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Abstract: This paper considers a multiuser multiple-input multiple-output (MIMO) space-time block coded system that operates
at a high data rate with full diversity. In particular, they propose to use a full rate downlink algebraic transmission scheme
combined with a differential space-time scheme for multiuser MIMO systems. To achieve this, perfect algebraic space-time
codes and Cayley differential transforms are employed. Since channel state information (CSI) is not needed at the differential
receiver, differential schemes are ideal for multiuser systems to shift the complexity from the receivers to the transmitter, thus
simplifying user equipment. Furthermore, orthogonal spreading matrices are employed at the transmitter to separate the data
streams of different users and enable simple single user decoding. In the orthogonal spreading scheme, the transmitter does not
require any knowledge of the CSI to separate the data streams of multiple users; this results in a system which does not need
CSI at either end. With this system, to limit the number of possible codewords, a sphere decoder is used to decode the signals
at the receiving end. The proposed scheme yields low complexity transceivers while providing full rate full diversity with good
performance. Simulation results demonstrate the effectiveness of the proposed scheme.

1 Introduction
Multiple-input multiple-output (MIMO) technology is one of the
most important milestones in the development of wireless
communications and can be used to increase the spectral efficiency
through the spatial multiplexing and improve the link reliability
through transmit diversity [1]. The MIMO design trade-offs such
as multiplexing, diversity, performance, and complexity in both
uncoded and coded MIMO systems play a fundamental role in
efficient system planning and deployment [2]. Furthermore,
wireless systems require effective transmission techniques to
support high data rate and reliable communications. As such,
space-time block code (STBC) is a potential transmission
technique which can be utilised, as part of multiple antenna
systems, to enhance the spatial diversity of the system [3], and it is
used in standard systems such as the UMTS standard for mobile
wireless, the IEEE 802.16 standard for fixed and nomadic wireless,
and the IEEE 802.11 standard for wireless LANs [4].

The transmission of an orthogonal STBC over a MIMO channel
in [5, 6] was proposed to achieve full diversity with a low
complexity receiver. However, orthogonal STBC suffers from an
inability to work with a greater number of antennas at full
transmission rates. When decoding complexity is not an issue, one
may use non-orthogonal full rate full diversity algebraic STBC [7,
8]. For MIMO systems, there are many previous employed space-
time codes that provide a higher rate with full diversity in a trade-
off with complexity, such as threaded algebraic space-time block
codes, the classic Bell Laboratories layered space-time (V-BLAST)
and linear dispersion block codes [9, 10]. However, the minimum
determinants of these codes are generally non-zero, but vanish as
the spectral efficiency of the signal constellation is increased. The
authors of [11] have constructed full rate and full diversity perfect
algebraic STBC with a non-vanishing determinant when the
spectral efficiency increases.

In the multiuser multiple-input multiple-output (MU-MIMO)
downlink, transmit diversity can be applied using downlink
transmission techniques, such as the orthogonal spreading
multiplexing code. The authors of [12, 13] used this technique to
decompose the MU-MIMO channels into parallel single user non-
interfering channels, and hence co-channel interference (CCI) was
eliminated. Implementing the orthogonal spreading technique at

the transmitter (e.g. a base station (BS)) helps maintain simplicity
in the receiver, so that simple linear decoding approaches are
applicable at the receiving end (e.g. end users). In a coherent
scenario, this approach was later considered in [14] as a
multiplexing scheme for a MU-MIMO system, and was combined
with full rate full diversity algebraic STBC. The proposed method
cancels the CCI and provides a substantial gain in terms of full rate
and spatial diversity. However, for the decoding process, each
receiver still needs to know the channel state information (CSI) to
coherently decode the algebraic STBC. In practice, each receiver
acquires the composite channel by direct estimation, which leads to
increased complexity of the receivers.

The prior focus of the high rate MU-MIMO downlink
transmission techniques has been on cases where CSI is available
at the receivers and transmitter. However, for some systems, due to
the high mobility and the cost of channel training and estimation,
CSI acquisition is impossible [15]. One alternative method is to
encode the transmitted data differentially using a Cayley
differential (CD) transform and to decode differentially without
any knowledge of the CSI at the receiver [16]. Our previous work
in [17] has dealt with implementing the MU-MIMO downlink
transmission of an Alamouti STBC combined with differential
modulation, which does not require channel knowledge for
decoding. The scheme provides low complexity transceivers while
providing good performance. However, the authors of [17] could
not provide a comprehensive high rate differential scheme in a
downlink scenario.

In this work, the use of the high-rate CD STBC for downlink
transmission in a MU-MIMO system is considered. Specifically,
we show how to use differential STBC combined with full rate full
diversity perfect algebraic STBC. The use of differential STBC in a
multiuser scenario simplifies the complexity of the receivers since
neither feedback nor the estimation of the CSI is required at the
receiver. Furthermore, differential STBC is considered based on the
orthogonal spreading technique in order to separate the data
streams of multiple users. With the use of orthogonal spreading, the
transmitter needs no knowledge of the CSI to design the spreading
matrices. Therefore, implementing the orthogonal spreading
scheme with the differential STBC will result in a system in which
neither the transmitter nor the receiver needs knowledge of the
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CSI. At the receiver of each user, a sphere decoder (SD) is
implemented for high-rate coherent and differential perfect
algebraic STBC to limit the set of candidate symbols to those
within a sphere of some radius d. The proposed schemes facilitate
the multiple user data separations, enhancing full rate full diversity,
and achieving low complexity receivers and transmitters through
the use of differential STBC. However, the system in this paper has
higher computational complexity thanks to its higher rate.

