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Abstract: We study kinetic mixing between massless U(1)s in toroidal orbifolds with

D3-branes at orbifold singularities. We focus in particular on C3/Z4 singularities but also

study C3/Z6 and C3/Z′6 singularities. We find kinetic mixing can be present and describe

the conditions for it to occur. Kinetic mixing comes from winding modes in the N = 2

sector of the orbifold. If kinetic mixing is present its size depends only on the complex

structure modulus of the torus and is independent of the Kähler moduli. We also study

gauge threshold corrections for local ZM×ZN orbifold models finding that, consistent with

previous studies, gauge couplings run from the bulk winding scale rather than the string

scale.
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1. Introduction

In (semi-)realistic string models there are often a multitude of U(1) factors present. This

is particularly true for models including D-branes (for a review of such models see [1]).

Although some of these U(1)s become massive and decouple, there are no theoretical ob-

structions to having multiple massless U(1)s present in a consistent string model. These

U(1)s can inhabit both the visible and hidden sectors of the model. This is clearest in

the context of local models involving branes at singularities, where gauge groups can be

geometrically separated in the compact space. Given the presence of several massless U(1)s

in a theory, it is a natural question to ask whether kinetic mixing can occur in such a setup.

This possibility can also be phenomenologically significant if one of the U(1)s participating

in kinetic mixing is the weak hypercharge of the Standard Model.

In a theory with two U(1) factors the low-energy effective Langrangian density can

contain the following terms

L ⊃ − 1

4g2
a

F (a)
µν F

µν
(a) −

1

4g2
b

F (b)
µν F

µν
(b) +

χab
2gagb

F (a)
µν F

µν
(b) +m2

abA
(a)
µ Aµ(b). (1.1)

The kinetic mixing term is a renormalisable operator and appears with the parameter χab
which can be generated at an arbitrarily high energy scale. We will be considering the

effect of string scale physics on the terms in (1.1) and will only be interested in cases where

string scale contributions to m2
ab are vanishing. The main focus of this work will be to

calculate χ in a consistent string model.

The phenomenological interest in kinetic mixing is twofold. If hypercharge mixed

kinetically with another massless U(1) from a hidden sector we could expect the existence

either of millicharged particles carrying small amounts of electric charge or alternatively

Standard Model particles that are millicharged under exotic U(1)s [2, 3, 4, 5]. This scenario

is already the subject of recent experimental activity [6, 7]. U(1)s with weak couplings to

Standard Model particles have also been of interest for models of dark matter explaining

excess positron production in the galaxy [8], and the particle physics phenomenology of

such weakly coupled U(1)s has been explored in [9, 10] and many subsequent works.

Kinetic mixing in string theory has been studied both in heterotic and type II string

theories [11, 12, 13, 14, 15, 16, 17, 19, 18, 20]. The calculations of kinetic mixing presented

so far were performed in type II either using CFT vertex operator approaches [13, 14]

or by working in the effective SUGRA field theory [13]. The magnitude of kinetic mixing

effects in heterotic string theory was studied in [11, 15]. Our approach is complementary to

those above, as it is performed for supersymmetric local D3 brane models and is technically

different, being performed using the background field formalism. We will not only construct

models and compute the kinetic mixing parameter, we will also describe general conditions

to obtain kinetic mixing in toroidal orbifolds.

This paper is organised as follows. In section 2 we describe the methods needed to

perform the string calculation of kinetic mixing, followed by section 3 where we summarize

how to construct consistent string models with D3-branes at orbifold singularities. In the

remainder of the paper we construct models based on various orbifold singularities and
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examine whether kinetic mixing occurs. The Z4 orbifold (section 4) is studied as the

canonical example and its treatment contains the most detail. Finally, in section 5 we

present general observations regarding kinetic mixing in toroidal orbifolds illustrated with

further examples. As the calculation of kinetic mixing is closely related to the study of

gauge threshold corrections we also explore thresholds for local ZM × ZN orbifold models

in the appendix A.

2. Methods for calculating kinetic mixing in string theory

Kinetic mixing is a 1-loop contribution to the interactions of gauge bosons. As such the

study of kinetic mixing in string theory is closely related to the calculation of gauge thresh-

old corrections. Our calculation of kinetic mixing will be based on the background field

method that has been used to compute gauge threshold corrections in [21, 22, 23, 24, 25,

26, 27, 28, 29]. This approach differs from the vertex operator ansatz used in [13].

The background field method involves turning on a background spacetime magnetic

field F23 along the U(1) generators whose mixing we wish to examine:

F23 = B1Q
a +B2Q

b. (2.1)

The mixing parameter can then be extracted from the one-loop vacuum string ampli-

tude Λ which consists of contributions from torus, Klein bottle, Möbius strip and annulus

worldsheet diagrams. As only open strings couple to the magnetic field we only ever need

consider Möbius strip and annulus diagrams. Further, we will be working with models

that are free of O-planes and hence we can exclusively consider the annulus diagram. The

vacuum amplitude can be expanded in terms of the magnetic fields B1 and B2:

Λ = Λ0 +
1

2

(
B1

2π2

)2

Λa2 +
1

2

(
B2

2π2

)2

Λb2 +
B1B2

(2π2)2 Λab2 + . . . (2.2)

where Λ0 vanishes in a supersymmetric compactification. The O(B2) contributions to the

vacuum amplitude are finite for a consistent string model and the terms proportional to B2
1

and B2
2 contain information about gauge threshold corrections. We will direct our attention

towards Λab2 as the kinetic mixing parameter χ can be extracted from this term:1

χ

gagb

∣∣∣∣
1-loop

=
1

4π2 Λab2 . (2.3)

The contributions to kinetic mixing can be disassembled into the parts coming from mass-

less and massive strings as has been shown in [11]:

χ

gagb

∣∣∣∣
1−loop

(µ) =
1

16π2
bab

∫ 1/µ2

1/M2
X

dt

t
+

1

16π2

∫ ∞
0

dt

t
∆ab(t), (2.4)

1In the following we will not be careful and drop the indices on the magnetic fields B1 and B2. When

speaking of the O(B2)-term in the context of kinetic mixing we will in fact only refer to the part that

involves Λab2 .
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where χ is taken to be zero at the scale MX and the integral is over the modular parameter

t of the annulus. Massless strings contribute to bab and massive strings give the term ∆ab.

As we are mainly interested in U(1)s that are hidden from one another we will be exploring

situations where bab is zero whereas ∆ab is non-vanishing. To get finite answers we will

need to ensure that ∆ab → 0 both for t → 0 and t → ∞. ∆ab(t = 0) = 0 comes from

tadpole cancellation and ∆ab(t =∞) = 0 comes from the fact that the U(1)s are hidden.

Kinetic mixing between hidden massless U(1)s thus derives from the t-dependence of

massive string states. To calculate this in an orbifold setting we need to consider a global

model as we will need to include strings that stretch across and wrap around the com-

pactified dimensions. We will construct models based on toroidal orbifolds T6/ZN where

we place supersymmetric D3-branes at the orbifold singularities. The vacuum annulus

amplitude in this context can be calculated as

A =

∫ ∞
0

dt

2t
STr

(
1 + θ + θ2 + · · ·+ θN−1

N

1 + (−1)F

2
q(pµpµ+m2)/2

)
(2.5)

where q = e−πt, STr =
∑

bosons−
∑

fermion ≡
∑

NS −
∑

R and α′ = 1/2. The supertrace is

over string states that survive the GSO and the orbifold projections. In the following we

will state the relevant vacuum amplitudes in a background magnetic field which we will

use to explore kinetic mixing. However first we will review the physics of D3-branes at

orbifold singularities.

2.1 Orbifold singularities and the resulting spectrum

We consider models where the orbifold twist ZN acts crystallographically on the compact

space T6 which factorises into three two-tori. The orbifold action on these tori is given

by θ : zi → exp(2πiθi)zi, i = 1, 2, 3 which is identical with the geometric action on the

complex scalars in the spectrum. The orbifold group is spanned by the elements θk where

the exponent denotes k applications of θ. In addition, we choose the orbifold to preserve

N = 1 supersymmetry which enforces
∑3

i=1 θi = 0 mod 1.

The orbifold twist also has an effect on the Chan-Paton (CP) degrees of freedom. On

each stack of coincident branes we choose an embedding of the form:

γθk = diag(1n0 , e
2πi
N 1n1 , e

4πi
N 1n2 , . . . , e

2πi(N−1)
N 1nN−1) (2.6)

where ni are the numbers of fractional branes at that point and n =
∑N−1

i=0 ni is the total

number of branes.

The spectrum of the orbifolded theory is obtained by only keeping string states that

are singlets under the orbifold action. We can build models that contain D3-branes by

placing these at fixed points under the orbifold action. Such a setup is invariant under the

orbifold twist and no image branes need to be introduced. The low energy spectrum on

each stack of D3-branes is then given by all massless string states with endpoints on this

fixed point. It is a N = 1
∏N−1
i=0 U(ni) gauge theory with bifundamental matter in chiral
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multiplets. In detail the orbifold projection is given by

λ = γθλγ
−1
θ for gauge bosons, (2.7)

λ = e2πiθiγθλγ
−1
θ for complex scalars and (2.8)

λ = e2πi(
∑
i θisi)γθλγ

−1
θ for fermions, (2.9)

where λ is the n×n CP matrix. The vector s represents the RR ground state and its entries

take the values si = ±1/2. The GSO projection only allows states with
∑

i si = odd.

In the closed string picture the introduction of orbifold twists θk leads to the presence

of twisted sectors. Sectors are labelled by the amount of supersymmetry preserved, namely

N = 4, N = 2 and N = 1 for the cases that three tori, one torus or no torus are left fixed

by the geometric orbifold action.

2.2 D3-D3 string amplitudes and the background field method

We will employ the background field method to compute the kinetic mixing from a string

theory calculation. A magnetic field is turned on in the 23-direction of the non-compact

space and the 1-loop vacuum amplitude is calculated in this backgrond. The magnetic

field is defined as F a23 = BQa where a denotes the gauge group of interest and Qa is a

U(1) generator within this group.2 As only open strings couple to an electromagnetic field

and we consider models free of O-planes, purely the annulus worldsheet will contribute to

the vacuum amplitude. For open strings starting and ending on D3-branes these annulus

amplitudes have already been constructed in the given background field [25]. We decompose

the full amplitude into orbifold sectors labelled by k. We get different expressions depending

2When we introduced the background field method before we defined the magnetic field slightly differ-

ently: F23 = B1Q
a+B2Q

b. This difference however is cosmetic: We can imagine that F23 = B1Q
a+B2Q

b ≡
B′Q′ by subsuming the two U(1) generators into one. We arrive again at the correct result for the kinetic

mixing between U(1)a and U(1)b if we then expand the string vacuum amplitude to order O(B′
2
) while

embedding Q′ = Qa at one end of the string and Q′ = Qb at the other.

