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SUMMARY 

Three-dimensional tomographic modelling of wide-angle seismic data, recorded at the intermediate-

spreading Costa Rica Rift, has revealed a P-wave seismic velocity anomaly low located beneath a small 

overlapping spreading centre that forms a non-transform discontinuity at the ridge axis. This low velocity 

zone displays a maximum velocity anomaly relative to the ‘background’ ridge axis crustal structure of 

~0.5 km s-1, has lateral dimensions of ~10 x 5 km, and extends to depths ≥2.5 km below the seabed, 

placing it within layer 2 of the oceanic crust. We interpret these observations as representing increased 

fracturing under enhanced tectonic stress associated with the opening of the overlapping spreading 

centre, that results in higher upper crustal bulk porosity and permeability.  
Evidence for ongoing magmatic accretion at the Costa Rica Rift ridge axis takes the form of an axial 

magma lens beneath the western ridge segment, and observations of hydrothermal plume activity and 

microearthquakes support the presence of an active fluid circulation system. We propose that fracture 

pathways associated with the low velocity zone may provide the system through which hydrothermal 

fluids circulate. These fluids cause rapid cooling of the adjacent ridge axis and any magma accumulations 

which may be present. 
The Costa Rica Rift exists at a tipping point between episodic phases of magmatic and tectonically-

enhanced spreading. The characteristics inherited from each spreading mode have been preserved in the 

crustal morphology off-axis for the past 7 Myr. Using potential field data, we contextualize our seismic 

observations of the axial ridge structure at the whole segment scale, and find that the proposed balance 

between magmatic and tectonically-dominated spreading processes observed off-axis may also be 

apparent along-axis, and that the current larger-scale magma supply system at the Costa Rica Rift may 

be relatively weak. Based on all available geophysical observations, we suggest a model for the inter-

relationships between magmatism, faulting and fluid circulation at the Costa Rica Rift across a range of 

scales, which may also be influenced by large lithosphere scale structural and/or thermal heterogeneity. 
 

Key words: mid-ocean ridge processes; composition and structure of the oceanic crust; hydrothermal 

systems; controlled source seismology  
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1. INTRODUCTION 

The ~65,000 km ocean spreading ridge system encircles the globe, with the oceanic crust formed there 

facilitating ~31 TW of heat flow from the inner Earth to hydrosphere (Davies & Davies, 2010). Around 

a third of this heat flux is via hydrothermal circulation of fluid within the crust, the global flow of which 

has been estimated to be up to 0.35 Sv (Elderfield & Schultz, 1996). In turn, about 0.12 Sv of this 

circulation occurs within young crust <1 Myr in age (Stein & Stein, 1994), which facilitates chemical 

exchange between the solid Earth and hydrosphere and results in both transfer of minerals and alteration 

of crustal composition (Alt & Teagle, 2000). Thus, the characteristics of mid-ocean ridge spreading 

processes result in a significant contribution to the long-term global flux of heat and fluids, and the 

formation of mineral deposits. 

The structure of the crust formed at mid-ocean ridges is related to spreading rate, reflecting not only 

the thermal regime but also the volume and continuity of magma supply (Lin & Phipps Morgan, 1992; 

Phipps Morgan & Chen, 1993; Small, 1998; Liu & Buck, 2018; Wilson et al., 2019). At intermediate 

spreading ridges, periodic fluctuations in magma supply also influence ridge axis morphology (e.g. 

Phipps Morgan & Chen, 1993; Canales et al., 2005; White et al., 2008), and control the dominant style 

of spreading at any time. As a result, crustal formation at intermediate spreading rates is thought to occur 

in a ‘finely balanced’ state between the two end-members of magmatic accretion and tectonic spreading, 

where changes of <3-5 mm yr-1 in the spreading rate may tip the balance between the two end members 

(Wilson et al., 2019).  

In this study, we apply a range of geophysical techniques to characterize the formation and resultant 

structure of the crust at the intermediate-spreading Costa Rica Rift, to improve understanding of the 

interactions between magmatic and tectonic processes for this spreading rate classification. In particular, 

we aim to understand better how the balance between the predominance of magmatic versus tectonic 

spreading processes may control factors such as the ridge morphology and segmentation, and the 

potential existence of, and interaction between, both axial magma and hydrothermal circulation systems. 

 

1.1. Spreading rate context 

Long-term oceanic crustal thickness is generally uniform at all but the slowest (<15 mm yr-1) full-

spreading rates (FSR; e.g. White et al., 1992; Bown & White, 1994). However, over shorter spatial and 

temporal scales, slower spreading ridges (<40 mm yr-1 FSR) have a greater range in crustal thickness (3-

8 km) than faster ridges (>60 mm yr-1 FSR, 5-7 km thick; e.g. Chen, 1992). Magmatically formed crust 

has a layered seismic velocity-depth structure (Houtz & Ewing, 1976) that divides it into an upper 

basaltic layer (layer 2), and a lower gabbroic layer (layer 3). Layer 2 is further subdivided into an 

uppermost layer comprising extrusive, high porosity pillow basalts that is termed layer 2A at the ridge 

axis, which overlies layer 2B, which comprises sheeted dykes (Herron, 1982; Christeson et al., 1992; 

Harding et al., 1993). The boundary between these layers is marked by a high vertical velocity gradient 

(1-2 s-1; Grevemeyer et al., 2018a). For example, layer 2A thickness has been measured at 0.49-0.54 km 
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close to the Blanco Transform, below which the transition to layer 2B occurs over 0.23-0.28 km 

(Christeson et al., 2012).  

As the crust ages, seismic velocity increases due to cooling, hydrothermal alteration (Houtz & 

Ewing, 1976; Christensen, 1979; Carlson, 1998), and the infilling of bulk porosity (Christensen, 1978; 

Vera et al., 1990; Christeson et al., 2007). Typically, for crust younger than ~0.5 Ma, layer 2A has a 

velocity of between 3.0-3.2 km s-1 (Christeson et al., 2012), while the top of layer 2B is more variable 

within the range ~4.3-4.9 km s-1 (Newman et al., 2011; Christeson et al., 2012), with values increasing 

to 4.0-4.5 km s-1 and ~5.1-5.4 km s-1 respectively by ~5 Ma post-formation (Wilson et al., 2019). 

Ultraslow and slow spreading ridges (<50 mm yr-1 FSR - e.g. the Southwest Indian Ridge, Mid-

Cayman Spreading Centre and Mid-Atlantic Ridge, MAR) are characterized by an axial valley-type 

topography, with terraces formed by inward-facing, axis-parallel, normal faults and large-scale 

detachment surfaces. The latter exhume the lower crust and uppermost mantle at the seabed as oceanic 

core complexes (OCCs) and facilitate fluid ingress and serpentinization (e.g. Cann et al. 1997; Ranero 

& Reston 1999; Canales et al. 2004; Reston & Ranero 2011; Grevemeyer et al., 2018b; Peirce et al. 

2019). This mode of spreading is highly variable in both space and time, as demonstrated by the 

prevalence of asymmetric spreading, alternation between which ridge flanks represent the footwall and 

hanging wall of the detachment surface, and the diversity of geological features exposed at and located 

below the seabed (e.g. Cannat, 1993; Ranero & Reston, 1999; Peirce et al., 2005; Cannat et al., 2006; 

Peirce & Sinha, 2008; Reston, 2018). Faster spreading ridges (>70 mm yr-1 FSR - e.g. the East Pacific 

Rise, EPR) have a shallower seabed topography and an axial rise (e.g. Detrick et al., 1993; Scheirer & 

Macdonald, 1993). At this ridge type, basaltic lava flows and dykes of layer 2 are accreted symmetrically 

about the ridge axis, and comprise the relatively smooth topped upper oceanic basement (Sinton & 

Detrick, 1992). 

Intermediate spreading ridges (50-70 mm yr-1 FSR) such as the Juan de Fuca Ridge (JdFR, e.g. 

Hooft & Detrick, 1995; Canales et al., 2005), the Galapagos Spreading Ridge (GSR, e.g. Detrick et al., 

2002; Sinton et al., 2003; Blacic et al., 2004), the South East Indian Rise (SEIR, e.g. Cochran et al., 1997; 

Ma & Cochran, 1997; Baran et al., 2005), and the Valu Fa Ridge in the Lau back-arc basin (VFR; Collier 

& Sinha, 1992; Turner et al., 1999; Day et al., 2001) display morphologies that vary between the axial 

rise end-member of faster spreading ridges (JdFR, VFR) and the rift valleys typical of slower spreading 

ridges (SEIR), as well as exhibiting significant along-ridge variability (GSR). 

