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Summary: 

Multivariate analyses, in particular correspondence analysis, (CA) have become a standard 

exploratory tool for analysing and interpreting variance in archaeological assemblages. While 

they have greatly helped analysts, they unfortunately remain abstract to the viewer, all the 

more so if the viewer has little or no experience with multivariate statistics. A second issue 

with these analyses can arise from the detachment of archaeological material from its spatial 

location. This article addresses these issues by presenting a novel method for spatially-

visualising CA so that these analyses can be interpreted intuitively. The method works by 

transforming the resultant bi-plots of the CA into colour maps using the HSV colour model, 

in which the similarity and difference between assemblages directly corresponds to the 

similarity and difference of the colours used to display them. Utilising two datasets: ceramics 

from the excavations of the Roman fortress of Vetera I, and terra sigillata forms collected as 

part of ‘The Samian Project’ the article demonstrates how the method is applied and how it 

can be used to draw out spatial and temporal trends. 
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Introduction 

The purpose of this articles is to demonstrate a method for incorporating, interpreting and 

visualising the results of multivariate analyses, namely correspondence analysis, in a spatial 

environment. Visualisation is of crucial importance to the themes of this volume and 

archaeology as a discipline in terms of communicating large and complex datasets in manner 

that is legible and insightful (Llobera 2011). Two case studies are used to highlight different 

aspects of this approach. The first case study of ceramic wares from Vetera I examines different 

ways to visualise spatial structure and zonation between assemblage groups using point 

distributions and interpolated rasters. The second case study of Samian assemblages from 

Roman Britain uses the same method to explore ways of visualising spatio-temporal changes. 

Correspondence analysis (CA) is a reductive multivariate technique for analysing associations 

between different variables and samples and is well-suited to exploring archaeological 
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assemblages which can be divided into a multitude of typologies (Baxter 1994; 2003). In the 

last decades, CA has become increasingly popular. The technique has been used for interpreting 

archaeological assemblages, including artefacts (e.g. Cool and Baxter 1999), archaeobotanical 

remains (e.g. van der Veen 2007; Livarda and van der Veen 2008) and faunal remains (e.g. 

Manning et al. 2013a; 2013b). It has been applied more widely to the analysis of ceramic 

assemblages from a range of contexts, particularly for its utility in seriation (Van de Velden et 

al. 2009; Peeples and Schachner 2012), and for distinguishing between different cultural 

groups (Pitts 2007; 2008), and is also widely used among the articles in this volume.  

Correspondence analysis maximises the representation of correspondence between rows and 

columns. CA is typically used to create bi-plots of rows (samples, or in all the examples in this 

article, archaeological assemblages) and columns (species, types, etc.). In interpreting the 

results, samples that plot in close proximity to each other on one or more axis should have 

similar features and correspond with species found that also plot in the same area (the inverse 

is also true). Thus, this has allowed the observation of archaeological groupings of site types, 

periods and broad regions. In the case of this article, the technique is used to explicitly ask 

questions of a spatial nature in relation to different ceramic types.  

One weakness of correspondence analysis for archaeological analysis is that it makes no 

reference to the similarity and difference of spatial neighbours, and has only very limited 

application in defining past regions from archaeological data. Instead, it requires the a priori 

imposition of regions or fixed geographies. For example, Manning et al. (2013a; 2013b) 

collected data on animal bone NISP (number of identifiable specimens) from early Neolithic 

sites in Europe. In their correspondence analysis bi-plot of the data, they were able to identify 

clear regional differences with a tendency for cattle and pig in northern and central Europe and 

wild species and sheep/goat in the Mediterranean (Manning et al. 2013a: fig 2). However, when 

it came to creating a visualisation of the data, they instead used distributions of pie charts 

(Manning et al. 2013b: figs 12.1, 12.6). These charts were then dislocated from the geography 

of the sites to which they corresponded so that they could be legible and did not overlap with 

one another. Through this method, one of the key advantages of the correspondence analysis – 

a means of data exploration – is lost through the spatial visualisation method used. 

