
Journal of Geophysical Research: Solid Earth

A Bayesian Method for Incorporating Self-Similarity
Into Earthquake Slip Inversions

R. M. J. Amey1 , A. Hooper1 , and R. J. Walters2

1COMET, School of Earth and Environment, University of Leeds, Leeds, UK, 2COMET, Department of Earth Sciences,
Durham University, Durham, UK

Abstract Distributions of coseismic slip help illuminate many properties of earthquakes, including
fault geometry, stress changes, frictional properties, and potential future hazard. Slip inversions take
observations and calculate slip at depth, but there are a number of commonly adopted assumptions such
as minimizing the second spatial derivative of slip (the Laplacian) that have little physical basis and
potentially bias the result. In light of growing evidence that fault slip shows fractal properties, we suggest
that this information should be incorporated into slip inversions as a form of regularization, instead of
Laplacian smoothing. We have developed a Bayesian approach to efficiently solve for slip incorporating
von Karman regularization. In synthetic tests, our approach retrieves fractal slip better than Laplacian
regularization, as expected, but even performs comparably, or better, when the input slip is not fractal.
We apply this to the 2014 Mw 6.0 Napa Valley earthquake on a two-segment fault using Interferometric
Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) data. We find the von Karman
and Laplacian inversions give similar slip magnitude but in different locations, and the von Karman solution
has much tighter confidence bounds on slip than the Laplacian solution. Differences in earthquake slip
due to the regularization technique could have important implications for the interpretation and modeling
of stress changes on the causative and neighboring faults. We therefore recommend that choice of
regularization method should be routinely made explicit and justified and that von Karman regularization
is a better default than Laplacian.

1. Introduction

Determining the magnitude and distribution of slip along a fault plane is an essential component of earth-
quake investigations. Coseismic slip can help elucidate the geometry, strength, and frictional properties of
active faults (Milliner et al., 2015; Perrin et al., 2016) and can be used to estimate where stress has been
partially released and where it remains or has increased, which may indicate areas of the fault or neighbor-
ing faults that have been brought closer to or further from failure (Avouac et al., 2015; Lorito et al., 2011;
Walters et al., 2009). The same inversion methods can also be used to monitor postseismic and interseismic
slip (e.g., Floyd et al., 2016) and to help deduce the distribution and proportion of off-fault deformation, giv-
ing insight into the earthquake cycle (Lindsey & Fialko, 2016; Wang et al., 2015). Values of slip are also used
extensively in palaeoseismic studies to estimate the magnitude of preinstrumental earthquakes (Campbell
et al., 2015).

By combining satellite acquisitions before and after an earthquake, InSAR (Interferometric Synthetic Aperture
Radar) provides spatially dense measurements of surface displacement, which along with Global Positioning
System (GPS) measurements can be used to invert for the magnitude, location, and direction of earthquake
slip along a fault plane. With the new European Space Agency satellites Sentinel-1A and Sentinel-1B providing
unprecedented ground repeat times, the scientific community is now in a position to routinely investigate all
large continental earthquakes using InSAR (Elliott et al., 2015), and inverting for slip is a crucial part of that
procedure. However, in order for slip inversions to be useful we need to ensure that the inversion processes
give results that adequately represent the true slip distribution.

Slip inversions are usually ill posed and unstable, meaning that the solution is nonunique and small amounts
of data noise lead to slip oscillations in least squares solutions. Because of this inversions are usually regu-
larized, with Laplacian smoothing being the most common approach (Funning et al., 2005; Harris & Segall,
1987; Wright, 2003). This regularization approach minimizes the second derivative of slip with the importance
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of this constraint relative to minimizing data misfit controlled by a scalar smoothing factor. The choice of
smoothing factor is often subjective and often not stated at all in the literature but can result in major differ-
ences between solutions derived from the same data. There is no specific justification for the use of Laplacian
smoothing in slip inversions other than that a rough or oscillating slip distribution would produce unrealisti-
cally large stress drops. While Laplacian smoothing can prevent such large stress drops, this does not mean it
is the best function to describe the nature of slip; it is just a mathematical constraint rather than being based
on any observed fundamental feature of slip distributions.

Other regularization techniques promote sparse solutions (Evans & Meade, 2012) or impose little regulariza-
tion (Jolivet et al., 2014; Minson et al., 2013), and these approaches, together with smoothness-promoting
methods produce a huge range in solutions for the same earthquake. We argue that whichever regulariza-
tion method is used, it should have a physical justification based on some observed behavior of earthquakes
and faulting.

Many features of earthquakes and faults show self-similar (fractal) properties, meaning that a feature is similar
at all scales or mathematically that a behavior can be described by a power law (Mandelbrot, 1983). Features
that show this relationship include the Gutenberg-Richter frequency magnitude scale (Gutenberg & Richter,
1955; Kanamori & Anderson, 1975), the Omori aftershock frequency law (Omori, 1894), seismicity distribution
across faults (Powers & Jordan, 2010), spatial structure of faults (Aviles et al., 1987; Okubo & Aki, 1987), spa-
tial distribution of earthquake hypocenters (Robertson et al., 1995), fault gouge texture (Muto et al., 2015),
fracture energy (Passelègue et al., 2016), and many others (see Ben-Zion (2008)).