– 5 –



on whether the sector is fully twisted (N = 1) or keeps one complex torus fixed (N = 2):

A(k)
N=1 =

1

4

∫ ∞
0

dt

2t

1

(2π2t)

∑
α,β=0,1/2

ηαβ
2

Tr

(γθk ⊗ γ−1
θk

) i(βL + βR)

2π2

ϑ

[
α

β

] (
iεt
2

∣∣ t)
ϑ

[
1/2

1/2

] (
iεt
2

∣∣ t)
×

×
3∏
i=1


(−2 sin(πθki )) ϑ

[
α

β + θki

]
(0| t)

ϑ

[
1/2

1/2 + θki

]
(0| t)

 , (2.10)

A(k)
N=2 =

1

4

∫ ∞
0

dt

2t

1

(2π2t)

∑
α,β=0,1/2

(−1)2αηαβ
2

Tr

(γθk ⊗ γ−1
θk

) i(βL + βR)

2π2

ϑ

[
α

β

] (
iεt
2

∣∣ t)
ϑ

[
1/2

1/2

] (
iεt
2

∣∣ t)
×

×
ϑ

[
α

β

]
(0| t)

η3(t)

2∏
i=1


(−2 sin(πθki )) ϑ

[
α

β + θki

]
(0| t)

ϑ

[
1/2

1/2 + θki

]
(0| t)

 . (2.11)

Charges on the left and right endpoints of the string are denoted by qL and qR and we

write βL = BqL and βR = BqR. In addition, we define:

ε =
1

π
(arctanβL + arctanβR). (2.12)

To obtain information about kinetic mixing we are mainly interested in the O(B2) terms

of the above amplitudes. We expand the parts depending on the magnetic field as has been

done in [27]:

Tr

(γθk ⊗ γ−1
θk

) i(βL + βR)

2π2

ϑ

[
α

β

] (
iεt
2

∣∣ t)
ϑ

[
1/2

1/2

] (
iεt
2

∣∣ t)
 =
O(B2)

=
O(B2)

− B2t

16π4
×
ϑ′′

[
α

β

]
(0| t)

η3(t)
Tr
(
q2
Lγθk ⊗ γ−1

θk
+ 2qLγθk ⊗ qRγ−1

θk
+ γθk ⊗ q2

Rγ
−1
θk

)
.

(2.13)

This can now be simplified by applying a Riemann identity for combinations of Jacobi ϑ-

functions [25, 30] which can be found in the appendix. In the N = 1 sectors the amplitude
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reduces to

A(k)
N=1 =

O(B2)

1

2

(
B

2π2

)2 1

4
Tr
(

(qL + qR)2γθk ⊗ γ−1
θk

) 3∏
i=1

(−2 sin(πθki ))

∫ ∞
0

dt

2t

1

4π

3∑
i=1

ϑ′

[
1/2

1/2− θki

]

ϑ

[
1/2

1/2− θki

] .
(2.14)

In the partially twisted sectors the simplification goes even further. With N = 2 supersym-

metry only BPS multiplets can renormalise the gauge couplings. As the string oscillators

are all non-BPS the string oscillator tower cannot contribute and the combination of Jacobi

ϑ-functions collapses to a single number:

A(k)
N=2 =

O(B2)

1

2

(
B

2π2

)2 1

4
Tr
(

(qL + qR)2γθk ⊗ γ−1
θk

) 2∏
i=1

(−2 sin(πθki ))

∫ ∞
0

dt

2t

1

2
. (2.15)

3. Consistent orbifold models and U(1)s

In this section we will be examining toroidal orbifold models based on T6/ZN which will

be employed in the study of kinetic mixing later. In particular, we will be interested in

designing models free of gauge anomalies based on this compactification and investigate

U(1) anomalies and masses. Original work on branes at orbifold singularities can be found

in [31].

3.1 Tadpole cancellation

The cancellation of RR tadpoles is crucial for the consistency of the theory. Tadpoles of

N = 1 fields arise in twisted sectors of the closed string picture and have to be cancelled at

the singularity at which they arise. This ensures the disappearance of cubic non-Abelian

anomalies in the low-energy field theory which would otherwise render the theory patho-

logical.

As N = 1 tadpoles have to be cancelled locally we can state a general rule for their

disappearance that will not depend on the global model. Twisted tadpoles are calculated

by evaluating the annulus amplitude in the closed string channel in the limit l→∞ where

l is the closed string cylinder length. By requiring this to vanish one finds

(

3∏
i=1

2 sinπkθi)Trγθk,3 = 0 for all k = 1, . . . , N − 1. (3.1)

These tadpole cancellation conditions can also be derived starting with the low energy

spectrum and cancelling cubic non-Abelian anomalies.

Tadpoles can also arise in N = 2 sectors and are caused by the exchange of partially

twisted RR fields. As these tadpoles can escape the singularity along untwisted directions

they do not have to cancel locally, but can be balanced globally when considering the full

compact model. In pure D3 models this can be achieved by placing D3-branes at various

singularities in the bulk and choosing the gauge groups on them carefully. Another way of
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cancelling these N = 2 tadpoles employs the introduction of D7-branes, which also wrap

the collapsed cycles and lift some of the restrictions on the allowed gauge groups on the

D3-branes. We will discuss the calculational details of the cancellation of N = 2 tadpoles

when considering specific models later in this paper.

We note that with the inclusion only of D3-branes there still remains an uncancelled

overall N = 4 tadpole. There are two ways to deal with this. As none of our calculations

require the compactness of the first two complex tori, one could allow these to remain

non-compact without affecting any of our results. Alternatively, we can note that as the

physics we are interested in is related to running gauge couplings, while N = 4 sectors are

conformal, the N = 4 tadpole is not relevant to the physics that we study here. So while

strictly speaking the model is incomplete, it is satisfactory for our purposes.

3.2 U(1) anomalies and masses

Ultimately, we will be interested in kinetic mixing between massless U(1)s as anomalous

U(1)s aquire a mass at the string scale and are hence removed from low energy dynamics.

Abelian gauge bosons become massive if the effective four dimensional Lagrangian contains

a Green-Schwarz coupling of the form C2 ∧ Fi. In our case C2 comes from an RR twisted

2-form and F is the field strength of the Abelian group U(1)i. This coupling arises auto-

matically for anomalous U(1)s in the course of anomaly cancellation via a Green-Schwarz

mechanism and generates a string scale mass. However, a Green-Schwarz coupling to a

partially twisted RR 2-form can also be generated for non-anomalous U(1)s which, in a

global completion of the model, generates a mass at the KK scale. In this section we will

review anomalies of U(1)s in orbifold models and identify all non-anomalous U(1)s.

The gauge theory realized on a stack of n D3-branes located at a ZN orbifold singularity

contains up toN U(1) group factors and up toN non-Abelian group factors. In the previous

section we ensured that no non-Abelian cubic anomalies remain by cancelling all N = 1

twisted tadpoles. Further anomalies, which manifest themselves as triangle diagrams in

four dimensional theory, are mixed U(1)j × G2
l anomalies Ajl where Gl is a non-Abelian

gauge group, as well as cubic Abelian anomalies. These are cancelled in string theory via

the Green-Schwarz coupling C2∧Fi to a fully twisted RR 2-form, for which here we simply

state results.

We follow the treatment of anomalies as presented in [32, 33]. When considering a

general U(1) at the singularity

Qc =

N−1∑
j=0

cj
Qj
nj
, (3.2)

the condition for it to be non-anomalous becomes

N−1∑
j=0

cj
nj
Ajl = 0 ∀ l. (3.3)

We can diagonalize this by inserting

cj =
1

N

N−1∑
k=0

e−2πijkrk. (3.4)
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Figure 1: The T6/Z4 orbifold. The circles indicate the positions of the 16 orbifold fixed points.

Using the explicit form of the mixed anomalies the condition for non-anomalous U(1)s then

reads: (
3∏
i=1

2 sinπkθi

)
rk = 0, (3.5)

where θi again is the orbifold twist. There is always one trivial solution where r0 is arbitrary

and all other rk = 0, but there are further solutions if the prefactor vanishes for any

additional k apart from zero. This is indeed the case if we have N = 2 sectors in the

orbifold projection and we get one further non-anomalous U(1) for each N = 2 sector. The

trivial solution is referred to as the diagonal U(1) in the literature and is defined as

Qdiag =
N−1∑
i=0

Qi
ni
. (3.6)

We will be more interested in the additional non-anomalous U(1)s which are given by

further solutions to equation 3.5. Without loss of generality the parameters rk can be

chosen such that the additional non-anomalous U(1)s are orthogonal to Qdiag.

Now that we have identified all non-anomalous U(1)s in our orbifold model we need

to examine whether they are massless. As this will depend on the global properties of the

model, we will perform this examination in a specific model.

4. Kinetic mixing: a T6/Z4 example

We will now explore the possibilities for kinetic mixing in a simple model based on a T6/Z4

orbifold with D3 branes located at orbifold fixed points. This model will allow us to identify

the necessary conditions for kinetic mixing which can be applied to more intricate models

later.

4.1 Fully and partially twisted tadpoles

The T6/Z4 orbifold is generated by the action θ = 1
4(1, 1,−2) where each twist acts on one

complex plane of the compact space. The resulting orbifold group is{
(0, 0, 0) ,

(
1

4
,
1

4
,−1

2

)
,

(
1

2
,
1

2
,−1

)
,

(
3

4
,
3

4
,−3

2

)}
. (4.1)

– 9 –



Figure 2: The annulus string diagram in the open string UV/ closed string IR limit l = 1/t→∞.

Both ends of the left diagram are proportional to tadpoles. The right diagram has insertions of a

U(1) generator on both its boundaries and is used to calculate Green-Schwarz couplings which give

a mass to U(1) gauge bosons.

The compact space is factorized into three two-tori which are defined by identification on

the SU(2) root lattice to be consistent with crystallographic restriction.3

There are 16 fixed points of the orbifold action on the compact space which can be

seen in figure 1. Each of these fixed points is an orbifold singularity and in orbifold models

we can place D3-branes at singularities without the need for image branes.

