαgTki = 0, Up
i,i = 0,

(ρc)mT,t + (ρc)f (U
f
i + Up

i )T,i = κm
ijT,ij .

(1)

In equations (1), pf and pp are the pressures in the macro and micro pores, ζij
are interaction coefficients, ρF , α, g are a reference density, coefficient of thermal
expansion, and gravity, and k = (0, 0, 1). Throughout we employ standard
indicial notation in conjunction with the Einstein summation convention, and
subscript , i denotes ∂/∂xi. The quantities (ρc)m and κm

ij are given by, cf.
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Falsaperla et al. [7],

(ρc)m = (1− φ)(1 − ǫ)(ρc)s + φ(ρc)f + ǫ(1− φ)(ρc)p ,

κm
ij = (1− φ)(1 − ǫ)κs

ij + φκf
ij + ǫ(1− φ)κp

ij ,
(2)

where c denotes the specific heat at constant pressure, and s denotes the solid
skeleton. The tensors Mf

ij and Mp
ij are given by Mf

ij = µ(Kf
ij)

−1 and Mp
ij =

µ(Kp
ij)

−1, where Kf
ij and Kp

ij are the permeability tensors for the macropores
and the micropores, and µ is the dynamic viscosity of the saturating fluid.
We shall require that Kf

ij ,K
p
ij and κm

ij are symmetric and positive-definite ten-
sors while ζij is a symmetric positive semi-definite tensor. The coefficients in

Kf
ij ,K

p
ij , κ

m
ij and ζij are here assumed constant.

Equations (1) posses the steady conduction solution

Ū
f ≡ 0, Ū

p ≡ 0, T̄ = −βz + TL , (3)

where β = (TL − TU )/d is the temperature gradient.

We derive the equations for a perturbation to (3), (uf
i , u

p
i , π

f , πp, θ) where

Uf
i = Ūf

i + uf
i , Up

i = Ūp
i + up

i , pf = p̄f + πf ,

pp = p̄p + πp, T = T̄ + θ,

and we non-dimensionalize the perturbation equations with length scale d, time
scale (ρc)md2/κm

11
, velocity scale U = κm

11
/(ρc)fd, temperature scale

T ♯ = U

√

βd2m11

kmρFαg

where km = κm
11
/(ρc)f , and where m11 = Mf

11
. We rescale Mf

ij by taking out
a factor m11 and likewise use the same factor on Mp

11
to write Mp

11
= ωm11.

Define the Rayleigh number Ra = R2 by

Ra =
βd2ρFαg

kmm11

.

Put λij = ζij/m11 and denote u
f = (uf , vf , wf ), up = (up, vp, wp). Then the

non-dimensional perturbation equations may be written in the form

−Mf
iju

f
j − λij(u

f
j − up

j )− πf
,i +Rθki = 0, uf

i,i = 0,

− ωMp
iju

p
j − λij(u

p
j − uf

j )− πp
,i +Rθki = 0, up

i,i = 0,

θ,t + (uf
i + up

i )θ,i = R(wf + wp) + κijθ,ij ,

(4)

where κij is the non-dimensional form of κm
ij . The domain of equations (4) is

{(x, y) ∈ R
2}×{0 < z < 1}×{t > 0}. We suppose the solution satisifes a plane

tiling periodicity in the (x, y) directions and we denote the periodic cell by V .
The boundary conditions are

wf = wp = θ = 0, on z = 0, 1. (5)
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3 Exchange of stabilities

We linearize equations (4) and write the solutions as

uf
j = eσtuf

j (x), up
j = eσtup

j (x), θ = eσtθ(x),

πf = eσtπf (x), πp = eσtπp(x),

cf. Chandrasekhar [42]. Then we derive the linear system of equations

−Mf
iju

f
j − λij(u

f
j − up

j )− πf
,i +Rθki = 0, uf

i,i = 0,

− ωMp
iju

p
j − λij(u

p
j − uf

j )− πp
,i +Rθki = 0, up

i,i = 0,

σθ = R(wf + wp) + κijθ,ij .

(6)

According to Chandrasekhar [42] one says the principle of exchange of stabilities
holds if σ is real and the marginal states are characterized by σ = 0, i.e. Re(σ) =
0, Im(σ) = 0. We say that if σ ∈ R then one says the strong form of the principle
of exchange of stabilities holds, cf. Chandrasekhar [42], p. 24. The importance
of this is that if we can show exchange of stabilities then we know thermal
convection commences by stationary convection. We now show the strong form
of the principle of exchange of stabilities holds for equations (6). In the interests
of clarity it is worth observing that there is a weaker statement of the principle
of exchange of stabilities which requires Im(σ) 6= 0 implies Re(σ) < 0. This was
used by E.A. Speigel in penetrative convection, see Veronis [43], and further use
is described in Davis [44], and in Straughan [41], pp. 84,85.