Fault surfaces are naturally rough, and early work found this roughness is self-similar (Brown & Scholz, 1985;
Poon et al., 1992; Power et al., 1988), meaning that the root-mean-square (RMS) height fluctuations are pro-
portional to the profile length (Fang & Dunham, 2013). Recent higher-resolution studies of exhumed faults
(Brodsky et al., 2011; Candela et al., 2012; Renard et al., 2006; Sagy et al., 2007) support these initial observa-
tions but find that roughness is self-affine rather than self-similar. Self-affine systems require different scaling
in the x and z direction to maintain their similarity, where self-similar systems have the same scaling. In the
context of fault roughness, a profile of fault topography is self-affine if it remains statistically invariant if the x
(along-strike) and z (topography) coordinates are subject to the scaling transformation 𝛿x → 𝜆𝛿x, 𝛿z → 𝜆H𝛿z,
where H is the Hurst parameter (Candela et al., 2012). For a self-similar system, the scaling is instead 𝜆 in both
directions i.e., H = 1. Different values of H are found along-strike and downdip directions, giving rise to different
properties perpendicular and parallel to the slip vector.

Modeling of slip on a surface with fractal roughness predicts that both the distribution of stress drop and
coseismic slip should also have a fractal distribution (Candela et al., 2011). Milliner et al. (2015, 2016) observed
this in their field investigations of surface slip of the Landers earthquake rupture, where a power law describes
the relationship between slip amplitude and wavelength. Models that produce power law frequency magni-
tude statistics of earthquake occurrence, in keeping with the Gutenberg-Richter law, also produce fractal slip
distributions (Fisher et al., 1997).

Additionally, Mai and Beroza (2002) found that seismological slip solutions show fractal properties, a feature
that was robust irrespective of the regularization imposed upon the inversions. They tested various autocor-
relation functions to assess how the magnitude of slip varied as a function of distance and found that the von
Karman autocorrelation function best describes slip distributions. This function has a similar power law rela-
tionship as a fractal distribution at high spatial frequencies, but the power decays more slowly for small wave
numbers (large wavelength).

These studies imply that a better and more realistic alternative to regularization by Laplacian smoothing is
regularization by constraining the slip distribution to be self-affine. By using a regularization technique that
does not capture the fractal nature of slip we may be biasing slip solutions and therefore also any conclusions
drawn from them. Fractal fault roughness is now incorporated into many numerical models of dynamic rup-
ture (Bruhat et al., 2016; Fang & Dunham, 2013; Parsons & Minasian, 2015; Shi & Day, 2013) and ground-motion
simulations (Mai et al., 2017), and in this paper we incorporate the von Karman autocorrelation function into
a geodetic slip inversion as a prior assumption, using Bayesian methods.

The von Karman correlation was first introduced in fluid dynamics to describe turbulence (von Kármán, 1948).
Unlike a fractal correlation that has only a single term to describe its power (the fractal dimension, D), the
von Karman distribution also has correlation lengths, which define the cutoff lengths of fractal behavior
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Figure 1. Left: the von Karman autocorrelation function, C(r). The autocorrelation (similarity) between two functions
decays with lag (scaled distance) between them. The exact shape of the drop-off is controlled by the Hurst parameter, H,
where H = 0.5 is equivalent to an exponential decay function. Right: von Karman power spectrum, P(k), using ax = 5,
az = 15, and H = 0.8 at kz = 0. Also plotted at kz = 0 is the fractal power spectrum, again using H = 0.8, giving a fractal
dimension D = E + 1 − H = 2.2. For high wave numbers both are a straight line on the log-log graph, displaying
characteristic self-similar properties. The fractal power spectrum decays beyond a corner wave number, kc = 0.3, which
is related to the characteristic source dimension (Mai & Beroza, 2002) whereas the von Karman shows a more gradual
roll-off, the start of which is related to the correlation lengths, ax and az . Here ax and az were chosen to align the
two functions at small wave numbers. Adapted from Mai and Beroza (2002).

(Dolan et al., 1998) and allow for different scalings downdip and along-strike, which is useful for capturing the
nature of slip.

Here we use the von Karman distribution to describe the expected similarity of magnitude of slip between all
patches of the fault. This correlation function, C(r) is given by

C(r) =
GH(r∕a)

GH(0)
(1)

where GH(r∕a) = (r∕a)HKH(r∕a), where KH is a modified bessel function of the second kind, of order H; r
is the distance between slip patches; a is the correlation length used to scale this distance; and H is the
Hurst parameter (Mai & Beroza, 2002). The Hurst parameter describes the fractal properties of the correlation
and controls the decay of this correlation (Figure 1). For self-affine profiles the Hurst parameter is linked to
the fractal dimension, D, by D = (Euclidian dimension +1 − H) and is a measure of the long-term memory
of a system.

In form, the von Karman correlation decays as a function of lag (scaled distance), and for H = 0.5 the
von Karman function is identical to an exponential decay function. The von Karman correlation decays quicker
for either decreased Hurst parameter or decreased correlation lengths. Thus, the correlation between the
magnitude of slip on two patches decays as a function of the distance between them, and the nature of this
decay is controlled by the Hurst parameter and correlation lengths.