The rest of the paper is organised as follows. Section 2
introduces the system model of STBC MU-MIMO. Section 3
reviews the coherent perfect algebraic STBC for MU-MIMO.
Section 4 presents the differential perfect algebraic STBC for MU-
MIMO. In Section 5, the computational complexity and rate
analysis of the system are derived. In Section 6, the simulation
results are shown and, finally, conclusions are drawn in Section 7.

2 System model
Consider a MU-MIMO downlink broadcast channel where the BS
transmits multiple streams to K users (e.g. mobile stations), as
shown in Fig. 1. The BS has nt transmit antennas and each user k
has nr

k receive antennas. We assume that all users have the same
number of receive antennas unless otherwise stated. Furthermore,
the superscript k is omitted for simplicity. The channel matrix
H ∈ ℂnr × nt for each user k is a Rayleigh flat fading matrix given by

H =
h1, 1 ⋯ h1, nt

⋮ ⋱ ⋮
hnr, 1 ⋯ hnr, nt

=
h1

⋮
hnr

, (1)

where the element hi, j is the channel coefficient between the jth
transmit antenna and the ith receive antenna of user k, and ℂM × N

denotes the set of M × N complex matrices. The elements of H are
independent and identically distributed (i.i.d.) complex Gaussian
random variables with zero mean and unit variance, i.e. CN(0, 1).

For any kth user, the nt × nr information symbol matrix can be
defined as

S = s1 s2 ⋯ snr =
s1, 1 ⋯ s1, nr

⋮ ⋱ ⋮
snt, 1 ⋯ snt, nr

, (2)

where si, j, i = 1, …, nt, j = 1, …, nr, are the information symbols
taken from the constellation set ℤ ∈ QAM, PAM . In this study,
we consider a class of linear non-orthogonal STBCs that have full
rate and full diversity, such as perfect algebraic STBC [7, 11]. A
perfect algebraic STBC codeword is a nt × nt matrix X whose
entries are a linear combination of the input information signals.
The spatial and temporal diversity of the codeword X is integrated
into the space-time code design, as will be shown in the following
sections.

The received signal matrix Y ∈ ℂnr × Knt for the kth user is given
by

Y = HXV + H ∑
j = 1, j ≠ k

K
X jV j + Z, (3)

where V ∈ ℂnt × Knt is the orthogonal spreading matrix for user k,
Z ∈ ℂnr × Knt is an additive white Gaussian noise matrix. Note that
the composite transmitted matrix is ∑k = 1

K XkVk.
In the orthogonal spreading code matrix, each user is assigned a

unique orthogonal spreading code to separate the data of the users
at the receivers. To eliminate CCI, the spreading code matrix has to
obey the following conditions:

VkVk
H = Int, k = 1, …, K, (4)

V jVk
H = 0, k, j = 1, …, K, and j ≠ k, (5)

where ( ⋅ )H denotes the Hermitian operator. The orthogonal
spreading code for each user can be constructed as a sub-matrix of
the Hadamard matrix or from a discrete Fourier transform matrix.
Hadamard matrices are of interest because of their simplicity [17].
The received signal matrix Y in (3) for the kth user is despread by
multiplying it with VH, which yields

Y^ = YVH = HX + Z^ , (6)

where

Y^ =
y^ 1, 1 ⋯ y^ 1, nt

⋮ ⋱ ⋮
y^nr, 1 ⋯ y^nr, nt

(7)

and

Z^ = ZVH =
ẑ1, 1 ⋯ ẑ1, nt

⋮ ⋱ ⋮
ẑnr, 1 ⋯ ẑnr, nt

. (8)

We now present a brief review of the MU-MIMO high-rate perfect
algebraic STBC system, where the CSI is available only at the
receiver.

3 Review of the coherent perfect STBC for MU-
MIMO with downlink transmission
In this section, we consider a coherent scheme where the receiver
knows the CSI. The scheme transmits data in linear combination
over space and time. The design criterion of perfect STBC is to
minimise the maximum pairwise error probability (PEP), where the
maximum-likelihood (ML) detection might receive the distorted
version X^  of the original transmitted signal X, and the PEP is given
as [3, 11]

P(X → X^ ) ≤ 4rnr

∏i = 1
r λi

nrρrnr
, (9)

where r is the rank of the codeword difference matrix (X − X^ ), ρ is
the signal-to-noise ratio (SNR) per receive antenna, λi, i = 1, …, r,
are the eigenvalues of (X − X^ )(X − X^ )H, the minimum value of rnr
is the diversity gain and the minimum value of (∏i = 1

r λi)1/r is the
coding gain.

3.1 Encoding of coherent perfect algebraic STBC for MU-
MIMO with downlink transmission

For coherent perfect STBC, the input symbol vectors, s1, …, snr, are
first rotated by the real or complex rotation matrix M ∈ ℂnt × nt and
then threaded into different layers l, where l = 1, …, nt. In other

Fig. 1  STBC MU-MIMO downlink transmission system
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words, we denote the symbols transmitted in the lth layer by
x1l, x2l, …, xntl, i.e. [11]

xl = Msl . (10)

Thus, a layer can be viewed as an array of size nt × nt. Any element
of this array can be specified by two indices, (a,t), where a denotes
the spatial domain and t denotes the temporal domain. Let li,
1 ≤ i ≤ nt denote the ith layer. Hence, a layer can be formed such
that

li = t + i − 1 nt, t : 0 ≤ t < nt , (11)

where (x)nt denotes x modulo nt operation. Accordingly,
consecutive symbols from the same codeword are transmitted from
different transmit antennas in different time slots. This method of
transmission maximises the spatial and temporal diversity of the
system.

The rotation matrix M (real or complex) is designed to
maximise the distance between the symbol vectors to minimise the
error rate and is constructed from an algebraic number field ℚ(θ)
of degree nt generated by an algebraic number θ as in [18, 19].