Let ∗ denote the complex conjugate of a quantity and let < · > denote
integration over a period cell V . Multiply (6)1 by uf∗

i , (6)2 by up∗
i , and (6)3 by

θ∗, and integrate each over V . After use of the boundary conditions we may
show

− < Mf
iju

f
j u

f∗
i > − < λij(u

f
j − up

j)u
f∗
i > +R < θwf∗ >= 0,

− ω < Mp
iju

p
ju

p∗
i > − < λij(u

p
j − uf

j )u
p∗
i > +R < θwp∗ >= 0,

σ < θθ∗ >= R
[

< wfθ∗ > + < wpθ∗ >
]

− < κijθ,jθ
∗

,i > .

Upon addition these three equations lead to

σ < θθ∗ >=− < Mf
iju

f
j u

f∗
i > −ω < Mp

iju
p
ju

p∗
i > − < κijθ,jθ

∗

,i >

− < λij(u
f
j − up

j )(u
f∗
i − up∗

i ) >

+R
[

< θwf∗ > + < wfθ∗ > + < θwp∗ > + < wpθ∗ >
]

.

(7)

Now, put σ = σr + iσ1 and take the imaginary part of (7) to obtain

σ1 < θθ∗ >= 0.

We know < θθ∗ > 6= 0 and so σ1 = 0 and σ ∈ R.
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4 Nonlinear stability

Let ‖·‖ denote the norm on L2(V ). To investigate nonlinear stability we multiply

equation (4)1 by uf
i , equation (4)2 by up

i , and (4)3 by θ and integrate each in turn
over the domain V . By integrating by parts, using the boundary conditions, and
using the fact that uf

i and up
i are solenoidal we arrive at three equations. Add

the first two of these and then one may derive the following energy identities,

− < Mf
iju

f
i u

f
j > −ω < Mp

iju
p
i u

p
j > − < λij(u

f
j−up

j )(u
f
i −up

i ) > +R < θ(wf+wp) >= 0,
(8)

and
d

dt

1

2
‖θ‖2 = R < θ(wf + wp) > − < κijθ,iθ,j > . (9)

One now adds (8) and (9) to arrive at the energy identity

dE

dt
= RI −D, (10)

where

E =
1

2
‖θ‖2, I = 2 < θ(wf + wp) >,

D = < Mf
iju

f
i u

f
j > +ω < Mp

iju
p
i u

p
j >

+ < λij(u
f
j − up

j )(u
f
i − up

i ) > + < κijθ,iθ,j > .

(11)

Define RE by
1

RE

= max
H

I

D
, (12)

where H is the space of admissible solutions, i.e. uf
i , u

p
i are in L2(V ), are

divergence free, θ is in H1(V ), all satisfy the boundary conditions (5) together
with periodicity in (x, y).

From (10) we derive

dE

dt
≤

RD

RE

−D = −D
(

1−
R

RE

)

. (13)

When R < RE put a = 1−R/RE and use Poincaré’s inequality to deduce from
(13)

d

dt

1

2
‖θ‖2 ≤ −π2κ0a‖θ‖

2 , (14)

where κ0 > 0 is the constant in the positive-definiteness of κij . Since a > 0 an
integration of (14) shows

‖θ(t)‖2 ≤ ‖θ(0)‖2 exp(−2π2κ0at), (15)

and so a > 0 guarantees rapid decay of ‖θ(t)‖. Let M1 and M2 be constants
such that

Mf
ijξiξj ≥ M1ξiξi, Mp

ijξiξj ≥ M2ξiξi, for all ξi,
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then from (8) recollecting λij is positive semi-definite, we may use the arithmetic-
geometric mean inequality to find

M1‖u
f‖2 + ωM2‖u

p‖2 ≤ R2

( 1

ωM2

+
1

M1

)

‖θ‖2. (16)

If we now employ (15) in (16) we see that a > 0 also guarantees decay of ‖uf (t)‖
and ‖up(t)‖. Thus, the global nonlinear stabilitiy threshold is RE .