The von Karman correlation can be added as a prior assumption into a slip inversion, so that a slip solution has
a joint probability based upon how well a slip distribution fits the observed data and how well the slip distri-
bution fits the von Karman autocorrelation function. The parameters describing the von Karman distribution
(H and a) could themselves be solved for as hyperparameters, with their prior probability distributions deter-
mined by the seismic study meta-analysis from Mai and Beroza (2002). These parameters differ depending on
fault type (normal, reverse, or strike slip) and also differ in the along-strike and downdip directions.

In this study we present a method to invert for slip incorporating von Karman regularization, using a Bayesian
approach and implemented using a Markov chain Monte Carlo (MCMC) algorithm. A Bayesian approach allows
us to fully explore the range of parameters that fit the data, incorporate constraints (e.g., on rake to avoid
unphysical features such as back slip), and solve for a hyperparameter that represents the variance of the
slip (discussed more in section 2.3). This means that instead of having to assume in advance the variance of
slip we are able to search the range of slip magnitudes and rakes for a range of permitted variances. This
flexible approach, while computationally expensive, allows us to be more objective and explore the full range
of possible solutions in more detail.
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We test this method on synthetic data and then apply it to the Mw 6.0 Napa Valley, California, 2014 earth-
quake. For comparison we also invert for slip with Laplacian smoothing implemented using the same
Bayesian approach.

2. Method and Data
2.1. Bayesian Inversion
In Bayesian inversions each parameter to be solved for (e.g., slip and rake) is treated as a random variable
with a prior probability density function (PDF) that is updated by the inversion process. The result is the full
joint posterior PDF for every model parameter, giving an ensemble of all possible models that fit the data
reasonably, as well as providing a good understanding of the uncertainties on parameters and the covariance
between them. This approach also allows us to solve for hyperparameters within the inversion.

Following Fukuda and Johnson (2008) and Hooper et al.’s (2013) incorporation of Laplacian smoothing into
slip inversions using a nonlinear Bayesian approach, here we present our method for incorporating a von
Karman prior assumption, after Hooper (2012).

The posterior probability is built from the prior and likelihood function using Bayes’ theorem. The prior prob-
ability describes how well the model parameters fit a prior assumption. The likelihood function describes how
well the forward model calculated using these model parameters fits the observed data.

Bayes’ theorem states

p(m|d) = p(d|m)p(m)
∫ ∞
−∞ p(d|m)p(m)dm

(2)

Meaning that the posterior probability, p(m|d), of a model, m, given a set of data, d, is the product of the prior
probability of the model, p(m), and the fit to data, p(d|m), where the denominator is a normalizing constant.

We use an MCMC method incorporating the Metropolis-Hastings algorithm to generate samples of the prior
probability density and also to sample the parameter space and thus approximate the posterior PDF. The
algorithm samples parameter space in such a way that more models are drawn in areas of high probability. We
adapt the approach of Fukuda and Johnson (2008) to include multiple Metropolis steps and sensitivity tests.

An MCMC chain is a memoryless system in which parameter space is sampled using random walks, with each
random step depending only upon the previous step (in contrast to methods such as the neighborhood algo-
rithm; Sambridge, 1999). The MCMC chain samples parameter space to provide an estimation of the posterior
PDF (Tarantola, 2005, Chapter 2, Page 50).

2.2. Our MCMC Approach
In an MCMC chain each parameter is perturbed at the start of each iteration, meaning a random number is
added to each model parameter giving a new “trial” value. The new trial is drawn from the prior distribution,
then the likelihood is calculated. The trial is then accepted or rejected using the “Metropolis rule.” This accep-
tance rule states that if the trial likelihood is greater than that of the current model it is accepted. If the trial
likelihood is lower, then the probability of acceptance is calculated: the ratio of the two likelihoods. This ratio
is compared to a randomly drawn number between 0 and 1. If the probability of acceptance is greater than
this random number, the trial is accepted. Otherwise, it is rejected. This means that sometimes trials that have
lower likelihood are accepted, which allows the chain to not get stuck in local minima. If a trial is accepted it
is saved; the next random step is taken from those model parameters.

At the end of the inversion the first B iterations that constitute the “burn-in” are removed. These are the early
steps that do not properly sample the posterior as they may be influenced by starting state (Fukuda & Johnson,
2008). The rest of the saved trials represent the posterior, giving the full range of models that adequately fit
the data and prior assumptions. This posterior can be represented by some statistical representation of the
distribution, which is discussed further in section 4.3.

Here we implement the MCMC chain in two separate steps for efficiency, as described by Tarantola, (2005,
Chapter 2, Page 52). The first step generates samples of the prior probability density: a von Karman
trial. We draw random slip trials for each patch from their prior distribution (section 2.4) and use
the Metropolis-Hastings algorithm to accept/reject these trials based on their von Karman probability.
The slip trials are generated by adding a random number from a boxcar distribution between ± each
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parameters’ “step size.” The second step is to sample the posterior probability distribution, which is achieved
by comparing the likelihoods of the current trial to the previous trial (Tarantola, 2005, Chapter 2, Page 52).
This implementation reduces the number of times the particularly computationally expensive likelihood cal-
culation is made, since it avoids making the calculation for most models that already have a low posterior
probability due to their slip distribution having very low von Karman probability. Also for efficiency we period-
ically perform a sensitivity test to adapt the step sizes being taken, which is discussed in detail in section 2.6.
In section 2.4 we describe how we sample the prior and in section 2.5 we describe how we sample the
posterior, using the likelihood; these two steps together comprise one iteration of our algorithm.

