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Abstract

A model is developed for double diffusive convection in a bidisperse

porous medium. Double diffusive convection is convective movement of

fluid due to temperature and salt gradient effects. A bisdisperse porous

medium is one where there are pores known as macropores, but the solid

skeleton contains cracks or fissures which give rise to a porosity in the

skeleton, known as microporosity. We concentrate on the case of a single

temperature field and attenuation is focussed on the situation where the

layer is heated from below and simultaneously heated from above.

1 Introduction

There is much current interest in the behaviour of double porosity, or bidisper-
sive, porous materials. A double porosity material is one which possesses the
normal pore structure, such pores being known as macropores, but, the solid
skeleton has cracks or fissures in it and this gives rise to a second porosity, the
smaller pores being refered to as micropores. Heat and mass transfer in a bis-
dispersive porous material has been of interest in the chemical engineering field
for some time now, see e.g. Burghardt et al. [1], Szczygiel [2, 3, 4], Valus &
Schneider [5]. The interest in heat and mass transfer in a bidispersive porous
material is driven by the many real practical applications of these phenomena,
for example, to landslides, see e.g. Montrasio et al. [6], Borja et al. [7], Borja &
White [8], Pooley [9] and Scotto di Santolo & Evangelista [10]. Another impor-
tant research area for heat and mass transfer in a bidisperse porous medium is
in biporous wicks in heat pipes, see e.g. Taqvi et al. [11], Lin et al. [12], Mottet
& Prat [13], Yeh et al. [14]. A further mundane area involves stockpiling coal,
Hooman & Maas [15], Hooman et al. [16]. Relatively small pieces of coal are
stockpiled but the coal itself contains small pores. The porosity of the stockpile
is usually higher than that in the solid coal, and the fact that these piles can self
heat makes an analysis and understanding of heat transfer vital to prevent self
combustion. There are many other applications of bidispersive porous media
and lots of these are mentioned in the monograph by Straughan [17].
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Thermosolutal porous convection, also known as double diffusive porous con-
vection, involves fluid movement in a porous medium in a non-isothermal situa-
tion where there is a salt dissolved in the fluid. In porous media this convection
for a single porosity medium was analysed in the fundamental article of Nield
[18]. Many subsequent articles have appeared dealing with linear instability,
but also clever analyses of nonlinear stability, see e.g. Joseph [19, 20], Barletta
& Nield [21], Mulone [22], Love et al. [23], Simmons et al. [24], Deepika &
Narayana [25], Deepika [26], Straughan [27]. The nonlinear stability aspect of
thermosolutal convection in a porous medium from an energy method viewponit
is the focus of attention of Lombardo et al. [28], with further information being
included in the books by Straughan [29, 30].

Fundamental theories for thermal convection in a bidisperse porous medium
were developed and analysed by Nield and Kuznetsov [31, 32, 33, 34, 35] and by
Nield [36]. This work is reviewed in Straughan [30]. Falsaperla et al. [37] and
Gentile & Straughan [38] continued analysis with the Nield-Kuznetsov models
but they restrict attention to the case where only one temperature is present
whereas Nield and Kuznetsov [32] allowed for different temperatures in the fluid
in the macro and micro pores. Further work using the single temperature model
has been given by Gentile & Straughan [39] and by Franchi et al. [40].

The aim of this paper is to present a model for fluid flow in a bidisperse
porous medium which allows for thermosolutal convection, i.e. for convective
motion incorporating temperature and salt effects. We employ a single tempera-
ture and we analyse in detail the problem of determining the onset of convective
movement when the layer is heated from below. Equations are derived which
allow for the layer to be salted below or above, although we concentrate on the
more interesting, and more complicated, case of salted from below.

We also incorporate the Soret effect, see e.g. Soret [41], Platten [42], Straughan
[30], p. 40. The effect of a temperature gradient on mass transfer in a bidis-
perse porous medium may well be of much interest. We note that in the case
of a single porosity body the problem of thermosolutal convection in a porous
medium taking into account the Soret effect has been the topic of the recent
article by Deepika [26]. The analysis of Deepika [26] effectively concentrates on
the heated below - salted above case and so there is no overlap with the present
work, which is also as far as we are aware the first analysis of double diffusive
convection in a bidispersive porous medium.

2 Governing equations

Let φ be the porosity associated to the macropores, so that φ is the ratio of the
volume of the macropores to the total volume of the saturated porous material.
Let ǫ be the porosity associated to the micropores, i.e. ǫ is the ratio of the volume
occupied by the micropores to the volume of the porous body which remains
once the macropores are removed. Thus the fraction of volume occupied by the
micropores is ǫ(1− φ).