We are now in a position to build a model. To do so we position stacks of D3-branes

at the following four orbifold fixed points that only differ in the third complex coordinate:

A =
(

0, 0, 0
)
, B =

(
0, 0,

i

2

)
, C =

(
0, 0,

1

2

)
, D =

(
0, 0,

1 + i

2

)
. (4.2)

In addition, we pick an embedding of the orbifold action on the Chan-Paton factors for

each stack separately:

γIθ =
(
1nI0

, i1nI1
,−1nI2 ,−i1nI3

)
,

where I is a label for either fixed point. To render the model consistent fully twisted

tadpoles have to be cancelled at each fixed point individually. The Z4 orbifold has two

N = 1 sectors generated by θ1 and θ3 which are identical with regard to the conditions they

set. As there are neither D7 nor O-planes branes present the N = 1 tadpole cancellation

conditions translate as

TrγIθ = 0,

leading to the conditions nI0 = nI2 and nI1 = nI3 at all four fixed points.

As we are working in a global model we also have to ensure the vanishing of partially

twisted tadpoles in the N = 2 sector. In the Z4 orbifold, partially twisted tadpoles arise

in the θ2 sector which leaves the third 2-torus invariant. In homology, the corresponding

2-cycle therefore links all four fixed points which differ by their location in z3 and we can

achieve tadpole cancellation by balancing them across the fixed points.

We can calculate tadpoles by considering a string diagram as shown on the left in

figure 2 which is a vacuum annulus diagram evaluated in the limit where the cylinder

length l = 1/t gets large. It corresponds to a vacuum tadpole sourcing a partially twisted

massless RR mode which propagates before it is absorbed again by a vacuum tadpole.

3The orbifold element acting on the third two-torus is an element of Z2 in this case. Crystallographic

restriction does not require this torus to be defined on a SU(2) root lattice. In fact, a torus with any

complex structure modulus U is allowed.
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The partially twisted RR mode arises in the θ2 sector and travels across the third 2-torus,

linking tadpoles arising at all four fixed points A, B, C and D. To account for this in

the string calculation we need to evaluate the annulus diagram for all 16 combinations of

strings starting and ending on either of the four fixed points A, B, C and D. As we are

analysing the situation in a compact model we also need to consider strings which wrap the

compact space multiple times while stretching between the various fixed points. However,

in the limit l→∞ the sum over winding modes collapses to a factor common to all string

states wrapping the third two-torus. Hence, the annulus amplitude can be writen as

AN=2 ∝
l→∞

( ∑
I=

A,B,C,D

Tr
(
γIθ2
))( ∑

J=
A,B,C,D

Tr
(
γJθ2
∗)) 2∏

i=1

(−2 sin(πθ2
i ))

∫ ∞
l′

dl, (4.3)

where the sums over I and J are over the orbifold fixed points with D-branes placed on

them. The integral produces a linear divergence and we need to cancel it in a consistent

model. We turn our attention to the sums over the Chan-Paton traces which factorise

into tadpole contributions coming from the left-hand and from the right-hand sides of the

diagram. The vanishing of the above amplitude can be achieved by requiring∑
I=

A,B,C,D

Tr
(
γIθ2
)

= TrγAθ2 + TrγBθ2 + TrγCθ2 + TrγDθ2 = 0, (4.4)

which cancels partially twisted tadpoles coming from either end of the diagram individually.

Having identified the conditions for both fully and partially twisted tadpoles to cancel

we are now in a position to construct a consistent model with D3-branes at Z4 orbifold

singularities. Once the model is presented we will identify the massless U(1)s present.

We cancel tadpoles by embedding the orbifold action on the Chan-Paton factors as

follows: Written as vectors ~n the numbers of fractional branes are

~nA = (N,M,N,M) (4.5)

~nB = (M,N,M,N) (4.6)

~nC = (K,L,K,L) (4.7)

~nD = (L,K,L,K) (4.8)

where N , M , K and L are positive integers. Fully twisted tadpoles vanish since the above

ensures n0 = n2 and n1 = n3. Partially twisted tadpoles cancel as

TrγAθ2 + TrγBθ2 + TrγCθ2 + TrγDθ2 = 2(N −M)− 2(N −M) + 2(K − L)− 2(K − L) = 0.

4.2 Massless and massive non-anomalous U(1)s

After having assigned fractional branes and cancelled twisted tadpoles we can now study

the U(1)s that are present. In particular, each stack of branes supports a consistent

gauge theory with gauge group U(n0) × U(n1) × U(n2) × U(n3). Locally, we can identify

U(N) = SU(N) × U(1) and our model thus automatically contains a multitude of U(1)

factors which are central to the present work. However, not all of these U(1) factors will
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be of interest to us since most of them will be anomalous and hence acquire a mass by

the Green-Schwarz mechanism. Only certain combinations of the various U(1) factors on a

stack of D3-branes will remain non-anomalous and it is these combinations we will study.

We recall that for each orbifold singularity there will be at least one non-anomalous U(1)

on each stack of D3-branes which is termed the diagonal combination. In addition, for each

N = 2 sector corresponding to a different two-cycle there exists one further non-anomalous

combination of U(1)s on each stack of D3-branes. The calculational details of this analysis

are described in section 3.2. In the context of the Z4 orbifold the above is realised as

follows. As the Z4 orbifold displays one N = 2 sector we can identify two non-anomalous

U(1)s on the worldvolume of each stack of D3-branes:

U(1)diag =
1

n0
(U(1)0 + U(1)2) +

1

n1
(U(1)1 + U(1)3), (4.9)

U(1)tw =
1

n1
(U(1)0 + U(1)2)− 1

n0
(U(1)1 + U(1)3), (4.10)

where the two Abelian generators are chosen to be orthogonal.

Before proceeding with the kinetic mixing calculation we have to examine whether

any of the non-anomalous U(1)s become massive. A study of non-anomalous U(1)s in

the context of the Z4 orbifold has been presented in [28] and we will follow this analysis.

Despite being free of anomalies, the Abelian gauge bosons can still gain a mass due to

a non-vanishing Green-Schwarz coupling to a partially twisted RR mode. In particular,

for the U(1) to remain massless the string diagram shown on the right-hand side of figure

2 has to vanish. It corresponds to the annulus vacuum amplitude expanded to second

order in the background field B and evaluated for large cylinder length l = 1/t→∞. We

consider the diagram with one U(1) generator inserted on the left boundary of the annulus

and another on the right boundary. Both ends of the diagram represent Green-Schwarz

couplings between the U(1) and a massless RR mode which propagates between them.

Specifically, we embed the charges of the string endpoints within the U(1)-generator in

question:

qL = −qR = Qdiag =
1

Ndiag

(
1n0

n0
,
1n1

n1
,
1n0

n0
,
1n1

n1

)
or (4.11)

qL = −qR = Qtw =
1

Ndiag

(
1n0

n1
,−1n1

n0
,
1n0

n1
,−1n1

n0

)
(4.12)

where we were careful to include the normalisations such that Tr Q2 = 1. The statement

that a U(1) is non-anomalous is equivalent to the fact that it has a vanishing Green-Schwarz

coupling in the N = 1 sectors.4 Hence we only need to evaluate the above diagram in the

N = 2 sector to check whether any of the anomaly-free U(1)s acquire a mass. In the N = 2

sector the RR-mode is allowed to propagate across the third two-torus and hence we will

have to include winding states in our expression. As the U(1)s are defined on a single stack

4In equations (4.9) and (4.10) we identified non-anomalous U(1)s in the spectrum on the D3-branes

based on 4D field theory techniques. Alternatively one can perform the same analysis in string theory:

U(1)s are then free of anomalies if their Green-Schwarz couplings vanish locally in all N = 1 sectors.
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Figure 3: String diagrams that contribute to mixing between two U(1)s labelled by a and b at

O(B2).

of branes so far, we only have to consider strings that start and end on the same orbifold

singularity. In the limit l = 1/t → ∞ the sum over winding modes collapses to a single

factor: ∑
n,m

= e−πR
2(n2+m2)t → l

R2

(
1 +O(e−

π
R2 l)

)
. (4.13)

Setting qL = −qR = Q the amplitude therefore becomes

AqLqRN=2 ∝
l→∞

|Tr (Q γθ2)|2
2∏
i=1

(−2 sin(πθ2
i ))

∫ ∞
l′

dl

l

l

R2
. (4.14)

Hence, for a non-anomalous U(1) to remain massless in the context of the Z4 orbifold we

find that the trace factor has to vanish in the N = 2 sector:

Tr (Q γθ2) = 0. (4.15)

It can be easily verified that U(1)diag is trivially massless as Tr (Qdiagγθk) = 0 for all sectors

labelled by k = 1, 2, 3. In the case of U(1)tw the expression Tr (Qtwγθk) is only zero for the

N = 1 sectors k = 1, 3 which is the statement that U(1)tw is non-anomalous. However in

the N = 2 sector the trace is non-zero and U(1)tw gains a mass at the scale Ms/R. This

analysis is valid for each orbifold singularity individually. We conclude that on each stack

of D3-branes we can identify two non-anomalous U(1)s, one of which is massless while the

other gains a mass at the KK scale. However we will shortly see that combinations of U(1)s

across singularities may remain massless.

We have now arrived at a consistent string model based on a toroidal orbifold T6/Z4

and have identified the non-anomalous U(1)s that are realized at each singularity. We are

now in a position to study whether kinetic mixing occurs in our setup.

4.3 Prerequisites for kinetic mixing

A mixing term between two different Abelian gauge bosons originates from string diagrams

shown in figure 3 at 1-loop in string theory. In the low-energy field theory this mixing can

either emerge as kinetic mixing or mass mixing. To distinguish kinetic mixing from mass

mixing we recall that the latter is sourced purely by massless strings whereas massive

strings can contribute to the former [13].

Phenomenologically, kinetic mixing between hidden U(1)s is the most interesting. Two

U(1)s are hidden from one another if there is no open string state in the low energy theory
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that is charged under both Abelian groups simultaneously. This can be achieved easily by

realizing the U(1)s on separate singularities in the compact space. Strings charged under

both groups necessarily have to stretch from one singularity to the other in the compact

space and hence become massive thus disappearing from the low energy spectrum.