2.3. Model Parameterization
We divide the fault into M slip patches and solve for magnitude of slip and rake (the direction of slip) sep-
arately for each patch, as well as a hyperparameter 𝛼2 for each separate fault. The physical meaning of the
hyperparameter 𝛼2 is the variance of the slip. The correlation matrix calculated using equation (1) defines the
desired von Karman correlation between slipping patches and the hyperparameter 𝛼2 acts on this to dictate
the magnitude of the slip, in effect converting correlation to variance-covariance. It is necessary to solve for
𝛼2 in order to explore the full plethora of slip and rake solutions that fit a range of permitted variances. If a
model contains multiple faults that are assumed to be uncorrelated in terms of their slip, then we would cal-
culate separate von Karman prior probabilities for each fault and consequently we assign one 𝛼2 parameter
per fault. Slip and 𝛼2 are the only parameters used in the von Karman prior probability calculation.

2.4. First MCMC Step—Sampling the Prior
The prior probability describes how well a slip distribution fits the prior assumptions. Here the prior is the
product of prior distributions of slip magnitude and rake for individual patches, 𝛼2 for each separate fault, the
von Karman probability of slip and a moment regularization (if this option is used).
2.4.1. Model Parameter Priors
We solve for slip magnitude and rake using boxcar priors, and we solve for 𝛼2 using a logarithmic prior. This
means that for slip and rake the new trials are generated with uniform probability between a given range, that
is, slip is given uniform probability between 0 and x meters, and the probability is 0 outside of this range. For
𝛼2 we implement a logarithmic prior. This means that we solve for a model parameter, q, and then calculate
𝛼2 by 𝛼2 = 10q, thus transforming a uniform prior for q into a logarithmic prior for 𝛼2.
2.4.2. Von Karman Prior
Once each model parameter has been drawn from its prior, we apply the von Karman prior using the
Metropolis-Hastings algorithm, since it is difficult to directly generate von Karman distributions directly with
a random walk.

The von Karman autocorrelation is given by:

p(s) = (2π𝛼2)−M∕2|𝚺s|−1∕2e
−1

2𝛼2 sT𝚺−1
s s (3)

where

p(s) = probability of this slip distribution
𝛼2 = a hyperparameter controlling the slip variance
M = number of slip patches in a fault strand

|𝚺s| = the determinant of the slip patch autocorrelation matrix
s = vector of slip magnitudes

We calculate the probability for each separate fault using a corresponding 𝛼2 term for that strand. The prod-
uct of the prior probabilities for all the faults gives the the joint probability of the overall distribution of slip
conforming to the von Karman correlation function.

The autocorrelation, 𝚺s, is calculated for a particular fault strand from the von Karman correlation function
given in equation (1). In MATLAB, GH(0) gives an infinite value, so we investigated the limr→0 of GH(r) =
(r)HKH(r). We found any values smaller than r = 10−4 changed the value of GH(r) significantly less than 1% so
we therefore used a value of r = 10−10 to approximate r = 0.

We calculate the scaled distance, r∕a, by calculating the along-strike and downdip separation distance
between each fault patch, then dividing this by the along-strike, aas, or downdip, add , correlation value, respec-
tively. We then used these scaled along-strike and downdip separation distances to calculate the scaled
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separation distance between each patch. We used the correlation values from Mai and Beroza (2002) for
strike-slip faults:

aas = 1860 + 0.34 × (fault length; meters) (4)

add = −390 + 0.44 × (fault width; meters) (5)

We also used Hurst parameter values, H, from Mai and Beroza (2002) for along-strike, Has = 0.71, and downdip,
Hdd = 0.77 and scaled them appropriately for angles between purely along-strike and downdip. These cor-
relation lengths and Hurst parameters could be solved for as hyperparameters as part of the inversion in
future studies.
2.4.3. Moment Regularization Prior
Geodetic slip inversions have poor depth resolution since all the data are acquired at the surface. Conse-
quently deep slip makes very little difference to the likelihood; it is almost in the null space. To attempt to
limit the amount of slip being put in the null space we optionally include moment regularization in the inver-
sion such that slip trials with a moment very different to that of the seismological moment are more likely to
be rejected. We use a Gaussian prior for moment: it is calculated with the standard equation for calculating
the probability from a Gaussian distribution given a mean (moment from the U.S. Geological Survey [USGS]
page) and standard deviation (standard deviation of the different moment calculations on the USGS page).
The prior probability is then the von Karman prior multiplied by the moment regularization prior.

However, we prefer to avoid this regularization where possible, since many geodetic measurements also
include surface displacements from postseismic slip or aftershocks, and there are often systematic differ-
ences between geodetically and seismologically derived seismic moments (Weston et al., 2011). It is not clear
whether this is predominantly due to real differences from aseismic slip, errors in the seismic estimate or errors
in the geodetic estimate, or some combination of these. In this study moment regularization is not applied
unless specifically mentioned.
2.4.4. Prior Acceptance Rule
We use the Metropolis rule to decide if a temporary trial is accepted, as discussed in section 2.2. If it is accepted
then it is a representative draw from the von Karman distribution and the other prior distributions; therefore,
we move onto the second step.

