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Abstract 

 

The use of spores of coprophilous fungi from sedimentary sequences as proxy evidence for large 

herbivore abundance has garnered pronounced attention and scrutiny over the past three decades. 

In response to the rapid rate at which new information is being discovered on this topic, this 

paper presents a brief review of the archaeological applications so far, and outlines opportunities 

and limitations of using Sporormiella as a proxy for herbivore abundance. Specific 

archaeological uses of this proxy include understanding megaherbivore extinctions and human 

land use patterns such as pastoralism and agriculture. We analyze how dung fungal records are 

formed and review the mycological literature to outline factors affecting spore reproduction and 

preservation. These include how strongly each commonly used dung fungal taxon relies on dung 

as a substrate and environmental factors affecting dung fungal reproduction and coprophilous 

fungi deposition. Certain laboratory preparation techniques adversely affect spore representation 

on pollen slides. The methods of analysis and quantification of spore records also impact on our 

understanding. We describe good practice to increase precision of analytical methods. Due to 

limitations imposed by some of these factors, it is possible that an absence of dung fungi from a 

palaeoecological record does not imply an absence of herbivores. However, consideration of 

these factors and inclusion of as wide a range of coprophilous spore records as possible increases 

the reliability of such inferences. 
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1. Introduction 1 

The use of Sporormiella spores from sedimentary sequences as a proxy for large 2 

herbivore abundance has garnered pronounced attention and scrutiny over the past three decades. 3 

Since it was first proposed as a proxy for Pleistocene megaherbivore abundance in the 1980s 4 

(Davis 1987), increasing research has been devoted to developing sampling, recovery and 5 

quantification techniques, as well as understanding the applications and limitations of this 6 

method. In response to the rapid rate at which new information is being discovered on this topic, 7 

this paper presents a brief review of the archaeological applications so far, and outlines 8 

opportunities and limitations of using Sporormiella as a proxy for (mega)herbivore abundance.  9 

 Sporormiella is one of a number of genera of coprophilous fungi, also known as dung 10 

fungi. These are fungi that show a strong preference for (mainly herbivore) dung as their primary 11 

substrate. Sporormiella is one of many organisms that participate in the breakdown of herbivore 12 

dung after it is evacuated. This fungus belongs to a group of most commonly used fungal 13 

indicators of herbivore abundance, Ascomycota, which reproduce on the dung two to four weeks 14 

after it is deposited (e.g. Harper and Webster 1964). There are some indications that the spores 15 

produced by Sporormiella and similar genera need to pass through the digestive tract of an 16 

herbivore in order to activate germination, but evidence for this is limited (Janczewski 1871; 17 

Massee and Salmon 1902; Krug et al. 2004). Regardless of these uncertainties, the abundance of 18 

Sporormiella spores in sedimentary sequences has been demonstrated repeatedly to reflect 19 

herbivore abundance in both modern (e.g. Baker et al. 2016; Gill et al. 2013; Parker and 20 

Williams 2012; Raczka et al. 2016; Wood et al. 2013) and ancient settings (e.g. Burney et al. 21 

2003; Davis 1987; Davis and Shafer 2006; Doyen and Etienne 2017; Gill et al. 2009).  22 

2. Applications for Archaeologists 23 
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Dung fungal records are important datasets for archaeologists because of the frequency of 24 

interactions between ancient people and large herbivores. Sporormiella continues to be used as a 25 

proxy to detect declines in late Pleistocene megaherbivore communities (e.g. Davis 1987; Gill et 26 

al. 2009, 2014; Graham et al. 2016; Johnson et al. 2015; Perrotti 2018). The North American 27 

extinction of over 30 species of large mammals at the end of Pleistocene is of particular interest 28 

to archaeologists because it roughly coincides with the earliest human colonization of the 29 

continent. The cause of these extinctions remains the subject of intense debate. Disagreement 30 

concerns the relative impacts of human hunting (Alroy 2001; Frank et al. 2015; Martin 1984; 31 

Surovell et al. 2016; Surovell and Waguespack 2009), climate change (Guthrie 1984; Grayson 32 

and Meltzer 2003), disease (MacPhee 1997) and a potential extraterrestrial impact (Firestone et 33 

al. 2007) on Pleistocene megafauna.  34 

Because faunal remains are sparse and can be difficult to date, it is hard to reliably 35 

establish extinction dates. The use of the Sporormiella proxy allows researchers to fill in 36 

geographic gaps where there may be no dateable fauna. Since Sporormiella spores occur in the 37 

same deposits as pollen and plant macrofossils, patterns in their abundance can be linked directly 38 

with trends and changes in the vegetation record, as well as with absolute dates obtained for 39 

these deposits. The fungus has been found in sedimentary records across North America, and is 40 

aiding in the understanding of the timing and process of megafaunal extinction, and its effects on 41 

vegetation communities (Gill et al. 2009, 2014; Perrotti 2018).  42 

If humans are unequivocally tied to megaherbivore extinction, it is possible that the 43 

timing of local extinctions could be used as a signal of human colonization in different regions, 44 

particularly when complemented with archaeological evidence. Studies incorporating 45 

Sporormiella in western North America are rare, but declines in Sporormiella coincide with 46 
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generally accepted dates of human colonization in the northeastern United States (Davis and 47 