The perfect algebraic STBC, as proposed in [11], is constructed
based on cyclic division algebra theory for the special cases of
nt = 2, 3, 4, 6. To thread the symbols into the perfect algebraic
STBC, the rotated symbol vectors are applied to the code block by

X = ∑
l = 1

nt

diag(Msl) ⋅ el − 1, (12)

where diag( ⋅ ) denotes the diagonal of a matrix, the threading
matrix e is given as follows:

e =

0 0 0 0 γ
1 0 0 ⋮ 0
⋮ ⋱ ⋱ ⋱ ⋮
0 0 1 0 0
0 ⋯ 0 1 0

(13)

and γ = −1 is chosen by using the class field theory that ensures
the transmitted code block has a non-vanishing determinant [11].
For multiple users equipped with different numbers of receive
antennas, one important design parameter to consider is the number
of threads l. Therefore, in this study, we assume the total number of
layers is limited by the number of receive antennas nr per user, i.e.
l = nr. Hence, the perfect STBC codeword can be rewritten as

X = ∑
l = 1

nr

diag(Msl) ⋅ el − 1 . (14)

 
Example 1: For nt = 4, number of users K = 2, user 1 equipped

with nr = 3 and user 2 equipped with nr = 1. Then, the perfect
algebraic STBC codeword for user 1 with l = 3 layers is in the
form of

X4 × 4 =

x11 0 γx13 γx12

x22 x21 0 γx23

x33 x32 x31 0
0 x43 x42 x41

,

of course, a higher-rate code can be implemented by increasing the
number of threads per user.

3.2 Decoding coherent perfect algebraic STBC for MU-MIMO
with downlink transmission

The sphere decoding approach is one of the most important
decoding schemes for high data rate transmission systems over
MIMO channels. The SD is basically a distance-based decoder that
limits the number of possible codewords by considering only those
codewords within a sphere centred at the received signal vector
[20]. The kth user received spread signal can be expressed in terms
of its vectorisation as [10, 14]

vec Y^ T = vec (HX)T + vec Z^ T

= ℬc vec(S) + vec Z^ T ,
(15)

where

vec Y^ T = [y^ 1, 1, …, y^ 1, nt, …, y^ nr, 1, …, y^ nr, nt]
T,

vec Z^ T = [ẑ1, 1, …, ẑ1, nt, …, ẑnr, 1, …, ẑnr, nt]
T,

vec(S) = [s1, 1, …, snt, 1, …, s1, nr, …, snt, nr]
T,

and ℬc is the new ntnr × ntnr effective channel matrix of the
coherent perfect STBC which is given by

ℬc = H
~ ⋅ Inr ⊗ M , (16)

where the ntnr × ntnr matrix H
~

 is given by

H
~ =

diag(h1) ⋯ diag(h1)enr − 1 T

⋮ ⋱ ⋮
diag(hnr) ⋯ diag(hnr)e

nr − 1 T
, (17)

and ⊗ denotes the Kronecker matrix product. The underlying
complex system in (15) can be converted into an equivalent real
system by separating the real and imaginary parts of the received
vector to define the following 2ntnr × 1 signal

Y = ℋcS + Z, (18)

where

Y = ℜ vec Y^ T ℑ vec Y^ T T,

S = ℜ vec S ℑ vec S T,

Z = ℜ vec Z^ T ℑ vec Z^ T T,

and

ℋc =
ℜ ℬc −ℑ ℬc

ℑ ℬc ℜ ℬc
.

In (18), we have a simple linear system of equation that may be
decoded using the SD technique, which can be implemented to
decode the kth user symbols S^

 such that

S^ = arg min
S ∈ ℤn

∥ Y − ℋcS ∥2, (19)

where n = 2 × nt × nr. We now present the differential STBC and
then show how to combine it with full rate full diversity perfect
algebraic STBC through the use of the Cayley transform.
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4 Differential perfect STBC for MU-MIMO with
downlink transmission
In this section, the differential encoding and decoding process for
downlink transmission in a MU-MIMO system is discussed. In
particular, this section demonstrates how to use a high rate space-
time coding such as the perfect STBC with differential STBC for
MU-MIMO systems. Here, we assume neither the transmitter nor
the receiver has prior knowledge of the CSI. One method of
implementing differential STBC with multiple antennas and a high
data rate is to encode the transmitted data differentially using a CD
transform and to decode differentially without any knowledge of
the CSI. The proposed work combines the perfect algebraic STBC
with the CD transform that constructs full rate and full diversity
differential STBC. In the following, we first review the differential
STBC and the CD transform and then utilise the CD transform with
perfect algebraic STBC in a MU-MIMO framework.

4.1 Differential STBC for MU-MIMO system

In differential STBC, the communications are done in blocks of nt
transmissions, which implies that the transmitted signal for any
user k is an nt × nt matrix. The received despread signal block in (6)
for the kth user at the τ-th block, τ = 0, …, N, can be re-expressed
as

Y^ τ = HXτ + Z^ τ, (20)

where Y^ τ, Xτ, and Z^ τ are the despread received signal matrix, the
transmitted perfect algebraic STBC matrix, and the despread noise
matrix for the kth user at the τth block, respectively. The
transmitted perfect algebraic STBC codeword matrix is encoded
differentially as follows [21, 22]:

Xτ = Xτ − 1Uzτ, (21)

where Uzτ is a unitary data matrix utilised by the Cayley transform
(we specify Uzτin the next subsection), zτ ∈ 0, …, L − 1  is the
transmitted data, and Xτ − 1 is the transmitted matrix of the previous
block. The transmitted matrix for the initial block of each user k is
set to be identity, i.e. X0 = Int.

If we assume that the channels stay constant for two
consecutive blocks, i.e. Hτ = Hτ − 1 = H, then (20) can be written as

Y^ τ = HXτ − 1Uzτ + Z^ τ

= Y^ τ − 1Uzτ + Z^ τ − Z^ τ − 1Uzτ .