2.5. Second MCMC Step—Sampling the Posterior
Once we have drawn a sample from the prior using the first MCMC step, we sample the posterior by calculating
the likelihood.

A forward model of surface displacements is calculated from the trial model parameters, using the formulation
for rectangular dislocations in an elastic half space (Okada, 1985). This is calculated by multiplying the current
slip model, s, by a kernel G, which gives predicted surface displacements, d̂, at each of the locations of our
InSAR and GPS data for unit slip on each fault patch and the appropriate rake:

d̂ = Gs (6)

Because we solve for slip magnitude and rake, the kernel G needs to be updated for the current rake value
during each iteration. For a linear case in which fault geometry is held fixed (i.e., not changing dip), G matri-
ces for purely left-lateral strike slip, Gss, and purely thrust dip slip, Gds, movement can be calculated before
commencing the inversion. Then the G matrix for the current iteration is calculated using the current values
of rake by:

G = Gss × cos(rake) + Gds × sin(rake) (7)

where cos(rake) and sin(rake) are diagonal matrices.

The likelihood is calculated using the weighted misfit of a forward model to the observed data. The mis-
fit is weighted by the inverse of the variance-covariance matrix, 𝚺d, which represents data uncertainty. The
likelihood is given by:

p(d|m) = (2π)−N∕2|𝚺d|−1∕2e
−1
2
(d−Gs)T𝚺d

−1(d−Gs) (8)
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where

p(d|m)= the probability of the observation, given the slip and rake distribution
N = total number of data points
𝚺d = variance-covariance of the data

d = data (e.g., InSAR, GPS,
s = magnitude of slip

G = kernel, calculated for the appropriate rake and dip values

We then once again use the Metropolis rule on the ratio of the trial likelihood to current model likelihood. If
the trial passes this test, then it is saved as the current model and future trials will be drawn as a step from this
trial, until another more likely trial is drawn. If the trial is rejected, the previous model is saved and next trial is
initiated from this trial.

The inversion results in a joint probability from which we can calculate a histogram of the posterior for each
model parameter. We can also calculate the 2-D PDFs that show the joint PDF of each pair of parameters.

2.6. Efficiency
Bayesian inversions are computationally expensive, and so methods are employed to improve the efficiency
of the parameter search, such as the use of multiple MCMC chains, for example Minson et al. (2013). Here we
improve efficiency by using two steps within one MCMC chain as discussed in section 2.2 and by modifying
the step size for each parameter within the MCMC chain, in a manner similar to that used by Hooper et al.
(2013) and also Minson et al. (2013) between chains.

We modify the step size for each parameter to achieve an optimal acceptance rate of 0.234 (Roberts et al.,
1997). Acceptance rates that are higher or lower than this give an inefficient search of parameter space. For
the sensitivity tests we use a “rejection” to mean either a rejection at the prior or likelihood stage.

In order to ensure we achieve this ideal rejection ratio while properly exploring parameter space, we perform
sensitivity tests at regular intervals throughout the inversion, with the first sensitivity test, j = 1, starting at
i = 100 where i is the iteration, then at i = 500 and every 1,000 iterations up until 10,000 and then every
10,000 iterations for higher values of i. We use a “probability target” parameter to adjust the step sizes, so that
perturbation of each model parameter results in the same amount of change to the posterior probability. This
probability target is the expected ratio of the posterior probability after perturbing a single model parameter,
to the current posterior probability. Changing step sizes to match this probability target ensures no parameter
is having too great or too little an effect on the posterior probability. Adapting the probability target with
the rejection rate forces step sizes to increase or decrease to optimize efficiency. At the start of a sensitivity
test we first adjust the probability target at the current sensitivity test, j, using the probability target from the
previous sensitivity test, j − 1, by

Ptargetj = Ptargetj−1 ×
rideal

rj
(9)

This means if too many trials are being rejected (i.e., the rejection ratio since last sensitivity test, rj , is larger
than the ideal rejection ratio, rideal) then the previous probability target, Ptargetj−1, will be decreased. We then
adjust step sizes of each model parameter using this new probability target. This is done during a sensitivity
test by calculating the posterior probability, perturbing each parameter by half a step size in turn and recal-
culating the posterior probability. The ratio of posterior-before-perturbation to posterior-after-perturbation
is calculated and subtracted from the probability target to give the difference, D. If the perturbation is such
that model parameter’s contribution to the posterior probability is more than the probability target (D < 0)
then the step size is having too large an effect, which means the step size must be decreased. We decrease or
increase step sizes using the empirical formula:

step sizej = step sizej−1 × e
D

Ptargetj×C1 for D> 0 (step sizes too small) (10)

step sizej = step sizej−1 × e
D

(1−Ptargetj )×C2 for D < 0 (step sizes too big) (11)

where the constants, C1 and C2, are arbitrarily chosen to control how quickly step sizes increase or decrease
in size; increasing C1 decreases the amount by which step size increases; increasing C2 increases the amount
by which a step size decreases. These values were chosen after experimentation as they resulted in gradual
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Figure 2. Set up of synthetic tests. (a) Fault plane, with two joining strands, with example slip distribution indicated
by color. Thick black line shows top of fault, at the surface. (b) Plan view of location of surface displacements caused by
this right-lateral fault, indicated by a black line. (c) Zoomed in on box shown in b, showing the surface displacements
around the fault.