Shafer 2006; Gill et al. 2009; 2014). However, the Sporormiella record and archaeological 48 

evidence from Page-Ladson, Florida (Halligan et al. 2016; Perrotti 2018) indicate that humans 49 

and megaherbivores coexisted in the region for ~2,000 years. Fiedel (2018) suggests that 50 

Sporormiella may not be a reliable indicator of megaherbivore extinction in eastern North 51 

America because current Sporormiella records (i.e. Gill et al. 2009, 2014) point to a decline in 52 

megaherbivores around 14,800 BP, while some mammoth remains in the region are dated to as 53 

late as ~12,000 BP. Furthermore, it is unclear whether absence of spores is equally informative 54 

as spore presence (e.g. see below for factors other than herbivore abundance influencing fungal 55 

growth, and thus, potential spore presence; see also Raper and Bush 2009; Jones et al. 2017). 56 

However, researchers using Sporormiella as a proxy for large herbivore abundance acknowledge 57 

that declines in Sporormiella do not necessarily indicate a complete extinction of all 58 

megaherbivores; but rather, a functional decline in grazing pressure that represents shrinking 59 

herbivore populations relegated to patchy environments prior to extinction (Gill et al. 2009, 60 

2012). Nonetheless, because of the discrepancies between regions and the inconclusive evidence 61 

for a human driven extinction of North American megafauna, at present Sporormiella or other 62 

coprophilous fungi cannot be used as a proxy for human activity and migration in this region 63 

(Fiedel 2018). 64 

Human colonization seems to coincide with a decline in coprophilous fungi in other parts 65 

of the globe, including Australia (Rule et al. 2012; van der Kaars et al. 2017), New Zealand 66 

(Wood et al. 2011) and Madagascar (Burney et al. 2003). In some cases, the initial fungal spore 67 

decline is followed by an increase after the introduction of domesticated animals (Burney et al. 68 
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2003; Davis and Shafer 2006; Graham et al. 2016) or other non-native herbivores (Wood et al. 69 

2011). 70 

 Second, many archaeologists use Sporormiella and other coprophilous fungi as markers 71 

of pastoral and other human land use activities across Europe, Africa and Asia (Ahlborn et al. 72 

2015; Felauer et al. 2012; Ghosh et al. 2017; Lehmkuhl et al. 2011; Miehe et al. 2009; 73 

Shumilovskikh et al. 2016a, 2016b, 2017; Szymanski 2017; van Geel et al. 2003). Coprophilous 74 

ascomycetes other than Sporormiella have also been verified to reflect pastoral activities in 75 

mountainous, pasture-woodland landscapes (Cugny et al. 2010), in upland grasslands and bogs 76 

(Feeser and O’Connell 2010) and in boreal forest (Kamerling et al. 2017). Evidence of direct 77 

domestication of herbivores in the pre-Columbian Americas is rare. However, dung fungi could 78 

potentially be used to provide more information about communal hunting in the Great Basin 79 

region of North America, where pronghorn and mountain sheep were rounded up and potentially 80 

kept in pens constructed of stone and brush (Hockett 2005; Hockett and Murphey 2009).  81 

3. Opportunities and Limitations 82 

3.1 Dung Fungus Reproduction 83 

 Interpreting the abundance of spores of coprophilous fungi in a sedimentary record 84 

requires an understanding of the different factors influencing fungal reproduction. Sporormiella 85 

is strongly coprophilous and is observed almost entirely in association with herbivore dung 86 

(Doveri 2007: 613). Gelorini et al. (2011) emphasized that only genera that are obligate to 87 

herbivore dung, such as Sporormiella and Podospora, could serve as a reliable signal of 88 

herbivore presence. However, the precise lifecycle and substrate preferences remain ambiguous 89 

for even the most commonly noted spores of coprophilous fungi (Table 1). Apiosordaria and 90 

Coniochaeta are two taxa that are often taken to indicate herbivore presence but have recently 91 
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been found to be poor indicators of herbivore abundance (Doyen and Etienne 2017). This is not 92 

surprising, since the mycological literature indicates they primarily grow in soil (Bell 1983: 33; 93 

Doveri 2007: 760; Krug et al. 1983; Guarro et al. 2012: 47-51, 118). Other commonly observed 94 

semi-coprophilous ascomycetes such as Cercophora and Sordaria are also found on other 95 

organic substrates, such as plant debris, decaying wood, or soil, with some frequency (Bell 1983: 96 

36, 40; Doveri 2007: 826, 847; Guarro et al. 2012: 111, 383; Hanlin 1990; Kruys and Wedin 97 

2009). Newcombe et al. (2016) found evidence that Sordaria, Preussia, and even Sporormiella 98 

may be epiphytic and concluded that the presence of these spores is not undisputable evidence of 99 

herbivore abundance. Because herbivore dung consists largely of partly digested plant remains, 100 

the ability of some dung fungi to opportunistically grow on plants is not surprising. However, 101 

coprophilous fungal taxa Sporormiella and Podospora, as well as a number of less common taxa 102 

such as Ascodesmis, Arnium, Bombardioidea, Delitschia and Trichodelitshia, have a strong 103 

preference for dung as a substrate and therefore typically reflect the presence of large herbivores. 104 