Although making use of different data types (i.e. soil chemistry), the method proposed by Dore 

and López Varela (2010) is of relevance. They used trend-surface analysis to convert their 
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samples into five raster layers representing different chemical residues. Then drawing on 

remote sensing techniques these rasters were used as a basis for a principal components 

analysis and then rescaled to 0-255. The resulting raster dataset was then visualised by 

assigning the first eigenvector to red, the second to blue and the third to green with the final 

visualisation image accounting for 84.48 per cent of variation of the original five raster data 

set. This approach has potential strengths and communicates the underlying spatial structure 

clearly, but the results do not address one of the key weaknesses of reductive techniques: that 

they do not create visualisations which are easily comprehensible without the aid of substantial 

explanatory text. 

Visualisation is not straightforward, and ranges from statistical graphics to data art and 

illustration. It can be used to demonstrate a particular point, or to allow the viewer to explore 

the data and data analysis themselves. Reductive techniques are often highly meaningful to the 

analyst with absolute familiarity with their data, but highly abstract to outsiders. This is 

particularly the case if the viewer has little or no experience with multivariate statistics and 

reading scatter graphs given the lack of a clear relationship between the original dataset and 

the output of bi-plots. By any measure, this is not ideal for a visualisation.  

 

Visualising multi-dimensional data 

As a reductionist technique, CA is commonly interpreted through the use of one, two or three 

axes. The challenge for visualising and interpreting a multivariate analysis in a spatial 

environment lies in how to convert multiple variables into a comprehensive, intelligible and 

representative visualisation. Interpretation of archaeological examples has tended toward the 

interpretation of the relative position of samples to one another on the bi-plots (i.e. two axes). 

I therefore suggest that colour provides a powerful and intuitive (if imperfect) way of 

conveying the positions of the data. Put simply, if we are most interested in the similarities and 

differences between the samples, a spread of colours will show which are more or less similar.  

1-dimensional data 

The visualisation of a one-dimensional data-plot can and has been achieved with contrasting 

colours (e.g. black and white) and varying symbol size so that data points that are at one end 
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of an axis are larger than those in the centre. A divergent colour scheme can also be used so 

that colours blend from one to another with a neutral colour in the centre (e.g. red to white to 

blue, see Colorbrewer2.org and Harrower and Brewer 2003). 

2-dimensional data 

With two-dimensional plots (the bi-plot), we can achieve a similar effect through the use of a 

colour wheel with colours radiating out from the origin of the bi-plot. Two methods can be 

used, and in both cases the axis values should be converted from Cartesian to Polar coordinates 

(Figure 1). In the first method, ϕ corresponds to the hue of the symbol (in this article I have 

chosen the Hue-Saturation-Value (HSV) colour wheel for its ease of use, but this is not the 

only possible option, see below) and r corresponds to the size of the symbol. This gives a 

similar effect to the method for 1-dimensional data in that points that are further away from the 

origin are more distinctive (larger) than points that are closer. The second method is to further 

colour the symbols by equating r with a value (i.e. brightness) so that points that are closer to 

the centre are less intense (i.e. darker) and therefore difficult to distinguish from one another. 

An alternative approach is to use the Red-Green-Blue (RGB) colour model with a colour 

assigned to each axis related to red, green or blue (e.g. Red=Axis 1, Green=Axis 2). While this 

can create visually striking outputs, the results are not easily interpreted. Different 

combinations of RGB values can create colours that appear similar to one another (i.e. colour 

similarity no longer relates directly to the closeness of data-points) and there is no 

straightforward way to link a colour back to a space or direction on the data-plot with the origin 

coloured. This can potentially obscure meaningful patterning in the data. 

3-dimensional data 

The visual interpretation of three-dimensional plots is challenging, and is perhaps most 

commonly used when the data can be seen to form distinctive and spatially separated groups 

(such as familial groups). The RGB colour model can readily be adapted to three dimensions 

(with the same caveats as described above), but the conical HSV model is not suitable. The 

CIELAB colour space (defined by the Commission Internationale de l’Eclairage), designed to 

represent all possible colours perceived by humans, is spherical and presents another possible 

alternative with L (0=black, 100=white), a (-a=green, +a=red) and b (-b=blue, +b=yellow), 
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although a large proportion of the coordinate space is either not visible to human vision or not 

displayable on a standard computer display, which creates other problems. 

Case studies 

In the remainder of this article, I demonstrate two different applications of the methods 

described here to case studies with varying forms of data, scale and temporal depth. In both, I 

strive to communicate the trends that I have observed in the data as clearly and simply to the 

viewer as possible. 