changes in rejection rates in synthetic tests. Different values may work better in different situations, depend-
ing on the number of model parameters. For a von Karman regularized inversion we use C1 = 16 and
C2 = 2, although we find higher values of C1 work better for Laplacian and moment regularized inversions.
If we are re-running an inversion we optionally use the idealized step sizes from a previous run. A simple test
demonstrates that an inversion scheme with changing step sizes correctly samples the posterior (supporting
information Figure S1); a mathematical proof of this is beyond the scope of the current paper but would be a
valuable avenue of future work.

3. Synthetic Tests
3.1. Synthetic Test Set Up
We first tested our slip inversion code on three synthetic cases. Each consists of a strike-slip fault modeled
as two connected strands, and the simulated surface displacements are created using our forward model
described by equation (6), shown in Figure 2. The three synthetic slip distributions created are

1. Uniform, pure strike-slip motion that ruptures the surface down to ∼6 km depth.
2. Laplacian smoothed slip.
3. Slip displaying von Karman autocorrelation.

The Laplacian smoothed slip is created using a matrix of discretized Laplacians appropriate for this fault
geometry, the inverse of which is multiplied by normally distributed random numbers.

The von Karman consistent synthetic test is created by transforming a random slip distribution into a corre-
lated distribution using the appropriate correlation matrix (e.g., Lohman & Simons, 2005), for a fault of given
dimensions.

To investigate the differences caused by regularization alone we conducted the synthetic tests on noise-free
synthetic data. We used a high density of 3-D surface displacements, spaced every 400 m within 5 km of the
fault and every 2 km up to a distance of 20 km from the center of the fault.

We then inverted for slip for these three separate synthetic tests using three modes of the Bayesian inversion:
with no regularization, Laplacian regularization, and von Karman regularization.

Each was performed with the correct fault geometry, with a prior rake within ±30∘ of the true value,
adding no further regularization than that specified above. For Laplacian regularization we solved for the
hyperparameter that controls the strength of the smoothing within the inversion.

3.2. Synthetic Test Results
The results are shown in Figures 3 and 4, supporting information Figures S2 and S3, and the fit to the data for
each model shown in supporting information Figures S4–S12.
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Figure 3. Results of slip inversions for synthetic tests, each with the fault planes shown as a flat surface and color indicating magnitude of slip. Top row shows
input slip distribution, which is then solved using a Bayesian inversion with no smoothing (row 2), with Laplacian smoothing (row 3), and von Karman smoothing
(row 4). All distributions displayed give the mode result for each patch and are displayed with the same color scale as the corresponding model. Note that the
color bar for column 3 (von Karman [VK] slip) is saturated for one value in the unsmoothed solution. The root-mean-square is the sum of the square of the misfit
between the true slip (input model) and the mode of each patch, not data misfit. Also shown is the PDF for patch 77, indicated by a box, showing how smoothed
solutions give a much tighter constraint than unsmoothed versions.

It is not simple to display the results from a Bayesian inversion since the inversion produces a multidimensional
joint PDF for all model parameters. All saved models formulate the solution, which would best be displayed
as a video. However, to present the results in a 2-D image, in Figure 3 we have plotted the “mode” solution
for each slip patch. This slip distribution itself has not been drawn as a trial in the Bayesian inversion but gives
an indication of where slip is likely to have occurred from all the saved trials. We calculate the joint slip mode
and rake mode for each patch by finding the value of the peak of the highest bar in the 2-D histogram of slip
against rake.

All solutions fit the data very well; however, low data residuals do not ensure a correct source model, as the
Earthquake-Source Inversion Validation project has previously shown (Mai et al., 2016). The smoothed solu-
tions give a less oscillatory result than the unsmoothed solutions and also the unsmoothed solutions add
additional high slip at depth; no moment regularization was applied to any of the synthetic test inversions.

These tests show that a von Karman correlation constraint retrieves a von Karman slip distribution better
than a Laplacian or no constraint, as might be expected. However, von Karman also adequately resolves a slip
solution that is not von Karman. The von Karman regularization outperforms both Laplacian regularized and
unsmoothed inversions for uniform slip, as is shown by the lower RMS (text under each solution in Figure 3).
For the Laplacian slip input model and von Karman slip input model the RMS for von Karman regularization
and Laplacian smoothing is similar enough to suggest they have the same resolving power for these slip
distributions (RMSLaplacian = 0.182 and RMSvonKarman = 0.187 for Laplacian slip, and RMSLaplacian = 0.252 and
RMSvonKarman = 0.241 for von Karman slip.