Despite its strong preference for dung as a substrate, caution still must be applied when 105 

observing Sporormiella in sediment samples, as Sporormiella spores can be indistinguishable 106 

from the spores of Preussia (Barr 2000; Cain 1961; Kruys and Wedin 2009). Though these two 107 

fungi are closely related, only Sporormiella depends on dung as a growth substrate (Von Arx and 108 

Van der Aa 1987). 109 

Even if spores of coprophilous fungi may not necessarily have to pass through the gut of 110 

an herbivore to complete reproduction, many fungal spores are consumed and move through the 111 

digestive system. After consumption by an herbivore, spores of coprophilous fungi are expelled 112 

with the dung after which they germinate and propel spores away from the dung. The spores 113 

typically adhere to nearby vegetation and are inadvertently consumed along with the vegetation. 114 
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After passing through the digestive tract, the spores are expelled along with the dung to complete 115 

the lifecycle again (Figure 1).  116 
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GENUS SUBSTRATE 

Ascodesmis 
Primarily herbivore and carnivore dung; occasionally soil or decaying vegetation (Doveri 

2007: 492; Guarro et al. 2012: 79) 

Apiosordaria Primarily soil; occasionally dung (Krug et al. 1983; Guarro et al. 2012: 47-51) 

Arnium Primarily dung; occasionally soil ( Bell 1983: 46; Doveri 2007: 872; Guarro et al. 2012: 59) 

Bombardioidea Exclusively dung (Bell 1983: 49; Doveri 2007: 870) 

Cercophora 
Primarily decaying wood and vegetation; occasionally charcoal, soil and dung (Bell 1983: 40;  

Doveri 2007: 847; Hanlin 1990: 46-47; Guarro et al. 2012: 111) 

Chaetomium 
Primarily decaying vegetation; also dung, soil, and a range of other organic substrates (Bell 

1983: 33; Doveri 2007: 760; Guarro et al. 2012: 118) 

Coniochaeta 
Primarily soil; also dung and decaying wood (Bell 1983: 39; Hanlin 1990; Doveri 2007: 810; 

Guarro et al. 2012: 132-142) 

Delitschia 
Almost exclusively herbivore dung; occasionally soil and decaying wood (Bell 1983: 51; 

Guarro et al. 2012: 159) 

Podospora 
Almost exclusively herbivore dung; occasionally soil (Bell 1983: 14; Doveri 2007: 905; 

Guarro et al. 2012: 340; Schlütz and Shumilovskikh (2017) 

Sordaria 
Almost exclusively herbivore and omnivore dung; occasionally soil or vegetation (Bell 1983: 

36; Doveri 2007: 826; Guarro et al. 2012: 383) 

Sporormiella 
Mostly (75%) herbivore dung; occasionally decaying wood or soil (Doveri 2007: 613); NB 

closely similar to the soil-inhabiting genus Preussia 

Trichodelitschia Exclusively dung (Bell 1983: 51) 

Table 1. Substrates of commonly encountered spores of coprophilous fungi in sedimentary 

sequences 
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Extensive research exists on the fungal community composition of different types of 117 

herbivore dung (e.g. Ebersohn and Eicker 1992; Mungai et al. 2011, 2012; Nyberg and Persson 118 

2002; Piontelli et al. 1981; Richardson 2001; Van Asperen 2017; Wicklow et al. 1980). Often, a 119 

few species are abundant, alongside a large number of rare species (Ebersohn and Eicker 1992; 120 

Krug et al. 2004; Richardson 2001; Nyberg and Persson 2002). Most coprophilous fungi occur 121 

on a wide range of dung types (Angel and Wicklow 1983; Richardson 1972, 2001), but many 122 

genera show a preference for certain types of dung. While these genera also occur on other dung 123 

types, they occur more often and more abundantly on their preferred dung type (Bell 2005; 124 

Lundqvist 1972; Richardson 1972, 2001; Van Asperen 2017). 125 

Spores of coprophilous fungi are typically a very local indicator of herbivore dung (Graf 126 

and Chmura 2006) due to their short dispersal distances (Ingold 1961; Ingold and Hadland 1959; 127 

Trail 2007; Yafetto et al. 2008). They can become airborne, but are likely deposited within 100 128 

meters of the dung source (Gill et al. 2013). However, it is possible to get a more regional 129 

assemblage of dung fungi if water is present because spores can enter a river, pond, or lake via 130 

slopewash. The spores tend to settle out fairly rapidly (Raczka et al. 2016), so spore 131 

concentration declines toward the center of lakes and ponds (Raper and Bush 2009). This 132 

discrepancy could be addressed by analyzing multiple cores from various locations within the 133 

same site. Overall, spores within smaller bodies of water are more likely to reflect herbivore 134 

abundance (Johnson et al. 2015). 135 

3.2 Environmental factors 136 

 Dung fungi have species or genera-specific responses to microenvironmental factors that 137 

affect the success of reproduction (Dix and Webster 1995). These species-specific responses to 138 

environmental changes could potentially encourage or limit growth of a particular fungal type, 139 
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which leads to a fluctuation in spore abundance that is not actually representative of megafaunal 140 

activity. In part, this issue can be ameliorated by completing a comprehensive palynological 141 

study, including multiple coprophilous fungal taxa. 142 

Presence, abundance and succession of specific fungal genera and species on dung 143 

incubated in the laboratory is known to differ from that on dung in field conditions (Angel and 144 