Case Study 1. Ceramics from Vetera I 

The first case study is the ceramic assemblage from the site of Vetera I, a late first century BC 

and early first century CE Roman fortress at Xanten, Germany (Hanel 1995; Allison 2008; 

2013). Excavations produced a vessel assemblage of c. 9000 diagnostic sherds from 520 

trenches (Figure 2). The data are particularly suited for querying whether different groups 

within the fortress (e.g. officers, soldiers, etc.) had different, and perhaps spatially segregated, 

dining practices which are identifiable in their discarded ceramics (cf. Allison, introduction to 

this volume, where Figure 2 presents percentages of Vetera I tablewares and their form types). 

The ceramics can be divided by fabric or form to create tables suitable for correspondence 

analysis with the trenches treated as discrete samples. A version of this analysis here is 

presented in Allison and Sterry 2014; this article updates and builds upon the initial analysis 

with greater emphasis on method and visualisation. There are constraints to this analysis, the 

ceramics themselves were not available for analysis and so it was not possible to modify the 

categorisation of Hanel (1995) into something that was better suited to identifying distinct 

dining practices. A new categorisation from the dataset using a combination of fabric and form 

(i.e. South-Gaulish bowl, Belgic platter, etc.) may be more effective, but equally we might 

consider the vessel diameter or height to be pertinent (variables not consistently available from 

the dataset). In this paper, only fabric is used (Table 1) to allow for a more straightforward 

focus on the method of analysis. A correspondence analysis of the data table creates a bi-plot 

with a good distribution of the different fabric types and trenches (Figure 3). Ceramics of 

similar origin and type cluster with each other, hence we can distinguish wares of Italian origin 

(thin-walled wares and possibly so-called Pompeian red-slip wares, see Hanel 1995: 257-259), 

wares more closely related to food preparation and storage (mortaria, amphorae, and various 
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other coarse or ‘utilitarian’ wares) and non-ceramic vessels of bronze and glass. The different 

terra sigillata types, Arretine and South Gaulish, are also well defined and opposed to each 

other.  

Using these axis values, RGB and HSV colour models (as described above) were generated. 

For the RGB colour models, the first and second axes were independently scaled to run from 0 

to 255. These revised scores were then added as an attribute to a point-distribution of trench 

centroids and used to create thematic point distribution (Figure 4; this can be done in QGIS 

using the definition color_rgb([axis-1],[axis-2],0) note that blue is set to 0). For the HSV colour 

model, the first and second axis scores were first converted to polar coordinates and then scaled 

so that ϕ runs from 0-360 and r from 0-100 (Figure 5). Again, in QGIS, the definition is 

color_hsv([ϕ],100,[r]) (note that saturation is set to 100). The same approach could also be 

used with the polygon layer of the trenches themselves, but centroids are preferred for their 

clarity.  

  

  

In the RGB colour model (Figure 4), the dominant colour is orange with a strong cluster of 

greens in the centre and dark reds and browns scattered around. This highlights that the trenches 

across the central buildings had different assemblages to other parts of the fort (with the 

northern trenches registering as in between) and that there is a strong spatial structure to the 

data. However, more rigorous interrogation of the data is necessary in order to associate these 

colours with the original bi-plot (Figure 3). Figures 5 and 6 can be used together to interpret 

patterns more directly. The same basic division into three colour groups is still apparent, but 

now it can be seen that black represents those trenches with axis values close to the origin, 

greens are trenches correlated with Arretine wares and oranges are more closely correlated with 

non-ceramic vessels (i.e. glass and bronze vessels), or alternatively, inversely correlated to 

utilitarian wares and amphorae. 

As an aid to interpretation, a further step can be taken to interpolate between the locations of 

the trenches on the assumption that the finds from a trench can be taken as representative of 

the general area in which they may have been used. An inverse-distance-weighted interpolation 

was used on the trench centroids with the axis values used as Z-values (the weighting of the 
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interpolation) and number of points set to 50. This created raster layers of interpolated values 

for axis 1 and axis 2 (layers could be created for each axis of the CA if desired). As discussed 

above with relation to 1-dimensional data, these can be displayed with a divergent colour 

scheme (Figures 7 and 8). Combining 2 axes is also possible with the preferred use of an HSV 

colour model requiring a transformation of raster values from Cartesian to polar coordinates 

(creating a ϕ raster with values 0-360 and an r raster scaled to values of 0-100). These raster 

values can then be combined to form a single image (Figure 9) which is the correlate of the 

point distribution (Figure 5).  