To determine RE one calculates the Euler-Lagrange equations from (12),
and for Lagrange multipliers λf and λp one finds these are

−Mf
iju

f
j − λij(u

f
j − up

j ) +REθki = λf
,i, uf

i,i = 0,

− ωMp
iju

p
j − λij(u

p
j − uf

j ) +REθki = λp
,i, up

i,i = 0,

RE(w
f + wp) + κijθ,ij = 0 .

(17)

One may observe that (17) are identical to equations (6) when σ = 0 and
since we have shown exchange of stabilities holds we conclude that the nonlinear
stability boundary RaE = R2

E is the same as the linear instability boundary
RaL = R2.

5 Horizontally isotropic equations

We have shown the linear instability boundary for the conduction solution (3)
is the same as the global nonlinear stability one in the case of general symmetry
of Mf

ij ,M
p
ij , λij and κij . We now specialize to the case where λij = λδij and

κm
ij = κmδij , δij being the Kronecker delta, with λ > 0, κm > 0 constants,

and we analyse the case where Mf
ij and Mp

ij represent horizontally isotropic
permeabilities. We explicitly calculate the critical Rayleigh number for thermal
convection in this important physical case.

We thus suppose

Mf
ij = µ(Kf

ij)
−1 = diag(µ/Kf

H, µ/Kf
H , µ/Kf

V ),

whereKf
H and Kf

V are the horizontal and vertical permeabilities associated with
the macro porosity. We shall suppose Mp

ij has the same structure and assume

Mp
ij = ωMf

ij . We could allow Mf
ij and Mp

ij to be both of horizontally isotropic

type, i.e. M
f = diag(a1, a1, a3), M

p = diag(b1, b1, b3), and not impose the
restriction involving ω. However, this introduces a further parameter into the
analysis and as this is the first time we have seen such work we believe it is
acceptable to present the simpler theory. Let a1 = µ/Kf

H and a3 = µ/Kf
V and

recall ℓ2 = a3/a1 = Kf
H/Kf

V . Thus, ℓ
2 is a measure of the horizontal to vertical

permeability in both the macro porosity and micro porosity systems. As we
suppose Mp

ij has the same geometric structure as Mf
ij , it follows that

Mp
ij = µ(Kf

ij)
−1 = diag(b1, b1, b3) = diag

( µ

Kp
H

,
µ

Kp
H

,
µ

Kp
V

)

,
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whereKp
H and Kp

V are the horizontal and vertical permeabilities associated with

the micro porosity. We thus see that ω = Kf
H/Kp

H = Kf
V /K

p
V is a measure of

the ratio of horizontal or vertical permeabilities in the macro to micro porosity
systems. Note also that ℓ2 = Kf

H/Kf
V = Kp

H/Kp
V .

The conduction solution is again (3) and the governing equations are still
(1), mutatis mutandis. One may write out the perturbation equations and in
this case we use the non-dimensional variables of d for length, T ,P , U and T ♯

for time, pressure, velocity and temperature, where

T =
(ρc)md2

κm

, P = dUa1,

U =
κm

d(ρc)f
, T ♯ = U

√

a1(ρc)fβd2

ρFαgκm

.

Define λ = ζ/a1 where the interaction coefficient in equations (1) is ζij = ζδij ,
and define the Rayleigh number by

Ra = R2 =
ρFαgβd

2

a1κm

. (18)

The relevant non-dimensional perturbation equations for the horizontally isotropic
case are

−Diju
f
j − λ(uf

i − up
i )− πf

,i +Rθki = 0, uf
i,i = 0,

− ωDiju
p
j − λ(up

i − uf
i )− πp

,i +Rθki = 0, up
i,i = 0,

θ,t + (uf
i + up

i )θ,i = R(wf + wp) + ∆θ,

(19)

where Dij = diag(1, 1, ℓ2). These equations hold on the domain {(x, y) ∈ R
2}×

{z ∈ (0, 1)}×{t > 0} together with the boundary conditions (5) and periodicity
in (x, y).