Wicklow 1983; Harper and Webster 1964; Richardson 2001). Laboratory conditions are highly 145 

artificial, with relatively constant temperatures and humidity. In contrast, under field conditions, 146 

temperatures are generally lower and display daily fluctuations, and waterlogging and 147 

precipitation vary in frequency and intensity. Although the growth of dung fungi in the 148 

laboratory cannot be used as a direct analog to fungal growth in nature, research suggests that 149 

coprophilous ascomycetes are not as successful when temperature or relative humidity becomes 150 

too high or too low (Asina et al. 1977; Kuthubutheen and Webster 1986a). The effects of low 151 

relative humidity can be compounded by competition between ascomycetes (Kuthubutheen and 152 

Webster 1986b). Soil hydrology is also likely to affect spore reproduction (Wood and 153 

Wilmshurst 2013).  154 

Although at varying levels of success, spores can often germinate, and the resulting 155 

mycelium and fruit bodies grow, across a wide range of temperatures. For example, Asina et al. 156 

(1977) found that three Sporormiella species could germinate at temperatures within a range of 157 

10-30°C., although the range of temperatures at which germination was maximal was smaller (a 158 

range of 5-15 degrees). Dung fungal development is generally slower at lower temperatures, and 159 

although the abundant genera tend to be present across a range of temperatures, they produce 160 

fewer fruitbodies at lower temperatures (Krug et al. 2004; Wicklow and Moore 1974). However, 161 
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dung could provide warmer conditions than are prevalent in the surrounding environment as long 162 

as decomposing organisms are still capable of growth (Lundqvist 1972; Webster 1970). 163 

Most dung fungi germinate, grow and produce fruitbodies more slowly when water 164 

availability is low, and fruit for a shorter period of time, although some species produce 165 

fruitbodies more quickly (Dickinson and Underhay 1977; Harrower and Nagy 1979; 166 

Kuthubutheen and Webster 1986a, 1986b). Dickinson and Underhay (1977) suggest that the 167 

rapid decline in water content common in the warm and/or dry season soon inhibits fungal 168 

growth, whereas in the cold and/or wet season, growth may be limited or slowed by high water 169 

content. Kuthubutheen and Webster (1986b) found that Sporormiella was the most tolerant of 170 

low water availability of the genera they tested, which included Podospora. The interaction 171 

between the effects of temperature and moisture availability on dung fungal growth leads to 172 

higher dung fungal diversity during the wetter, cooler season in temperate latitudes than in the 173 

warmer, drier season (Krug et al. 2004; Wicklow 1992; Richardson 2001; Van Asperen 2017). 174 

Although winter temperatures are lower, this temperature drop presents a stress factor which may 175 

have the effect of reducing the reproductive fitness of dominant species, thereby releasing less-176 

specialized, more stress-tolerant species. In contrast, in summer the primary factor is the lower 177 

substrate humidity negatively affecting germination rate (Harrower and Nagy 1979; 178 

Kuthubutheen and Webster 1986a, 1986b). 179 

Dung type and animal behavior may also affect the durability of the dung resource. Some 180 

animals defecate in latrines to which they return regularly, leading to large accumulations of 181 

dung material. Larger dung pats are less susceptible to desiccation, while clusters of pellets 182 

create a wider range of microhabitats but are more prone to desiccation (Beynon 2012). Salt from 183 

urine may also inhibit sporulation (Schlütz and Shumilovskikh 2017). Furthermore, dietary 184 
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diversity and the quality of the vegetation consumed also leads to dung with different 185 

characteristics. For example, moisture and nitrogen content of dung of a range of herbivores in 186 

South Africa was found to be correlated with the amount of precipitation in the 2-6 weeks before 187 

sample collection (Edwards 1991). Dung from cattle feeding on the new growth of grass in 188 

spring in temperate climates generally has a higher moisture content than later in the growth 189 

season (Greenham 1972; Van Asperen, pers. obs.). 190 

Another factor that may reduce the number of fruitbodies produced and the duration of 191 

fruiting is competition between ascomycetes (Lussenhop & Wicklow 1985; Kuthubutheen and 192 

Webster 1986b). Sporormiella species often appear relatively late in the incubation period 193 

(Angel and Wicklow 1983), so perhaps they are more easily outcompeted by genera that appear 194 

earlier when environmental factors favor those genera. 195 

In addition to direct effects of environmental factors, in temperate latitudes the activity of 196 

other dung-inhabiting species, in particular dung beetles (both adults and larvae) and fly larvae, 197 

is much higher in wet and warm conditions than in dry or cool conditions (Davis 1994). In North 198 

Carolina, beetle activity greatly diminished at temperatures below 10°C, as well as in dry, hot 199 

conditions or very wet spells (Bertone et al. 2005). Further north, in the more continental 200 

climates of Alberta and Michigan, beetle activity extended from early March to late November, 201 

with the main period of activity ranging from May to July (Floate & Gill 1998; Kadiri et al., 202 

