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Many new physics models that explain the intriguing anomalies in the b-quark flavor sector are severely
constrained by Bs mixing, for which the Standard Model prediction and experiment agreed well until
recently. The most recent Flavour Lattice Averaging Group (FLAG) average of lattice results for the
nonperturbative matrix elements points, however, in the direction of a small discrepancy in this observable
Cabibbo-Kobayashi-Maskawa (CKM). Using up-to-date inputs from standard sources such as PDG, FLAG
and one of the two leading CKM fitting groups to determine ΔMSM

s , we find a severe reduction of the
allowed parameter space ofZ0 and leptoquarkmodels explaining theB anomalies. Remarkably, in the former
case the upper bound on theZ0 mass approaches dangerously close to the energy scales already probed by the
LHC. We finally identify some model-building directions in order to alleviate the tension with Bs mixing.
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I. INTRODUCTION

Direct searches for new physics (NP) effects at the LHC
have so far shown no discrepancies from the Standard
Model (SM), while we have an intriguing list of deviations
between experiment and theory for flavor observables. In
particular b → sℓþℓ− transitions seem to be in tension with
the SM expectations: branching ratios of hadronic b →
sμþμ− decays [1–3] and the angular distributions for B →
Kð�Þμþμ− decay [2–11] hint at a negative, beyond the SM
(BSM) contribution to C9 [12–23]. The significance of the
effect is still under discussion because of the difficulty of
determining the exact size of the hadronic contributions
(see e.g. [24–30]). Estimates of the combined significance
of all these deviations range between 3 and almost 6
standard deviations. A theoretically much cleaner observ-
able is given by the lepton flavor universality (LFU) ratios
RK and RK� [31,32], where hadronic uncertainties drop out
to a very large extent. Here again a sizeable deviation from
the SM expectation is found by LHCb [33,34]. Such an
effect might arise for instance from new particles coupling
to bs̄ and μþμ−, while leaving the eþe− coupling mainly
unchanged (see e.g. [35–64] for an arbitrary set of papers

investigating Z0 models). Any new bs̄ coupling immedi-
ately leads to tree-level contributions to Bs mixing, which is
severely constrained by experiment. For quite some time
the SM value for the mass difference ΔMs of neutral Bs
mesons—triggering the oscillation frequency—was in
perfect agreement with experiment, see e.g. [65] or [66].
Taking, however, the most recent lattice inputs, in particular
the new average provided by the Flavour Lattice Averaging
Group (FLAG) one gets a SM value considerably above the
measurement. In this paper we investigate the drastic
consequences of this new theory prediction. In Sec. II
we review the SM prediction of Bs mixing, whose
consequences for BSM models trying to explain the B
anomalies are studied in Sec. III. We conclude in Sec. IV. In
the Appendices we give further details of the SM prediction
as well as a more critical discussion of the theoretical
uncertainties.

II. Bs MIXING IN THE SM

The mass difference of the mass eigenstates of the
neutral Bs mesons is given by

ΔMs ≡Ms
H −Ms

L ¼ 2jMs
12j: ð1Þ

The calculation of the box diagrams in Fig. 1 gives the
SM value for Ms

12, see e.g. [65] for a brief review, and
one gets

Ms
12 ¼

G2
F

12π2
λ2t M2

WS0ðxtÞBf2Bs
MBs

η̂B; ð2Þ
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with the Fermi constant GF, the masses of the W boson,
MW , and of the Bs meson, MBs

. Using CKM unitarity one
finds only one contributing CKM structure λt ¼ V�

tsVtb.
The CKM elements are the only place in Eq. (2) where an
imaginary part can arise. The result of the 1-loop diagrams
given in Fig. 1 is denoted by the Inami-Lim function [67]
S0ðxt ¼ ðm̄tðm̄tÞÞ2=M2

WÞ ≈ 2.36853, where m̄tðm̄tÞ is the
M̄S mass [68] of the top quark. Perturbative 2-loop QCD
corrections are compressed in the factor η̂B ≈ 0.83798, they
have been calculated by [69]. In the SM calculation ofMs

12

one four-quark ΔB ¼ 2 operator arises

Q ¼ s̄αγμð1 − γ5Þbα × s̄βγμð1 − γ5Þbβ: ð3Þ

The hadronic matrix element of this operator is para-
metrized in terms of a decay constant fBs

and a bag
parameter B:

hQi≡ hB0
s jQjB̄0

si ¼
8

3
M2

Bs
f2Bs

BðμÞ: ð4Þ

We also indicated the renormalization scale dependence of
the bag parameter; in our analysis we take μ ¼ m̄bðm̄bÞ.
Sometimes a different notation for the QCD corrections and
the bag parameter is used in the literature (e.g. by FLAG:
[70]), ðηB; B̂Þ instead of ðη̂B; BÞ with

η̂BB≡ ηBB̂ ¼ ηBαsðμÞ− 6
23

�
1þ αsðμÞ

4π

5165

3174

�
B; ð5Þ

B̂ ¼ 1.51926B: ð6Þ

The parameter B̂ has the advantage of being renormaliza-
tion scale and scheme independent. A commonly used SM
prediction of ΔMs was given by [65,66]