Therefore, the fundamental differential system equation for the kth
user is given as

Y^ τ = Y^ τ − 1Uzτ + Z^ τ′, (22)

where

Z^ τ′ = Z^ τ − Z^ τ − 1Uzτ . (23)

Since Uzτ is a unitary matrix, the entries of the additive noise term
Z^ τ′ are i.i.d. CN(0, 2). Thus, Z^ τ′ is statically independent of Uzτ and
has twice the power. Therefore, for the kth user, the ML decoder of
the differential STBC is

ẑτ = arg max
n = 0, …, L − 1

∥ Y^ τ − Y^ τ − 1Un ∥F
2 , (24)

thus, the receiver does not need CSI to perform the decoding
process. The PEP of transmitting Un and mistakenly decoding Un′

has the following upper bound [21, 22]:

Pe(Un → Un′) ≤ 1
2 ∏

i = 1

r
1 + ρ2

4 1 + 2ρ σi
2 Un − Un′

−nr
, (25)

where σi( ⋅ ) denotes the ith singular value of the codeword
difference matrix. At high SNRs, we can neglect the one in (25)
and write the following upper bound based on the non-zero
singular values as

Pe(Un → Un′) ≲ 8rnr ⋅ ρ−rnr

det Un − Un′
2nr

. (26)

We define the diversity gain to be Gd and the coding gain to be Gc.
The diversity gain is given by

Gd = rnr . (27)

The differential STBC also achieves full diversity order of ntnr if
the unitary matrix is fully diverse. Using (27) and the right-hand
side of (26), we have

Pe(Un → Un′)
≲ 8Gd det Un − Un′

−2nrρ−Gd

≲ 8Gd det Un − Un′
−2nr −Gd

−1 −Gd
⋅ ρ−Gd

≲ Gc ⋅ ρ −Gd,

(28)

where

Gc = 8Gd det Un − Un′
−2nr −Gd

−1
. (29)

By using (27) in (29), we have

Gc ≃ det Un − Un′
2/r . (30)

The PEP will be lower in the case that we receive multiple replicas
of the signal using diversity. In other words, diversity is the slope
of the error probability curve in terms of the received SNR in a
log–log scale. In this case, taking the log for both sides of (28)
implies that

log(Pe) = − Gd log(Gc) + log(ρ) , (31)

or more explicitly

log(Gc) = log(Pe)
−Gd

− log(ρ) . (32)

This coding gain ratio is a measure of the worst case separation
between encoded symbols. It, therefore, determines the worst case
for PEP, and hence the block error rate (BLER). The differential
STBC also achieves full diversity order of ntnr if the unitary matrix
is fully diverse, i.e. r = nt. Therefore, to minimise the PEP, the
following conditions should be satisfied [3, 11]:

• To maximise the diversity gain, the rank criterion r of Un − Un′

should be maximised.
• To maximise the coding gain Gc, the minimum determinant of

Un − Un′  should be maximised.
• Non-vanishing minimum determinant on the coding gain.

4.2 Differential perfect algebraic STBC for a MU-MIMO
system

For MU-MIMO differential transmission schemes, the information
must first be encoded in a unitary matrix to ensure the same
transmit power for different blocks. This can be achieved by
applying the Cayley transform as [16]
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Uzτ =
Int − jAτ

Int + jAτ
= (Int − jAτ)(Int + jAτ)−1, (33)

where j = −1 and Aτ is nt × nt Hermitian matrix at block time τ
(we drop the subscript on A from now on for simplicity). As
proposed in [16], the output of the Caylay transform is unitary if,
and only if, A is a Hermitian matrix. Therefore, we must ensure the
Hermitian property for the transmitted perfect STBC signals.
Furthermore, according to [10, 16], the Hermitian constraints
require real constellations and real rotation matrices to maintain the
Hermitian property for matrix A.

For differential perfect algebraic STBC, the input symbol
vectors, s1, …, snr, are first rotated by the real rotation matrix
M ∈ ℝnt × nt and then threaded differentially into different layers l,
where l = 1, …, nt. Let li, 1 ≤ i ≤ nt denote the ith layer. Hence, a
layer can be formed such that [10]

li = nt − i − t nt, t :0 ≤ t < nt . (34)

Therefore, the placement of the real rotated symbols into the code
block in differential threading is very similar to the case for
coherent encoding, but reversed. Then, the differential perfect
algebraic STBC codeword can be expressed as

X = ∑
l = 1

nr

diag(Msl) ⋅ a ⋅ el − 1 T, (35)

where e is defined in (13) but with differential case, we use γ = 1

a =

0 0 0 0 1
0 0 0 1 0
⋮ ⋱ ⋱ ⋱ ⋮
0 1 0 0 0
1 ⋯ 0 0 0

, (36)

and M ∈ ℝnt × nt is a real rotation matrix as in [10, 18, 19]. The code
block generated in the differential perfect algebraic STBC case
must be Hermitian. Then the Hermitian conversion for the matrix
A in differential perfect STBC can be written as [10]

A =Δ 1
2 j ⋅ triu(X) + (tril(X))H

+ ( − j ⋅ triu(X))H + (tril(X)) + diag(X),
(37)

where triu( ⋅ ) denotes the nt × nt matrix that contains only the
above diagonal elements of X, and tril( ⋅ ) denotes the nt × nt matrix
that contains only the below diagonal elements of X. Therefore, if
the input matrix A is Hermitian, the Cayley transformed matrix in
(33) will be unitary. Furthermore, since the differential perfect
algebraic STBC requires multiplying the new code block by the
previous block, the resulting new transmitted output in (21)
remains unitary.

 
Example 2: For nt = 4, nr = 4, and K = 1, we have l = 4 layers.