2014; Wassmer 2014). 203 

Besides potential direct consumption of dung fungi, the grazing activity of these insects 204 

has several adverse effects on dung fungal growth: it reduces the amount of dung available for 205 

growth, it disrupts fungal hyphae, and it fragments the dung (Lussenhop et al. 1980; Wicklow & 206 

Yocom 1982). Fragmentation makes the dung more susceptible to moisture loss, and also 207 
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removes the competitive advantage of fungal hyphal growth compared to bacterial growth 208 

(Lussenhop et al. 1980). Lussenhop et al. (1980) found that the presence of dung beetles reduced 209 

dung fungal hyphal density, especially at lower moisture content, but this did not lead to lower 210 

rates of fruiting and increased dung fungal diversity, possibly by dispersing the fungi more 211 

widely. Wicklow & Yocom (1982) observed that the presence of fly larvae reduced the species 212 

diversity of dung fungi. However, they note that Sporormiella abundance was not significantly 213 

affected, whereas there was a small negative effect on Podospora and Sordaria. In another study, 214 

species diversity was not affected, but there was a highly significant 68% reduction in spore 215 

production in the presence of fly larvae (Lussenhop & Wicklow 1985). A study in a savanna 216 

environment in Nigeria found that during the dry season, cattle dung was broken down by insects 217 

(primarily termites), whereas in the wet season, when termites were absent, dung breakdown was 218 

almost entirely due to fungal activity (Omaliko 1981).  219 

3.3 Incorporation of fungal spores into sedimentary records 220 

 Local hydrology has the potential to produce fluctuations in a spore record that are not 221 

representative of herbivore abundance at the site. Wood and Wilmshurst (2012) demonstrated 222 

that spore fluctuations can correlate with changes in local hydrology. However, these 223 

correlations were not consistent. Two bogs demonstrated an increase in Sporormiella when water 224 

levels were at their peak, while one bog exhibited an increased in Sporormiella while water 225 

levels were lower than usual. Because the apparent correlations are not consistent between the 226 

sites, it is possible that the changes in local hydrology could be affecting herbivore behavior. 227 

Depending on local conditions, animals could be preferentially utilizing the site based on water 228 

availability, or in contrast may be avoiding it when water levels are too high due to decreased 229 

ground stability. Similarly, Ponel et al. (2011) interpreted the coprophilous fungi record at a site 230 
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in the French Alps to reflect taphonomic processes. Due to hydrological factors, spores of 231 

coprophilous fungi were almost completely absent in the lower, lacustrine part of the record, 232 

whilst the presence of dung was attested by an abundance of dung beetle remains. In contrast, 233 

spores of coprophilous fungi became more abundant and dung beetles declined as the lake 234 

infilled and transitioned into a peat bog, as herbivores were able to graze within the bog. 235 

 Rainfall and the degree of storminess at a site can also affect a dung fungal record. 236 

Spores can be flushed into waterways, and if the fecal material is washed away soon after it is 237 

deposited, the fungus may not have sufficient time to reproduce and deposit higher numbers of 238 

fungal spores into a record. Finally, high energy depositional environments could potentially 239 

transport spores further than lower energy systems. In these types of environments, the fungal 240 

spore record could be more regional than expected, given the local nature of spore deposition. 241 

However, to date there has been little research into the role of these factors in the deposition of 242 

spores of coprophilous fungi in sedimentary records. 243 

3.4 Laboratory Recovery 244 

Spores of coprophilous fungi and other non-pollen palynomorphs are generally extracted 245 

from palaeoecological samples along with pollen, usually using the ‘standard’ pollen preparation 246 

method (Faegri and Iversen 1989; Moore et al. 1991). However, a range of alternative 247 

preparation techniques are also available. Several studies have tested the effect of a number of 248 

chemicals and preparation techniques on the survival and preservation of fungal remains.  249 

Clarke (1994) processed samples from a variety of substrates with three different 250 

techniques: 251 
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A. boiling in KOH (potassium hydroxide), sieving (150 µm mesh), HF (hydrofluoric 252 

acid), acetolysis, mounting using TBA (tertiary butyl alcohol) (similar to the ‘standard’ 253 

pollen preparation method; Faegri and Iversen 1989; Moore et al. 1991); 254 

B. boiling in NH4OH (ammonium hydroxide), sieving (150 and 10 µm mesh), swirling, 255 

mounting using TBA; 256 

C. boiling in KOH, sieving (150 µm mesh), heavy liquid separation with ZnCl2 (zinc 257 

chloride), mounting using TBA. 258 

Her results indicated that small round to oval fungal spores behave in a similar way as pollen in 259 

terms of survival. Treatment A led to a loss of large, buoyant forms, whilst these were the only 260 

forms consistently present in samples treated with method B. Thick-walled forms were lost in 261 

treatment C. None of the treatments led to significant preservation issues. 262 

In a study focusing specifically on spores of coprophilous fungi recovered from dung 263 

samples incubated in the lab, Van Asperen et al. (2016) tested five preparation methods: 264 