ΔMSM; 2011
s ¼ ð17.3� 2.6Þ ps−1; ð7Þ

ΔMSM; 2015
s ¼ ð18.3� 2.7Þ ps−1: ð8Þ

Both predictions agreed very well with the experimental
measurement [71]

ΔMExp
s ¼ ð17.757� 0.021Þ ps−1: ð9Þ

In 2016 Fermilab/MILC presented a new calculation [72],
which gave considerably larger values for the non-
perturbative parameter, resulting in values around 20 ps−1

for the mass difference [72–76] and being thus larger than
experiment. An independent confirmation of these large
values would of course be desirable; a first step in that
direction has been done by the HQET sum rule calculation
of [77] which is in agreement with Fermilab/MILC for the
bag parameters.
Using the most recent numerical inputs listed in

Appendix A we predict the mass difference of the neutral
Bs mesons to be1

ΔMSM; 2017
s ¼ ð20.01� 1.25Þ ps−1: ð10Þ

Here the dominant uncertainty still comes from the lattice
predictions for the nonperturbative parameters B and fBs

,
giving a relative error of 5.8%. The uncertainty in the
CKM elements contributes 2.1% to the error budget. The
CKM parameters were determined assuming unitarity of the
3 × 3 CKM matrix. The uncertainties due to mt, mb and αs
can be safely neglected at the current stage. A detailed
discussion of the input parameters and the error budget is
given in Appendixes A and B, respectively. The new central
value for the mass difference in Eq. (10) is 1.8σ above the
experimental one given in Eq. (9). This difference has
profound implications for NP models that predict sizeable
positive contributions toBsmixing.Thenewvalue for theSM
prediction depends strongly on the nonperturbative input as
well as the values of the CKM elements. We use the averages
that are provided by the lattice community (FLAG) and by
one of the two leading CKM fitting groups (CKMfitter)—see
Appendix C andAppendix D for a further discussion of these
inputs.

III. Bs MIXING BEYOND THE SM

To determine the allowed space for NP effects in Bs
mixing we compare the experimental measurement of the
mass difference with the prediction in the SM plus NP:

ΔMExp
s ¼ 2jMSM

12 þMNP
12 j ¼ ΔMSM

s

����1þ MNP
12

MSM
12

����: ð11Þ

For this equation we will use in the SM part the CKM
elements, which have been determined assuming the
validity of the SM. In the presence of BSM effects the
CKM elements used in the prediction of MSM

12 could in
general differ from the ones we use—see e.g. the case of a
fourth chiral fermion generation [78]. In the following, we

FIG. 1. SM diagrams for the transition between Bs and B̄s
mesons. The contribution of internal off-shell particles is denoted
by Ms

12.

1A more conservative determination of the SM value of the
mass difference using only tree-level inputs for the CKM
parameters can be found in Eq. (D10).
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will assume that NP effects do not involve sizeable shifts in
the CKM elements.
A simple estimate shows that the improvement of the SM

prediction from Eqs. (7)–(8) to (10) can have a drastic
impact on the size of the allowed BSM effects on Bs
mixing. For a generic NP model we can parametrize

ΔMExp
s

ΔMSM
s

¼
����1þ κ

Λ2
NP

����; ð12Þ

where ΛNP denotes the mass scale of the NP mediator and κ
is a dimensionful quantity which encodes NP couplings and
the SM contribution. If κ > 0, which is often the case in
many BSM scenarios for B anomalies considered in the
literature, and sinceΔMSM

s > ΔMExp
s , the 2σ bound on ΛNP

scales like

Λ2017
NP

Λ2015
NP

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔMExp

s

ðΔMSM
s −2δΔMSM

s Þ2015 − 1

ΔMExp
s

ðΔMSM
s −2δΔMSM

s Þ2017 − 1

vuuut ≃ 5.2; ð13Þ

where δΔMSM
s denotes the 1σ error of the SM prediction.

Hence, in models where κ > 0, the limit on the mass of the
NP mediators is strengthened by a factor 5. On the other
hand, if the tension between the SM prediction and ΔMExp

s

increases in the future, a NP contribution with κ < 0 would
be required in order to accommodate the discrepancy.
A typical example where κ > 0 is that of a purely LH

vector-current operator, which arises from the exchange of
a single mediator featuring real couplings, cf. Sec. III A.2 In
such a case, the short-distance contribution to Bs mixing is
described by the effective Lagrangian

LNP
ΔB¼2 ¼ −

4GFffiffiffi
2

p ðVtbV�
tsÞ2½CLL

bs ðs̄LγμbLÞ2 þ H:c:�; ð14Þ

where CLL
bs is a Wilson coefficient to be matched with

ultraviolet (UV) models, and which enters Eq. (11) as

ΔMExp
s

ΔMSM
s

¼
����1þ CLL

bs

Rloop
SM

����; ð15Þ

where

Rloop
SM ¼

ffiffiffi
2

p
GFM2

W η̂BS0ðxtÞ
16π2

¼ 1.3397 × 10−3: ð16Þ

In the following, we will show how the updated bound
from ΔMs impacts the parameter space of simplified
models (with κ > 0) put forth for the explanation of
the recent discrepancies in semileptonic B-physics data

(Sec. III A) and then discuss some model-building direc-
tions in order to achieve κ < 0 (Sec. III B).