The only massless U(1) group realized at a single singularity is the diagonal combi-

nation with generator Qdiag. When examining the mixing terms in the string calculation

there are the following group theoretical factors which always vanish for the diagonal U(1)s

Tr
[
QIdiagγ

I
θk

]
= 0, (4.16)

where I stands for any orbifold fixed point. The trace factor is the same that appeared

when we calculated the Green-Schwarz couplings; hence it is no accident that the diagonal

U(1) does not exhibit kinetic mixing. Due to the emergence of the same trace factors we

conclude that massless U(1)s realized at single orbifold fixed points do not mix in our Z4

example. We will be able to generalise this statement in the course of this work.

Instead, we will now shift our attention to Abelian groups that stretch over at least

two different singularities. We can safely ignore any combinations that involve the diagonal

generator as any linear combination of these will still lead to vanishing mixing. Hence

we are left with linear combinations of U(1)tw. Although U(1)tw restricted to a single

singularity becomes massive, we can find linear combinations across several singulaities

that are actually massless. As a matter of prudence we allocated D3 branes to the various

singularities to allow three mutually orthogonal massless U(1)s:

U(1)X =
1

NX

(
U(1)Atw −U(1)Btw

)
U(1)Y =

1

NY

(
U(1)Ctw −U(1)Dtw

)
(4.17)

U(1)Z =
1

NZ

[
1

α

(
U(1)Atw + U(1)Btw

)
+

1

β

(
U(1)Ctw + U(1)Dtw

)]
where NX ,NY and NZ are normalizations such that Tr Q2 = 1 and α = (NM + M

N ) and

β = −(KL + L
K ) such that U(1)Z is massless.

There is an advantage in choosing these combinations as the basis for our examination

of kinetic mixing: not only are these three Abelian generators mutually orthogonal, but

U(1)X and U(1)Y are also obviously hidden from one another as only massive open strings

are charged under both groups. In principle uncharged massless closed strings could be

exchanged between the two brane stacks via a Green-Schwarz coupling, but by ensuring

the U(1)s are massless we also ensured there is no such coupling present. This is exactly

the situation we wanted to explore and we now proceed to calculate mixing between U(1)X
and U(1)Y using the background field method.

4.4 Kinetic mixing between hidden U(1)s

We assign the string endpoint charges as qL = QX and qR = QY . Our interest is in the

term in the expansion of the string vacuum amplitude AqLqRN=2 which corresponds to the

diagram shown on the right in figure 3. From the definition of U(1)X and U(1)Y it is
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obvious that strings that are charged under both U(1)s have to link the following pairs of

fixed points: AC, AD, BC and BD. The trace factors that arise in the amplitude vanish

for all N = 1 sectors as both the U(1)s are non-anomalous. However, in the N = 2 sectors

we get the following non-zero results:

AC : Tr
[
QAtwγ

A
θ2
]
· Tr

[
QCtwγ

∗C
θ2

]
=

1

NXNY

(
N

M
+
M

N

)
·
(
K

L
+
L

K

)
(4.18)

AD : Tr
[
QAtwγ

A
θ2
]
· Tr

[
−QDtwγ∗

D
θ2

]
=

−1

NXNY

(
N

M
+
M

N

)
·
(
K

L
+
L

K

)
(4.19)

BC : Tr
[
−QBtwγBθ2

]
· Tr

[
QCtwγ

∗C
θ2

]
=

−1

NXNY

(
N

M
+
M

N

)
·
(
K

L
+
L

K

)
(4.20)

BD : Tr
[
−QBtwγBθ2

]
· Tr

[
−QDtwγ∗

D
θ2

]
=

1

NXNY

(
N

M
+
M

N

)
·
(
K

L
+
L

K

)
. (4.21)

The remaining part of the string vacuum amplitude, the oscillator sum, collapses to a

constant factor for all N = 2 sectors as string oscillators are non-BPS.

Since we are working in a global model, strings that stretch from one singularity to

another can actually wrap the compact space a multiple times and we also have to include

these winding states in our analysis. Stretching a string changes its mass and hence the

winding states enter the expression as a modification of the mass in the CFT calculation.

Thus strings connecting two fixed points in the compact space come with the following

factors accounting for the winding modes:

AC :
∞∑

n,m=−∞
e
−π
(
n2+(m+ 1

2)
2
)
R2t
, (4.22)

AD :
∞∑

n,m=−∞
e
−π
(
(n+ 1

2)
2
+(m+ 1

2)
2
)
R2t
, (4.23)

BC :
∞∑

n,m=−∞
e
−π
(
(n+ 1

2)
2
+(m+ 1

2)
2
)
R2t
, (4.24)

BD :
∞∑

n,m=−∞
e
−π
(
n2+(m+ 1

2)
2
)
R2t
. (4.25)

Putting these results together we arrive at the following expression for the kinetic

mixing part of the string vacuum amplitude:

AqLqRN=2 =
O(B2)

1

4

1

NXNY

(
N

M
+
M

N

)
·
(
K

L
+
L

K

)(
B

2π2

)2

×

×
∫ ∞

0

dt

2t

∞∑
n,m=−∞

(
e
−π
(
n2+(m+ 1

2)
2
)
R2t − e−π

(
(n+ 1

2)
2
+(m+ 1

2)
2
)
R2t
)
. (4.26)

The above expression consists of numerical prefactors determined by the number of

branes and hence gauge groups present and a possible divergent part in form of an integral

of the winding modes over the modular parameter t. For this to be valid and kinetic
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mixing to occur we need the above expression to be finite. Consequently, we will examine

the integrand for divergences.

It is easy to see that in the open string IR regime when t is large the amplitude vanishes

as follows

AqLqRN=2 ∝
t′→∞

∫ ∞
t′

dt

t
O
(
e−

πR2t
4

)
→ 0.

This is to be expected as by construction there are no states in the open string low energy

spectrum that are charged under the two U(1)s since the Abelian groups are hidden from

one another.

To investigate the behaviour in the open string UV regime of small t the integrand is

rewritten using Poisson resummation giving an equivalent expression for the kinetic mixing

amplitude:

AqLqRN=2 =
O(B2)

1

4

1

NXNY

(
N

M
+
M

N

)
·
(
K

L
+
L

K

)(
B

2π2

)2

×

×
∫ ∞

0

dt

2t

1

R2t

∞∑
n,m=−∞

(−1)m [1− (−1)n] e−(n2+m2) π
R2t . (4.27)

Hence we find that the kinetic mixing amplitude also vanishes in the UV limit:

AqLqRN=2 ∝t′→0

∫ t′

0

dt

t
O
(
e−

π
R2t

)
→ 0.

In fact, the integrand does not diverge anywhere and can be integrated to give a finite

result which is precisely the kinetic mixing. Hence we established the presence of kinetic

mixing between U(1)X and U(1)Y .

Having identified this effect our analysis of kinetic mixing in the context of the Z4

is not yet complete. In our Z4 orbifold model we identified three massless and mutually

orthogonal U(1)s which could engage in kinetic mixing (4.17). At most, there could be

mixing between all three U(1)s. We just considered the case when the two mutually

hidden U(1)s mixed. In the other possible instances the U(1)s involved are not necessarily

hidden from one another as there exist massless strings that are charged under both of

them. As it turns out, the only mixing in our model is between U(1)X and U(1)Y and any

mixing between the others vanishes. This is not a general observation but a feature of our

particular model and the symmetries present in the distribution of fractional branes across

fixed points.

4.5 Size of kinetic mixing

Having established the appearance of kinetic mixing between two massless U(1)s in a

toroidal orbifold model based on T6/Z4 we now want to assess the strength of this effect.

We can extract the kinetic mixing parameter χ from the vacuum string amplitude AqLqRN=2:

χ

gXgY

∣∣∣∣
1-loop

=
1

4π2
Λ2, (4.28)
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where

AqLqRN=2 =
O(B2)

1

2

(
B

2π2

)2

Λ2. (4.29)

To arrive at a numerical value we will perform the integral in the expression for Λ2. As the

result does not diverge we are allowed to swap the order of the integration and the sum over

winding modes. We will make use of the fact that we have two equivalent expressions for

the kinetic mixing parameter and integrate piecewise over the Poisson resummed expression

for small t < 1/R2 and the original one for large t > 1/R2:

χ ∝
∞∑

n,m=−∞

∫ 1
R2

0

dt

t

1

R2t
(−1)m [1− (−1)n] e−(n2+m2) π

R2t +

+
∞∑

n,m=−∞

∫ ∞
1
R2

dt

t

(
e
−π
(
n2+(m+ 1

2)
2
)
R2t − e−π

(
(n+ 1

2)
2
+(m+ 1

2)
2
)
R2t
)

(4.30)

where we suppressed the numerical prefactors. To give a numerical estimate of the ki-

netic mixing parameter we then only need to consider the lowest winding modes to get a

good approximation. The integration leaves us with the following result that includes the

exponential integral function E1:

χ ∝
∞∑

n,m=−∞

{
(−1)m [1− (−1)n]

π (n2 +m2)
e−π(n

2+m2) +

+ E1

(
π

[
n2 + (m+

1

2
)
2
])
− E1

(
π

[
(n+

1

2
)
2

+ (m+
1

2
)
2
])}

(4.31)

As the strength of kinetic mixing is now evidently independent of R2 we are in a

position to evaluate the above for a compact space of general volume. The sum over

winding modes can be evaluated numerically and contributes a factor of the order O(1).

The numerical prefactor of the kinetic mixing parameter depends on the model, specifically,

on the numbers of D-branes and hence the gauge groups present. We can evaluate this

factor for phenomenologically interesting gauge groups and arrive at an estimate for the

strength of kinetic mixing:

10−3 .

{
χ

gXgY

}
. 10−1. (4.32)

The size of the kinetic mixing effect is consistent with previous expectations [11].

4.6 Dependence on the moduli

In the numerical analysis of the kinetic mixing in our Z4 orbifold model we observed the

disappearance of R2 from our final expression. This quantity is proportional to the volume

of the compact space which is identical to the imaginary part of the Kähler modulus of that

two-torus. We arrive at the interesting result that in this specific example kinetic mixing is

ignorant of the volume of the compact space being wrapped. This is an observation which

we would like to generalise. Consequently, we will study the sensitivity of the kinetic mixing

parameter to the complex and Kähler moduli more systematically. The dependence on the
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moduli enters via the sum over winding modes. The winding factor for strings wrapping a

two-torus can be written as ∑
n,m

e
−π T2

U2
|z+Un+m|2t

, (4.33)

where z is the complex separation between the endpoints of the open string, U is the

complex modulus, T the Kähler modulus and the quantities with subscript 2 are their re-

spective imaginary parts. We can again obtain an equivalent Poisson resummed expression

given by ∑
q,p

1

T2t
e
− π
T2U2t
|q+Ūp|2+ 2πi

U2
Im(z(q+Ūp)). (4.34)

We can perform the integral over the modular parameter t with the measure dt/t and hence

express the kinetic mixing parameter in terms of the moduli:

χ ∝ e
2πi
U2

Im(z(q+Ūp))

π
U2

∣∣q + Ūp
∣∣2 . (4.35)

The proportionality factor is given by the group theoretical prefactors. This result is in fact

independent of the Kähler modulus of the torus being wrapped. This is as expected based

on holomorphy arguments: as a 1-loop correction, the kinetic mixing can depend only on

the complex structure modulus as any dependence on the Kähler moduli is forbidden by a

combination of holomorphy and shift symmetries.