Further comparisons using the method outlined by Zhang, Mai, et al. (2015) confirm this, shown in supporting
information Figure S13. We find that the von Karman solution outperforms Laplacian and unsmoothed solu-
tions in matching the magnitude of slip and correlation of slip for all three input slip distributions, though for
Laplacian input slip, the von Karman is only marginally better than the Laplacian.
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Figure 4. 95% confidence intervals (red line) for each slip patch,
patch mean (black circle), and the true value for that slip patch (green cross)
for von Karman slip solved for with no smoothing (top), Laplacian
smoothing (middle), and von Karman smoothing (bottom). For von Karman
regularization 94% of patches had the true value of slip within the 95%
confidence intervals, compared to 99% for Laplacian smoothing.
Note that Row 1 (the surface) has significantly smaller confidence intervals
due to better resolving power nearer to the data, which means the patch
mean and true slip are plotting in very similar locations, and confidence
intervals are too small to see.

The histograms in Figure 3 show the posterior PDF for a single slip patch,
indicated by the black box, for each of the different inversion methods.
An unsmoothed inversion has a very high standard deviation in the his-
togram, showing that the slip is poorly constrained. In comparison, the
smoothed solutions have much lower standard deviations, meaning they
have a much tighter constraint. This is apparent in Figure 4 for von Karman
slip and supporting information Figures S2 and S3 for surface slip and
Laplacian slip, which show that the smoothed inversions yield much
tighter confidence intervals than for the unsmoothed inversion. For von
Karman slip the true value of slip lies within the 95% confidence intervals
for 94 out of 100 patches using von Karman regularization and 99 out of
100 patches for Laplacian regularization.

3.3. InSAR/GPS Synthetic Test
We explored the effects that data type (InSAR and/or GPS) may have on
the ability for a regularization style to resolve an input slip distribution.
InSAR has the benefit of high spatial resolution, but the displacement field
is only measured in one dimension (satellite line of sight). In contrast GPS
provides 3-D measurements of displacement but at a spatially sparser set
of discrete locations.

We created a synthetic test with noise-free InSAR data spaced every 400 m
within 5 km of the fault, and every 2 km up to a distance of 20 km away
from the fault, with the same line of sight vector as for the Sentinel-1
interferograms in the Napa earthquake. To simulate loss of coherence we
randomly remove 800 data points, which also serves to reduce the time to
calculate the likelihood. We randomly scattered thirty noise-free 3-D GPS
measurements around the fault.

We simulated von Karman slip on a strike-slip fault consisting of two con-
nected segments and solved for this with von Karman regularization and
Laplacian smoothing.

We find that the von Karman regularization consistently matches the mag-
nitude of input slip and spatial distribution of input slip better than Lapla-
cian, regardless of data type used in the inversion (supporting information
Figures S14 and S15).

3.4. Synthetic Test Summary
These tests demonstrate that our method is working as expected and
that inversions incorporating von Karman regularization can successfully
recover the distribution of slip from geodetic data.

Our new method of regularization not only outperforms Laplacian
smoothing when the slip has a fractal distribution but also does better for

uniform slip and performs comparably when slip is smooth. This suggests that incorporating von Karman reg-
ularization into slip inversions is likely to produce solutions that are at least as accurate than those generated
by inversions incorporating Laplacian smoothing, and if the true slip conforms to the von Karman correlation
function, our method is significantly more accurate. Therefore, it is a better default regularization approach
to use than Laplacian.

4. Mw 6.0 Napa Valley Earthquake, 2014

We applied our method to the Mw 6.0 Napa Valley, California, earthquake of 24 August 2014. This was the first
earthquake imaged by Sentinel-1A, with the preearthquake image acquired on the first day that the satellite
reached its operational orbit. The earthquake occurred on the West Napa Fault (Hudnut et al., 2014), which is
part of the San Andreas fault system; the broad region of faults that accommodates right-lateral movement
between the Pacific and North American plates (Figure 5).
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Figure 5. Regional setting of the Napa Valley earthquake. Left: Focal mechanism was almost entirely strike slip with a strike of 345∘. Historical (yellow),
Holocene (orange), and selected Quaternary (coral) faults (USGS, 2006). Right: surface rupture of Napa earthquake from (Hudnut et al., 2014) and aftershocks
from August to February shown in blue, with size indicating magnitude. Yellow shows faults of all ages (USGS, 2006).

4.1. InSAR and GPS Data
The details of the acquisition and processing of the InSAR and GPS data are given in Floyd et al. (2016). The
earthquake happened on 24 August 2014, and the second Sentinel-1 acquisition was on the 31 August, mean-
ing that the interferogram contains 7 days of postseismic displacement in addition to the coseismic signal. We
use GPS displacements calculated between the day before the earthquake and the 31 August, for continuity
between the two data sets.

Spatiotemporal variation in propagation path properties through the atmosphere adds noise to InSAR scenes
that is spatially correlated. To account for the covariance of this noise we calculate the variance-covariance
matrix by selecting an undeforming region of the interferogram and computing the 1-D semivariogram (e.g.,
Lohman & Simons, 2005; Oliver & Webster, 2014), which is a function of variance with distance that describes
the spatial dependence in a data set (Foody & Atkinson, 2002). This model gives us three values: the sill,
nugget, and range, which are indicated on our semivariogram shown in supporting information Figure S16
and that can be used to estimate the spatially correlated error in the InSAR data. The nugget indicates the
level of spatially independent noise present, and the sill is the maximum value of the semivariance as the
range tends to infinity (Foody & Atkinson, 2002). The range is the distance at which the semivariance reaches
approximately 95% of the sill (Curran, 1988) and is the distance over which we expect data points to be
spatially correlated. We calculate a sill of 5 × 10−4 m2, nugget of 1 × 10−5 m2, and a range of 12.8 km
from the semivariogram, which we use to calculate the variance-covariance matrix using the exponential
function:

𝚺d = (sill-nugget) × e
−3x

r (12)

where x is the distance between each InSAR data point, r is the range, and 𝚺d has dimensions N × N where N
is the number of data points. At r = 0 the variance of a data point is equal to the sill.