 

1.2. Ridge axis characteristics 

At faster spreading ridges (hereafter EPR-type), effectively steady-state magmatic accretion is inferred 

from seismic studies (e.g. Detrick et al., 1987; Kent et al., 1990, 2000; Hooft et al., 1997; Singh et al., 

1998; Marjanovic et al., 2018). High amplitude reflection events are interpreted as narrow, sill-like 

accumulations of predominantly molten rock that are commonly referred to as axial magma or melt 

lenses (AMLs). Basaltic magma erupts from an AML to form layer 2 (Sinton & Detrick, 1992), but how 
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the lower crust forms remains a topic of debate (Kelemen et al., 1997; Maclennan et al., 2005; Wanless 

& Shaw, 2012).  
AMLs typically have a thickness of <50-100 m and a width of <2 km (e.g. Detrick et al., 1987; Kent 

et al., 1990, Sinton & Detrick, 1992; Canales et al., 2005; Carbotte et al., 2013). Although volumetrically 

small, their existence is a complex interplay between heat gain, principally by injection of new magma 

from below, and heat loss, by eruption and hydrothermal circulation from above (Fontaine et al., 2011; 

Lowell et al., 2013). Similar magma bodies have been identified at several EPR-type intermediate 

spreading ridges, including: the Endeavour, Northern Symmetric and Cleft Segments of the JdFR 

(Canales et al., 2005, 2009; Carbotte et al., 2006; van Ark et al., 2007); between 94°15’W and 91°00’W 

along the western GSR (Detrick et al., 2002; Blacic et al., 2004); the P1, P2 and P3 segments of the SEIR 

(Baran et al., 2005); and the VFR (Collier & Sinha, 1992; Turner et al., 1999; Day et al., 2001). However, 

at intermediate ridges displaying characteristics of slower spreading systems, such as west of 95°30’W 

at the western GSR and the S1 segment of the SEIR, no magma bodies have been detected (Blacic et al., 

2004; Baran et al., 2005). Where observed, AMLs tend to be located towards the middle of spreading 

segments, and increase in depth or disappear in the vicinity of offsets in ridge trend (Detrick et al., 1987, 

2002; Kent et al, 2000; Canales et al., 2005; Carbotte et al., 2013). The existence of an AML may, 

therefore, be influenced by both along ridge structural variability and the rate of magma supply.  

AMLs are only rarely observed at slower spreading ridges (hereafter MAR-type), such as the 

Reykjanes Ridge in the North Atlantic (e.g. Sinha et al., 1997, 1998; Navin et al., 1998; MacGregor et 

al., 1998). This does not mean that these systems are amagmatic, but instead that the magma supply is 

believed to be limited and episodic, with a short-lived injection prior to crystallization. Overall, the inter-

relationships between axial morphology, evidence for active magma supply and the thickness of seismic 

layer 2A (Buck et al. 1997) suggest that, together, these features are co-controlled by the distinct modes 

of crustal formation (Phipps Morgan & Chen, 1993). 
The mid-ocean ridge system is also, along its length, segmented by various scales of discontinuity 

(Macdonald et al., 1991). Macdonald et al. (1988) proposed a hierarchical model of ridge segmentation 

based on magma supply, with segment length decreasing from the largest first-order segments, separated 

from each other by large-offset transform faults, though a series of different crustal tectonic 

manifestations including non-transform offsets and overlapping spreading centres, to the shortest, fourth-

order segments, that are characterized by small deviations in axial linearity (deval) or variation in 

geochemical composition. 

An overlapping spreading centre (OSC) is a small-scale ridge axis discontinuity where two adjacent 

ridge segments are laterally offset by 1-10 km, and the ridge tips overlap each other by a similar distance 

(Macdonald & Fox, 1983). Under the magma supply model of ridge segmentation (Macdonald et al., 

1988), these features occur at the ends of adjacent magma supplied regions and are typically magma 

poor, and so undergo enhanced tectonic stretching that results in crustal thinning. Between the ridge tips, 
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the bathymetry is typically deeper than the surrounding region by up to several hundred metres, and the 

tectonic fabric shows no predominant ridge-parallel or ridge-perpendicular (transform) alignment.  

OSCs are inherently unstable and, thus, tend to evolve over time, with one of the limbs prevailing 

while the other is abandoned (Macdonald & Fox, 1983). OSC evolution modelling (Wilson, 1990; 

Macdonald et al., 1991; Baud & Reuschle, 1997) predicts that the ridge tips initially deflect away from 

each other and then, later, curve sharply back towards one another, finally resulting in a characteristic 

ratio of overlap to offset of ~3:1 (Macdonald et al., 1984; Sempéré & MacDonald, 1986). Eventually, 

the ridge segments may re-join in a process known as self-decapitation (Macdonald et al., 1987). When 

the overlap between adjacent ridge segments is large, a relic trace may be left in the off-axis crust (e.g. 

Macdonald et al., 1984; Canales et al., 1997), akin to the large-scale pseudofaults associated with 

propagating rifts (e.g. Hey, 1977). 

Observations of axial magma lenses made in the vicinity of OSCs show a diversity of morphologies 

and interactions. At the EPR, for example, AMLs have been observed to deepen as they approach the 

9°03’N and 11°45’N OSCs, relative to their mid-segment locations (Detrick et al. 1987; Hooft et al. 

1997). At 9°03’N (Kent et al., 2000; Tong et al., 2002) and 9°37’N-9°40’N (Han et al., 2014), the AMLs 

have an overlapping structure, mirroring that of the ridge tips on the seabed, suggesting that magma 

lenses can extend to segment ends. At the 9°17’N deval (Kent et al., 1993) and 5°30’S offset (Lonsdale, 

1983) at the EPR, and the ~22°S OSC at the intermediate-spreading VFR (Turner et al., 1999; Day et al., 

2001), amongst others, magma lenses are observed to be continuous across such discontinuities. 

 

2. COSTA RICA RIFT 

2.1. Geological setting 

The Costa Rica Rift (CRR) is the easternmost ridge segment of the Cocos-Nazca spreading centre, 

located in the Panama Basin in the Eastern Pacific (Fig. 1a). It extends for ~180 km and is bounded by 

the Ecuador Fracture Zone in the west, and the Panama Fracture Zone in the east. Spreading has been 

ongoing for 11 Myr (Londale & Klitgord, 1978), and is presently occurring asymmetrically at an 

intermediate half-spreading rate of 30 mm yr-1 for the north flank (the Cocos Plate) and 36 mm yr-1 for 

the south (the Nazca Plate; Wilson & Hey, 1995). Magnetic anomaly modelling demonstrates that 

significant variation in the spreading rate and degree of asymmetry has also occurred since spreading 

initiated (Wilson & Hey, 1995; Wilson et al., 2019). 

Over the past 6 Myr, several plate motion changes have occurred within the Panama Basin (Lonsdale 

& Klitgord, 1978; Krijgsman et al., 1999; Morell, 2015) which have influenced the stress regime and 

style of spreading. In particular, the collision of the Cocos and Carnegie aseismic ridges with Central 

and South America (Fig. 1a), which began between 1-2 Ma (Lonsdale & Klitgord, 1978; Gutscher et al., 

1999; Meschede & Barckhausen, 2001), led to the suppression, impediment or slowing of northward and 

eastward plate motion, as recorded by the corresponding variation in spreading rate (Wilson & Hey, 

1995; Wilson et al., 2019). 
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Although classified as an intermediate spreading ridge, the CRR displays a MAR-type axial valley 

morphology, with a distinctive hourglass shape decreasing in width from ~10 km at the segment ends to 

~3 km at its narrowest point. Divided into eastern and western limbs by an OSC-type non-transform 

ridge axis discontinuity located at 3°20’N, 83°44’W, the two segment halves overlap by ~2.5 km, and 

are laterally offset by ~1.5 km (Fig. 2a). Swath bathymetry data show that the shallowest portion of the 

ridge axis lies along the western limb at ~2.9 km depth (Fig. 2b), in a region of recent volcanic activity 

(Buck et al., 1997; Haughton et al., 2018).  

The OSC is similar in size to those located between 91°00’W and 95°30’W on the western GSR 

(Sinton et al., 2003), which forms the continuation of the Cocos-Nazca plate boundary to the west.  

However, it lies at the lower end of the size range for similar features observed along the slow-spreading 

MAR (Spencer et al., 1997) and Central Indian Ridge (Tyler et al., 2007), the intermediate-spreading 

JdFR (e.g. Canales et al., 2005; Weekly et al., 2014) and the fast-spreading EPR, (e.g. Lonsdale, 1983, 

Macdonald & Fox, 1983; Macdonald, et al., 1984), at which much larger features have overlaps and 

offsets of ≥30 km and ≥10 km respectively. 