5. Kinetic mixing in general orbifolds

Now that we have discovered kinetic mixing in the T6/Z4 orbifold, let us summarize the

conditions for it to occur. These conditions are applicable for models of this kind based

on D3 branes on toroidal orbifolds. We expect that they should be relaxed for Calabi-Yau

models which have a more complicated topology.

1. First of all we note that a non-anomalous U(1) defined on a single orbifold singularity

cannot participate in mixing if it is massless at the same time, as both kinetic mixing

and masses arise from the same coupling of the U(1) to a RR field. Thus, to obtain

a non-anomalous and massless U(1) that is capable of producing kinetic mixing, we

need at least two orbifold fixed points to define it on.

2. In addition, it is crucial that the orbifold action allows for at least one N = 2 sector.

The presence of N = 2 sectors ensures the existence of further non-anomalous U(1)s

beyond the diagonal U(1)diag that have non-zero Green-Schwarz coupling and gain

masses at the scale Ms/R. It is from these additional Abelian symmetry groups on

different stacks of branes that we can build a massless U(1) that can participate in

kinetic mixing.

3. Furthermore, for two such U(1)s to exhibit kinetic mixing they have to be defined

on singularities that must not all have the same separation in the compact space,

otherwise the sums over winding modes will be equivalent and cancel one another.
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Figure 4: String diagrams contributing to kinetic mixing of U(1)s defined accross multiple orbifold

fixed points.

The last observation is consistent with previous results based on a general CFT compu-

tation employing vertex operators [13]. There it was explained how anomaly-free U(1)s

can mix kinetically while remaining massless when they are set up on stacks of branes

that have different separations in the complex space. As mass mixing is induced by the

exchange of massless closed string modes these effects can be cancelled among the different

stacks of branes as massless modes are blind to the separations. Kinetic mixing, on the

contrary, is also mediated by massive modes which do not necessarily cancel as they are

sensitive to the geometry. This is the statement that the spectrum of massive winding

modes charged under both U(1)s is a function of the complex structure moduli. This is

exactly the behaviour that is observed in the T6/Z4 example presented above.

We now extend to more general models the conditions for kinetic mixing in orbifold

models with D3 branes only, and study further examples to illustrate the conclusions

reached.

5.1 General considerations

A schematic calculation will enable us to examine whether kinetic mixing is possible in

models with D3 branes at orbifold singularities when the U(1)s have no tree-level couplings.

For simplicity we consider a single N = 2 sector leaving one complex plane invariant. We

define two massless Abelian groups U(1)a and U(1)b that are each linear combinations of

U(1)s from multiple orbifold fixed points. We then assign charges qL = Qa and qR = Qb
and expand the one-loop vacuum string amplitude to second order in the magnetic field

B. In general U(1)a and U(1)b will share fixed points and hence both diagrams in figure

4 can contribute to the amplitude. The contributions come solely from the N = 2 sector

of the orbifold as the N = 1 sectors have to vanish to ensure tadpole cancellation and

non-anomalous U(1)s.

There are two different contributions to the vacuum amplitude: one comes from strings

that start and end on the same stack of D3 branes; the second from strings that start and

end at different orbifold fixed points and whose winding sums depend on the complex

separation of the singularities in the compact space. Schematically, the amplitude is:

AO(B2)
N=2 =

∫
dt

t

∑
n,m

∑
I

CI e
−π T2

U2
|Un+m|2t

+
∑
I 6=J

CIJ e
−π T2

U2
|zIJ+Un+m|2t

 , (5.1)

where the indices I and J run over orbifold fixed points contributing to the U(1)s and zIJ
are their complex separations. The only dependence on the modular parameter t arises
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from the winding modes as the string oscillator tower collapses to a single number in the

N = 2 sector. The coefficients CI and CIJ are numerical prefactors that derive from the

traces over the Chan-Paton states and are hence independent of t.

As we are interested in kinetic mixing between hidden U(1)s we need to ensure that

there is no tree-level coupling between the two Abelian gauge bosons. In the string calcu-

lation this translates into the requirement that the above amplitude should vanish in the

open string IR regime t → ∞. In this limit massive strings do not occur and only strings

localized at single fixed points contribute:

AO(B2)
N=2 →

t→∞

∫
dt

t

∑
I

CI . (5.2)

The divergence indicates a tree-level coupling between the U(1)s and to remove it we have

to arrange the numbers of fractional branes across singularities accordingly so that the

coefficient
∑

I CI vansihes. This conclusion here is the same whether the U(1)s share a

fixed point or not.

Furthermore, we must analyse the string amplitude in the open string UV limit t→ 0.

In this regime the diagram with both generators on the same boundary is proportional to

tadpoles whereas the diagram with the generators on opposite boundaries will depend on

the Green-Schwarz couplings of the U(1)s with a partially twisted RR-field. As we have

to cancel tadpoles to guarantee the consistency of the theory and we exclusively consider

massless U(1)s, the string vacuum amplitude has to vanish for small t. After Poisson

resumming the string amplitude and re-expressing it using the modular parameter l = 1/t

we arrive at:

AO(B2)
N=2 →

l→∞

∫
dl

2

T2

∑
I

CI +
∑
I 6=J

CIJ

 . (5.3)

We already know that for hidden U(1)s we must have
∑

I CI = 0. For the above amplitude

to vanish for large l we are thus forced to arrange our model such that
∑

I 6=J CIJ = 0 for

strings starting and ending on different stacks. The vacuum amplitude must therefore take

the form

AO(B2)
N=2 =

∫
dt

t

∑
n,m

∑
I 6=J

CIJ e
−π T2

U2
|zIJ+Un+m|2t

 (5.4)

where
∑

I 6=J CIJ = 0. The construction of models with kinetic mixing between hidden and

massless U(1)s now depends crucially on the magnitude of the complex separations zIJ .

If the the complex separations zIJ all have the same magnitude then the winding sums

are identical and the vacuum amplitude factorises: the condition
∑

I 6=J CIJ = 0 then forces

the amplitude to vanish identically. An example of this behaviour is the Z6 orbifold which is

studied below. However, if some of the complex separations zIJ have different magnitudes

then the winding sums do not cancel in the regime of intermediate t. The integral then

gives a finite contribution to kinetic mixing despite vanishing in the IR and UV limits. This

is the behaviour we have already seen in the Z4 orbifold model. In conclusion we see that

to construct models with kinetic mixing the orbifold must have at least one N = 2 sector
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Figure 5: The T6/Z6 orbifold. Dark circles correspond to fixed points under all orbifold twists

and τ is the complex modulus of the tori.

and the presence of orbifold fixed points not all equidistant from one another in agreement

with our earlier intuition.

5.2 T6/Z6

An example where we do not expect to be able to construct models with kinetic mixing

between hidden massless U(1)s is the orbifold T6/Z6 which is shown in figure 5. The

orbifold action is defined by θ = (1/6, 1/6,−1/3) and hence there is one N = 2 sector

generated by θ3. Crystallographic restriction forces the two-tori of the compact space to

be defined on the SU(3) root lattice. The orbifold twist then possesses three fixed points

A :
(

0, 0, 0
)
, (5.5)

B :
(

0, 0, e
πi
6 /
√

3
)
, (5.6)

C :
(

0, 0, i/
√

3
)
, (5.7)

where we can place stacks of D3 branes with a CP embedding

γθ = diag(1n0 , α
1
1n1 , α

2
1n2 , . . . , α

N−1
1nN−1) (5.8)

where α = e2πi/6. Cancellation of N = 1 twisted tadpoles enforces

n0 = n2 = n4 and n1 = n3 = n5

at each orbifold fixed point separately and, although we will not do it explicitly, N = 2

tadpoles can be cancelled across the singularities if the numbers of fractional branes are

chosen accordingly.

As the Z6 orbifold exhibits one N = 2 sector we can find two mutually orthogonal

non-anomalous U(1)s at each singularity: one is the diagonal U(1) which is massless and

cannot participate in mixing, the second gains a mass due to a non-vanishing Green-Schwarz

coupling to the N = 2 RR two-form and is defined as

U(1)tw =
1

Ntw

[
1

n1
(U(1)0 + U(1)2 + U(1)4)− 1

n0
(U(1)1 + U(1)3 + U(1)5)

]
. (5.9)

where we were careful to include the normalisation such that Tr Q2
tw = 1. If we want to

construct massless U(1)s that are capable of kinetic mixing we are again forced to define
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them over more than one orbifold fixed point. As the Z6 orbifold only possesses three fixed

points these U(1)s inevitably share stacks of D3 branes. However, since the three orbifold

fixed points are equidistant, then any amplitude contributing to kinetic mixing between

massless hidden U(1)s must vanish.

5.3 Multiple N = 2 sectors

The effect of kinetic mixing is non-local from the viewpoint of the orbifold singularity as it

relies on the propagation of N = 2 modes across the compact space. Hence it is imperative

for the orbifold to exhibit at least one N = 2 sector.

So far we exclusively examined orbifold singularities that possess only one N = 2

sector. Within this framework we were not able to discover kinetic mixing between U(1)s

that are defined on a single stack of D3-branes respectively. The reason for this failure

is to be found in our condition on the U(1)s to be massless: To ensure massless Abelian

gauge bosons we were forced to arrange for the trace factor to vanish in the N = 2 sector.

As this trace also appears in the expression for the mixing parameter any kinetic mixing

was thus automatically prohibited.

Our difficulties described above in constructing models that allow for kinetic mixing

should be of interest for string model builders: A scenario of particular phenomenologogical

relevance would be where one of the U(1)s involved in kinetic mixing is the weak hyper-

charge of the Standard Model of particle physics. In various string models the Standard

Model is realised on a visible stack of branes while there may also be hidden brane stacks.