6 Stability threshold

To find the linear instability (and global nonlinear stability) threshold value
critical Rayleigh number from (19) we discard the nonlinear terms and seek a

time dependence like eσt for uf
i , u

p
i , θ, π

f and πp. We then discard the resulting
σθ term since exchange of stabilities holds. We then take the double curl of
(19)1 and (19)2 and there remains the following system of equations

wf
zz + ℓ2∆∗wf + λ(∆wf −∆wp)−R∆∗θ = 0,

ω(wp
zz + ℓ2∆∗wp)− λ(∆wf −∆wp)−R∆∗θ = 0,

R(wf + wp) + ∆θ = 0,

(20)

where ∆ is the three-dimensional Laplacian and ∆∗ = ∂2/∂x2 + ∂2/∂y2 is the
horizontal Laplacian.
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Let f be a planform for the solution, cf. Chandrasekhar [42], pp. 43-
52, so that ∆∗f = −a2f , where a is the wavenumber. Then we write wf =
W f sinnπz f(x, y) for W f an amplitude, with a similar representation for wp

and θ, cf. Chandrasekhar [42]. After some manipulation we find

R2 =
λ(1 + ω)ΛℓnΛ

2

n + ωΛnΛ
2

ℓn

a2[4λΛn + (1 + ω)Λℓn]
,

where Λn = n2π2 + a2 and Λℓn = n2π2 + ℓ2a2. One may show ∂R2/∂n2 ≥ 0
and so since we must minimize R2 one selects n = 1. Then

R2 =
λ(1 + ω)ΛℓΛ

2 + ωΛΛ2

ℓ

a2[4λΛ + (1 + ω)Λℓ]
, (21)

where Λ = π2 + a2 and Λℓ = π2 + ℓ2a2.
The critical value of Ra = R2 is found by fixing λ, ω and ℓ2 and minimizing

R2 as given by (21) in a2. This we do numerically and results are reported in
the next section.

7 Numerical results and conclusions

We now report numerical results for the horizontally isotropic bidispersive con-
vection problem described in sections 5 and 6. We have computed many results
and those presented represent a selection chosen to describe the type of be-
haviour found.

The numerical results presented are displayed in a series of tables. Tables 1 -
3 show critical Rayleigh and wavenumbers, Ra, a2 for various values of ω, λ and
ℓ2. In table 4 we again show Ra and a2 but now we keep λ fixed and vary ω for a
selection of ℓ2 values. In table 5 we show detail of a2 for λ fixed with ω varying
for some ℓ2 values. Table 6 shows the variation in Ra and a2 as the interaction
parameter λ is varied for fixed ω and for two values of ℓ2. Table 7 displays Ra
and a2 for fixed ω and λ when ℓ2 is very small or relatively large. Finally in
tables 8 and 9 we fix λ and show the variation of Ra and a2 when ℓ2 is varied
for a selection of ω values. Recall from section 5 that ω = Kf

H/Kp
H = Kf

V /K
p
V

and so ω is a measure between the permeability in the macro and micro states.
Also ℓ2 = Kf

H/Kf
V = Kp

H/Kp
V and so ℓ2 measures the permeability between the

horizontal and vertical directions in the porous layer.
For many of the rocks discussed in the Introduction ℓ2 is relatively large

and certainly ℓ2 > 1. In tables 1 - 3 ℓ2 takes values 2,3 and 10, and in all
cases we see that increasing ω from 0.5 to 1.5 results in a relatively strong
increase in the critical Rayleigh number, Ra. This means that as ω increases Ra
increases and it becomes more difficult for convection to occur. Thus increasing
the permeability ratio from the macro to micro phases results in convection
occurring less easily. The wavenumber shows little variation as ω increases
although there is a minimum or maximum achieved and this is discussed further
below.
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In table 4 we see specifically how Ra increases as ω increases for fixed ℓ2

values of 0.6, 5 and 10. The Rayleigh number increases relatively strongly in all
cases as ω increases. For each fixed value of ℓ2 we see there is little variation in a2

as ω increases. However, when ℓ2 < 1, a2 decreases from ω = 0.5 to a minimum
when ω = 1 and thereafter increases. When ℓ2 = 1, a2 stays the same. When
ℓ2 > 1, a2 increases from ω = 0.5 to a maximum when ω = 1 and thereafter
decreases. The aspect ratio of a convection cell, L, is the width/depth ratio and
L ∝ 1/a. Thus, when ℓ2 < 1 the cells increase in width as ω increases toward
1 and then decrease in width afterward. For ℓ2 > 1 the effect is exactly the
opposite. Table 5 presents details of the wavenumber variation as ω increases
with λ = 0.1 and ℓ2 taking the values 0.9, 1.0 and 1.1. Again, we observe a
maximum in a2 at ω = 1.0 when ℓ2 = 0.9 and a minimum in a2 at ω = 1.0 when
ℓ2 = 1.1. When ℓ2 = 1.0 the wavenumber always stays the same.