  In 1994, RV Maurice Ewing expedition EW9416 (Detrick, 1994) imaged an AML ~10 km to the 

west of the CRR OSC, between 83°48’W and 83°50’W, beneath the bathymetrically shallowest part of 

the ridge axis (Buck et al., 1997; Figs 2 & 3). This feature had a length of ~2.4 km along axis, and was 

located at 1.2-1.4 s two-way travel time (TWTT) beneath the seabed reflection, equivalent to a depth of 

~3.0-3.5 km within the crust based on an average upper crustal velocity of 5 km s-1. Conductivity, 

temperature and transmissometry versus depth (CTTD) observations made during an oceanographic 

survey of the entire Panama Basin (Fig. 1b; Morales Maqueda, 2015; Lowell et al., 2020), sampled a 

hydrothermal plume above the ridge axis, close to the western termination of the AML. Using the AML 

dimensions and the measured heat output, modelling suggests that the magmatic system beneath the 

western limb of the CRR is relatively weak, and may be subject to either a low-level continuous 

replenishment or a more intermittent episodic recharge to maintain its stability (Lowell et al., 2020). 

 

2.2. Aims of this study 

We apply 3-D seismic tomographic modelling to determine the structure and characteristics of the upper 

oceanic crust at the CRR ridge axis, in the vicinity of the AML and OSC. We aim to determine not only 

how these features manifest in the crustal seismic velocity structure, but also whether and how they may 

inter-relate in terms of the processes underlying their formation and subsequent evolution over time. We 

also examine the possible relationship between tectonic processes and the location of observed 

hydrothermal venting at the ridge axis. Finally, we use potential field data to investigate the extent and 

controls on the larger, whole segment-scale magma distribution at the CRR, and how this relates to plate-

scale tectonic processes. As part of this modelling, we investigate the role of inherited crustal and/or 

lithospheric fabric resulting from past plate reorganization, and how these impact on the spreading ridge 

system both in the Panama Basin, and when set in the wider plate tectonic context. 
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3. DATA ACQUISITION 

The axial region of the CRR formed the focus of research expedition RRS James Cook JC114 (Hobbs & 

Peirce, 2015), undertaken as part of the OSCAR (Oceanographic and Seismic Characterization of heat 

dissipation and alteration by hydrothermal fluids at an Axial Ridge) project. Throughout JC114, 

multibeam swath bathymetry data were acquired using a Kongsberg EM120 hull-mounted echosounder, 

calibrated using a sound velocity profile measured to the seabed within the study area. Gravity data were 

also acquired port-to-port using a LaCoste & Romberg Micro-G air-sea gravimeter, tied to absolute 

stations in Caldera (Costa Rica) and Panama City (Panama) at the start and end respectively (Hobbs & 

Peirce, 2015). Magnetic data were acquired only during seismic surveying. 

For 3-D tomographic imaging, an array of 25 ocean-bottom seismographs (OBSs) was deployed at 

the ridge axis, in a 5 x 5 km grid centred on 3°20’N, 83°44’W. The grid (henceforth the North Grid or 

NG; Fig. 1b) was connected via a flow-line profile (SAP_B; Wilson et al., 2019) to a matching grid 

(Gregory et al., 2017) located at ODP borehole 504B, ~230 km to the south (Fig. 1a; Becker et al., 1989, 

and references therein) to provide geological ground-truth. Over the North Grid, co-located multichannel 

seismic (MCS) reflection and wide-angle (WA) refraction data were acquired along five E-W and five 

N-S profiles through the OBS array (Fig. 1b), including along an E-W profile along the ridge axis co-

incident with the location of Profile 1268 of the EW9416 MCS survey, which originally detected the 

AML (Fig. 2a; Detrick et al., 1994). Both profiles are co-located to well within the width of the seismic 

Fresnel zone at AML depth, to accommodate any non-exact match in navigation, so should image the 

same sub-seabed region. Further details of the data acquisition are provided in Hobbs & Peirce (2015).  
Shots were fired at 30 s intervals using a 1320 in3 (21.63 l) six Bolt airgun array, towed at 8 m depth 

below sea surface. Each OBS recorded WA refracted arrivals at a sampling rate of 500 Hz, using a three-

component geophone and hydrophone set. First arrival travel times were picked from the hydrophone 

data (Fig. 4) due to its higher signal-to-noise ratio, and because it contained the least scattered energy 

given the largely sediment-free seabed. Approximately 68,500 WA first arrivals were picked within a 

shot-receiver range of 2.3-36.5 km from each OBS. Travel time picks were assigned an uncertainty, 

based on the shot-receiver offset (Table 1), to account for picking and instrument location errors. In the 

first instance, the majority of the picks, with the exception of those at the very shortest shot-receiver 

offsets, were assigned a uniform uncertainty of 45 ms.  
In addition, between phases of active source seismic data acquisition, the NG OBS array also 

recorded microearthquakes over a 21-day period (Lowell et al., 2020; Fig. 3). The locations of the 116 

largest magnitude microearthquakes recorded during the survey period were estimated using the 

NonLinLoc software (Lomax et al., 2000), using a 1D crustal velocity model derived from modelling of 

both OBS and MCS gather travel time picks (this study and Wilson et al., 2019). Projection of event 

hypocentres onto a depth-converted image of EW9416 MCS Profile 1268 shows that the majority are 

distributed at, or above, the AML between 83°28.8’W and 83°31.2’W (Fig. 3b). The distribution of 

seismicity suggests two principal event populations. The events of the first cluster, occurring between 
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Julian days 26 and 34, extend from the seabed to AML depth, and are located above or to the west of the 

AML. However, the events of the second cluster (days 35-47) generally lie deeper than 5 km below sea 

surface, and located directly above the beneath the western extent of the AML. No events are observed 

between the eastern observed limit of the AML and the OSC, however a small number of events may be 

associated with the latter. 

 

4. TOMOGRAPHIC INVERSION 

Travel time picks were inverted in 3-D using FAST (First-Arrival Seismic Tomography; Zelt & Barton, 

1998). This approach treats all arrivals as diving rays and produces a smooth velocity model without 

discrete layer interfaces. The overall goal of an inversion is to minimize the travel time residuals along 

ray paths to reach a χ2 fit of 1, representing a fit to the specified error bounds. Consequently, if χ2 becomes 

<1, the model is “relaxed” by finding the largest value of the trade-off parameter (which controls the 

balance between minimizing the data misfit and generating a model with the minimum required 

structure) that results in a χ2 of 1.  

 

4.1. Initial model 

The initial model (Fig. 5a) was parameterized on a 0.1 x 0.1 x 0.1 km uniform (cubic) forward grid 

within a 60 x 60 km model footprint. The origin (0,0 km in X,Y) of the model space was located at 

3°35’N, 84°00’W (Fig. 1b), and offsets within the model were set to increase to the south and west. The 

seabed was constructed from the high-resolution swath bathymetry data and, because there is effectively 

no sediment cover within the NG, it could be regarded as the top of layer 2A within model discretization 

errors.  

The lack of short-offset (<2.5 km) arrivals in the NG WA dataset results in limited constraint on the 

uppermost crustal velocity. Consequently, the initial model was constructed using a 1-D velocity-depth 

profile extracted from Wilson et al.’s (2019) 2-D seismic model of Profile SAP_B (Fig. 5f), where it 

crosses the ridge axis (Fig. 5b), added below the bathymetry (Fig. 5a). This model provides some 

independent constraint on the shallowest velocity structure in the sub-seabed region not well constrained 

by the NG dataset, whilst not imposing a preconceived shallow structure throughout the NG footprint. 

 

4.2. Inversion 

To determine appropriate inversion parameterization, we tested a range of horizontal and vertical inverse 

cells sizes over which model smoothing and regularization were applied. This included combinations of 

lateral inverse cell sizes of 1.0 km and 0.5 km (in both X and Y), and vertical (Z) cells of 0.2 km and 0.5 

km. Using the initial model described above, testing aimed to determine which configuration(s) resulted 

in:  

i) dense and consistent sampling of the model by rays;  

ii) good lateral resolution of potential features of interest; and 
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iii) consistent model structure with minimal artefacts.  

In all cases, we applied a single-pass inversion process over a series of five iterations, each testing five 

values of the trade-off parameter. The results showed that, in all cases, the first iteration achieved a 

relatively good fit (c2=2.26) and that the inversion converged to a c2 of ~1 within 2-4 iterations, 

depending on the parameterization. From this point trade-off parameter “relaxation” occurs, resulting in 

a final range of χ2 values between 0.99-1.00 for the range of model parameterizations. The parameters 

consequently selected for the inversion are summarized in Table 2.  

Vertical slices through the resulting best-fit model (hereafter the inversion model) are shown in Fig. 