A. boiling in NaOH (sodium hydroxide), sieving (125 and 6 µm mesh), treatment with 265 

HCl (hydrochloric acid), acetolysis, mounting using TBA. 266 

B1. boiling in NaOH, sieving, treatment with HCl, mounting using TBA. 267 

B2. boiling in KOH, sieving, treatment with HCl, mounting using TBA. 268 

C. boiling in KOH, sieving, density separation by swirling, treatment with HCl, mounting 269 

using TBA. 270 

D. sieving, mounting using TBA. 271 

This allowed them to tease out the effects of the different chemicals used in standard pollen 272 

preparation procedures on coprophilous fungi recovery and preservation. The use of corrosive 273 

chemicals, such as NaOH, KOH and acetolysis, led to a significant loss of hyaline spores (e.g. 274 
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Cheilymenia, Coprotus, Iodophanus, Peziza and immature Cercophora spores), as well as spores 275 

that lose their epispores over time (e.g. Ascobolus and Saccobolus). Such spores are unlikely to 276 

be preserved in sediments, but since these spores dominate certain dung types (Lundqvist 1972; 277 

Richardson 1972), this can significantly bias spore counts. Hyaline appendages were also lost 278 

(Sordaria and Cercophora/Podospora). Spores with thicker, pigmented spore walls (e.g. 279 

Sordaria, Sporormiella and Cercophora/Podospora, as well as basidiomycete spores) were more 280 

resistant to chemical degradation. Sordaria spores deteriorated and Sporormiella spores tended 281 

to swell when acetolysis was used. All spores that were large enough to be retained in the mesh 282 

were recovered when samples were sieved but not submitted to any other treatment. This 283 

includes the vulnerable spores that were lost when chemicals were used. Spores small enough to 284 

pass through the mesh (e.g. small basidiomycete spores and single cells of Saccobolus) were lost, 285 

which is significant considering that Sporormiella spores often break up into their constituent 286 

cells (Ahmed and Cain 1972). The single cells of some Sporormiella species are so small that 287 

they would not be retained in a 10 or 6 μm mesh, leading to a potential loss of information. 288 

Other alternative pollen preparation techniques are also available, although these have not 289 

been tested explicitly on spores of coprophilous fungi. Riding and Kyffin-Hughes (2004) used a 290 

treatment with sodium hexametaphosphate followed by density separation by means of swirling 291 

and centrifuging. With this simple method, they achieved equal or better palynomorph recovery 292 

than with the standard preparation method for most lithologies, although they did not test their 293 

method on sediments high in organic material. 294 

Given the clear adverse effect of some of the chemicals used in standard pollen 295 

preparation methods on coprophilous fungi recovery and preservation, it is highly advisable to 296 
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test and use alternative, non-chemical, techniques wherever possible (cf. Van Asperen et al. 297 

2016). 298 

3.5 Analysis and Quantification 299 

Typically, spores of coprophilous fungi are counted alongside pollen. In some 300 

environments, however, it may be beneficial to count spores in relation to tracer spores. Etienne 301 

and Jouffrey-Bapicot (2014) suggest counting 300-350 Lycopodium tracer spores to obtain an 302 

accurate evaluation of Sporormiella in a sample, but the number of tracer spores and sample 303 

sizes in this study were not reported. The amount of tracer spores counted should depend on the 304 

environment, the size of the sample, the concentration of pollen within a sample, and how many 305 

tracer spores are added.  306 

Examining pollen samples for spores of coprophilous fungi using different approaches 307 

can produce discrepancy in results between sites. The threshold for “background” levels of 308 

spores of coprophilous fungi has been consistently suggested to be below 2% of the total pollen 309 

assemblage various modern environments (Baker et al. 2016; Gill et al. 2013; Raczka et al. 310 

2016). It was first suggested by Davis (1987), in his work in (mostly arid) western North 311 

America, that functional extinction of megaherbivores can be observed when fungal spores fall 312 

below 2% of the total pollen assemblage (TPA). However, it is not likely that this threshold can 313 

truly be extrapolated between sites and environments. In the southeastern United States, for 314 

example, two different methods for quantifying spores of coprophilous fungi may have yielded 315 

differing results. To our knowledge, recent research at Cupola Pond, Missouri (Jones et al. 2017) 316 

and Page-Ladson, Florida (Perrotti 2018) are the only two published palynological studies that 317 

attempt to incorporate spores of coprophilous fungi within the analysis from that region. These 318 

sites are similar in age and both occur within spring-fed ponds in areas with carbonate rich 319 
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bedrock. In contrast to Page-Ladson, no evidence of Sporormiella spores were found in pollen 320 

samples at Cupola Pond, leading Jones et al. (2017) to conclude that herbivory was not a key 321 

factor in ecosystem regulation around the site. The discrepancy between the observation of dung 322 

fungal at Cupola Pond and Page-Ladson deserves further exploration. 323 

Though late Pleistocene vegetation at the two locations does differ, the inconsistency in 324 

fungal spore records may have resulted from differences in noting and quantifying spores of 325 

coprophilous fungi. Perrotti et al. (2018) counted spores of coprophilous fungi separately from 326 

pollen rather than noting them only when encountered during pollen counting. Most North 327 

American coprophilous fungi studies, including that by Jones et al. (2017), have used the latter 328 

method (Davis 1987; Davis and Shafer 2006; Gill et al. 2009). At Page-Ladson, Florida, 329 