Table 6 shows that as λ increases from 0.1 to 10, Ra increases, but rela-
tively slowly, although the Ra values depend strongly on the value of ℓ2. The
wavenumber also displays little variation over the same range of λ, and so one
may conclude that the interaction effect displayed via the λ term is having less
of an effect on convection and convection cell shape than variation in ω or ℓ2.
We have computed the λ variation for several other values of ℓ2 and the effect
observed in table 6 persists. Namely, for ℓ2 < 1, a2 displays a minimum value
as λ increases, with λ 6= 1 at the minimum, and when ℓ2 > 1, a2 displays a
maximum value, again with λ 6= 1. When ℓ2 = 1, a2 is always found to have
value 9.86960 (to 5 decimal places), regardless of the value of λ.

In table 7 we fix λ and ω and show critical Ra and a2 values for ℓ2 =
0.02, 0.03, 0.04 and ℓ2 = 200, 300, 400. The same trend as already reported is
again found with Ra being relatively small whereas a2 is relatively large for
small ℓ2, but Ra is relatively large and a2 relatively small when ℓ2 is large.
This shows that the horizontal to vertical permeability variation plays a major
role in quantitative assessment of bidispersive thermal convection. Thus, in
interpreting any experimental results it is very important to have accurate values
for the horizontal and vertical permeabilities.

Tables 8 and 9 show that as ℓ2 increases Ra increases relatively strongly and
a2 decreases relatively strongly. These values again show how important the
horizontal to vertical permeability ratio is upon thermal convection.
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Table 1: Critical values of Rayleigh number and wavenumber, for varying ω and
λ, ℓ2 = 2.0

Ra a2 ω λ ℓ2

19.554850 7.01932 0.5 0.1 2

25.609738 6.98248 0.8 0.1 2

30.139889 6.97945 1.1 0.1 2

34.660713 6.98822 1.5 0.1 2

19.830782 7.03838 0.5 0.2 2

25.642756 6.98446 0.8 0.2 2

30.146293 6.97980 1.1 0.2 2

34.779883 6.99423 1.5 0.2 2

20.337366 7.05188 0.5 0.5 2

25.706946 6.98643 0.8 0.5 2

30.159319 6.98021 1.1 0.5 2

35.034058 7.00227 1.5 0.5 2

Table 2: Critical values of Rayleigh number and wavenumber, for varying ω and
λ, ℓ2 = 3.0

Ra a2 ω λ ℓ2

24.965048 5.74510 0.5 0.1 3

32.787747 5.70236 0.8 0.1 3

38.596547 5.69889 1.1 0.1 3

44.356344 5.70880 1.5 0.1 3

25.277619 5.77045 0.5 0.2 3

32.824776 5.70489 0.8 0.2 3

38.603670 5.69932 1.1 0.2 3

44.487732 5.71616 1.5 0.2 3

25.889329 5.79484 0.5 0.5 3

32.901132 5.70797 0.8 0.5 3

38.618972 5.69993 1.1 0.5 3

44.782247 5.72752 1.5 0.5 3
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Table 3: Critical values of Rayleigh number and wavenumber, for varying ω and
λ, ℓ2 = 10.0

Ra a2 ω λ ℓ2

57.547897 3.16051 0.5 0.1 10

76.056358 3.12445 0.8 0.1 10

89.575925 3.12158 1.1 0.1 10

102.79763 3.12951 1.5 0.1 10

58.018776 3.18858 0.5 0.2 10

76.111008 3.12703 0.8 0.2 10

89.586245 3.12201 1.1 0.2 10

102.98426 3.13643 1.5 0.2 10

59.094795 3.23390 0.5 0.5 10

76.240829 3.13170 0.8 0.5 10

89.611471 3.12284 1.1 0.5 10

103.45329 3.15067 1.5 0.5 10

Table 4: Critical values of Rayleigh number and wavenumber, for varying ω.
Here λ = 0.1, ℓ2 = 0.6, ℓ2 = 5.0, ℓ2 = 10.0, in the columns for Ra, a2 moving left
to right

ω Ra a2 Ra a2 Ra a2

0.5 10.692 12.666 34.910 4.460 57.548 3.161

0.6 11.845 12.702 39.018 4.437 64.433 3.141

0.7 12.894 12.723 42.688 4.425 70.563 3.130

0.8 13.852 12.735 45.988 4.418 76.056 3.124

0.9 14.731 12.740 48.970 4.415 81.008 3.122

1.0 15.541 12.742 51.678 4.414 85.493 3.121

1.1 16.288 12.740 54.148 4.414 89.576 3.122

1.2 16.980 12.737 56.411 4.416 93.308 3.123

1.3 17.623 12.733 58.491 4.418 96.732 3.125

1.4 18.222 12.728 60.410 4.421 99.885 3.127

1.5 18.782 12.722 62.186 4.424 102.798 3.130

2.0 21.101 12.691 69.388 4.440 114.567 3.142
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Table 5: Critical values of wavenumber, for varying ω. Here λ = 0.1, ℓ2 =
0.9, ℓ2 = 1.0, ℓ2 = 1.1, in the columns for a2 moving left to right