Then, the Hermitian matrix A is in the form of

A =

x14
x23 + jx13

2
x32 + jx12

2
x41 + jx11

2
x23 − jx13

2 x22
x31 + jx21

2
x44 + jx24

2
x32 − jx12

2
x31 − jx21

2 x34
x43 + jx33

2
x41 − jx11

2
x44 − jx24

2
x43 − jx33

2 x42

.

Therefore, with this formulation, given the invertible equivalent
channel matrix and the transmitted codeword block X, it is easy to

determine the input symbols, by using the Hermitian matrix A as a
road map. The matrix A points out the elements of the X matrix
that include each symbol, and they can be scaled and summed to
form the best estimate of the input symbol. For example, from
position (4,1) and (1,4) in matrix A, we have

a41 = x41 − jx11

2 , a14 = x41 + jx11

2 ,

and these are the only symbols involved in these positions from
matrix X. Accordingly, the original input symbols from the
transmitted codeword block X are as follows:

x41 = 1
2 a41 + a14 , x11 = 1

2 ℑ a14 − a41 .

4.3 Decoding the differential perfect algebraic STBC for a
MU-MIMO system

For the MU-MIMO downlink system, the differential transmissions
are implemented in blocks, in which each user k receives the sum
of all the transmit waveforms of other users; then the received
signal blocks for each user must be detected independently. Thus,
if G denotes the matrix having all N + 1 received signal blocks for
the kth user, i.e.

G = Y^ 0 Y^ τ − 1 Y^ τ ⋯ Y^ N . (38)

When encoding using (21), the decoding process for Xτ for the kth
user would be according to the last two blocks of G as in the
following notation:

G = Y^ 0Y
^

1⋯Y^ τ − 1Y
^

τ⋯Y^ N − 1Y
^

N . (39)

Then the combined information between the unitary matrix Uzτ and
the received signal blocks (Y^ τ − 1, Y^ τ) in the differential scheme at
the kth user can be expressed as

Y^ τ − 1

Y^ τ
= H

Xτ − 1

Xτ − 1Uzτ

+
Z^ τ − 1

Z^ τ
. (40)

For differential perfect algebraic STBC encoding, it is assumed that
for any user k the channel matrix H changes slowly (channel
coherence time is large enough) and extends over several matrix
transmission periods. In such a case, the BS transmission starts
with a reference matrix X0, followed by several information
matrices. The Hermitian matrix A is used to form an equivalent
channel model for differential decoding. An easier way to represent
this model is to rewrite the differential receiver equation using the
Cayley transform [16]

Y^ τ = Y^ τ − 1Uzτ + Z^ τ − Z^ τ − 1Uzτ

= Y^ τ − 1(Int − jA)(Int + jA)−1 + Z^ τ

−Z^ τ − 1(Int + jA)−1(Int − jA) .

By multiplying both sides by (Int + jA), we have

Y^ τ(Int + jA) = Y^ τ − 1(Int − jA) + Z^ τ(Int + jA)
−Z^ τ − 1(Int − jA),

which can be simplified as

Y^ τ − Y^ τ − 1 = − j (Y^ τ + Y^ τ − 1)A + Z^ τ(Int + jA)
−Z^ τ − 1(Int − jA) .

(41)
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Note that due to the differential detection with matrix A as a
unitary Cayley transform, the additive noise in (41) has the
covariance

2(Int + jA)(Int − jA) = 2(Int + A2), (42)

which results in some performance degradation. Then, the ML
decoder can be given as [16]

s^ = arg min
s1⋯snr

∥ Y^ τ − Y^ τ − 1 − 1
j (Y^ τ + Y^ τ − 1)A ∥

2

. (43)

To find the ML solution vectors without an exhaustive search,
the sphere decoding method is used, as it considers only a small set
of vectors rather than all possible transmitted signal vectors. We
obtain the SD representation by constructing an equivalent channel
model for the differential system equation in (41). Let
C = Y^ τ − Y^ τ − 1 and B = − j (Y^ τ + Y^ τ − 1), then the differential
equivalent channel is

C = BA + Z^ d, (44)

where Z^ d = Z^ τ(Int + jA) − Z^ τ − 1(Int − jA) is the additive Gaussian
noise with zero mean and covariance 2(Int + A2). Now, the received
spread signal for the kth user is vectorised as

vec CT = vec (BA)T + vec Z^ d
T

= ℬd vec(S) + vec Z^ d
T ,

(45)

where ℬd is the new ntnr × ntnr effective channel matrix of the
differential perfect STBC, which is given by

ℬd = B
~

A
~ ⋅ Inr ⊗ M , (46)

where ntnr × ntnr matrix B
~

 is given by

B
~ =

diag(b1)a T ⋯ diag(b1)a ⋅ enr − 1 T

⋮ ⋱ ⋮
diag(bnr)a

T ⋯ diag(bnr)a ⋅ enr − 1 T
. (47)

The ntnr × ntnr block diagonal matrix A
~

 is in the form of

A
~ = 1

2

A1 0 ⋯ 0
0 A2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Anr

, (48)

where A1, A2, …, Anr are the scaled sub-matrices of the original
Hermitian matrix A, and each is of size nt × nt. To define the block
diagonal matrix A

~
 completely, we give an example.

 
Example 3: By using the same entities as in Example 2. Then,

the sub-matrices of the 16 × 16 block diagonal matrix A
~

 are in the
form

A1 =

j 0 0 1
0 j 1 0
0 − j 1 0

− j 0 0 1

, A2 =

j 0 1 0
0 1 0 0

− j 0 1 0
0 0 0 1

,

A3 =

j 1 0 0
− j 1 0 0
0 0 j 1
0 0 − j 1

, A4 =

1 0 0 0
0 j 0 1
0 0 1 0
0 − j 0 1

.