In both the interpolation of the first and second axis, we can see again the distinctive signature 

of the central buildings vs. the more peripheral buildings within the fortress. There is also a 

second spatial structure visible on the first axis with consistently positive values in the western 

buildings and south-east corner of the fortress. This is more apparent in the combined HSV 

interpolation in which the central buildings are green (negative first axis, positive second axis), 

the eastern buildings tend to dark orange (negative first axis, negative second axis) and the 

western buildings to dark blue (positive first axis, positive second axis). 

From this analysis, although we have only plotted fabric types, we can perhaps suggest how 

different parts of the fortress, or different status groups, may have tended towards different 

types of food-related activities and begin to identify a spatial structure in the data which could 

be investigated further. We can divide the buildings into zones which have the potential to 

reflect different patterns of practice and consumption, with the principia and ‘senior officers’ 

houses’ in the centre, the building to the south-west and the street to the east as further zones. 

Continuing with this example, the central principia, ‘senior officers’ houses’ and open market 

are in front of the principia tend toward imported finewares such as the Arretine terra sigillata 

and non-ceramic vessels. The barracks and Neronian building to the east perhaps have more 

Gaulish terra sigillata and fewer vessels of utilitarian wares. The building in the south-west, 

the alleged valetudinarium, has higher quantities of utilitarian wares. The general pattern is of 

a robust spatial structure to the overall distribution.  

Although inferring building and foodways patterns from the analysis is difficult, it is clear that 

there is spatial structuring in the dataset. If we were to use a range of categorisations (e.g. 

fabric, form or a combination of both), the same analysis could be re-run to identify the 

categorisation with the most helpful spatial structure. A second issue relates to the underlying 
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tendency of correspondence analysis to overemphasise the importance of small assemblages 

and rare fabrics/forms. A resolution to this can be found in the use of the ‘multispati’ function 

of the ade4 package in R (Chessel et al. 2004; Dray and Dufour 2007) to run a spatial 

correspondence analysis (SCA). Multispati uses a spatial weights matrix of the locations of the 

samples (in this case the x and y coordinates of the trench centres) to weight a multivariate 

analysis by the Moran’s I scores of the eigenvalues. This effectively selects combinations of 

variables that maximise the variance explained by spatial descriptors (Dray et al. 2008). The 

resulting bi-plot identifies which species (fabrics) are best correlated with the spatial 

distribution of trenches (i.e. has the greatest spatial auto-correlation). As an example, the same 

dataset has been processed using the multispati function and visualised using the same method 

as described above (Figures 10, 11, 12 and 13). 

Comparing the results of the SCA with the CA, a stronger spatial structure is apparent and we 

can perhaps more confidently identify zoning (Figure 12) – the principia and central buildings 

(purple), the alleged valetudinarium and western buildings (green) and a zone to the northwest 

not identified by the CA alone (compare with Figure 9), but the area of the so-called tribunes’ 

residences (orange). Unfortunately, interpreting which wares drive this distribution is not 

straightforward, as we can see from the bi-plot (Figure 13). The first axis groups Arretine terra 

sigillata with Belgic terra rubra and southern Gaulish terra sigillata with Belgic terra nigra, 

which is essentially the result of a chronological division between the early and mid-first 

century AD. Earlier forts, from the Augustan period, have indeed been identified in this central 

area and so no doubt are partly responsible for this spatial structure (see Allison 2013: 109-

133). The second axis is less easily understood, but many of the wares in the negative portion 

– Mortaria, utilitarian wares, amphorae and Pompeian red slip-ware are more suited for 

preparation and cooking rather than serving. However, this division is slightly different to that 

observed from the CA and hence implies different activities in the buildings. A fuller 

exploration of the different vessels and their find spots may resolve these differences. They 

may also relate to the quality of the original dataset, with long trenches that extended over 

multiple buildings (but which this analysis has reduced down to centre points). However, the 

spatial structure observed and the drivers of it identified from the bi-plot appear plausible. In 

this sense, the greatest strength of both the CA and SCA (and their spatial visualisation) is their 

role in exploring a dataset and understanding its underlying structures rather than producing a 

single final conclusion. Or, to put another way: more analysis is necessary! 
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 Case Study 2. Terra sigillata from Roman Britain 