5c-e and horizontal slices in Fig. 6. The model has an overall c2=1.00 and a root mean square misfit of 

42 ms, and will be discussed in Section 5. Ray coverage throughout the inversion model was calculated 

by counting the ray hits for each 3-D inversion cell. By definition, smaller inverse cell sizes, in both 

lateral and vertical dimensions, will tend to decrease the number of observed ray hits. However, for all 

cell size combinations tested a consistent and dense ray coverage of >100 hits per cell was achieved 

beneath the OBS array over a model depth range of Z=3.7-5.5 km, corresponding to a depth range of 

~0.7-2.5 km below seafloor (b.s.f.). The extent of ray coverage is used to mask all vertical and lateral 

slices to indicate where the inversion model is constrained.  

 

4.3. Resolution testing 

To determine whether velocity anomalies observed in the inversion model are well resolved, 

checkerboard testing was performed following the approach of Zelt & Barton (1998). A ±5% velocity 

perturbation was added to the inversion model (Fig. 7a), taking the form of a columnar checkerboard 

pattern (Zelt, 1998). This pattern was selected based on Zelt’s (1998) assertion that, for 3-D tomographic 

inversion, horizontal resolution is primarily controlled by the ray coverage through the model, whilst 

vertical resolution is controlled by the background, or input model used for inversion, together with the 

vertical parameterization of the inversion approach. On this basis, since we use an independently derived 

and tested velocity-depth structure as our initial starting point (Wilson et al., 2019), the vertical resolution 

of our inversion model is as good as that model, at 1.5 km, since that is larger than the inversion vertical 

cell size adopted here. 

As part of resolution testing a set of synthetic travel times was calculated for the perturbed model 

and Gaussian noise added, scaled according to the pick uncertainties. These synthetic picks were then 

inverted, using the same parameterization used to achieve the inversion model, and using that model as 

the starting point. Where ray coverage density is sufficient to resolve model features, the output 

checkerboard should match the input pattern (Fig. 7a). The resolvability of particular length scales within 

a model is quantified by the semblance (Fig. 7a; Zelt, 1999), which we calculate using an operator radius 

equal to the input anomaly size. We adopted Zelt’s (1999) semblance threshold of 0.7 to indicate where 

we consider the model to be well resolved. Rotation of the checkerboard pattern through 45˚ (Fig. 7b), 
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together with lateral phase shifts of 0.5 times the checkerboard pattern cell size for both rotated and 

unrotated patterns, were also applied to appraise the effects of checkerboard edge geometry and ray path 

orientation dependence. Consequently, we tested eight unique checkerboard patterns. 

In general, resolution is poorer for the rotated checkerboard patterns (Fig. 7d), rarely exceeding a 

semblance of ~0.75, compared to the unrotated patterns (Fig. 7c) which commonly display a semblance 

of 0.9-1.0 beneath the OBS array. This trend is considered most likely a direct consequence of the grid-

like acquisition geometry. Therefore, we averaged the results of all patterns in order to eliminate any 

orientation bias (Fig. 7e). 

Resolution testing indicates that, for 0.5 km vertical (Z) inversion cells, an overall mean semblance 

of >0.7 is consistently observed to model depths of at least ~2.5 km b.s.f. (Z=5.5 km; Fig. 7e). For 

vertical cell sizes smaller than this (e.g. 0.2 km; Fig. 7f), tests indicate failure to consistently exceed the 

0.7 semblance threshold at model depths of Z>5 km beneath the extent of the OBS array, although a 

threshold of 0.6 is consistently exceeded. The results of checkerboard testing indicate that, at best, the 

limit of lateral resolution of our model is 3 x 3 km, while recovery is optimal at a vertical inversion cell 

size of 0.5 km.  

 

5. MODEL DESCRIPTION 

Our inversion model shows a variable P-wave velocity structure in the upper crust both across and along 

the CRR ridge axis. Three vertical slices (two orientated across axis and one along axis; Fig. 5) and three 

horizontal slices (constant depth within the model; Fig. 6) through this model are used to demonstrate 

its main features. In addition, 1-D velocity-depth profiles at various locations within the study area (Fig. 

8) are used to better understand their significance and context with respect to processes occurring at 

spreading ridges in general. 

 

5.1. ‘Background’ crustal structure 

Due to the inherently smooth and interface-free nature of inversion models, and the limited constraint on 

vertical velocity structure in the uppermost ~0.5-0.8 km of the crust, we cannot directly determine the 

2A/2B transition between extrusive pillow lavas and intrusive dykes. Wilson et al.’s (2019) model for 

Profile SAP_B provides a better constraint on the uppermost crustal structure, and showed this transition 

to occur at ~0.6 km b.s.f.. However, at ~2 km below seafloor, within the P-wave velocity range of ~6.3-

6.5 km s-1, we observe a transition from higher to lower vertical velocity gradient (Fig. 8a). We interpret 

this feature as the layer 2B/3 transition (dykes/gabbro), with its depth consistent with global average 

oceanic crustal compilations (e.g. White et al., 1992) and with the co-incident across-axis 2-D SAP_B 

inversion model (Wilson et al., 2019; Fig. 5f). Off-axis, 1-D vertical velocity-depth profiles (Fig. 8b) 

suggest that layer 2 velocities to ~2 km b.s.f. may be up to ~0.2-0.3 km s-1 faster than at the ridge axis 

(Fig. 8d), suggesting that:  
i) the axial magmatic system is hotter than the off-axis crust; and/or 
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ii) the higher velocity observed off-axis relates to crustal ageing due to infilling of the layer 2 

primary porosity as a result of hydrothermal circulation and mineral precipitation (Lowell et al., 

1993). 

Of these interpretations we prefer the former, since the ‘crustal ageing’ process should occur over greater 

spatial and, hence, temporal scales than 10 km (equivalent to ~350,000 yr at the CRR). 

Along-axis (Y=30 km; Fig. 5e), higher velocities are observed in the region beneath the bathymetric 

dome (between X=15-25 km). However, it is not clear whether this is a robust feature of the dataset or 

an inversion artefact, perhaps associated with the adjacent lower velocity zone. If real, then its location 

conflicts with evidence which suggests that this part of the ridge axis is currently better supplied with 

magma (e.g. Buck et al., 1997; Haughton et al. 2018), unless some process is acting to increase the 

velocity that may be related to the presence of an active hydrothermal circulation system which both 

cools the ridge axis and “freezes” any axial magma lens (Lowell et al., 2020), and infills the intrinsic 

upper crustal porosity (e.g. Vera et al., 1990; Detrick et al., 1994; Christeson et al., 2007). 

 

5.2. Axial magma lens 

The location of the AML (Fig. 3; Buck et al., 1997), at 1.2-1.4 s TWTT below the seafloor reflection, 

corresponds to a depth within the crust of ~3.5 km, based on an average upper crustal velocity of 5 km 

s-1 (Lowell et al., 2020). This places this feature below the maximum depth to which our model samples 

and resolves the crustal velocity structure at the CRR. Furthermore, the waveform modelling 

determination of AML thickness of ~100 m (Lowell et al., 2020), is less than the best-case vertical 

resolution of the inversion model, even if it were within the depth range of the model space that is 

sampled by rays. The inversion model cannot, therefore, by itself make any direct observations of the 

nature of the AML.  

 

5.3. Low velocity zone 

When viewed in horizontal slices, a ~10 x 5 km region of reduced P-wave velocity, relative to the 

surrounding ridge axis, is observed beneath the OSC that is elliptical in shape and elongate along axis 

(Fig 6). This region is also observed as a broad zone below the ~5 km s-1 contour, with an along axis 

length of ~10-15 km (Fig. 5e). In the north-south oriented (across axis) profile, at model X=30 km, this 

feature appears as a narrower zone, ~5 km-wide, consistent with the elliptical footprint within the 

constant depth slices (Fig. 5d). Checkerboard testing of the inversion model (Fig. 8) indicates that this 

feature should be well within the lateral resolution, having size greater than 3 x 3 km. 

Above Z=3.8 km/~0.8 km b.s.f., vertical model slices show little evidence of a low velocity zone 

(LVZ), with velocity contours appearing either flat or mirroring the seabed bathymetry (Fig. 5c,d), while 

the 1-D velocity-depth structure is similar to that of the ridge axis ~10 km to the west (Fig. 8e). This 

observation may, in part, be due to the relative lack of constraint at the shallowest depths in the model. 

Alternatively, this may simply reflect the generally more porous structure of the uppermost part of the 
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oceanic crust (e.g. Houtz & Ewing, 1976; Christeson et al., 1992), such that the processes involved in 

the formation of the LVZ modify the velocity-depth structure below the resolution of the data and/or 

inversion approach applied here.  