Sporormiella spores never constitute more than 2% of the TPA (Perrotti 2018) due to a high 330 

concentration of arboreal pollen at the site. If Sporormiella was tallied as a percentage of that 331 

total pollen assemblage, spores of coprophilous fungi would have been far less represented than 332 

those from arid environments as in the desert west, where this method was first conceived. 333 

Pollen concentrations at Cupola Pond (Jones et al. 2017) are similar to those at Page-Ladson, 334 

suggesting that a different method of searching for spores of coprophilous fungi may have 335 

resulted in the recovery of more spores.  336 

Analyzing and quantifying spores of coprophilous fungi as %TPA can also produce 337 

fluctuations within a spore record that are not representative of herbivore abundance. This 338 

method is vulnerable to fluctuations in pollen accumulation rates. In sediments with high pollen 339 

concentrations, fungal spores are often represented by lower %TPA values. Parker and Williams 340 

(2012) found a negative relationship between mean annual precipitation and spore abundance in 341 

lake-center sediments that they attributed to a higher influx of arboreal pollen during wet years, 342 
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which would drive down relative Sporormiella abundance. Wood and Wilmshurst (2013) 343 

confirm that Sporormiella as %TPA is subject to fluctuations in pollen accumulation that may 344 

skew spore data, even when the spores are being consistently deposited. Moreover, in contrast to 345 

the sporopollenin walls of pollen grains, the cell walls of fungal spores are composed mainly of 346 

chitin and glucans (Deacon 2006), and therefore will degrade in response to different 347 

environmental factors. 348 

Furthermore, expressing fungal spore presence as %TPA can mask low spore counts, 349 

making it difficult to assess the reliability of the conclusions drawn from such percentages. In 350 

pollen analyses, it is common, for instance, to count up to 200-400 pollen grains. In such 351 

assemblages, the 2% TPA “background” level of fungal spore presence translates into 4-8 spores 352 

counted, with each 1% increase representing 2-4 extra spores counted. In most cases, even where 353 

herbivores are present, the coprophilous fungi counts are not higher than 10%TPA, with counts 354 

for most Pleistocene (predating megafaunal extinctions) samples below 5% (e.g. Davis and 355 

Shafer 2006; Parker and Williams 2012; Gill et al. 2013; Johnson et al. 2016). Such low spore 356 

count fluctuations are unlikely to be statistically significant and should be interpreted with 357 

caution. 358 

Whenever possible, reporting coprophilous fungi abundance using both accumulation or 359 

concentration and %TPA could be beneficial. Total pollen production will vary greatly between 360 

different ecosystems and fungal spores and pollen have differing reproductive strategies and cell 361 

wall compositions, so future studies should avoid quantifying spores solely as %TPA. 362 

Calculating spore accumulation requires a well-dated core but can be a useful illustration of how 363 

changes in sediment deposition at a site can affect the accumulation of fungal spores (Figure 2).   364 

3.6 Current Limitations  365 
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 Typically, North American researchers focus on Sporormiella as an indicator of 366 

megaherbivore abundance without including other coprophilous fungi. Perhaps due to its distinct 367 

morphology or presence in many North American pollen samples, it has become the sole taxon 368 

reported in many studies (Gill et al. 2009, 2014; Halligan et al. 2016; Perrotti 2018). Though 369 

Sporormiella alone has been used as a proxy for herbivore abundance, it is becoming more 370 

apparent that noting other coprophilous fungi can increase the robustness of interpretations 371 

regarding megaherbivore abundance.  372 

 Johnson et al. (2015) found that the commonly encountered coprophilous and semi-373 

coprophilous ascomycetes Cercophora, Coniochaeta, Podospora, and Sordaria contributed to a 374 

better overall understanding of dung fungal abundance. In addition, Van Asperen (2017) notes 375 

that Sporormiella can be rare on the dung of some modern large herbivores whilst other 376 

coprophilous fungi are found in abundance. Therefore, a lack of Sporormiella in sediments does 377 

not always indicate that herbivores were not present at the site, and as a consequence, counting 378 

Sporormiella only may prevent the recognition of herbivore presence (e.g. Jones et al. 2017). 379 

Incorporating all dung fungal counts better indicates herbivore presence and abundance (Baker et 380 

al. 2016; Johnson et al. 2015; Van Asperen et al. 2016, 2017), but the dependence on dung of 381 

each taxon must be considered (Table 1). 382 

In addition to a lack of herbivore activity, an absence of dung fungi at a site may be the 383 

result of a number of factors. First, as previously discussed, little is known about the 384 

environmental preferences of each dung fungus and the effect of varying environmental 385 

conditions on dung fungal reproduction and dispersal. More research is needed on the topic. 386 

Second, most dung fungi inhabit many different types of herbivore dung, with many genera also 387 

utilizing other substrates. It is possible that noting particular species of fungi that are associated 388 
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with dung of specific animal species could contribute to the understanding of extinctions. 389 

However, species-level dung fungus identification relies on the fruiting body in addition to the 390 

spores. Though van Geel et al. (2011) recovered complete fruiting bodies from inside a 391 

mammoth dung ball, fruiting bodies are rarely preserved in sediment samples and would 392 

typically be destroyed during laboratory procedures. Third, little is known about how spores 393 

preserve. It is widely assumed that they are more durable than pollen because of their thick, 394 

chitinous walls and frequent presence in pollen samples exhibiting poor pollen preservation. 395 