ω a2 (ℓ2 = 0.9) a2 (ℓ2 = 1.0) a2 (ℓ2 = 1.1)

0.5 10.39206 9.86960 9.41914

0.6 10.39753 9.86960 9.41489

0.7 10.40069 9.86960 9.41244

0.8 10.40243 9.86960 9.41111

0.9 10.40325 9.86960 9.41047

1.0 10.40348 9.86960 9.41030

1.1 10.40330 9.86960 9.41043

1.2 10.40286 9.86960 9.41077

1.3 10.40224 9.86960 9.41124

1.4 10.40149 9.86960 9.41181

1.5 10.40067 9.86960 9.41243

Table 6: Critical values of Rayleigh number and wavenumber, for varying λ.
Here ω = 1.5, ℓ2 = 0.6, ℓ2 = 10.0, in the columns for Ra, a2 moving left to right

λ Ra a2 Ra a2

0.1 18.781790 12.72231 102.79763 3.12951

0.2 18.875915 12.71362 102.98426 3.13643

0.5 19.043527 12.70810 103.45329 3.15067

1.0 19.172314 12.71233 104.02485 3.16193

2.0 19.274362 12.72081 104.73788 3.16669

5.0 19.357210 12.73098 105.65291 3.15784

10.0 19.389926 12.73580 106.15992 3.14585

Table 7: Critical values of Rayleigh number and wavenumber, for large and
small values of ℓ2. Here ω = 1.5, λ = 0.5.

Ra a2 ℓ2

7.9880209 68.55 0.02

8.4296560 56.04 0.03

8.8112876 48.59 0.04

1360.7783 0.71 200.0

1991.2202 0.58 300.0

2615.6553 0.50 400.0
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Table 8: Critical values of Rayleigh number and wavenumber, for varying ℓ2.
Here λ = 0.1, ω = 0.5, ω = 0.7, ω = 0.9, in the columns for Ra, a2 moving left
to right

ℓ2 Ra a2 Ra a2 Ra a2

0.6 10.692000 12.66594 12.894017 12.72286 14.731457 12.74007

0.7 11.433015 11.74950 13.805739 11.78488 15.779334 11.79549

0.8 12.145798 11.00806 14.682581 11.02806 16.787046 11.03402

0.9 12.835472 10.39206 15.530905 10.40069 17.761933 10.40325

1.0 13.505774 9.86960 16.355344 9.86960 18.709337 9.86960

1.1 14.159532 9.41914 17.159401 9.41244 19.633294 9.41047

1.2 14.798945 9.02549 17.945794 9.01350 20.536937 9.00998

1.3 15.425762 8.67760 18.716688 8.66138 21.422758 8.65663

1.4 16.041405 8.36723 19.473838 8.34758 22.292780 8.34184

1.5 16.647045 8.08808 20.218692 8.06561 23.148668 8.05907

Table 9: Critical values of Rayleigh number and wavenumber, for varying ℓ2.
Here λ = 0.1, ω = 1.1, ω = 1.3, ω = 1.5, in the columns for Ra, a2 moving left
to right

ℓ2 Ra a2 Ra a2 Ra a2

0.6 16.287980 12.74042 17.623435 12.73311 18.781790 12.72231

0.7 17.446716 11.79571 18.874021 11.79124 20.109615 11.78464

0.8 18.561037 11.03415 20.076731 11.03165 21.386711 11.02798

0.9 19.639059 10.40330 21.240303 10.40224 22.622321 10.40067

1.0 20.686691 9.86960 22.371103 9.86960 23.823183 9.86960

1.1 21.708394 9.41043 23.473938 9.41124 24.994385 9.41243

1.2 22.707634 9.00991 24.552542 9.01135 26.139883 9.01347

1.3 23.687168 8.65653 25.609886 8.65847 27.262826 8.66131

1.4 24.649231 8.34172 26.648380 8.34406 28.365765 8.34747

1.5 25.595663 8.05893 27.670010 8.06159 29.450806 8.06547
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