Below Z=3.8 km, the velocity in the vicinity of the LVZ begins to decrease relative to the 

background ridge axis structure, by up to a maximum of ~0.4-0.5 km s-1 at 2 km b.s.f. (Fig. 8e). Observed 

in plan view (Figs 6a-c & 9a), the LVZ can still be observed at Z=5.5 km, near the base of the well 

sampled and resolved part of the inversion model, while the 1-D velocity-depth profile through the LVZ 

shows reduced velocities to ~4 km b.s.f., penetrating below the base of the resolved part of the model 

(Fig. 7e). We cannot, therefore, definitively determine the maximum depth to which the LVZ extends.  

The LVZ is characterized by a slower P-wave velocity extending deeper into the model. The largest 

velocity differences between the LVZ and the background ridge axis structure occur shallower than ~2.3 

km b.s.f. (Z=5.3 km), and are particularly evident in enlarged depth-slice views of the LVZ, which show 

this feature to be more prominent at Z=5.0 km than at Z=5.5 km (Fig. 9a). The total observed depth 

extent of the LVZ place it predominantly within the sheeted dyke sequence of layer 2B. 
The lateral location of the LVZ coincides with the bathymetric expression of the OSC (Figs 2a, 6 

& 9). Consequently, we interpret the low velocity anomaly to reflect enhanced tectonism between ridge 

segment tips. This results in increased fracturing and/or higher porosity and, hence, a decrease in velocity 

(Weekly et al., 2014). Lower model ray coverage to the east of the LVZ (Fig. 6d-f) means that the 

velocity structure beneath the eastern limb is less well constrained than the western limb. The eastward 

extent of the LVZ cannot, therefore, be definitively determined. However, a lower velocity is observed 

to a distance of up to 10 km east of the OSC (Figs 6b,c & 9a,b). With increasing depth, though the 

slowest P-wave velocity appears to lie predominantly beneath the western ridge tip. 

In an attempt to better constrain the lateral location and vertical depth and extent of the LVZ, the 

inversion was repeated with an “at absolute best” set of travel time picks, where an alternative set of 

smaller uncertainty values were assigned to picks at intermediate shot-receiver offset distances (Table 

1). The result of this inversion (Fig. 9b) shows the LVZ to display a similar overall footprint to the 

inversion model, of ~10-15 x 5 km, with an even lower P-wave velocity focused into a narrow zone 

beneath the western ridge tip. Relative to the ‘background’ ridge-axis structure, the maximum velocity 

anomaly associated with the LVZ using these pick uncertainties is ~0.8 km s-1 (Fig. 9c) over a depth 

range of ~1.0-2.5 km within the crust, ~0.3 km s-1 slower than in the inversion model (Figs 5c-e, 6a-c, 

8c,e & 9a). The results of this inversion are consistent with our interpretation that the low velocity 

anomaly is a manifestation of the increased porosity generated by fracturing associated with the OSC. 
 

6. POTENTIAL FIELD DATA 

To further our understanding of the magmatic and tectonic processes at the CRR, we analysed the gravity 

anomaly in two ways. The first, using the ship-derived free-air anomaly (FAA), allows us to appraise if 

the inversion model is a robust solution, potentially revealing features below its resolution or extent of 
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ray coverage, particularly within the lower crust and/or upper mantle. It also provides some constraint 

on crustal thickness variation. To create the ship-derived FAA, cross-over analysis (Wessel, 2010) was 

performed on the data acquired along each profile within the NG to remove systematic errors, and a 

datum shift was applied to equate the ship data to the global satellite-derived FAA (Sandwell et al., 2014 

– Fig. 10b). The resulting ship-derived FAA is shown in Fig. 11b. The second approach, using the 

satellite-derived FAA, allows us to set our observations within the context of the entire CRR ridge 

system. In particular, we are able to extend our understanding of the ridge axis structure beyond 5 km to 

the east of the OSC, where there is no seismic constraint.  

 

6.1. Density models 
To construct the initial 2-D density models, the inversion model was sampled along two vertical profiles 

running north-south through the AML (X=20 km) and OSC (X=30 km). Using the 4.55 and 6.25 km s-1 

velocity contours to represent the layer 2A/2B and 2B/3 boundaries, polygons representing layer 2A and 

2B were defined to which constant densities of 2450 kg m-3 and 2700 kg m-3 were assigned respectively, 

based on the velocity-density relationship of Carlson & Raskin (1984). To define the base of the crust in 

each initial model, which lies below the base of the resolved region of the inversion model, we used a 

constant crustal thickness of 6 km, consistent with the spreading rate (White et al. 1992, Bown & White, 

1994) and that used in the MBA calculations of Wilson et al. (2019). Layer 3 was assigned a density of 

2950 kg m-3, the mantle 3310 kg m-3 and the water column 1035 kg m-3. Model edge effects were 

prevented by extending the density structure for 1000 km beyond the model limits. The FAA associated 

with each density model was then calculated using grav2d, based on the method of Talwani et al. (1959). 
 

6.2. Across-axis profile through the AML 

The north-south profile through the grid at X=20 km model offset (Fig. 11c-f), coinciding with the 

location of the AML (Buck et al., 1997) and Profile SAP_B (Wilson et al., 2019), shows that observed 

FAA can be entirely explained by the seismically resolved layer 2 structure. No additional variation in 

crustal thickness and/or density in the lower crust (layer 3) or mantle, where the inversion model has 

limited-to-no constraint, is required to result in a good fit to the observed data. This supports observations 

which suggest that the AML itself is a small feature (Buck et al., 1997; Lowell et al., 2020), too small to 

have any manifestation in the 2-D density model which traverses it. However, any low density and, 

hence, low velocity zone beneath it should be observable if spreading is currently magmatically 

supported. Our AML density model suggests that there is no significant across-axis density anomaly 

arising from hotter thermal conditions associated with a magma source region, which may support the 

hypothesis that the magma supply to the CRR AML is periodic and/or weak. Alternatively, it could also 

be the case that this feature has an across-axis scale much longer than the ±20 km from the ridge axis 

over which the ship-based FAA was measured. However, the latter possibility is not supported by the 

lower lateral resolution satellite-derived data (Fig. 10). 
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6.3. Across-axis profile through the OSC 

In contrast, a constant crustal thickness and density model for the north-south profile (X=30 km) which 

traverses the OSC and associated LVZ at the ridge axis (Fig. 11i;) does not produce a FAA that fits the 

observed (Fig. 11g,h). Negative misfits (modelled < observed) between 24-44 km and 48-56 km distance 

along profile suggest that these regions are underlain by either a thinner crust or more dense crust and/or 

mantle compared to the OSC at the ridge axis. Since the inversion model has lower velocity beneath the 

OSC to depths of ~2.5 km b.s.f. (Z=5.5 km; Figs 6a-c, 8e), it would be inconsistent to model these 

features with localized higher density blocks. We, thus, suggest that the mismatch is best explained by a 

thinner crust on-axis than off-axis. 
We test this hypothesis by adjusting the depth of the base of layer 3 (Fig. 11j), and find that the 

degree of thinning required, assuming no lateral changes in density, is ~1.0-1.6 km. If this crustal 

thinning is facilitated by faulting this may result in the formation of fluid pathways throughout the crust 

which may allow fluids to infiltrate the uppermost mantle, causing alteration and lowering of its density. 

Consequently, there is a trade-off between density decrease and increased thinning. Our OSC density 

model (Fig. 11k) shows that, for a 110 kg m-3 lower density mantle within the thinned region, layer 3 

must further reduce in thickness by another 0.5 km relative to the constant density case, to produce a fit 

to the FAA within error.  
Comparing the locations of misfit and corresponding model adjustments with the across-axis 

bathymetry (Fig. 11l), we find that they coincide with variations from shallower to deeper off-axis sea-

floor. The latter locations are interpreted by Wilson et al. (2019) to reflect periods of increased tectonic 

stretching. The regions of crustal thinning are also not symmetrically distributed either side of the ridge 

axis, with the central region beneath the OSC being offset to the south, and the flanking regions being 

~15-20 km off-axis to the north and 18-24 km to the south. This observation reflects the observed 

asymmetry in the spreading rates for the two ridge flanks (Wilson & Hey, 1995; Wilson et al., 2019). 

 

6.4. Regional features 

To place our observations within the NG in context of the CRR segment as a whole, we use the GEBCO 

(2008) bathymetry (Fig. 10a), the Sandwell et al. (2014) FAA (Fig. 10b) and the MBA (Fig. 10c) and 

residual MBA (RMBA; Fig. 10d) of Wilson et al. (2019). A datum was subtracted from the RMBA to 

produce the residual RMBA (rRMBA; Fig. 10e), with values distributed around zero. The resulting 

rRMBA represents deviations in structure from the reference crustal thickness and density used for the 

reduction. Thus, higher or more positive values imply that either the crust is thinner than the 6 km 

reference thickness used in the calculation, or that the crust and/or mantle are denser than the reference 

values, or a combination of these, with the opposite true for lower/more negative values. 