A. Impact of Bs mixing on NP models
for B anomalies

A useful application of the refined SM prediction in
Eq. (10) is in the context of the recent hints of LFU
violation in semileptonic B-meson decays, both in neutral
and charged currents. Focusing first on neutral current
anomalies, the main observables are the LFU violating
ratios RKð�Þ≡BðB→Kð�Þμþμ−Þ=BðB→Kð�Þeþe−Þ [33,34],
together with the angular distributions of B → Kð�Þμþμ−

[2–11] and the branching ratios of hadronic b → sμþμ−
decays [1–3]. As hinted by various recent global fits
[18–23], and in order to simplify a bit the discussion, we
assume NP contributions only in purely LH vector currents
involving muons. The generalization to different type of
operators is straightforward. The effective Lagrangian for
semi-leptonic b → sμþμ− transitions contains the terms

LNP
b→sμμ ⊃

4GFffiffiffi
2

p VtbV�
tsðδCμ

9O
μ
9 þ δCμ

10O
μ
10Þ þ H:c:; ð17Þ

with

Oμ
9 ¼

α

4π
ðs̄LγμbLÞðμ̄γμμÞ; ð18Þ

Oμ
10 ¼

α

4π
ðs̄LγμbLÞðμ̄γμγ5μÞ: ð19Þ

Assuming purely LH currents and real Wilson coefficients
the best fit of RK and RK� yields (from e.g. [21]) ReðδCμ

9Þ ¼
−ReðδCμ

10Þ ∈ ½−0.81;−0.48� (½−1.00;−0.32�) at 1σ (2σ).
Adding also the data onB → Kð�Þμþμ− angular distributions
and other b → sμþμ− observables3 improves the statistical
significance of the fit, but does not necessarily imply larger
deviations of ReðδCμ

9Þ from zero (see e.g. [20]). In the
following we will stick only to the RK and RK� observables
and denote this benchmark as “RKð�Þ .”

1. Z0

A paradigmatic NP model for explaining the B anoma-
lies in neutral currents is that of a Z0 dominantly coupled
via LH currents. Here, we focus only on the part of the
Lagrangian relevant for b → sμþμ− transitions and Bs
mixing, namely

LZ0 ¼ 1

2
M2

Z0 ðZ0
μÞ2 þ ðλQijd̄iLγμdjL þ λLαβℓ̄

α
Lγ

μℓ
β
LÞZ0

μ; ð20Þ

2Similar scenarios leading to κ > 0were considered in 2016 by
Blanke and Buras [73] in the context of CMFV models.

3These include for instance BðBs → μþμ−Þ which is particu-
larly constraining in the case of pseudoscalar mediated quark
transitions (see e.g. [79]).
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where di and ℓα denote down-quark and charged-lepton
mass eigenstates, and λQ;L are Hermitian matrices in flavor
space. Of course, any full-fledged [i.e. SUð2ÞL ×Uð1ÞY
gauge invariant and anomaly free] Z0 model attempting an
explanation of RKð�Þ via LH currents can be mapped into
Eq. (20). After integrating out the Z0 at tree level, we obtain
the effective Lagrangian

Leff
Z0 ¼ −

1

2M2
Z0
ðλQijd̄iLγμdjL þ λLαβℓ̄

α
Lγμℓ

β
LÞ2

⊃ −
1

2M2
Z0
½ðλQ23Þ2ðs̄LγμbLÞ2

þ 2λQ23λ
L
22ðs̄LγμbLÞðμ̄LγμμLÞ þ H:c:�: ð21Þ

Matching with Eqs. (17) and (14) we get

δCμ
9 ¼ −δCμ

10 ¼ −
πffiffiffi

2
p

GFM2
Z0α

�
λQ23λ

L
22

VtbV�
ts

�
; ð22Þ

and

CLL
bs ¼ ηLLðMZ0 Þ

4
ffiffiffi
2

p
GFM2

Z0

�
λQ23

VtbV�
ts

�2

; ð23Þ

whereηLLðMZ0 Þ encodes the runningdown to thebottommass
scaleusingNLOanomalousdimensions [80,81].For example,
for MZ0 ∈ ½1; 10� TeV we find ηLLðMZ0 Þ ∈ ½0.79; 0.75�.
Here we consider the case of a real coupling λQ23, so that