The hypercharge U(1)Y defined on the visible stack of branes can then mix kinetically with

a second U(1) localised on a hidden stack leading to potentially observable effects [4, 13].

Thus, from the point of view of model builders and string phenomenologists it would be

interesting to find out whether kinetic mixing can occur at all between U(1)s defined on

the worldvolume of a single stack of D3-branes.

We will now show that our observations regarding the impossibility of kinetic mixing

between U(1)s on single stacks of branes generalise to the case of orbifolds with several

N = 2 sectors. A general orbifold will have multiple N = 2 sectors which we can classify

by the surfaces in the compact space which are kept constant by the geometrical action

of the orbifold element in that sector. The N = 2 sectors that are distinct in this sense

correspond to the various independent two-cycles in the compact space. Let us define a

non-anomalous gauge group U(1)a at a single orbifold singularity as described earlier in this

paper. In addition, we also ensure that U(1)a remains massless. To achieve this we have to

arrange for all the Green-Schwarz (GS) couplings to vanish. The details of the calculation

of Green-Schwarz couplings have already been described in this paper as well as in [28] and

hence we will just sketch the results. In practice, we can get one Green-Schwarz coupling

for each different N = 2 sector. The relevant string diagram is the annulus diagram with

one generator Qa inserted at each boundary which we need to evaluate in the limit t→ 0.
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We get the following sum over N = 2 sectors:

(GS coupling)2 ∝
∑

distinct
N=2

sectors

|Tr (QaγN=2)|2
2∏
i=1

(−2 sinπθi)

∫
dt

t2
. (5.10)

For U(1)a to remain massless the above expression has to sum to zero. However, by

examining each term closely we find that each N = 2 sector contributes to this sum by an

amount geater or equal to zero. Obviously, the absolute value of the trace factor squared

cannot be negative. In addition, given the constraint5 θ1 + θ2 = 1 mod 2, the product

2∏
i=1

(−2 sinπθi) = 4 sinπθ1 sinπθ2 = 2[1 + cos(πθ1 − πθ2)] (5.11)

is non-negative. For this sum to be zero we need each summand to vanish. The only

freedom we have to achieve this is to arrange for the trace factors to vanish:

Tr (QaγN=2) = 0 for all N = 2 sectors. (5.12)

Let us examine the consequences of this for kinetic mixing between this U(1)a and a

hidden U(1)b defined on a different stack of branes. Again, the relevant string diagram is

the annulus worldsheet with one generator Qa inserted on one boundary and the other Qb
inserted on the other. Schematically, the amplitude can be written as:

χ ∝
∑

distinct
N=2

sectors

Re {Tr (QaγN=2) Tr (Qbγ
∗
N=2)}

2∏
i=1

(−2 sinπθi)

∫
dt

t

∑
winding
states

exp

(
−m2

winding
state

t

)
.

(5.13)

In this expression for the kinetic mixing parameter the same trace factors appear as in the

calculation of Green-Schwarz couplings. Hence, if any one of the U(1)s is massless all the

coresponding factors Tr (QγN=2) are zero individually, thus prohibiting any kinetic mixing

to occur. From the considerations above we arrive at the following general statement: In

toroidal orbifold models there is no kinetic mixing between massless U(1)s defined at single

orbifold fixed points.

5.4 T6/Z′6
The Z′6 orbifold action is θ = (1/6, 1/3,−1/2) and there are twelve orbifold fixed points in

the compact space in total. We use the same Chan-Paton-embedding as in the case of Z6.

Sectors with twists θ1 and θ5 exhibit N = 1 supersymmetry and the cancellation of the

associated tadpoles requires n0 = n2 + n3 − n5 and n1 = −n2 + n4 + n5. There are two

distinct sectors with N = 2 supersymmetry generated by {θ2, θ4} and {θ3} respectively:

twists θ2 and θ4 both leave the third two-torus invariant while θ3 keeps the second two-torus

fixed.

5The constraint θ1+θ2 = 1 mod 2 arose when we applied a Riemann identity to simplify the contribution

from string oscillators to the string amplitude. The identity is given in appendix B.

– 23 –



The presence of multiple N = 2 sectors has an interesting implication on the main

objects of study in this work: we recall that for each orbifold element that leaves one torus

fixed we get an additional non-anomalous U(1) at the orbifold singularity. As a result each

Z′6 supports up to three non-anomalous U(1)s at each orbifold singularity, one of which is

the trivial diagonal combination encountered before. To find all non-anomalous U(1)s we

solve equation (3.5) for rk and insert the results into equation (3.4) to find the coefficients

cj in the definition (3.2) of the non-anomalous U(1). The solutions for the coefficients are

given by

c0 =
1

6
(r0 + r2 + r3 + r4) , (5.14)

c1 =
1

6

(
r0 −

r2

2
− r3 −

r4

2

)
, (5.15)

c2 =
1

6

(
r0 −

r2

2
+ r3 −

r4

2

)
, (5.16)

c3 =
1

6
(r0 + r2 − r3 + r4) , (5.17)

c4 =c2, (5.18)

c5 =c1, (5.19)

where r0, r2, r3 and r4 are arbitrary real numbers.6

There are two possible Green-Schwarz couplings in the context of the Z′6 singularity

which can render non-anomalous U(1)s massive. The U(1)s can either couple to a closed

string RR mode twisted by θ3 propagating across the second two-torus or to a RR mode

twisted by {θ2, θ4} travelling across the third two-torus. Performing the string calculation

of Green-Schwarz couplings we find that for U(1)s to remain massless in both N = 2 sectors

we require

θ2 + θ4 : Tr(Qγθ2) = Tr(Qγθ4) = 0 ⇒ r2 + r4 = 0, (5.20)

θ3 : Tr(Qγθ3) = 0 ⇒ r3 = 0, (5.21)

where Q is the generator of the U(1) in question. Given the results so far we define the

following Abelian groups which span the whole space of non-anomalous U(1)s at a Z′6
singularity:

U(1)diag =
1

Ndiag

(
U(1)0

n0
+

U(1)1

n1
+

U(1)2

n2
+

U(1)3

n3
+

U(1)4

n4
+

U(1)5

n5

)
, (5.22)

U(1)tw1 =
1

Ntw1

(
U(1)0

n0
−

U(1)1

n1
+

U(1)2

n2
−

U(1)3

n3
+

U(1)4

n4
−

U(1)5

n5

)
, (5.23)

U(1)tw2 =
1

Ntw2

(
2

U(1)0

n0
−

U(1)1

n1
−

U(1)2

n2
+ 2

U(1)3

n3
−

U(1)4

n4
−

U(1)5

n5

)
. (5.24)

The diagonal non-anomalous U(1)diag is defined by setting r2 = r3 = r4 = 0 and it is

massless in the global model. The other two non-anomalous U(1)s are massive: U(1)tw1 is

6The variables r2 and r4 always appear in the same combination r2 + r4 and thus correspond to only

one independent parameter. This is a consequence of θ2 and θ4 spanning the same N = 2 sector. Hence

there are three independent parameters corresponding to three independent non-anomalous U(1)s.
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Figure 6: The T6/Z′
6 orbifold. Dark circles correspond to fixed points under all orbifold twists

and τ is the complex modulus of the tori.

defined by r0 = r2 = r4 = 0 and it gains a mass due to a coupling to the θ3-twisted RR

mode; U(1)tw2 is obtained by setting r0 = r3 = 0 and it becomes massive by coupling to

the θ2- and θ4-twisted RR mode. It is worth pointing out that we can state a basis for all

non-anomalous U(1)s which, although not orthogonal, is given by U(1)s that at most show

only one Green-Schwarz coupling.

We now turn to the study of kinetic mixing in this T6/Z′6 orbifold model. Altogether

there are twelve orbifold fixed points which are shown in figure. The positions of the fixed

points resemble the configurations seen for Z6 in the second torus and for Z4 in the third

torus. We will see that the phenomenology of kinetic mixing will indeed comprise both the

effects seen in our Z4 and Z6 examples.

First of all we acknowledge that there cannot be any kinetic mixing between massless

U(1)s defined at a single singularity. The general observation stated before is illustated

in this specific example: The only massless U(1) possible on a single stack of branes is

U(1)diag for which all trace factors vanish.

To arrange for kinetic mixing we are forced to define U(1)s that stetch over at least two

orbifold fixed points. We will have to look for combinations of U(1)tw1 and U(1)tw2 which

are massless. However, we are constrained by homology in the combinations that we are

allowed to make, as each N = 2 sectors correspond to a two-cycle in the compact space.

The two-cycle associated with θ3 connects all fixed points that only differ in the coordinate

z2 on the second two-torus. The θ2- and θ4-sectors define a two-cycle which connects fixed

points that only differ in the z3-coordinate on the third two-torus. There are no two-cycles

that connect fixed points that differ in both the z2- and z3-coordinate. Correspondingly

our choices of massless combinations of U(1)tw1 and U(1)tw2 are limited. One option is to

build a massless U(1) by arranging U(1)tw1s across fixed points in the second two-torus.

In this case the θ2- and θ4-sectors cannot contribute and θ3 spans the only relevant N = 2

sector. This leads to a situation which is identical with the setup encountered before in the

Z6 orbifold. We can refer the reader to our analysis of the Z6 orbifold and conclude that no

kinetic mixing will be observed in this case. Another possibility of assembling a massless

U(1) is given by allocating U(1)tw2s at fixed points that only differ in the z3-coordinate.

Here, the θ3 does not contribute and the relevant N = 2 sector is spanned by θ2 and θ4.

We arrive at a setup which resembles the case encountered in the Z4 example. Again, all

conditions for kinetic mixing are fulfilled as in the case of the Z4 orbifold and we can record

that the T6/Z′6 orbifold indeed allows for kinetic mixing in the same way as was discovered
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in the Z4 example.

Having established kinetic mixing in the case of the Z′6 orbifold we observe that it

obeys all the principles that we discovered in the Z4 example.

5.5 T6/∆27

As a final example we examine the ∆27 singularity which was studied in [27, 34, 35, 36].