We observe a trend in the rRMBA from lower/negative values adjacent to the Ecuador Fracture Zone 

in the west, to higher/positive values towards the Panama Fracture Zone in the east. The transition 
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between these regions approximately coincides in longitude with the OSC, to the east of which the deeper 

ridge axis is inferred to reflect a weaker magma supply. The rRMBA further supports this hypothesis, 

indicating either colder and, hence, denser crust and/or mantle material, or an increased prominence of 

tectonic stretching that thins the crust. This along-ridge trend is also observed to extend for ~80-100 km 

off-axis (Fig. 10e), corresponding to crustal ages of up to ~3 Ma (Wilson & Hey, 1995; Wilson et al., 

2019).  
Seismic attenuation studies (e.g. Vargas et al., 2018), using both onshore and offshore recordings 

of earthquakes, suggest that the Panama Fracture Zone (which bounds the CRR to the east; Fig 1a) 

coincides with a significant thermal anomaly in the lithosphere, extending to at least ~30 km depth. We 

suggest that this feature may effectively ‘chill’ the adjacent lithosphere to the west, with the extent of 

this effect being shown by the along-segment transition in rRMBA values from positive to negative. 

7. DISCUSSION

7.1. CRR ridge structure, magma supply and spreading characteristics

The present mean axial depth of the CRR is ~3 km, deeper than might be expected from its spreading

rate (~65 mm yr-1 FSR; e.g. Mendel et al., 2003; Dannowski et al., 2010), and may suggest that the ridge

system is currently spreading in a manner similar to a slower, MAR-type end-member. Changes in the

bathymetric profile along segment, from a bathymetric dome to the west of the OSC to a deeper axial

valley to the east (Fig. 2b), in turn, suggest variability in along axis magma delivery. However, axial

depth is not necessarily a direct indicator of ridge equilibrium state and, instead, could reflect episodic

periods of magmatic spreading, or the dynamic (shorter time scale) effects of magmatic intrusion and its

related faulting and fracturing (e.g. Carbotte et al., 2006).

Observation of an axial magma lens (Buck et al, 1997), which may persist over or be resupplied 

within an ~20-year timescale (Lowell et al., 2020), does not necessarily conflict with an interpretation 

that a slower end-member style of spreading is currently ongoing at the CRR. In tandem with the 

observation of a water column hydrothermal plume at the ridge axis, thermal modelling (Lowell et al., 

2020) suggests that the magmatic input to the AML may be relatively small and episodic, rather than 

continuous and well supported over time, as is the case for EPR-type ridge systems. This conclusion is 

further supported by the lack of evidence from potential field modelling for a significant lower crustal 

or upper mantle heat anomaly, which would be expected if the magma supply is robust. Instead, our 

across-axis FAA modelling shows that the observed anomaly can be explained entirely by the upper 

crustal (layer 2) structure. 

Off axis, the basement fabric and crustal velocity structure both record changes in the style of 

spreading. Wilson et al. (2019) suggest that the CRR may exist at a tipping point, where the supply of 

magma to the ridge is sensitive to small fluctuations in the full spreading rate. As such, there may be 

periods of more well-supplied and, hence, magma-rich spreading, which alternate with periods where 

plate separation is primarily accommodated by tectonic stretching and faulting over million-year 



timescales, where the balance between the two is dictated by fine-scale changes in the spreading rate, as 

small as 3-5 mm yr-1.   

7.2. OSC stability and evolution 

The overlap (~2.5 km) and offset (~1.5 km) of the CRR OSC result in an overlap to offset ratio of ~1.6:1, 

which is relatively small compared to that of the well-established OSCs found at the EPR and JdFR at 

3:1 (e.g. Macdonald & Fox, 1983; Canales et al., 2003, 2005; Weekly et al., 2014). Consequently, the 

OSC at the CRR may be interpreted to be at a relatively nascent stage within its lifespan. However, 

despite this, the CRR OSC footprint does have a direct correlation with the velocity anomaly structure 

in the upper and middle parts of the crust, with a 0.5-0.8 km s-1 reduced P-wave velocity extending to 

≥2.5 km b.s.f.. We interpret this reduced velocity as reflecting an increase in porosity due to fracturing 

associated with the progressive formation of the OSC, a process which has been shown to result in 

porosity increases of ~10% (Christeson et al., 1997). 

Our observation is similar to velocity anomalies associated with other magmatically active mid-

segment regions. For example, the 9°03’N OSC at the EPR (Tong et al., 2002) displays a localized 

velocity decrease of ~0.3-0.5 km s-1, extending to depths of up to ~2 km b.s.f.. At the much larger (30 

km overlap, 10 km offset) Endeavour-West Valley and Cobb OSCs, at ~48°N on the JdFR, P-wave 

velocity is up to 1 km s-1 slower than along the adjacent ridge segments (Weekly et al., 2014), although 

a component of this is attributed to velocity increase due to porosity infilling in the mid-segment regions 

as a result of hydrothermal circulation and mineral precipitation (Lowell et al., 1993). 

Tong et al. (2003) propose a dynamic magma supply model for OSCs, in which variations in the 

magma budget of the offset ridge segments may affect if and how the discontinuity migrates along-ridge. 

Where magma supply is balanced either side of the discontinuity, the OSC tends to remain at a stationary 

along-ridge position. However, where one limb is better supplied with magma, it will tend to propagate 

at the expense of the other, which will self-decapitate (Macdonald & Fox, 1983; Macdonald et al., 

1987). 

The apparent LVZ focussing beneath the western ridge tip (Fig. 9a,b) may suggest that this limb 

is currently undergoing a greater degree of tectonism, although the limitations of model ray coverage 

and resolution mean that it cannot definitively be determined how far east the LVZ extends away 

from the OSC. If tectonism is more active here, it would lead to the formation of open fractures that 

results in the observed decrease in the seismic velocity (Macdonald et al., 1988), despite the 

observation of an AML (Buck et al., 1997; Lowell et al., 2020) which suggests that this limb has a 

magma supply. In addition, both the degree of seismic attenuation (Vargas et al., 2018) and the 

potential field data analysed here also suggest that the CRR to the west of the OSC may have a more 

robust magma supply than to the east (Lowell et al., 2020), although there is limited shallow seismic 

crustal constraint on this. Microseismicity observations suggest that a high-temperature hydrothermal 

circulation system is active in the crust above the AML, whose cooling effect and open fracture 

pathways may also contribute to the lower P-wave velocity (Fig. 3b; Lowell et al., 2020). 

17 
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At distances of up to ~30 km from the ridge axis, swath bathymetry data identifies a series of axis-

aligned basins between ~12-15 km long, ~3 km wide, and up to ~300 m deep. These are interpreted as 

recording past ridge-axis discontinuities up to 1 Myr in age (Fig. 1, Haughton et al., 2018). Indicative 2-

D gravity modelling (Fig. 11j,k) suggests that these basins are underlain by thinner crust, which may be 

a result of increased tectonic stretching during formation of past ridge discontinuities. These basins do 

not resemble the V-shaped wakes observed at well-developed OSCs, such as the 9°03’N OSC of the EPR 

(Macdonald et al., 1984) and the 93°15’W OSC of the GSR (Canales et al., 1997), and do not show a 

significant lateral offset from the present along-ridge location of the OSC. This may suggest that ridge 

tip migration at the CRR is either slow or absent, likely as a consequence of an overall relatively weak 

magma supply to the ridge axis. 

7.3. Hydrothermal exploitation of the fracture network 

The pattern of microseismicity and observations of hydrothermal venting at the CRR (Fig. 3b; Lowell et 

al., 2020) suggest that its OSC may facilitate and focus fluid circulation. With the existing data it is not 

possible to unequivocally identify locations of outflow and recharge, although the single observation of 

a hydrothermal plume (Lowell et al., 2020) locates an at least transient expulsion of fluid from the system. 

Similar associations between microseismicity, axial magma systems, and observations of hydrothermal 

venting elsewhere (e.g. Wilcock et al., 2002; Dziak et al., 2007; van Ark et al., 2007; Tolstoy et al. 2008) 

have been interpreted as reflecting the action of hydraulic fracturing within the circulatory system.  

As part of its formation, the crust adjacent to and below the OSC should undergo significant faulting 

and fracturing, increasing the crustal porosity and permeability, and resulting in the LVZ observed in the 

seismic velocity models. Therefore, this highly fractured region may provide a potential pathway for 

fluid ingress, which may enhance cooling of the magmatic system beneath. If that is the case, this may 

explain why the AML appears to terminate before it reaches the discontinuity (Fig. 3; Buck et al, 1997), 

effectively being prevented from lateral flow by a cooling front. 