Spores of many fungi can remain in soil for extended periods in a dormant state (Lockwood 396 

1977; Deacon 2006). Fourth, because spores of coprophilous fungi typically represent a very 397 

local proxy due to their limited dispersal distances, it likely not possible to draw any conclusions 398 

regarding the demise of wide-ranging megafauna from spore abundance in one location alone. 399 

Finally, hydrological factors also influence where spores, if present in the environment, 400 

ultimately enter the palaeoecological record. For example, spores of coprophilous fungi records 401 

from cores taken in lakes at different distances from the shoreline (Raper and Bush 2009) or 402 

from the nearest stream discharge (Etienne et al. 2013) show different relationships to animal 403 

abundance in the area around the lake. 404 

Because of the factors discussed above, it is possible that an absence of dung fungi from 405 

a palaeoecological record may not always indicate a decline in herbivores. However, by 406 

understanding the past environment, particularly in regard to hydrologic factors, more weight can 407 

be placed on the interpretation of the abundance or lack of spores of coprophilous fungi. Overall, 408 

the effects of these factors on spore records may be minimized with the incorporation of multiple 409 

fungal taxa. Ultimately, spores of coprophilous fungi alone likely cannot be used to infer an 410 

absence of herbivores. When using spores to infer extinction or regional disappearance of large 411 
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herbivores, it is best practice to utilize this proxy alongside other lines of evidence, such as 412 

faunal remains or macrofossils from herbivore dung (i.e. Halligan et al. 2016; Perrotti 2018). 413 

4. Future Directions and Conclusions 414 

The methods for analysis and research of analogs for the interpretation of dung fungal 415 

records are improving, but additional research is still needed. First, more modern experiments 416 

need to be conducted to understand the relationship between dung fungal abundance, herd size, 417 

and other geographical and environmental factors. Much research has been devoted to this topic 418 

recently and studies have established correlations between cattle (Wood and Wilmhurst 2012) 419 

and bison (Gill et al. 2013) herd size and Sporormiella abundance. Baker et al.’s (2016) 420 

informative study conducted in The Netherlands was an excellent demonstration of the 421 

correlation between spore accumulation, taphonomic processes and herd size, but more studies 422 

incorporating a wider variety of large herbivores would be valuable. Because spore reproduction 423 

and deposition differ between environments, a wider array of modern environments should also 424 

be explored. If a clearer correlation between coprophilous fungi abundance and herbivore 425 

diversity and abundance could be established, dung fungal data could be incorporated into 426 

dynamic vegetation models, strengthening our interpretation of the effects of grazing on 427 

vegetation systems. 428 

Second, still more research is needed on laboratory recovery and identification of spores 429 

of coprophilous fungi. Certain laboratory recovery procedures can alter the size of dung fungi, 430 

further inhibiting species identification (van Asperen et al. 2016). Minimizing harsh chemical 431 

extraction procedures could be made possible by the implementation of techniques such as 432 

sonication-assisted sieving through <5 micron mesh (i.e. Perrotti et al. 2018). Regardless, more 433 

research is needed on the effects of standard palynological procedures on the recovery of spores 434 
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of coprophilous fungi. By developing more standardized processing and extraction, comparisons 435 

between studies would be made easier. 436 

 Although additional research is still needed before researchers can fully rely on the 437 

application of dung fungi to questions raised in archaeology, we believe that this type of research 438 

has proven its potential as a valuable tool for understanding past herbivore abundances. 439 

Thorough consideration of the limitations of the method, particularly through engagement with 440 

the mycological literature, as well as through carefully designed actualistic experiments, greatly 441 

increases the reliability and applicability of dung fungal data to archaeology.  442 

  443 
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Figure and Table Captions 762 

Fig. 1 A generalized depiction of the lifecycle of Sporormiella. The spores are inadvertently 763 

consumed and pass through the herbivore’s gut and are then discharged as a part of the 764 

feces. Although some spores may be carried away by water or work their way into 765 

terrestrial sediments, many germinate in the feces and the mycelium produces the 766 

perithecia (or fruiting bodoies). These perithecia contain the individual ascospores. 767 

Figure courtesy of Chase W. Beck. 768 

Fig. 2 Sporormiella data from Page-Ladson, Florida (Halligan et al. 2016; Perrotti 2018). Spore 769 

accumulation is the most accurate way to understand coprophilous fungi abundance in a 770 

sedimentary record.  771 

Fig. 3 Commonly encountered coprophilous and semi-coprophilous fungi. a) Arnium sp. (from 772 

modern context-pollen trap); b) Arnium imitans (from modern context-pollen trap); c) 773 

Apiosordaria sp. (from modern context-pollen trap); d) Cercophora sp. (from Pleistocene 774 

sediment) e) Coniochaeta sp. from Pleistocene sediment); f) Podosopora sp. (from 775 

Pleistocene sediment); g) Sordaria sp. (from modern context-directly from dung); h;i) 776 

Sporormiella sp. (from Pleistocene sediment); j) Trichodelitschia sp. (from modern 777 

context-soil). 778 

Table 2. Substrates of commonly encountered spores of coprophilous fungi in sedimentary 779 

sequences. 780 

  781 
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Figure 3 788 