Now, we convert the complex received vector in (45) to its
equivalent real and imaginary parts, i.e.

C = ℋdS + Zd, (49)

where

C = ℜ vec CT ℑ vec CT T,

S = ℜ vec S ℑ vec S T,

Zd = ℜ vec Z^ d
T ℑ vec Z^ d

T T,

and

ℋd =
ℜ ℬd −ℑ ℬd

ℑ ℬd ℜ ℬd
.

The SD can be implemented to decode the kth user symbols S^
 such

that

S^ = arg min
S ∈ ℤn

∥ C − ℋdS ∥2 . (50)

5 Computational complexity and rate analysis
The matrix ℋd in (49) has the size of 2ntnr × 2ntnr, thus we have
2ntnr equations and 2ntnr unknowns. The SD usually benefits from
having more equations and fewer unknowns because the
computational complexity is polynomial, yet goes exponential
when the difference between the number of equations and
unknowns grows large. To allow for a low-complexity decoder and
to have at least as many equations as unknowns when nt ≥ nr, the
number of threads l per block per user is constrained by [9]

l ≤ min nt, nr , (51)

and since the number of symbols per block per user is q = ntl.
Hence, in this study, we impose the following constraint:

q ≤ min nt
2, ntnr . (52)

In this case, the maximum rate of the code essentially depends on
the number of threads l per block per user, the total number of q
symbols per block per user sent in that threads, the cardinality of
constellation L, and the orthogonal spreading code period per user.
Since the channel is used nt times, the system transmission rate per
channel per user is

R = q
K ⋅ nt

⋅ log2(L) bits/s/Hz . (53)

There are K users in the system, each transmitting q symbols per
block. Therefore, the total bit rate per system is

R = q
nt

⋅ log2(L) bits/s/Hz . (54)

Note that the rate is independent of the number of users. Through a
wise choice of the number of threads per block l ≤ min nt, nr ,
systems that achieve this transmission rate will have full rate and
full diversity [7].

5.1 Rate analysis

As discussed earlier, the differential perfect algebraic scheme
achieves full diversity full rate over a MU-MIMO channel where at
different time slots and different antennas, different symbols are
transmitted. Table 1 briefly summarises and compares the rate
parameters of differential perfect algebraic STBC with other
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practical STBC schemes that offer reasonable data rates and
diversity such as differential Alamouti code (G2-STBC) [17], and
differential quasi-orthogonal code (QO-STBC) [4]. In terms of the
MIMO's diversity feature shown in Table 1, the three MIMO
schemes of Algebraic, Alamouti, and quasi-orthogonal STBCs are
capable of attaining the full diversity order of ntnr, which
minimises the PEP of (25) according to its rank criterion. With
regard to the transmission rate as seen in Table 1, differential
perfect algebraic STBC introduced in this paper is capable of
achieving the full MIMO transmission rate, provided that the
parameters satisfy q = ntnr, which results in a maximised rate gain
of R = (q/nt) ⋅ log2(L). In the other STBCs shown in Table 1, every
element of a codeword matrix is a linear combination of the input
symbols and limited by a fixed number of transmit antennas, i.e.
nt = 2 or nt = 4. The number of symbols is selected such that an
orthogonal STBC is feasible. Such a limit on the number of
symbols is not necessary if the orthogonality condition of the
STBC is relaxed as in differential perfect algebraic STBC. For
example, with nt = 2, nr = 2, and 8-PAM; rates for differential
perfect algebraic STBC and G2-STBC, are 6 and 3, respectively.
Similarly, with nt = 4, nr = 4, and 8-PAM; rates for differential
perfect algebraic STBC and QO-STBC, are 12 and 3, respectively.
That shows the difference in the rate.

5.2 Complexity analysis

To provide more insight into the computational complexity, the
notion of flops is introduced in this section, where flops denote the
floating point operation (FLOPs). We use the total number of
FLOPs to measure the computational complexity of different
schemes. We summarise the total FLOPs needed for the matrix
operations below [23, 24]:

• Multiplication of m × n and n × p complex matrices:
8mnp − 2mp.

• QR decomposition of an m × n (m ≤ n) complex matrix:
16(n2 m − nm2 + (1/3)m3).

• Singular value decomposition [SVD] of an m × n (m ≤ n)
complex matrix where only Σ and V are obtained:
32(nm2 + 2m3).

• SVD of an m × n (m ≤ n) complex matrix where U, Σ and V are
obtained: 8(4n2 m + 8nm2 + 9m3).

• Inversion of an m × m real matrix using Gauss–Jordan
elimination: 4m3/3.

For the cases shown in Tables 2–4, we show the operations and
the required FLOPs for the algorithms of the coherent perfect
algebraic STBC, the differential perfect algebraic STBC, and the
differential G2-STBC in [17], respectively. For illustration, we
consider a system with K = 3 users, each user with nr = 2 receive
antennas, and nt = 6 transmit antennas; this scenario is denoted as
(2, 2, 2) × 6. For simplicity, and without loss of generality, we also
assume that all users have the same number of receive antennas.
Note that, in Table 4, n̄r = ∑ j = 1, j ≠ k

K nr
j. Clearly, the proposed

differential perfect algebraic STBC scheme requires the highest
complexity. 

Furthermore, for the cases shown in Figs. 2 and 3, we show the
computational complexity of the system dimensions. In Fig. 2, we
first set the number of receive antennas for each user to be nr = 2
and increase the number of users K. Similarly, in Fig. 3, the
number of users is fixed to be K = 4 while the number of receive
antennas for each user is increased gradually. From both figures,
the computational complexity of the proposed system is higher and
increases exponentially. The reason is that the differential perfect
algebraic STBC scheme requires higher rate and as a result, the
number of antennas increases exponentially and thus the size of
unknown variables for the equivalent channel matrix equation also
increases exponentially. We also observe that varying the number
of receive antennas has a much higher impact on the complexity
than varying the number of users. Therefore, for high-rate systems
that support different types of terminals, it is better to keep the
number of receive antennas for each terminal as low as possible.