CLL
bs > 0 and δCμ

9 ¼ −δCμ
10 is also real. This assumption is

consistent with the fact that nearly all the groups perform-
ing global fits [12–23] (see however [82] for an exception)
assumed so far real Wilson coefficients in Eq. (17) and also
follows the standard approach adopted in the literature for
the Z0 models aiming at an explanation of the b → sμþμ−
anomalies (for an incomplete list, see [35–64]). In fact,
complex Z0 couplings can arise via fermion mixing, but are
subject to additional constraints from CP-violating observ-
ables (cf. Sec. III B).
The impact of the improved SM calculation of Bs mixing

on the parameter space of the Z0 explanation of RKð�Þ is
displayed in Fig. 2, for the reference value λL22¼1.4 Note
that the old SM determination, ΔMSM; 2015

s , allowed forM0
Z

as heavy as ≈10 TeV in order to explain RKð�Þ at 1σ. In
contrast,ΔMSM; 2017

s implies nowM0
Z≲2TeV. Remarkably,

even for λL22 ¼
ffiffiffiffiffiffi
4π

p
, which saturates the perturbative

unitarity bound [85,86], we find that the updated limit
from Bs mixing requires M0

Z ≲ 8 TeV for the 1σ explan-
ation of RKð�Þ . Whether a few TeV Z0 is ruled out or not by
direct searches at LHC depends however on the details of

the Z0 model. For instance, the stringent constraints from
dilepton searches [87] are tamed in models where the Z0
couples mainly third generation fermions (as e.g. in [63]).
This notwithstanding, the updated limit fromBs mixing cuts
dramatically into the parameter space of the Z0 explanation
of the b → sμþμ− anomalies, with important implications
for LHC direct searches and future colliders [88].

2. Leptoquarks

Another popular class of simplified models which has
been proposed in order to address the b → sμþμ− anoma-
lies consists in leptoquark mediators (see e.g. [89–106]).
Although Bs mixing is generated at one loop [107,108],5

and hence the constraints are expected to be milder
compared to the Z0 case, the connection with the anomalies
is more direct due to the structure of the leptoquark
couplings. For instance, let us consider the scalar-lepto-
quark S3 ∼ ð3̄; 3; 1=3Þ,6 with the Lagrangian

LS3 ¼ −M2
S3
jSa3j2 þ yQL

iα QciðϵσaÞLαSa3 þ H:c:; ð24Þ

where σa (for a ¼ 1, 2, 3) are Pauli matrices, ϵ ¼ iσ2,
and we employed the quark Qi ¼ ðV�

jiu
j
L diLÞT and lepton

FIG. 2. Bounds from Bs mixing on the parameter space of the
simplified Z0 model of Eq. (20), for real λQ23 and λ

L
22 ¼ 1. The blue

and red shaded areas correspond respectively to the 2σ exclusions
from ΔMSM; 2015

s and ΔMSM; 2017
s , while the solid (dashed) black

curves encompass the 1σ (2σ) best-fit region from RKð�Þ .

4For mZ0 ≲ 1 TeV the coupling λL22 is bounded by the Z → 4μ
measurement at LHC and by neutrino trident production [83]. See
for instance Fig. 1 in [84] for a recent analysis.

5The scalar-leptoquark model proposed in Ref. [101] is a
notable exception.

6Similar considerations apply to the vector leptoquarks
Uμ

1 ∼ ð3; 1; 2=3Þ and Uμ
3 ∼ ð3; 3; 2=3Þ, which also provide a good

fit for RKð�Þ. The case of massive vectors is however subtler, since
the calculability of loop observables depends upon the UV
completion (for a recent discussion, see e.g. [109]).
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Lα ¼ ðναL ℓα
LÞT doublet representations (V being the CKM

matrix). The contribution to the Wilson coefficients in
Eq. (17) arises at tree level and reads

δCμ
9 ¼ −δCμ

10 ¼
πffiffiffi

2
p

GFM2
S3
α

�
yQL
32 y

QL�
22

VtbV�
ts

�
; ð25Þ

while that to Bs mixing in Eq. (14) is induced at one
loop [110]

CLL
bs ¼ ηLLðMS3Þ

4
ffiffiffi
2

p
GFM2

S3

5

64π2

�
yQL
3α y

QL�
2α

VtbV�
ts

�2

; ð26Þ

where the sum over the leptonic index α ¼ 1, 2, 3 is
understood. In order to compare the two observables we
consider in Fig. 3 the case in which only the couplings
yQL
32 y

QL�
22 (namely those directly connected to RKð�Þ) con-

tribute to Bs mixing and further assume real couplings, so
that we can use the results of global fits which apply to
real δCμ

9 ¼ −δCμ
10.

The bound on MS3 from Bs mixing is strengthened by a
factor 5 thanks to the new determination of ΔMs, which
yields MS3 ≲ 22 TeV, in order to explain RKð�Þ at 1σ
(cf. Fig. 3). On the other hand, in flavor models predicting
a hierarchical structure for the leptoquark couplings one
rather expects yQL

i3 ≫ yQL
i2 , so that the dominant contribu-

tion to ΔMs is given by y
QL
33 y

QL�
23 . For example, yQL

i3 =yQL
i2 ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mτ=mμ

p
≈ 4 in the partial compositeness framework of

Ref. [90], so that the upper bound on MS3 is strengthened

by a factor yQL
33 y

QL�
23 =yQL

32 y
QL�
22 ∼ 16. The latter can then

easily approach the limits from LHC direct searches which

imply MS3 ≳ 900 GeV, e.g. for a QCD pair-produced S3
dominantly coupled to third generation fermions [111].