Above the magma lens, as the hydrothermal fluids begin to cool, mineral precipitation may lead to 

infill of the intrinsic upper crustal porosity and permeability (Lowell et al., 1993, 2013) which would 

manifest as an increase in observed P-wave velocity in this region. Our modelling provides potential 

evidence that this process may be occurring, with P-wave velocity contours between 4.5-5.5 km s-1, 

between 15-25 km along axis, being concentrated into a much narrower depth range than their equivalent 

elsewhere (Fig. 5).  

7.4. Relationships between magma supply and ridge segmentation 

Ridge axis depth (Fig. 2b) and volcanic morphology analysis (Haughton et al., 2018) both suggest that 

the western ridge segment, to the west of the OSC, currently has an enhanced magma supply relative to 

the eastern segment. This conclusion is further supported by the rRMBA (Fig. 10e), which demonstrates 

a corresponding transition from lower/negative to higher/positive values along the ridge axis from west 
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to east. This trend suggests that the segment to the east of the OSC is characterized by either a thinner 

crust, consistent with spreading accommodation through tectonic stretching under relatively magma-

poor conditions, or that the crust and/or mantle is denser than that to the west. Both of these 

interpretations ultimately lead to an along ridge thermal anomaly and/or gradient, consistent with seismic 

attenuation studies that reveal a thermal anomaly within the lithosphere, delimited by the Panama 

Fracture Zone and bounding the CRR to the east (Vargas et al., 2018). The consequence is a ‘chilling’ 

of the warmer lithosphere immediately adjacent to the cooler. 

 The rRMBA variation along ridge is also observed to extend for ~80-100 km off-axis, i.e. for up to 

~3 Myr (Wilson & Hey, 1995; Wilson et al., 2019). Consequently, processes occurring at present may 

have been active for extended periods of time, either continuously or intermittently, as marked by a series 

of off-axis basins that Haughton et al. (2018) interpret as relics of previous non-transform discontinuities 

at the ridge axis. Two-dimensional gravity modelling north-south across these features suggests that they 

are characterized by thinner crust than that formed away from the OSC (Fig. 11j,k). Three of these 

features are seen to the south of the ridge-axis, at distances of ~5, ~10, and ~20 km, and there are two 

similar features to the north at ~5 and ~15 km from the ridge. However, in the latter case, the north flank 

of the ridge appears to be overlain by lava flows, affecting our ability to map their locus of eruption and 

extent, and masking older spreading-related features. Based on the present-day CRR half-spreading rate, 

the off-axis distances of these basins suggest a periodicity in formation of ~0.15-0.35 Myr.  

 

7.5. Overview 

When taken together, our models and observations suggest that the present-day OSC may exist because 

of a fundamental along ridge segment boundary whose inherited characteristics have persisted in the 

crust for at least ~3 Myr. This feature presently represents the boundary between more magmatically 

robust (i.e. well supplied) spreading and magmatically episodic spreading, during which relatively short 

phases of magmatic accretion are interspersed by relatively long periods of tectonic stretching. The co-

occurrence of the observed hydrothermal system at the CRR, together with the larger lithospheric scale 

temperature anomaly, suggests that the magmatic-tectonic processes at the CRR may be influenced by 

two integrated cooling mechanisms: one in the shallower crust, due to enhanced hydrothermal circulation 

as a result of the magma heat source and the open cracks arising from tectonism; and the other extending 

throughout the lithosphere, arising from the juxtaposition of a cooler plate against a warmer. The OSC 

may, therefore, exist where it does due to that location along-segment being the limit of the cooling 

exerted by the colder plate to the east. In turn, the OSC itself opens more fractures/faults, allowing more 

fluid to flow and resulting in even more cooling, at least at upper crustal levels – a positive feedback 

loop.  

Furthermore, the cooling effect of the hydrothermal system at the OSC presents a barrier to lateral 

magma flow along segment from west to east, thus further contributing to the increasingly magma-

limited mode of spreading of the eastern segment. The absence of seismic constraint beyond ~5 km to 
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the east of the OSC, in addition to the 2-D nature of the acquisition of the MCS profiles, means that the 

presence or absence of an AML, either beneath the eastern ridge segment or the OSC itself cannot 

unequivocally be determined. However, our analysis of the potential field data suggests that the eastern 

ridge segment displays little evidence to support the presence of significant axial magma accumulations. 

Therefore, when considered in the context of the observed off-axis variability in the dominant 

spreading mode (Wilson et al., 2019), the CRR may exist in a finely balanced state between magmatic 

accretion and tectonic spreading not only across axis but also along. These phases are turned on or off 

by long period (Myr), large scale (>10s km) changes in the magma supply rate, which itself may be 

controlled by a range of external factors, including changes in the direction of plate motion and large-

scale, pre-existing crustal and/or lithospheric heterogeneity. 

 

8. CONCLUSIONS 

Tomographic modelling of the OSCAR North Grid 3-D WA seismic data acquired at the Costa Rica Rift 

has revealed a P-wave seismic velocity anomaly low associated with an OSC-type non-transform 

discontinuity of the ridge axis. By combining this observation with other geophysical observations from 

the OSCAR project and previous experiments at the CRR, we draw the following conclusions: 

 

1. The broad LVZ beneath the OSC, with dimensions of ~10 x 5 km and a maximum velocity 

anomaly relative to the ‘background’ ridge axis crustal structure of ~0.5-0.8 km s-1, arises due to 

increased fracturing under enhanced tectonic stress, which increases the upper crustal bulk 

porosity and permeability. The apparent location of the LVZ maximum beneath the western 

ridge tip may suggest that this region is currently undergoing the higher degree of tectonic 

extension, associated with the evolution of the OSC.  

2. The presence of a fluid circulation system at the CRR is supported by observations of 

hydrothermal plume activity and the location and temporal pattern of microseismic events, such 

that this system may exploit the open fracture/fault pathways which manifest as a low velocity 

zone beneath the ridge discontinuity. A hydrothermal system would cause rapid cooling of the 

ridge axis and any axial magma accumulations and, thus, may prevent eastward migration away 

from the more magma robust ridge segment to the west. 

3. The Costa Rica Rift lies in a finely balanced state between episodic phases of magmatic accretion 

and tectonically-dominated spreading. It displays evidence for magmatic accretion ongoing at 

the ridge axis in the form of an AML. However, its dimensions, and the lack of evidence in 

crustal scale seismic and gravity models for a significant heat source, suggest that overall the 

magma supply is relatively weak. 

4. The fine balance between alternating phases of magmatic accretion and tectonically-dominated 

spreading at intermediate spreading ridges that we propose is recorded in the crustal morphology 

off-axis. Across-axis, variable spreading rate appears to control when the crustal formation 
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process tips between the two end-member states. However, such variation between end-member 

spreading modes is also observed along axis, where it arises due to full-crustal or lithosphere 

scale structural and/or thermal heterogeneity as shown in the gravity models, and where it 

subsequently contributes to magmatic and/or tectonic segmentation of the ridge system. 
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Table 1. Summary of travel time pick uncertainties, showing the number of picks for each assigned 

travel time uncertainty used for primary inversion, ray coverage and resolution analysis, and the 

investigation of the structure of the AML. 

 

Pick uncertainty 15 ms 20 ms 30 ms 40 ms 45 ms Total 
primary inversion  1348   67144 68492 
LVZ investigation 1348  24437 42707  68492 

 

 

 

Table 2. Summary of parameters used for inversion. The values given for the horizontal and vertical 

inversion cell sizes are for the preferred inversion model shown in Figs 5 & 6. 