The identification of chronological change using a correspondence analysis of archaeological 

material should be common. This is all the more true of ceramic data (particularly Roman 

material), in which identifying chronological shifts or divisions has been a fundamental 

principle of analysis. Although this has resulted in datasets that are less suited to analyses of 

use and practice, it also creates the potential for detailed and reliable phasing. The second case 

study involves only terra sigillata forms collected as part of ‘The Samian Project’ (Willis 1997; 

1998; 2004; 2005; 2011). The aim of this study is to demonstrate how correspondence analysis 

can be used explicitly to consider temporal changes in regional distributions. This new analysis 

described below makes use of a dataset of 179 phased ceramic groups from across Roman 

Britain. These range in date from AD 30-277, and I have split the groups into three arbitrary 

phases based on natural breaks in the data: AD 40-80; AD 80-160 and AD 160-300 (or early, 

middle and late). Although the phases are of uneven length and only loosely correlate with pre-

existing archaeological or historical chronologies, they provide the best split for ‘The Samian 

Project’s’ dataset, producing the fewest number of sites with assemblages overlapping the 

phase boundaries. Where phase overlapping was unavoidable, sites have been grouped within 

the phase for which they have the greatest overlap. The ceramic forms were taken directly from 

Willis’ dataset and simplified into the categories: Beaker or Jar, Bowl or Dish, Cup, Cup or 

Dish, Decorated Bowl, Decorated Beaker, Platter (see Tables 2, 3, 4 and 5 for the 

categorisation, raw numbers, numbers per site, and percentages). Some basic trends in the data 

are apparent and already known (Willis 2004; 2011). For example: ‘Bowl or Dish’ increases 

markedly over time (from an initial 6.24% per ceramic group to 43.82 %) while ‘Platter’ 

decreases (39.13% to 4.79%). 

The spatial distribution of sites has good coverage, although with some clusters more evident 

in the south-east and along Hadrian’s Wall (Figure 14). Site types are less well distributed, with 

military sites in the west and north, rural and small centres in the east midlands and south east 

and major civil centres largely in the south. Military sites are far more heavily represented in 

the earlier phase, and the same is true of smaller and rural centres in the later phase. However, 

the overall coverage and variety of site types can be considered reasonably consistent across 

the three phases. The dataset is therefore suitable for considering how the use of terra sigillata 

varied by region and over time. 
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All ceramic groups were analysed together with a correspondence analysis (Figure 15). As 

expected, the first axis is dominated by the opposition of ‘Platter’ to ‘Bowl or Dish’ with the 

former plotting positive and the latter negative. Decorated vessels are roughly on the origin of 

the first axis, but ‘Cups’ and ‘Cups or Dishes’ are more positive and ‘Beaker or Jar’ more 

negative. The second axis is largely a split between decorated vessels (negative) and non-

decorated vessels (positive), ‘Cups or Dishes’ are also negative. Considering the different site 

types, it is clear that assemblages from military sites tend more towards decorated vessels 

(Willis 2011, compare Mees, this volume;), and small and rural centres tend more towards 

undecorated vessels although all site types have wide distributions across the bi-plot. 

As before, we can visualise these axis values spatially (Figures 16, 17 and 18). This identifies 

two different trends – positive and negative axis-1 values have overlapping distributions (albeit 

with more negative values in the north) while positive axis-2 values tend towards the north and 

west with negative values to the south and east. Together, these suggest that there is a strong 

spatial component to the results. This obscures temporal trends, except that more northerly sites 

tend to be later in date. 

However, if we visualise the phases individually then a clearer pattern emerges. In order to 

enhance the visualisation, the axis values have been interpolated by phase, using only the data 

points of that phase (Figures 19-30; note that due to this phasing, the multispati method 

described above {Chessel et al. 2004; Dray and Dufour 2007} should not be used as this would 

emphasise spatial structures across all phases simultaneously rather than by individual phase). 

Each phase depicts only a portion of the bi-plot, but the colour model used for both single and 

dual axis interpolations remains the same so that visualisations of different phases are directly 

comparable. As a result, it is now possible to identify some fairly strong shifts in spatial 

patterning. The temporal change identified in the first axis (Figures 19, 23, 27) is all the more 

evident as the interpolation shifts from positive values (characterised by platters and cups) for 

the early phase to negative values for the middle and late phases (characterised by ‘bowl or 

dish’). The second axis reaffirms the link between decorated forms and the military community 

with these plotting consistently in the negative part of the graph (Figures 20, 24, 28). In the 

early phase, this includes major centres such as Lincoln, Exeter and St Albans, but also nearby 

sites such as Dragonby. The combined axis plots (Figures 21, 25, 29) give a sense of change 

over time in overall assemblage composition, but also shifting groups with a military 
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community most apparent (pinks shifting to orange) and an increasingly visible rural 

community (greens) while the assemblages from urban centres remain highly varied. 