3. Combined RK(�) and RD(�) explanations

Another set of intriguing anomalies in B-physics
data is that related to the LFU violating ratios RDð�Þ ≡
BðB → Dð�Þτν̄Þ=BðB → Dð�Þℓν̄Þ (here, ℓ ¼ e, μ), which
turn out to be larger than the SM [112–114]. Notably, in
this case NP must compete with a tree-level SM charged
current, thus requiring a sizeably larger effect compared to
neutral current anomalies. The conditions under which a
combined explanation of RKð�Þ and RDð�Þ can be obtained,
compatibly with a plethora of other indirect constraints (as
e.g. those pointed out in [115,116]), have been recently
reassessed at the EFT level in Ref. [117]. Regarding Bs-
mixing, dimensional analysis [see e.g. Eq. (6) in [117]]
shows that models without some additional dynamical
suppression (compared to semileptonic operators) are
severely constrained already with the old ΔMs value.
For instance, solutions based on a vector triplet V 0 ∼
ð1; 3; 0Þ [118], where Bs mixing arises at tree level, are
in serious tension with data unless one invokes e.g. a
percent level cancellation from extra contributions [117].
The updated value of ΔMs in Eq. (10) makes the tuning
required to achieve that even worse. On the other hand,
leptoquark solutions [e.g. the vector Uμ

1 ∼ ð3; 1; 2=3Þ]
comply better with the bound due to the fact that Bs
mixing arises at one loop, but the contribution to ΔMs
should be actually addressed in specific UV models
whenever calculable [104].

B. Model-building directions for ΔMNP
s < 0

Given the fact that ΔMSM
s > ΔMexp

s at about 2σ, it is
interesting to speculate about possible ways to obtain a
negative NP contribution to ΔMs, thus relaxing the tension
between the SM and the experimental measurement.
Sticking to the simplified models of Sec. III A (Z0 and

leptoquarks coupled only to LH currents), an obvious
solution in order to achieve CLL

bs < 0 is to allow for complex
couplings [cf. Eqs. (23) and (26)]. For instance, in Z0 models
this could happen as a consequence of fermion mixing if the
Z0 does not couple universally in the gauge-current basis. A
similar mechanism could be at play for vector leptoquarks
arising from a spontaneously broken gauge theory, while
scalar-leptoquark couplings to SM fermions are in general
complex even before going in the mass basis.
Extra phases in the couplings are constrained by

CP-violating observables, that we discuss in turn. In order
to quantify the allowed parameter space for a generic,
complex coefficient CLL

bs in Eq. (14), we parametrize NP
effects in Bs mixing via

MSMþNP
12

MSM
12

≡ jΔjeiϕΔ ; ð27Þ
FIG. 3. Bounds from Bs mixing on the parameter space of the
scalar-leptoquark model of Eq. (24), for real yQL

32 y
QL�
22 couplings.

Meaning of shaded areas and curves as in Fig. 2.

UPDATED Bs-MIXING CONSTRAINTS ON NEW … PHYS. REV. D 97, 095035 (2018)

095035-5



where

jΔj ¼
����1þ CLL

bs

Rloop
SM

����; ϕΔ ¼ Arg

�
1þ CLL

bs

Rloop
SM

�
: ð28Þ

The former is constrained by ΔMExp
s =ΔMSM

s ¼ jΔj, while
the latter by the mixing-induced CP asymmetry [65,119]7

Amix
CP ðBs → J=ψϕÞ ¼ sin ðϕΔ − 2βsÞ; ð29Þ

where Amix
CP ¼−0.021�0.031 [71], βs¼0.01852�0.00032

[120], and we neglected penguin contributions [65]. The
combined 2σ constraints on the Wilson coefficient CLL

bs are
displayed in Fig. 4.
For ArgðCLL

bs Þ¼0we recover the 2σ bound jCLL
bs j=Rloop

SM ≲
0.014, which basically corresponds to the case discussed in
Sec. III A where we assumed a nearly real CLL

bs (up to a
small imaginary part due to Vts). On the other hand, a
nonzero phase of CLL

bs allows us to relax the bound from
ΔMs, or even accommodateΔMs at 1σ (region between the
two solid red curves in Fig. 4), compatibly with the 2σ
allowed region from Amix