 

Inversion parameter Value 

sz 0.125 

alpha 0.95 

lambda0 100 

lambda reduction factor 1.414 

inversion cell - horizontal 0.5 km 

inversion cell - vertical 0.5 km 
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Figure 1. North Grid study area and regional bathymetry. a) Principal regional tectonic features of the 

Panama Basin, plotted over GEBCO (2008) bathymetry. Blue box indicates area shown in b). Plate 

motions are from NRR-MORVEL56 (Argus et al., 2011). Abbreviations: CRR – Costa Rica Rift; ER – 

Ecuador Rift; GSR – Galapagos Spreading Ridge; PFZ – Panama Fracture Zone; EFZ – Ecuador Fracture 

Zone; IT – Inca Transform Fault. b) Ship-acquired swath bathymetry of the CRR ridge axis. Layout of 

the North Grid seismic acquisition with profile names annotated. Dashed black box shows the extent of 

the 3-D model, with axes labelled in model co-ordinates. Dashed red line shows location of the ridge 

axis centre line. Red filled triangles indicate OBS with record sections shown in Fig. 4. Dashed blue box 

indicates region shown in Fig. 2a. 
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Figure 2. Swath bathymetry of the CRR showing ridge axis structure. a) Ridge axis in the vicinity of the 

overlapping spreading segment. Red dashed line indicates the location of ridge axis centre line. Blue 

dashed line is the location of OSCAR MCS Profile NG_Bb13 (Lowell et al., 2020), co-incident with the 

location of EW9416 Profile 1268 (Buck et al., 1997). Dashed black lines show the longitudes of the ends 

of the observed AML from these two surveys. Inverted triangles show OBS locations (cf. Fig. 1b). b) 

Bathymetry sampled along the ridge axis centre line (light grey), shown with a 3’ (~5 km) Gaussian filter 

applied (dark grey). Dotted black lines show location relative to a). Labelled arrows indicate the 

directions to and names of bounding fracture zones (cf. Fig. 1a). OSC and AML locations along the ridge 

axis are labelled.  
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Figure 3. MCS image of the CRR AML from a) EW9416 Profile 1268 (after Buck et al., 1997), adapted 

from Lowell et al. (2020). The blue squares indicate the along-ridge extent at ~5.1-5.3 s TWTT.  Location 

of the OSC is labelled. Upper annotations/tick-marks indicate actual location of the features shown, 

lower annotations/tick-marks show locations in NG model space. b) Depth converted, migrated seismic 

image of Profile 1268. Dots show depths of relocated earthquake hypocentres located within ~2 km of 

the plane of the profile, the majority of which plot directly above the AML. Events are coloured by Julian 

day in 2015, and show two temporal clusters between JD 26-34 (lighter/yellow) and 35-47 (darker/red). 
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Figure 4. Example OBS hydrophone record sections, displayed using a minimum phase bandpass filter 

(1-4-88-120 Hz) and a reduction velocity of 6 km s-1. a) OBS 07, Profile NG_B, which runs along the 

ridge axis with b) travel time picks annotated, where bar height corresponds to the assigned pick 

uncertainty (Table 1). c) & d) OBS 23, Profile NG_E, which is oriented ridge-parallel, off-axis to the 

south. e) & f) OBS 14, Profile NG_G, oriented across axis and intersecting a) & b). 
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Figure 5. Starting model and modelling results. a) 2-D vertical slice through the starting model at X=20 

km. b) 1-D vertical velocity-depth profile at the ridge axis derived from a 2-D inversion of OBS data 

along SAP_B (Wilson et al., 2019). This was applied below bathymetry to generate starting model shown 

in a). c-e) Vertical model slices through the inversion model resulting from travel time inversion using 

the starting model in a) and the parameters in Table 2. Slices are taken c) N-S through the region where 

the AML has been observed at the ridge axis, co-incident with Profile SAP_B, d) N-S across the OSC, 

and e) E-W along the ridge axis. f) Ridge axis structure from 2-D inversion of OBS data along SAP_B 

(Wilson et al., 2019) for comparison. Red arrows in N-S oriented plots indicate the location of the ridge 

axis. Blue arrow in e) marks the OSC. Models are masked by illumination to show areas constrained ray 

coverage. Contours are shown at 0.5 km s-1 intervals between 3.5 and 6.5 km s-1. Dashed horizontal grey 

lines locate depth slices in Fig. 6. 
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Figure 6. Inversion model derived with 0.5 km lateral and 0.5 km vertical inversion cells. Horizontal 

(constant model depth) slices at: a) Z=4.2 km (~1.2 km b.s.f.); b) Z=5.0 km (~2.0 km b.s.f.), and c) Z=5.5 

km (~2.5 km b.s.f.). Illumination masking shows the extent of model ray coverage and the dotted line 

shows the centre line of the west and east CRR ridge segments. Inverted black triangles show OBS 

locations. Dashed grey lines show locations of vertical slices shown in Fig. 5b-d. d-f) Corresponding ray 

coverage. Blue line delimits inverse cells with more than 100 ray hits. 



 

40 
 

 
Figure 7. Resolution analysis of the inversion model using a 3 x 3 km checkerboard. a) Input to (left) 

and resultant pattern after (centre) checkerboard testing, and resulting semblance (right) at Z=4.5 km 

(~1.5 km b.s.f.). b) As a), with a 45° rotation applied to input pattern. Averaged semblance of four pattern 

phase shifts to the c) unrotated and d) rotated 45° input checkerboard patterns, and e) for all eight unique 

input test patterns. f) Mean semblance for eight unique input test patterns for the 0.5 km horizontal, 0.2 

km vertical inverse cell size parameterization. Depths (Z) of model slices are annotated. The 0.6 and 0.7 

semblance contours are shown in black.  
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Figure 8. 1-D vertical velocity-depth profiles through the inversion model. a) Velocity-depth profiles at 

the ridge axis, away from the LVZ (X=20 km, Y=30 km model space), coinciding with SAP_B. Red line 

is the inversion model. Grey envelope represents the range of resulting structures from all tested inversion 

parameterizations. Black dashed line is the Wilson et al. (2019) 2-D OBS inversion velocity-depth 

structure at the ridge axis. b) Off-axis, 10 km to the south (X=20 km, Y=40 km; blue line). c) At the 

location of maximum LVZ amplitude (X=29 km, Y=31 km; green line). d) Comparison between off- 

and on-axis velocity-depth profiles through the inversion model. Line colours correspond to the model 

locations shown in a) & b). e) Comparison between LVZ and ridge axis profiles. 
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Figure 9. Constraints on inversion model anomaly variation. a) LVZ at Z=4.2, 5.0, and 5.5 km. Black 

dashed line indicates centre line of each CRR ridge segment. Star at X=29 km, Y=31 km corresponds to 

the location where 1-D profiles in c) and Fig. 8c are sampled. b) Corresponding LVZ structure for the 

model generated using “at-best” pick uncertainties, showing the LVZ to be concentrated beneath the 

western spreading limb. See text. c) 1-D velocity-depth profiles at the ridge axis (X=20 km, Y=30 km; 

red) and through the OSC LVZ (X=29 km, Y=31 km; black). Solid lines correspond to the “at-best” pick 

uncertainty model, and dashed lines to the inversion model. Grey arrows and dashed lines approximately 

show the depths of the constant depth slices (a-b). 
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Note to reviewer/editor/typesetter – we propose this figure be presented on a single page in landscape 

format 
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Figure 10. CRR segment-scale potential field data, extending ~250 km to the north and south of the 

ridge axis. a) GEBCO (2008) bathymetry. b) Satellite-derived FAA (Sandwell et al., 2014). c) MBA, 

calculated using a crustal thickness of 6 km and densities of 1035, 2700 and 3300 kg m-3 for the water 

column, crust and mantle respectively. d) RMBA, calculated using an average half-spreading rate for 

both ridge flanks of 33 mm yr-1. e) rRMBA, calculated by applying a datum shift to d) distribute 

anomalies around zero for relative polarity analysis. Solid black lines indicate the location of the ridge 

axis. Dashed black lines are the segment-bounding fracture zones. Black inverted triangles show OBS 

locations. Cross indicates the location of borehole 504B. Dotted black line in e) shows the location of 

the change from lower to higher rRMBA from east to west, lying ~8-10 km west of the OSC at the ridge 

axis. 
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Figure 11. 2-D gravity modelling. a) Ship-acquired swath bathymetry data. Inverted black triangles show 

OBS locations. Black dashed lines correspond to profile locations shown in c-f) & g-l). b) Cross-over 

corrected and gridded JC114 ship-acquired FAA. Left: AML gravity modelling (X=20 km). c) Misfit 

between observed and modelled FAA. d) Observed (black) and modelled (red) FAA corresponding to 

the model shown in e). Grey envelope shows the ±5 mGal error bound. e) Crustal AML density model, 

derived using 4.55 and 6.25 km s-1 contours from the inversion model, a constant total thickness crust (6 

km), and density from Carlson & Raskin (1984). f) Ship-acquired bathymetry along modelled profile 

(black dashed line). Black arrow shows the location of ridge axis. Right: OSC gravity modelling (X=30 
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km). g) Misfit between observed and modelled FAA as in c). Line colours correspond to density models 

shown in i-k): red - constant crustal thickness, (i); dark blue - variable thickness, constant density (j); 

light blue, dashed - variable thickness, variable density (k). h) Observed (black) and modelled FAA, line 

colours correspond to models as in g). i) Constant crustal thickness block model. j) Variable crustal 

thickness block model. Dashed black lines show crustal thickness variability relative to the model in i). 

k) OSC density model with variable crustal thickness and variable density. Dashed black lines show 

crustal thickness variation relative to the models in i) & j). l) Ship-acquired bathymetry, as in f). Dashed 

vertical lines through j-l) show the correlation between variable crustal structure and bathymetry. 

 