It is a non-Abelian singularity which also exists as a particular case of the dP8 singularity

[37]. ∆27 is the finite non-Abelian subgroup of SU(3) generated by

e1 :(z1, z2, z3)→ (ωz1, ω
2z2, z3), (5.25)

e2 :(z1, z2, z3)→ (z1, ωz2, ω
2z3), (5.26)

e3 :(z1, z2, z3)→ (z3, z1, z2), (5.27)

where ω = exp(2πi/3). The generators satisfy

e3
1 = e3

2 = e3
3 = 1, e1e2 = e2e1, e3e1 = e2e3, e3e2 = e2

1e
2
2e3. (5.28)

The 27 elements of the group can be written as eα1 e
β
2e
γ
3 with α, β, γ = 1 . . . 3. The eleven

conjugacy classes are

{1}, {e1e
2
2}, {e2

1e2}, {e1, e2, e
2
1e

2
2}, {e2

1, e
2
2, e1e2}, {e3, e1e

2
2e3, e

2
1e2e3}, {e1e3, e2e3, e

2
1e

2
2e3},

{e2
1e3, e

2
2e3, e1e2e3}, {e2

3, e1e
2
2e

2
3, e

2
1e2e

2
3}, {e1e

2
3, e2e

2
3, e

2
1e

2
2e

2
3}, {e2

1e
2
3, e

2
2e

2
3, e1e2e

2
3}. (5.29)

Corresponding to these are eleven irreducible representations, 3 + 3∗ + 9 × 1. The nine

one-dimensional irreducible representations are given by

γe1 = γe2 = ωα, γe3 = ωβ, (5.30)

with α, β = 0, 1, 2. The three-dimensional irreducible representations are given by the

defining representation and its complex conjugate:

γ3e1 =

ω 0 0

0 ω2 0

0 0 1

 , γ3e2 =

 1 0 0

0 ω 0

0 0 ω2

 , γ3e3 =

 0 0 1

1 0 0

0 1 0

 , (5.31)

γ3
∗
e1 =

ω2 0 0

0 ω 0

0 0 1

 , γ3
∗
e2 =

 1 0 0

0 ω2 0

0 0 ω

 , γ3
∗
e3 =

 0 0 1

1 0 0

0 1 0

 . (5.32)

The action on the CP degrees of freedom can be decomposed into a direct sum over

the irreducible representations:(⊕9

i=1
ni × 1i

)
⊕ (n10 × 3)⊕ (n11 × 3∗). (5.33)

We arrive at a gauge theory on the D3-branes which is depicted by the quiver in figure 7.

Consistency requires

n10 = n11 =
n1 + n2 + n3 + n4 + n5 + n6 + n7 + n8 + n9

3
. (5.34)
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Figure 7: The quiver for the ∆27 singularity

In the orbifold projection the identity group element preserves N = 4 supersymmetry

as usual and the two elements e1e
2
2 and e2

1e2 are N = 1 sectors. The remaining 24 group

elements allow for N = 2 supersymmetry and it is these N = 2 sectors that we will be

mostly interested in. In terms of the complex planes that are kept fixed by the geometrical

action, there are 12 possibilities among the N = 2 sectors:7

N = 2 group element fixed plane (z1, z2, z3)

e1, e
2
1 : (0, 0, z)

e2, e
2
2 : (z, 0, 0)

e1e2, e
2
1e

2
2 : (0, z, 0)

e3, e
2
3 : (z, z, z)

e1e3, e1e2e
2
3 : (ωz, z, z)

e2e3, e
2
1e

2
3 : (z, ωz, z)

e2
1e

2
2e3, e

2
2e

2
3 : (ω2z, ω2z, z)

e1e2e3, e2e
2
3 : (ωz, ωz, z)

e2
1e3, e

2
1e

2
2e

2
3 : (ω2z, z, z)

e2
2e3, e1e

2
3 : (z, ω2z, z)

e1e
2
2e3, e

2
1e2e

2
3 : (ωz, ω2z, z)

e2
1e2e3, e1e

2
2e

2
3 : (ω2z, ωz, z) (5.35)

We now consider a global model from compactifying on T6/∆27. The compact space

has exactly three fixed points(
0, 0, 0

)
,
(eπi/6√

3
,
eπi/6√

3
,
eπi/6√

3

)
,
( i√

3
,
i√
3
,
i√
3

)
, (5.36)

which are illustrated in figure 8 We will now examine whether kinetic mixing between

7Note though that the number of twisted modes is determined by the number of N = 2 conjugacy

classes, which is nine.
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Figure 8: The T6/∆27 orbifold. The filled circle, the hollow circle and the square denote the

coordinates of the three fixed points in the compact space.

massless U(1)s can occur in the T6/∆27 orbifold. The presence of the different N =

2 sectors guarantees the existence of non-anomalous U(1)s beyond the trivial diagonal

combination. Out of these we can define massless U(1)s shared by at least two orbifold

singularities which, in principle, could then mix kinetically. However, we need not to go into

much detail to see that this will not be possible. Kinetic mixing is, as usual, communicated

by winding states connecting the various orbifold fixed points. By studying the various

fixed planes of the N = 2 sectors we see that the fixed points can be reached by winding

states in all N = 2 sectors except in the ones spanned by {e1, e
2
1}, {e2, e

2
2} and {e1e2, e

2
1e

2
2}.

Nevertheless, as the orbifold fixed points are equidistant to one another in the compact

space, the sums over winding modes will be equivalent in all N = 2 sectors. We can then

factor out the winding modes and are left with an expression that vanishes due the U(1)s

being massless. It is the same principle that prohibits kinetic mixing as the discovered in

the case of the Z6 orbifold.

6. Conclusion

We endeavour to discover kinetic mixing between massless U(1)s in toroidal orbifold models

with fractional D3-branes at orbifold singularities. Calculations are made from a string

theoretical perspective employing the background field method. In the course of the work

we reaffirm results derived in [13] but also present specific string models which we are able

to examine in the search for kinetic mixing. In particular, we show that kinetic mixing is

possible for some orbifolds and explore kinetic mixing in the example of the Z4 orbifold in

detail. There we computed the size of 1-loop kinetic mixing and found it is a function of

the complex structure of the torus with typical magnitude in the range 10−1 − 10−3.

Further, we are able to establish general rules regarding the possibility of kinetic mixing

for D3 brane models in toriodal orbifolds: Kinetic mixing is a non-local effect with respect

to the orbifold singularity and it depends on the exchange of N = 2 RR modes across the

compact space. Hence it is imperative for the orbifold to display at least one N = 2 sector.

In addition, for each distinct N = 2 sector the orbifold singularity supports one additional

non-anomalous U(1) which can then participate in kinetic mixing.

One important result is that U(1)s which are defined on a single stack of branes each

are unable to mix kinetically if massless at the same time. This grounds on kinetic mixing

and mass mixing originating from the same string diagrams as both kinetic and mass

mixing rely on the exchange of N = 2 RR modes. The only difference is that in the case
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of kinetic mixing winding modes need to be included whereas mass mixing is evaluated in

a limit where the winding modes collapse into a universal factor. In the case of U(1)s that

are only supported at a single stack of branes the winding modes are universal and factor

out parallelling the behaviour of mass mixing. In this scenario kinetic mixing is observed

to vanish automatically for massless U(1)s as predicted in [13].

To arrange for kinetic mixing in toroidal orbifolds we are thus forced to consider U(1)s

that are defined over at least two orbifold singularities. These U(1)s can be constructed such

as to be massless while simultaneously displaying kinetic mixing. For this phenomenon to

occur it is crucial that the toroidal orbifold possesses fixed points which are not equidistant

to one another in the compact space. Strings stretched between fixed points that have

different separations in the compact space result in distinct expressions for the winding

modes. While we can enforce that mass mixing vanishes between the two U(1)s, the same

cancellation is prevented in the kinetic mixing calculation due to the different winding

modes. We examined this scenario in detail for the toroidal Z4 orbifold and showed that

kinetic mixing can also occur in the case of Z′6 models. We also established the non-

existence of kinetic mixing in models based on the Z6 and the non-Abelian ∆27 orbifolds

which we attribute to the orbifold singularities being equidistant in the toroidal compact

space. This behaviour is again consistent with general predictions made in [13].

Besides, we find that the kinetic mixing parameter, while depending on the complex

moduli of the compact space, does not depend on the Kähler moduli. This is a consequence

of the holomorphy properties of the gauge kinetic function, which forbid the Kähler moduli

appearing at the 1-loop level. As a result the magnitude of kinetic mixing is independent

of the size of the compact space.

Our analysis was limited to models with D3-branes located at singularities in an orb-

ifolded toroidal space. We expect our conditions on kinetic mixing to be relaxed in Calabi-

Yau models with more general topologies that that of toroidal orbifolds. Other natural

extensions would be to include D7 branes that wrap two of the tori in the compact space

or to consider local orientifold models. It would be interesting to see how our results for

D3 models are modified in these cases.
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A. Gauge threshold corrections for local ZM × ZN orbifolds

The methods used to calculate kinetic mixing are closely related to the techniques involved

in examining gauge threshold corrections. Hence we will seize the opportunity to examine

gauge threshold corrections for models that have not been included in the previous paper

on this topic [27]. This appendix can thus be regarded as an extension of this previous
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work, however, as the the calculational methods are very similar to the techniques used in

the main text, it is not out of place to present the results here.

We will examine local models based on D3-branes located at a C3/(ZM ×ZN ) orbifold

singularity. These models have already been studied for the case that discrete torsion is

present [38, 39]. Orientifolds with orbifold group ZM × ZN are treated in [40].

We examine the case where discrete torsion is absent. The orbifold group is spanned

by the two generators θ and η corresponding to the twists by ZM and ZN respectively. As

we wish to obtain a low energy spectrum that preserves N = 1 supersymmetry we choose

the following action for the group generators:

θ : (z1, z2, z3)→ (αz1, α
−1z2, z3), (A.1)

η : (z1, z2, z3)→ (z1, βz2, β
−1z3), (A.2)

where α = exp(2πi/M) and β = exp(2πi/N). The orbifold group consists of all the

elements θkηl with k = 0 . . .M − 1 and l = 0 . . . N − 1. The group ZM × ZN possesses

M · N irreducible representations which are given by αkβl with k = 0 . . .M − 1 and

l = 0 . . . N − 1 as before. As usual, we need to embed the orbifold action in the gauge

group by stating its effect on the Chan-Paton degrees of freedom: The matrices γθ,3 and

γη,3 are block diagonal where each block corresponds to an irreducible representation of

ZM × ZN :

γθ,3 =


diag(1n0 , α1n1 , . . . , α

M−1
1nM−1) 0 · · · 0

0 diag(1nM , α1nM+1 , . . . , α
M−1

1n2M−1) · · · 0
...

...
. . .

...