CP (blue shaded area in Fig. 4). For
ArgðCLL

bs Þ ≈ π values of jCLL
bs j=Rloop

SM as high as 0.21 are
allowed at 2σ, relaxing the bound on the modulus of
the Wilson coefficient by a factor 15 with respect to
the ArgðCLL

bs Þ¼0 case. Note, however, that the limit
ArgðCLL

bs Þ ¼ π corresponds to a nearly imaginary δCμ
9 ¼

−δCμ
10 which would presumably spoil the fit of RKð�Þ , since

the interference with the SM contribution would be
strongly suppressed. Nevertheless, it would be interesting
to perform a global fit of RKð�Þ , together with ΔMs and Amix

CP
while allowing for nonzero values of the phase, in order to
see whether a better agreement with the data can be
obtained. Nonzero weak phases can potentially reveal
themselves also via their contribution to triple product
CP asymmetries in B → Kð�Þμþμ− angular distributions
[82]. This is however beyond the scope of the present paper
and we leave it for a future work.
An alternative way to achieve a negative contribution for

ΔMNP
s is to go beyond the simplified models of Sec. III A

and contemplate generalized chirality structures. Let us
consider for definiteness the case of a Z0 coupled both to
left handed (LH) and (right handed) RH down-quark
currents

LZ0 ⊃
1

2
M2

Z0 ðZ0
μÞ2 þ ðλQijd̄iLγμdjL þ λdijd̄

i
Rγ

μdjRÞZ0
μ: ð30Þ

Upon integrating out the Z0 one obtains

Leff
Z0 ⊃ −

1

2M2
Z0
½ðλQ23Þ2ðs̄LγμbLÞ2 þ ðλd23Þ2ðs̄RγμbRÞ2

þ 2λQ23λ
d
23ðs̄LγμbLÞðs̄RγμbRÞ þ H:c:�: ð31Þ

The LR vector operator can clearly have any sign, even for
real couplings. Moreover, since it gets strongly enhanced
by renormalization-group effects compared to left-left and
right-right vector operators [121], it can easily dominate the
contribution to ΔMNP

s . Note, however, that λd23 contributes
to RKð�Þ via RH quark currents whose presence is disfavored
by global fits, since they break the approximate relation
RK ≈ RK� that is observed experimentally (see e.g. [22]).
Hence, also in this case, a careful study would be required
in order to assess the simultaneous explanation of RKð�Þ

and ΔMs.

IV. CONCLUSIONS

In this paper, we have updated the SM prediction for the
Bs-mixing observableΔMs [Eq. (10)] using the most recent
values for the input parameters, in particular new results
from the lattice averaging group FLAG. Our update shifts
the central value of the SM theory prediction upwards and
away from experiment by 13%, while reducing the theory
uncertainty compared to the previous SM determination by
a factor of 2. This implies a 1.8σ discrepancy from the SM.
We further discussed an important application of the

ΔMs update for NP models aimed at explaining the recent
anomalies in semileptonic Bs decays. The latter typically
predict a positive shift in the NP contribution to ΔMs, thus
making the discrepancy with respect to the experimental
value even worse. As a generic result we have shown that,
whenever the NP contribution to ΔMs is positive, the limit

FIG. 4. Combined constraints on the complex Wilson coef-
ficient CLL

bs . The blue shaded area is the 2σ allowed region from
Amix
CP , while the solid (dashed) red curves enclose the 1σ (2σ)

regions from ΔMSM; 2017
s .

7The semileptonic CP asymmetries for flavor-specific decays,
assl, do not pose serious constraints since the experimental errors
are still too large [65].

DI LUZIO, KIRK, and LENZ PHYS. REV. D 97, 095035 (2018)

095035-6



on the mass of the NP mediators that must be invoked to
explain any of the anomalies is strengthened by a factor of 5
(for a given size of couplings) compared to using the 2015
SM calculation for ΔMs.
In particular, we considered two representative examples

of NP models featuring purely LH current and real
couplings—that of a Z0 with the minimal couplings needed
to explain RKð�Þ anomalies, and a scalar [SUð2ÞL triplet]
leptoquark model. For the Z0 case we get an upper bound on
the Z0 mass of 2 TeV (for unit Z0 coupling to muons,
cf. Fig. 2), an energy scale that is already probed by direct
searches at LHC. On the other hand, the bounds on
leptoquark models from Bs mixing are generically milder,
being the latter loop suppressed. For instance, taking only
the contribution of the couplings needed to fit RKð�Þ for the
evaluation of ΔMs we find that the upper bound on the
scalar-leptoquark mass is brought down to about 20 TeV
(cf. Fig. 3). This limit gets however strengthened in flavor
models predicting a hierarchical structure of the leptoquark
couplings to SM fermions and can easily approach the
region probed by the LHC. Trying in addition to solve the
deviations in RDð�Þ implies very severe bounds from Bs
mixing as well, since the overall scale of NP must be
lowered compared to the case of only neutral current
anomalies.
Given the current status of a higher theory value for ΔMs

compared to experiment, we also have looked at possible
ways in which NP can provide a negative contribution that
lessens the tension. A nonzero phase in the NP couplings is
one such way, and we have shown how extra constraints
from the CP-violating observable Amix