As shown above, it is worth noting that the perfect STBC
combined with differential STBC scheme proposed in this study
relaxes the orthogonality conditions of the standard orthogonal

Table 1 The rate and diversity parameters of classic STBC representatives
STBC scheme Parameters
Algebraic perfect nt > 1 nr ≥ 1 Gd = ntnr q = ntnr R = (q/nt) ⋅ log2(L)
G2-STBC [17] nt = 2 nr ≥ 1 Gd = ntnr q = 2 R = log2(L)
QO-STBC [4] nt = 4 nr ≥ 1 Gd = ntnr q = 4 R = log2(L)
 

Table 2 Computational complexity of coherent perfect algebraic STBC
Steps Operation Flops Case (2, 2, 2) × 6
1 ∑l = 1

nr diag(Msl) ⋅ el − 1 O Knr(16nt
3 − 2nt

2) 20,304

2 HXV O K(16Knt
2nr − 2 Kntnr) 10,152

3 YVH O K(8Knt
2nr − 2ntnr) 5112

4 Inr ⊗ M O K(nt
2nr

2) 432

5 H~ ⋅ Inr ⊗ M OK(8nt
3nr

3 − 2nt
2nr

2) 40,608

total = 76,608
 

Table 3 Computational complexity of the proposed differential perfect STBC
Steps Operation Flops Case (2, 2, 2) × 6
1 ∑l = 1

nr diag(Msl) ⋅ a ⋅ el − 1 T O 2 Knr(24nt
3 − 2nt

2) 61,344

2 HXUV O K(24Knt
3 − 2 Knt

2) 46,008

3 YVH O K(8Knt
2nr − 2ntnr) 5112

4 Inr ⊗ M O K(nt
2nr

2) 432

5 B~ A~ ⋅ Inr ⊗ M OK(16nt
3nr

3 − 2nt
2nr

2) 82,080

total = 194,976
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STBC codes such as G2-STBC and QO-STBC codes. Therefore, in
this study, the number of transmit symbols per block in downlink is
much higher and that will result in increasing the overall rate of the
system. Thus, we can transmit and receive in high rate without
needing the CSI.

6 Simulation results and discussion
In this section, the performance of the differential perfect algebraic
space-time modulation scheme for the MU-MIMO downlink
transmission is examined. In this section, we assume the channel is
modelled as quasi-static, where the fading block matrix between
the transmitter and receiver is constant (but unknown) between two
successive channel uses. The SNR per user is defined as SNR= nrρ.
The Monte Carlo simulation is used to evaluate the performance in
terms of the BLER and bit error rate (BER).

The differential perfect algebraic STBC with multiple users: In
Fig. 4, the BLER performance curve is first simulated and plotted
for one, two, three, and four user systems. Each user has two
receive antennas and 4-PAM symbols are used. The BS has four
transmit antennas. In this case, each STBC block has q = 8
symbols per user with R = 4. The transmitted codeword X for each
user consists of two layers 4 × 4 perfect algebraic STBC, i.e.
l = nr = 2. The 4 × 4 rotation matrix M is given in [18, 19].
Hadamard matrices are used as the orthogonal spreading matrices
to cancel the CCI. It is shown that the MU-MIMO system for all
cases (e.g. in the case of one, two, three, and four users) achieves
the same performance as a single-user MIMO system; i.e. on
multiple users, the orthogonal spreading codes allowed to eliminate
CCI. This results in every user being processed as if it was a
single-user case so that the results for every user are identical and
the CCI is completely eliminated and full rate full diversity is
achieved with the differential perfect algebraic STBC.

Diversity gain, coding gain, and rates : In Fig. 4, the slope of
the BLER curves for high SNR converges to the slope determined
by the diversity. As shown in (27), this slope is −rnr (in a log–log
scale) where r is the rank of the codeword difference matrix. For
differential algebraic STBC codes, the number of threads l
determines the rank r, and this is limited by the number of receive
antennas, nr, if nr ≤ nt. Hence the diversity slope is −nr

2.
Furthermore, −rnr is also related to the number of symbols
encoded in each codeword block over symbol time periods. Thus,
the number of symbols per block is ntnr. For the case of Fig. 4, we
have l = 2 threads and four symbol time periods in the 4 × 4
algebraic codeword. Each thread has four symbols and only two
symbols are encoded and transmitted in any one symbol time
period. Clearly, when two threads are populated, eight entries of
the 4 × 4 code block are populated and the other eight are filled
with zeros. Therefore, the rank of the codeword difference matrix
r = 2 for this approach of coding. Then we have Gd = rnr = 4. In
Fig. 4, we plot the diversity line based on the actual BLER curves
using the estimated lower bounds formula in (32) of the coding
gain Gc. The BLER curves appear to approach a slope of −4
asymptotically and the diversity gain is Gd = 4.0257, i.e. the full
diversity for this case is achieved with the rate of R = 4. Using the
method above, the estimated value for a lower bound for coding
gain is Gc = 0.154 (as a linear ratio).