0 0 · · · diag(. . . )

 ,

γη,3 =


diag(1n0 ,1n1 , . . . ,1nM−1) 0 · · · 0

0 diag(β1nM , β1nM+1 , . . . , β1n2M−1 . . . ) · · · 0
...

...
. . .

...

0 0 · · · diag(. . . )

 .

Thus, for each group element θkηl, we can give the corresponding CP action γkθ,3γ
l
η,3. After

calculating the spectrum using standard techniques one arrives at a
∏MN−1
i=0 U(ni) gauge

theory with bifundamental matter.

Before we calculate gauge threshold corrections we need to ensure that we are working

with a consistent model. This requires the cancellation of all N = 1 tadpoles at the

singularity and is described in the main text. In particular, we have to satisfy the condition

set by equation (3.1). As we will only be interested in the local model we do not specify

the global completion and hence do not need to cancel N = 2 tadpoles. The threshold

calculation can be sketched as follows: To extract information about the β-function for

the gauge group SU(na) we embed the string endpoint charges qL = −qR within the gauge

group in question and analyse the one-loop vacuum string amplitude at order O(B2):

AO(B2) =
1

2

(
B

2π2

)2 ∫ ∞
0

dt

8t
∆a(t). (A.3)
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Figure 9: Quiver for the Z2 × Z4 orbifold singularity. For better visualisation the quiver is split

into three diagrams. The diagrams show the matter content that is allowed by the orbifold twists

{θ1, η1}, {θ2, η2} and {θ3, η3} respectively.

In the open string IR limit t → ∞, the integrand approaches the field theory β-function

coefficient ∆a → ba. The stringy physics is encoded in the UV limit t→ 0. In a consistent

compact model the integral in (A.3) will be finite in the UV as, for non-Abelian groups,

∆a(t) vanishes for small t due to tadpole cancellation. The threshold corrections are

encoded in the exact behaviour of ∆a for t → 0. In previous work it was found that the

running of the gauge coupling is different in distinct orbifold sectors depending on the

amount of supersymmetry preserved [27, 28]. Schematically, the results are

∆(k)
a =


b
(k)
a Θ

[
t− 1

M2
s

]
+ small N = 1 sector

b
(k)
a Θ

[
t− 1

(RMs)
2

]
+ small N = 2 sector

0 N = 4 sector

(A.4)

where Θ is the Heaviside theta function and R is the bulk radius. In the following we will

show that this form of threshold corrections also arises in local models at ZM ×ZN orbifold

singularities. To be specific, we will be considering two examples.

A.1 Z2 × Z4 orbifold singularity

The Z2×Z4 singularity is generated by the actions θ = 1
2(1,−1, 0) and η = 1

4(0, 1,−1). The

low energy spectrum is shown in the quiver diagram 9. There are two N = 1 sectors gener-

ated by {θη, θη3} and five N = 2 sectors {θ, θη2, η, η2, η3}. Cancellation of twisted tadpoles

requires n0 = n2 + n4 − n6 and n1 = n3 + n5 − n7. Thresholds are calculated by assigning

qL = −qR = diag(QSU(n0), 0, . . . , 0) where QSU(n0) = 1√
8
(1,−1, 0, . . . , 0). Performing the
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Figure 10: Quiver for the Z3 × Z3 orbifold singularity. For better visualisation the quiver is split

into three diagrams. The diagrams show the matter content that is allowed by the orbifold twists

{θ1, η1}, {θ2, η2} and {θ3, η3} respectively.

calculation according to [27, 28] gives:

N = 1 : θη + θη3 :

(
B

2π2

)2 ∫ dt

8t
(−1) [n0 − n2 − n4 + n6] (A.5)

N = 2 : η + η3 :

(
B

2π2

)2 ∫ dt

8t

(−1)

2
[n0 − n2 + n4 − n6] (A.6)

N = 2 : η2 :

(
B

2π2

)2 ∫ dt

8t

(−1)

2
[n0 − n1 + n2 − n3 + n4 − n5 + n6 − n7] (A.7)

N = 2 : θ :

(
B

2π2

)2 ∫ dt

8t

(−1)

2
[n0 + n1 + n2 + n3 − n4 − n5 − n6 − n7] (A.8)

N = 2 : θη2 :

(
B

2π2

)2 ∫ dt

8t

(−1)

2
[n0 − n1 + n2 − n3 − n4 + n5 − n6 + n7] (A.9)

Combining all sectors gives the correct β-function coefficient for SU(n0):

b0 = −3n0 +
1

2
(n1 + n3 + 2n4 + n5 + n7) (A.10)

We find that the contribution from N = 1 sectors vanishes once tadpole cancellation is

imposed. The threshold corrections are hence sourced entirely by the N = 2 sectors which,

in the local model, give divergent contributions in the open string UV limit. In a global

model these divergences are cured once winding modes are included that explore the whole

of the compact space. Thus we conclude that in the N = 2 sector the field theoretical

running of the gauge coupling is observed up to bulk winding scale. This is the exact

behaviour that has been observed in previous work on ZN orbifold [27] and orientifold

singularities [28].

A.2 Z3 × Z3 orbifold singularity

We conclude this section with a further example that will confirm the above observations.

The generators of the Z3 × Z3 singularity are θ = 1
3(1,−1, 0) and η = 1

3(0, 1,−1). The

quiver is shown in figure 10. The vanishing of twisted tadpoles requires:

n0 =− n4 − n8 +
1

2
(n1 + n2 + n3 + n5 + n6 + n7) (A.11)

n1 =n2 + n3 − n5 − n6 + n7. (A.12)
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The two sectors that preserve N = 1 supersymmetry are spanned by {θ2η, θη2} while there

are six N = 2 sectors {θ, θ2, η, η2, θη, θ2η2}. Calculating the threshold corrections gives:

θη2 + θ2η :

(
B

2π2

)2 ∫ dt

8t

(−1)

2
[2n0 − n1 − n2 − n3 + 2n4 − n5 − n6 − n7 + 2n8] (A.13)

θ + θ2 :

(
B

2π2

)2 ∫ dt

8t

(−1)

3
[2n0 + 2n1 + 2n2 − n3 − n4 − n5 − n6 − n7 − n8] (A.14)

η + η2 :

(
B

2π2

)2 ∫ dt

8t

(−1)

3
[2n0 − n1 − n2 + 2n3 − n4 − n5 + 2n6 − n7 − n8] (A.15)

θη + θ2η2 :

(
B

2π2

)2 ∫ dt

8t

(−1)

3
[2n0 − n1 − n2 − n3 − n4 + 2n5 − n6 + 2n7 − n8] . (A.16)

Summing over the individual sectors once more results in the correct β-function coefficient:

b0 = −3n0 +
1

2
(n1 + n2 + n3 + n5 + n6 + n7). (A.17)

The interpretation of the result coincides with the discussion given above. Contributions

from N = 1 sectors vanish once anomaly cancellation is enforced and threshold corrections

arise solely from N = 2 sectors permitting field theory gauge running up to the bulk

winding scale.

B. Properties of Jacobi theta functions

In this section we will summarize definitions and identities related to Jacobi theta functions.

We denote q = e−πt throughout these formulae.

The Dedekind eta function is defined by

η(t) = q1/24
∞∏
n=1

(1− qn) (B.1)

and the Jacobi theta function with general characteristic is defined as

ϑ

[
α

β

]
(z|t) =

∑
n∈Z

e−(n+α)2πt/2e2πi(z+β)(n+α). (B.2)

The theta functions are manifestly invariant under α→ α+ Z and also clearly obey

ϑ

[
α

β

]
(z|t) = ϑ

[
α

β + z

]
(0|t). (B.3)

A useful expansion valid for α ∈ (−1
2 ,

1
2 ] is

ϑ

[
α

β

]
(0|t)

η(t)
= e2πiαβq

α2

2
− 1

24

∞∏
n=1

(1 + e2πiβqn−
1
2

+α)(1 + e−2πiβqn−
1
2
−α). (B.4)

– 33 –



For the four special theta functions we have

ϑ1(z|t) ≡ ϑ

[
1/2

1/2

]
(z|t) = 2q1/8 sinπz

∞∏
n=1

(1− qn)(1− e2πizqn)(1− e−2πizqn), (B.5)

ϑ2(z|t) ≡ ϑ

[
1/2

0

]
(z|t) = 2q1/8 cosπz

∞∏
n=1

(1− qn)(1 + e2πizqn)(1 + e−2πizqn), (B.6)

ϑ3(z|t) ≡ ϑ

[
0

0

]
(z|t) =

∞∏
n=1

(1− qn)(1 + e2πizqn−
1
2 )(1 + e−2πizqn−

1
2 ), (B.7)

ϑ4(z|t) ≡ ϑ

[
0

1/2

]
(z|t) =

∞∏
n=1

(1− qn)(1− e2πizqn−
1
2 )(1− e−2πizqn−

1
2 ). (B.8)

These appear in the string partition function in the sum over spin structures. Derivatives

w.r.t. z give

ϑ1(z) = 2πη3z +O(z3), (B.9)

ϑi(z) = ϑi(0) +
z2

2
ϑ′′i (0) +O(z4), i = 2, 3, 4 (B.10)

where we left the argument t implicit. In the course of expanding the vacuum string

amplitude we arrive at expressions that can be simplified using a Riemann identity. In the

N = 1 orbifold sector we can substitute

∑
α,β=0,1/2

ηαβ

ϑ′′

[
α

β

]
η3

3∏
i=1

ϑ

[
α

β + θi

]

ϑ

[
1/2

1/2 + θi

] = −2π
3∑
i=1

ϑ′

[
1/2

1/2− θi

]

ϑ

[
1/2

1/2− θi

] , (B.11)

where ηαβ = (−1)2(α+β−2αβ) and derivatives are w.r.t. z. When evaluating beta function

coefficients it is useful to evaluate this for large t:

lim
t→∞
−2π

3∑
i=1

ϑ′

[
1/2

1/2− θi

]

ϑ

[
1/2

1/2− θi

] = −2π2
∑
i

cosπθi
sinπθi

. (B.12)

We will rely on the following identity to simplify results in the N = 2 sector of the orbifold:

∑
α,β=0,1/2

ηαβ(−1)2α

ϑ′′

[
α

β

]
η3

ϑ

[
α

β

]
η3

ϑ

[
α

β + θ1

]

ϑ

[
1/2

1/2 + θ1

] ϑ

[
α

β + θ2

]

ϑ

[
1/2

1/2 + θ2

] = −4π2, (B.13)

where θ1 + θ2 = 1 mod 2.
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