We follow Nield and Kuznetsov [32] and use sub or superscript f and p to
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denote a quantity associated to the macropores or micropores, respectively. Let
V f
i and V p

i be the pore averaged velocities in the macro and micropores. Then

the analogous seepage velocities Uf
i and Up

i are given by

Uf
i = φV f

i , Up
i = ǫ(1− φ)V p

i .

We assume the density in the buoyancy force is a linear function of the temper-
ature, T , and salt concentration, C, and so

ρ = ρ0
[

1− α(T − T0) + αC(C − C0)
]

where α is the thermal expansion coefficient and αC is the equivalent expression
for the salt field. Then, employing a Boussinesq approximation the momentum
and continuity equations in the macropores and micropores are derived as in
Nield and Kuznetsov [32], Falsaperla et al. [37] or Gentile & Straughan [38],
and are

0 = −
µ

Kf

Uf
i − pf,i − ζ(Uf

i − Up
i ) + gρ0αkiT − αCρ0gkiC,

Uf
i,i = 0,

0 = −
µ

Kp

Up
i − pp,i − ζ(Up

i − Uf
i ) + gρ0αkiT − αCρ0gkiC,

Up
i,i = 0,

(1)

where µ is the dynamic viscosity of the fluid and ζ is an interaction coefficient,
namely the coefficient for momentum transfer between the macro and micro
phases, see Nield & Kuznetsov [32]. The quantities pf and pp are the pressures
in the macro and micro phases, k = (0, 0, 1) and g is the size of the gravity
vector. The terms Kf and Kp are the permeabilities in the macro and micro
phases. Throughout we employ standard indicial notation.

The equation governing the energy balance, i.e. the equation for the temper-
ature field is derived from the equations of Nield & Kuznetsov [32] as in Gentile
& Straughan [38] and has the form

(ρc)mT,t + (ρc)f (U
f
i + Up

i )T,i = κm∆T, (2)

where ρ is the density, c is the specific heat at constant pressure, f denotes the
macro phase and

(ρc)m = (1− ǫ)(1 − φ)(ρc)s +
[

φ+ ǫ(1− φ)
]

(ρc)f ,

κm = (1 − ǫ)(1− φ)κs +
[

φ+ ǫ(1− φ)
]

κf ,

where (ρc)s, (ρc)f , κf and κs are the products of density and specific heat in
the solid skeleton and in the fluid in the pores, respectively, and the thermal
conductivity of the fluid and solid, respectively.

We need to derive and equation for the concentration. To this end we note
that when the diffusion coefficient includes the Soret effect it has form

JC = −kC∇C − kCST∇T
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where JC is the diffusion coefficient and ST is a Soret coefficient. We thus write
differential equations for the macro and micro phases as

∂C

∂t
+ V f

i

∂C

∂xi

= kfC∆C + kfCS
f
T∆T, (3)

and
∂C

∂t
+ V p

i

∂C

∂xi

= kpC∆C + kpCS
p
T∆T. (4)

Multiply (3) by φ and (4) by ǫ(1 − φ) and add the results. In this way we
derive the following equation for the concentration field throughout the porous
medium continuum,

ǫ1
∂C

∂t
+ (Uf

i + Up
i )

∂C

∂xi

= ǫ2∆C + S∆T, (5)

where

ǫ1 = φ+ ǫ(1− φ), ǫ2 = φkfC + ǫ(1− φ)kpC , S = φSf
T + ǫ(1− φ)Sp

T .

Thus, the governing system of equations for double diffusion in a bidisperse
porous medium consist of (1), (2) and (5) for the variables Uf

i , U
p
i , p

f , pp, T and
C.

3 Basic solution and perturbation equations

We now investigate the problem of thermosolutal convection in a plane layer of
bidispersive material. Let the saturated porous material occupy the horizontal
layer 0 < z < d, {(x, y) ∈ R

2} and satisfy equations (1), (2) and (5). The
boundary conditions are,

Uf
i ni = 0, Up

i ni = 0, on z = 0, d,

T = TL, z = 0, T = TU , z = d,

C = CL, z = 0, C = CU , z = d,

(6)

where ni is the unit outward normal to the planes z = 0 and z = d, TL, TU , CL, CU

are constants with TL > TU . We derive the perturbation equations from the
steady solution under the boundary conditions

CL > CU , salted below, (7)

or
CL < CU , salted above. (8)

The basic conduction solution is then

Ūf
i ≡ 0 , Ūp

i ≡ 0 , T̄ = TL − βz , C̄ = CL − βCz, (9)
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where

β =
TL − TU

d
> 0 , βC =

CL − CU

d
. (10)

When the layer is salted below βC > 0 whereas when the layer is salted above
βC < 0.