Differential algebraic versus orthogonal differential Alamouti:
In Fig. 5, the BLER performance is plotted and compared between
the differential algebraic STBC and the differential Alamouti code
[17]. We use the differential Alamouti code as a benchmark
scheme. First, we examine the performance for both schemes at the
same rate R = 2 with nt = 2 and nr = 2. To get R = 2 for both
schemes, we use 4-PAM constellation size for the differential
Alamouti and 2-PAM for differential algebraic by using (54). The

Table 4 Computational complexity of differential Alamouti STBC in [17]
Steps Operation Flops Case (2, 2, 2) × 6
1 H̄† O K( 4

3 n̄r
3 + 16n̄r

2nt − 2ntn̄r) 4720

2 (I − H†H̄)Φ O K(8nt
2n̄r + 14nt

2 − 4nt) 4896

3 QR (I − H̄†H̄) O K( 16
3 nt

3) 3456

4 SVD H(I − H̄†H̄) O K(64nr
3 + 8nt

2nr + 32ntnr
2 − 2ntnr) 5496

5 HFX O K(16ntnr + 24nr) 720
total = 19,288

 

Fig. 2  Comparison of the computational complexity for differential perfect
algebraic, coherent perfect algebraic, and differential Alamouti with nr = 2,
and nt = K × nr

 

Fig. 3  Comparison of the computational complexity for differential perfect
algebraic, coherent perfect algebraic and differential Alamouti with K = 4,
and nt = K × nr
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figure shows that the performance of the proposed scheme
outperforms the differential Alamouti for the same rate. Second,
we increase the rate of the proposed scheme from R = 2 to R = 4
and R = 8, then we compare it to the differential Alamouti. The
differential Alamouti with R = 2 is initially better at low SNR.
However, the differential algebraic curves converge and
outperform at high SNR, even if their rates are two or four times
the rate of the differential Alamouti scheme thanks to their steeper
diversity slope, i.e. Gd = 4 and Gd = 16.

The impact of multiple receive antenna diversity: In Fig. 6, we
assume a two-user system; user 1 is equipped with one receive
antenna, and user 2 has three receive antennas, and a 4-PAM
constellation is used. The BS has four transmit antennas. The rate
for user 1 is 2 bits/s/Hz with one layer and for user 2 is 6 bits/s/Hz
with three layers. The BER performance of the system is shown in
Fig. 6. We see that the performance of user 2 outperforms that of
user 1 at high SNR, even though its rate is three times the rate of
user 1, because of its receive antenna diversity.

Coherent algebraic versus differential algebraic STBC: In Fig.
7, the BLER performance is plotted and compared between the

coherent algebraic and the differential algebraic STBC. For a fair
comparison of the two schemes, we consider the same setup,
namely four users, nt = 4, each user has nr = 2, l = 2 threads,
R = 4, 4-PAM, SD, and with unitary Cayley matrix. Furthermore,
to quantify this performance loss in both schemes, the receiver's
SNR is calculated for the same unit to transmit power. For the
differential algebraic detection scheme, the power of noise at the
receiver is approximately two times the power of the noise for the
coherent detection as shown in (42). Therefore, the received SNR
of the differential detection scheme is approximately half of that of
the coherent detection scheme for the same transmission power.
This results in about a 4 dB difference in the performance at high
SNRs as expected. The coding gain for both schemes is calculated,
and it is Gc = 0.421 for the coherent scheme and Gc = 0.154 for the
differential. The diversity for both schemes is Gc ≃ − 4.

The impact of multiple access interference (MAI): Fig. 8
illustrates the results of repeating the same experiment for a two-
user system each user has two receive antennas but with higher rate
R = 6 and 8-PAM. The performance of the system in Fig. 8
underperforms that of the system in Fig. 4 because of its higher

Fig. 4  BLER performance of the proposed MU-MIMO STBC downlink
transmission with differential algebraic STBC with a one-, two-, three-, and
four-user system model, R = 4, nt = 4, nr = 2, l = 2, and 4-PAM

 

Fig. 5  BLER performance of the proposed MU-MIMO STBC downlink
transmission for differential algebraic and the orthogonal Alamouti Code
[17] for different rates

 

Fig. 6  BER performance of the proposed MU-MIMO STBC downlink
transmission with differential algebraic STBC with a two-user system
model with two different rates and layers, nt = 4, and 4-PAM

 

Fig. 7  BLER performance of the proposed MU-MIMO STBC downlink
transmission for differential algebraic and coherent algebraic STBC with a
four-user system, R = 4, nt = 4, nr = 2, l = 2, and 4-PAM
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rate. Furthermore, in this figure, we examine the effect of error in
the spreading matrices V. Increasing the number of users in the
system, the high mobility, and multipath propagation may result in
MAI in orthogonal spreading matrices, which destroy the
orthogonality of the transmitted signals for multiple users. For the
two-user system, let the error spreading matrix for user 1 be
V̄1 = V1 + αV2, where α is the error coefficient. Therefore, the
conditions for the orthogonality of the spreading matrix for user 1
and user 2 are as follows:

V̄1V̄1
H = Int + α2Int, (55)

V2V̄1
H = αInt . (56)

The values of α are chosen to be 0.03, 0.05, and 0.08. It is shown
that the error in the orthogonality of the spreading matrix V occurs
among users when α > 0. 

7 Conclusion
In this study, a differential perfect algebraic STBC scheme for MU-
MIMO with downlink transmission has been proposed. The Caylay
differential STBC that we have introduced does not require channel
knowledge, either at the transmitter or receiver. To simplify the
receivers' equipment in the MU-MIMO system, the impact of the
receiver channel estimation process and/or overhead problem can
potentially be solved and avoided by using the Caylay differential
STBC. Furthermore, we show how to use the differential STBC
combined with perfect algebraic STBC to achieve a full rate and
full diversity differential system. Due to the multiple users, there is
a need for the separation of the data streams and this is achieved by

the use of orthogonal spreading matrices. For this system, to limit
the number of possible codewords, a near-optimal SD is performed
to decode the signals at the receiver. The proposed schemes yield
low complexity transceivers while also providing high rate with
good performance. However, the system in this study has higher
computational complexity because of its higher rate. Monte Carlo
simulation results demonstrate the effectiveness of the proposed
schemes.
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