CP in Bs → J=ψϕ
decays cuts out parameter space where otherwise a sig-
nificant NP contribution could be present. However, a large
phase can potentially worsen the fit for RKð�Þ—here a global
combined fit of ΔMs, Amix

CP and RKð�Þ seems to be an
important next step. Another possibility is to consider NP
models with a generalized chirality structure. In particular,
ΔB ¼ 2 LR vector operators, which are renormalisation-
group enhanced, can accommodate any sign for ΔMNP

s ,
even for real couplings. Large contributions from RH
currents are however disfavoured by the RKð�Þ fit, hence
also here a more careful analysis is needed.
Finally, a confirmation of our results, by further lattice

groups confirming the large FNAL/MILC results for the
four quark matrix elements, as well as a definite solution
of the Vcb puzzle, would give further confidence in the
extraordinary strength of the bounds presented in this
paper.
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APPENDIX A: NUMERICAL INPUT
FOR THEORY PREDICTIONS

We use the following input for our numerical evalua-
tions. The values in Table I are taken from the PDG [122],
from nonrelativistic sum rules (NRSR) [123,124], from the
CKMfitter group (web update of [120]—similar values can
be taken from the UTfit group [125]) and the nonpertur-
bative parameters from FLAG (web update of [70]). For αs
we use RunDec [126] with 5-loop accuracy [127–131],
running from MZ down to the bottom mass scale. At the
low scale we use 2-loop accuracy to determine Λð5Þ.

APPENDIX B: ERROR BUDGET OF THE
THEORY PREDICTIONS

In this appendix we compare the error budget of our new
SM prediction for ΔMSM

s with the ones given in 2015 by
[65], in 2011 by [66] and 2006 by [119]. The numbers are
given in Table II.
We observe a considerable improvement in accuracy

and a sizeable shift compared to the 2015 prediction,
mostly stemming from the new lattice results for fBs

ffiffiffiffi
B

p
,

which still is responsible for the largest error contribution
of about 6%. The next important uncertainty is the
accuracy of the CKM element Vcb, which contributes
about 2% to the error budget. If one gives up the
assumption of the unitarity of the 3 × 3 CKM matrix,
the uncertainty can go up. The uncertainties due to the
remaining parameters play a less important role. All in all
we are left with an overall uncertainty of about 6%, which

TABLE I. List of input parameters needed for an update of the
theory prediction of different mixing observables.

Parameter Value Reference

MW 80.385(15) GeV PDG 2017
GF 1.1663787ð6Þ10−5 GeV−2 PDG 2017
ℏ 6.582119514ð40Þ10−25 GeV s PDG 2017
MBs

5.36689(19) GeV PDG 2017
mt 173.1(0.6) GeV PDG 2017
m̄tðm̄tÞ 165.65(57) GeV own evaluation
m̄bðm̄bÞ 4.203(25) GeV NRSR
αsðMZÞ 0.1181(11) PDG 2017
αsðm̄bÞ 0.2246(21) own evaluation
Λð5Þ 0.2259(68) GeV own evaluation
Vus 0.22508þ0.00030

−0.00028 CKMfitter
Vcb 0.04181þ0.00028

−0.00060 CKMfitter
jVub=Vcbj 0.0889(14) CKMfitter
γCKM 1.141þ0.017

−0.020 CKMfitter

fBs

ffiffiffiffî
B

p
274(8) MeV FLAG
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has to be compared to the experimental uncertainty of
about 1 per mille.

APPENDIX C: NONPERTURBATIVE INPUTS

As a word of caution we present here a wider range of
nonperturbative determinations of the matrix elements of
the four-quark operators including also the corresponding
predictions for the mass differences, see Table III.
HPQCD presented in 2014 preliminary results for

Nf ¼ 2þ 1 in [132] and for our numerical estimate in
Table III we had to read off the numbers from Fig. 3 in their
proceedings [132]. When finalized, this new calculation
will supersede the 2006 [137] and 2009 [134] values.
The ETMC Nf ¼ 2 number stems from 2013 [133], it is
obtained with only two active flavors in the lattice
simulation. The Fermilab/MILC Nf ¼ 2þ 1 number
stems from 2016 [72] and it supersedes the 2011 value
[139]. This precise value is currently dominating the FLAG
average. The numerical effect of these new inputs on
mixing observables was e.g. studied in [74]. The previous

FLAG average from 2013 [135] was considerably lower.
There is also a large Nf ¼ 2þ 1 value from RBC-UKQCD
presented at LATTICE 2015 (update of [138]). However,
this number is obtained in the static limit and currently
missing 1=mb corrections are expected to be very
sizeable [140]. The HQET sum rules estimate for the
Bag parameter [77] can also be combined with the
decay constant from lattice.
Here clearly a convergence of these determinations, in

particular an independent confirmation of the Fermilab/
MILC result which is currently dominating the FLAG
average, would be very desirable.