Let uf
i , u

p
i , π

f , πp, θ, γ be a perturbation to the steady solution (9). The per-
turbations are non-dimensionalized with length scale D, time scale T , velocity
scale U , temperature scale T ♯, concentration scale C♯, where

T =
(ρc)md2

κm

, U =
κm

(ρc)fd
,

T ♯ =
βU(ρc)fd

2

κm

, C♯ =
|βC |Ud2

ǫ2
.

Define the quantities ξ,Kr, A and the Lewis number Le by

ξ =
ζKf

µ
, Kr =

Kf

Kp
, A =

(ρc)m
(ρc)f

, Le =
κm

(ρc)mǫ2
.

Define the Rayleigh number, R, and the concentration Rayleigh number, C, by

R =
ρ0αgβd

2Kf

µ[κm/(ρc)f ]
, C =

ρ0αCg|βC |d
2Kf

µǫ2
, (11)

and let S be a non-dimensional Soret number given by

S =
ST ♯

ǫ2C♯
.

The non-dimensional perturbation equations which arise from (1), (2) and (5)
are then

− uf
i − ξ(uf

i − up
i )− πf

,i +Rθki − Cγki = 0 ,

uf
i,i = 0 ,

−Krup
i − ξ(up

i − uf
i )− πp

,i +Rθki − Cγki = 0 ,

up
i,i = 0 ,

θ,t + (uf
i + up

i )θ,i = wf + wp +∆θ ,

ǫ1Leγ,t +ALe(uf
i + up

i )γ,i = ±(wf + wp) + ∆γ + S∆θ .

(12)

Equations (12) hold in the domain {(x, y) ∈ R
2} × {z ∈ (0, 1)} × {t > 0} and

with u
f = (uf , vf , wf ), up = (up, vp, wp). The boundary conditions become

wf = 0, wp = 0, θ = 0, γ = 0, z = 0, d, (13)

and the perturbation solution satisfies a plane tiling planform in the horizontal
directions with wavenumber a.
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For comparison purpose later, we recall that the analogous system of equa-
tions to (12) but for a single porosity material have the form, cf. Straughan
[29], p. 169,

ui = −π,i +Rθki − Cφki,

ui,i = 0,

θ,t + uiθ,i = ∆θ + w,

φLeγ,t + Leuiγ,i = ±w +∆γ + S∆θ.

(14)

4 Instability

From this point we concentrate on the salted below case for which we take
the positive sign in (12)6. We study the linear instability of (12), (13). By
following the classical method in Chandrasekhar [43] we take curl curl of (12)1,
(12)3, and retain the wf and wp components of the results. Equations (12)5
and (12)6 are linearized and then a time dependence like eσt is requested. This
results in having to solve the eigenvalue problem for the boundary conditions
(13) together with the equations

(1 + ξ)∆wf − ξ∆wp −R∆∗θ + C∆∗γ = 0 ,

(Kr + ξ)∆wp − ξ∆wf −R∆∗θ + C∆∗γ = 0 ,

σθ = wf + wp +∆θ ,

ǫ1Leσγ = wf + wp +∆γ + S∆θ ,

(15)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2 is the horizontal Laplacian.
The instability curves are found by resolving (15) forR and minimizing in the

wavenumber a. These kind of calculations are well known and we omit details.
It is found that the instability boundary for stationary convection (σ = 0) is
found as

4π2B + C(1− S) = R, (16)

whereas the instability boundary for oscillatory convection (σ = iσ1, σ1 ∈ R) is

4π2B

(

1 +
1

ǫ1Le

)

+
C

ǫ1Le
= R, (17)

where the constant B is given by

B =
1 + ξ + ξK−1

r

1 + 4ξK−1
r +K−1

r

. (18)

5 Conclusions

For most practical values ǫ1Le > 1 and curves (16) and (17) are straight lines
in the (C, R) plane, cf. figure 69.1 in Joseph [20], p. 46, or figure 2 in Straughan
[44], p. 1615, where the single porosity case with porosity φ is described. In
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the present case the straight lines begin on the R−axis at 4π2B and 4π2B[1 +
(ǫ1Le)

−1], respectively. The stationary convection curve has slope 1−S whereas
the oscillatory one has slope 1/ǫ1Le. Thus, if 1− S > 1/ǫ1Le the lines cross as
in figure 2 of Straughan [44]. Stationary convection will occur for C below the
intersection point and oscillatory convection thereafter, for increasing C.

The analogous lines to (16) and (17) in the single porosity case (arising from
equations (14)) are

4π2 + C(1− S) = R, (19)

and

4π2

(

1 +
1

φLe

)

+
C

φLe
= R. (20)

We observe that (16) and (17) reduce to (19) and (20) as the interaction pa-
rameter ξ → 0 and Kr = Kf/Kp → ∞. Thus, the curves for the bidispersive
problem are consistent with those for the single porosity case.