The visualisation is not without its drawbacks. Visual artefacts are more evident in these 

figures, and the interpolation especially cannot be used to predict the characteristics of sites not 

included in the analysis (due to the volatility in the dataset, and the range of factors beyond 

spatial location). However, the results are very effective in communicating the patterns 

suggested by Willis (2004; 2011) through better visualisation of the complexities in the data. 

Furthermore, the analysis demonstrates that temporal changes in ceramic consumption was not 

uniform across Roman Britain, nor that ceramics more commonly associated with the military 

communities were confined solely to military sites. These may be ‘common-sense’ 

interpretations, but nonetheless they are difficult to demonstrate using more conventional graph 

types. 

Discussion of the method 

Correspondence analysis has been used for analysing a wide array of categorical data (i.e. 

divided on the basis of a qualitative property), including archaeobotanical, faunal, ceramic, 

glass and small finds. Provided that there is consistency in the data collection and recording 

methodologies, there is no reason that such data cannot also be visualised spatially (see Sterry 

2010 for an early iteration of this spatial correspondence analysis applied to fieldwalking 

scatters). However, this form of analysis requires both rich, high- quality data-sets and good 

spatial coverage to be effective. The two case studies here use respectively 520 and 177 

different assemblages, yet both partly suffer from poor spatial coverage. 

The use of such a broad spectrum of colours in the visualisations will be less effective for some 

viewers, especially for those with colour vision deficiencies. Even for those without, the HSV 

colour wheel is far from perfect. It is easy to use for image editing, but quite poor at 

representing the spectrum of human vision as the colours are not evenly distributed and the 

primaries (red, green, blue in the HSV colour wheel) do not have the same lightness. This 

makes it harder to intuitively assess similarity and difference between colours satisfactorily. 

similar problems exist when the plots are viewed through different media – screen, projection 

and print. One option would be to use a different colour model, for example, the Munsell chart 

(or CIELAB as discussed earlier), however, these are all more computationally complicated to 
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translate. Not only would this make the visualisation more time-consuming to produce, but it 

would also create issues for some viewers as it would be less clear how the visualisation was 

created from the data and therefore whether it was still a valid representation. The scaling of 

the bi-plot is also an issue, in this paper the first axis and second axis scores have not been 

standardised or otherwise adjusted. There is potential to vary this scaling; axis values could be 

weighted by the inertia of the axis to better incorporate the different variance as explained by 

the first and second axes. Similarly, Value (of HSV) on the combined plots has been scaled 

with 0 at the origin and 100 scaled to the most distant point. Changing this scaling either by 

moving 100 closer to 0 (and treating all values more distant as 100) or by using a nonlinear 

scale (e.g. logarithmic) would be an effective method of reducing the effect of outliers and 

emphasising the spatial structure of datapoints that plot closer to 0. 

The method of interpolation is also open to debate in terms of the different strengths of inverse-

distance-weighting, trend-surface analysis, kriging (Gaussian process regression) etc. In the 

examples I have provided, I have interpolated and visualised across a Cartesian plane on the 

basis that physical proximity should normally correlate with similarity of assemblage (Tobler’s 

first law of geography – ‘everything is related to everything else, but near things are more 

related than distant things’ Tobler 1970: 236). Measuring distance is potentially problematic at 

regional and inter-regional scales, however. Barriers such as rivers and seas should be 

accounted for, although this significantly increases the computational load of the analysis and 

creates uncertainty over matters such as the location of river crossings in antiquity. 

Furthermore, it may be more valid to adapt this method to work based on ease of movement 

across space or even within a network (see especially the work of Van Oyen (2015) on 

conceptualising the flow of Roman ceramics between sites). 

Conclusion 

The two case studies considered here draw attention to the vital role that space plays in the 

composition of archaeological assemblages, whether at the intra-site, regional or inter-regional 

level. As such, it seems important to incorporate the spatial component into our analyses and 

recognise not only that we are distinguishing between different types of assemblages, but also 

different locations at multiple, varying scales. The technique demonstrated in this paper 

presents one method for addressing this.  
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