APPENDIX D: CKM DEPENDENCE

The second most important input parameter for the
prediction of ΔMs is the CKM parameter Vcb. There is
a longstanding discrepancy between the inclusive determi-
nation and values obtained from studying exclusive B
decays, see [122]. Recent studies found, however, that the
low exclusive value might actually be a problem originating
in the use of a certain form factor parametrization in the
experimental analysis.8 Using the Boyd, Grinstein, Lebed
(BGL) parametrization one finds values that lie consid-
erably closer to the inclusive one, see [143–146]. Currently,
there are various determinations of Vcb available:

VInclusive
cb ¼ 0.04219� 0.00078 ½71�; ðD1Þ

VB→D
cb ¼ 0.03918�0.00094�0.00031 ½71�; ðD2Þ

VB→D�;CLN
cb ¼ 0.03871� 0.00047� 0.00059 ½71�; ðD3Þ

VB→D�;BGL
cb ¼ 0.0419þ0.0020

−0.0019 ½142�: ðD4Þ

In Fig. 5 we plot the dependence of the SM prediction
of ΔMs on Vcb, and show the regions predicted by the
above inclusive and exclusive determinations. We use the
CKMfitter result for Vcb (see Table I) for our new SM
prediction of ΔMs [see Eq. (10) and the (upper) horizontal
dashed line denoted with “SM”], the corresponding error
band is shown in orange. The predictions obtained by using
the inclusive value of Vcb only is given by the blue region.
For completeness we show also the regions obtained by
using the exclusive extractions of Vcb. The disfavored CLN
values result in much lower values for the mass difference
(hatched areas), while the BGL value agrees well with the
inclusive region, albeit with a higher uncertainty. The
experimental value of ΔMs is shown by the (lower)
horizontal dashed line denoted with “Exp.”

TABLE III. List of predictions for the nonperturbative param-
eter fBs

ffiffiffiffî
B

p
and the corresponding SM prediction for ΔMs. The

current FLAG average is dominated by the FERMILAB/MILC
value from 2016.

Source fBs

ffiffiffiffî
B

p
ΔMSM

s

HPQCD14 [132] ð247�12ÞMeV ð16.2�1.7Þps−1
ETMC13 [133] ð262�10ÞMeV ð18.3�1.5Þps−1
HPQCD09 [134]
= FLAG13 [135]

ð266�18ÞMeV ð18.9�2.6Þps−1

FLAG17 [70] ð274�8ÞMeV ð20.01�1.25Þps−1
Fermilab16 [72] ð274.6�8.8ÞMeV ð20.1�1.5Þps−1
HQET-SR [77,136] ð278þ28

−24 ÞMeV ð20:6þ4.4
−3.4 Þps−1

HPQCD06 [137] ð281�20ÞMeV ð21.0�3.0Þps−1
RBC/UKQCD14 [138] ð290�20ÞMeV ð22.4�3.4Þps−1
Fermilab11 [139] ð291�18ÞMeV ð22.6�2.8Þps−1

TABLE II. List of the individual contributions to the theoretical
error of the mass difference ΔMs within the SM and comparison
with the values obtained in [65,66], and [119]. In the last row, the
errors are summed in quadrature.

ΔMSM
s This work

ABL 2015
[65]

LN 2011
[66]

LN 2006
[119]

Central Value 20.01 ps−1 18.3 ps−1 17.3 ps−1 19.3 ps−1

δðfBs

ffiffiffiffi
B

p Þ 5.8% 13.9% 13.5% 34.1%

δðVcbÞ 2.1% 4.9% 3.4% 4.9%
δðmtÞ 0.7% 0.7% 1.1% 1.8%
δðαsÞ 0.1% 0.1% 0.4% 2.0%
δðγCKMÞ 0.1% 0.1% 0.3% 1.0%
δðjVub=VcbjÞ <0.1% 0.1% 0.2% 0.5%
δðm̄bÞ <0.1% <0.1% 0.1% � � �P

δ 6.2% 14.8% 14.0% 34.6%

8The form factor models are denoted by CLN [141] and BGL
[142]. Traditionally experiments were using CLN. It turned out,
however, that CLN might underestimate some uncertainties.
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The preference for the inclusive determination agrees
also with the value obtained from the CKM fit (which we
use in our SM estimate), as well as with the fit value that is
found if the direct measurements of Vcb are not included in
the fit

VCKM-fitter ðno directÞ
cb ¼ 0.04235þ0.00074

−0.00069 ½120�: ðD5Þ

We also note that the CKMfitter determinations take into
account loop-mediated processes, where potentially NP can
arise. Taking only tree-level inputs, they find [147]

Vus ¼ 0.22520þ0.00012
−0.00038 ; ðD6Þ

Vcb ¼ 0.04175þ0.00033
−0.00172 ; ðD7Þ

jVub=Vcbj ¼ 0.092þ0.004
−0.005 ; ðD8Þ

γCKM ¼ 1.223þ0.017
−0.030 ; ðD9Þ

and using these inputs we find

ΔMSM; 2017ðtreeÞ
s ¼ ð19.9� 1.5Þ ps−1; ðD10Þ

which shows an overall consistency with the prediction
in Eq. (10).
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