While the curves for the bidispersive case display the same qualitative be-
haviour as those for the single porosity case the quantitative behaviour is very
much influenced by the parameters ξ,Kr, ǫ1 and Le (which is different in the
bidispersive situation to the single porosity one). In particular

∂B

∂ξ
∝

(

1−
1

Kr

)2

> 0

and so for fixedKr, the value ofB increases as ξ increases. However, ∂B/∂K−1

r <
0 and so B decreases with increasing K−1

r . Effectively, this means that for small
interaction parameter ξ and Kr > 1 (which is likely) then B < 1 and the con-
vection threshold in the bidispersive case is less than that in the single porosity
case. On the other hand, if the interaction parameter ξ is sufficiently large then
B could exceed the value 1. It is thus very important to have measurements
of the parameters Kf and Kp and of the coefficient for momentum transfer
parameter ζ.

To consider some practical values we take water as the saturating fluid and
sand as the material for the porous skeleton. From Jones et al. [45] we find
the value for the diffusion coefficient of NaCl in water to be kC = 2.66× 10−9

m2 s−1. The values of thermal conductivity, specific heat at constant pressure,
and density are found from Engineeringtoolbox on the internet and we find the
thermal conductivity, specific heat at constant pressure, and density for water
and sand may be taken to be, respectively, 0.606, 0.25 W/m K, 4187, 830 J/kg
C, and 998, 1922 kg m−3. In the single porosity situation we take φ to have value
0.3, and we adopt the same value for the macro porosity φ in the bidispersive
case. The micro porosity we take as 0.2. This gives rise to values of, for the
single porosity case,

φLe = 9.63

whereas for the bidispersive case

ǫ1Le = 55.924.
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For the single porosity case the instability is stationary convection for 0 ≤
C ≤ C∗ = 4π2/φLe(1 − S − 1/φLe) with the corresponding R∗ value being
R∗ = 4π2 + 4π2(1 − S)/φLe(1 − S − 1/φLe). For C > C∗ instability is by
oscillatory convection. With S = 0 and φLe = 9.63 we find C∗ = 4.5744,
R∗ = 44.0529. Thus for 0 ≤ C ≤ C∗ the instability boundary is a straight
line connecting (C, R) = (0, 4π2) to (C∗, R∗) and instability is by stationary
convection. For C > C∗ the instability is by oscillatory convection and the curve
is a straight line emanating from (C∗, R∗) with slope 1/φLe = 0.10384.

The qualitaive shape for the bidisperse case is the same but C∗ and R∗

change. Also, the convection thresholds are governed by the parameter B given
by (18). The constant B depends on the interactioon parameter ξ and Kr =
Kf/Kp. For example, if ξ = 0.1 and Kr = 5 then B = 0.875 while for ξ = 0.1
and Kr = 1.5 one finds B = 0.269. For the latter value of B one finds the
instability curves are

0.269× 4π2 + C(1− S) = R, stationary,

and

0.269× 4π2

(

1 +
1

9.63

)

+
C

9.63
= R, oscillatory.

These may be rewritten as

10.6197 + C(1− S) = R, stationary,

and
11.7225 + 0.10384C = R, oscillatory,

respectively. Comparing this to the single porosity case we see that the insta-
bility boundary is much lower in R and the oscillatory convection curve begins
at a lower value of C∗. However, we stress that this is for ξ = 0.1 and Kr = 1.5.
For other values it may be very different. We deduce that a bidisperse porous
medium may yield very different instability values for double diffusive convec-
tion than those predicted using a single porosity model. There is a need for
measurements of the double porosity parameters Kr and ξ.

We conclude with some remarks on nonlinear stability. If we consider the
heated below - salted above case then we take the negative sign in (12)6. When
S = 0 it is straightforward to show that (12) generates a symmetric linear op-
erator and the nonlinear stability boundary is the same as the linear instability
one. When S 6= 0 this is not true and then one may proceed in an analogous
manner to Deepika [26] but using equations (12). For the heated below - salted
below case, one adopts the positive sign in (12)6, then a nonlinear stability
analysis which captures the characteristics of the linear instability threshold
does not appear to be a trivial problem. It is not obvious how one could use
Joseph’s [19, 20] method of generalized energy since the coefficients of γ,t and
of uiγ,i in (12)6 are different, unlike in the pure fluid case. This difficulty was
also encountered in the analogous double diffusive problem for a single porosity
medium by Lombardo et al. [28]. One may evidently use the generalized energy
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technique of Lombardo et al. [28] to achieve a sharper nonlinear energy stability
threshold than by simply employing the obvious L2 theory, but at the expense
of the stability being conditional upon the size of the initial data.
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