A larger range would mean that covariance between data points extends over a larger distance (e.g., larger
wavelength atmospheric signals). A larger sill would mean a higher variance for individual data points (at
r = 0), that is, greater uncertainty on individual data points and also higher covariance between data points.
A larger nugget indicates decreased covariance if the sill remains the same. Many studies find the range for
an interferogram to be >10 km, the standard deviation (

√
variance) of the sill to be a couple of centimeters

and the nugget to be significantly smaller than the sill (e.g., Bekaert et al., 2016; Hanssen, 2010). The values
we estimate for these parameters are indeed in accordance with these previous studies.
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Table 1
Details of the Fault Geometry

Strike Dip Rake Center (UTM x) Center (UTM y) Length (km) Top depth (km) Bottom depth (km)

337 90 180 559561 4232632 6.88 0 13

343 90 180 557784 4237229 2.99 0 13

4 90 180 557434 4239865 2.42 0 13

337 90 180 557850 4240305 9.45 0 13

Note. The first three lines are one fault (southwestern fault) modeled as three separate rectangles to capture the curve in the fault geometry, and the forth line is a
separate fault segment (northeastern fault). The center refers to the updip surface projection of the fault and the UTM zone is 10S. This fault setup can be seen in
Figure 7.

4.2. Model Parameters
We constrained the surface fault using the rupture map of Hudnut et al. (2014). Based on this we modeled the
fault as two vertical strands, one with three sections to capture the fault curve and one straight (details given
in Table 1). We assumed slip correlation did not continue between the two separate fault strands.

Correlation lengths for the two faults were calculated based upon the length and width of the faults using
equations (4) and (5), giving the correlation downdip as add = 5, 330 m and along-strike as aas = 5, 070
m for the northeastern fault strand and add = 5, 330 m and aas = 6, 040 m for the separate segments on
the most southwestern fault strand. We note that ideally these parameters would be drawn from their prior
distributions, discussed more in section 5.4. The Lamé parameters used in the Okada Green’s function calcu-
lation were 𝜆 = 𝜇 = 3.23 GPa. The initial probability target (later used in sensitivity tests to adjust step sizes)
was 10−4.

The InSAR and GPS data were only weighted according to their variance-covariance. In this case an offset and
ramp has been removed from the InSAR before the inversion.

To ensure the inversion had reached convergence we check four criteria:

Figure 6. Illustrating converged and unconverged solutions and those with the burn-in not fully removed. Panels a and b show the posterior probability
and value of one of the model slips on fault patch 22, respectively; in this case they are both still influenced by the starting parameters because some
of the burn-in remains. Note the difference in x axis between a and b, because we have zoomed in on a for clarity. Panels c and d show unconverged inversion:
the PDF is not filled out, and the joint PDF is rough. In this example we have also left the burn-in present, which is shown by an elongate tail extending from the
starting value of ∼0.9 m. Panels e and f show converged solutions of c and d: Both PDFs are smooth. Note that the frequency shown by the color bar for the joint
PDFs is not plotted on the same scale, to illustrate how the PDF would look at the end of the unconverged inversion, rather than in comparison to the later one.
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Figure 7. Results of inversion for the Napa Valley earthquake incorporating a von Karman prior. All five show the same fault plane, which is in two strands, and
dotted vertical lines indicate the bends on the southwestern fault. The first three are different statistical parameters to visually capture the full probability density
function, whereas the ’MAP’ solution is the saved trial with the maximum a posteriori (MAP) result. Peak slip is around ∼1.2 m and at a depth of 2 km. The
right-hand figure shows the mode solution shown in 3-D, showing the fault geometry of the two separate strands more clearly. UTM = universal time meridian.

1. Smoothness of histograms for each model parameter;
2. Smoothness of 2-D histograms of the six patches with the most slip;
3. Posterior probability is no longer increasing;
4. The value of each parameter through the inversion has reached stability and does not have an increasing

or decreasing trend.

As standard we remove the first 2,000 saved trials to remove the burn-in. We then check if the posterior prob-
ability is stable and the form of the joint PDFs. An increase in the posterior probability for the first saved trials
or a visible tail in the joint PDFs implies that the burn-in has not been fully removed, and we increase the
burn-in period so as to remove these two effects.

Examples of unconverged and converged solutions with burn-in present are shown in Figure 6.
4.2.1. Priors
For the slip prior we used a uniform probability density between 0 and 50 m. The upper bound slip prior was
set arbitrarily high, but we found that slip at no point explored values higher than 1.8 m, so this choice of high
upper bound made no difference to the efficiency of our inversion. For rake we used a uniform probability
density between 135∘ and 225∘ on the southwestern fault and 135∘ and 270∘ on the northeastern fault where
previous studies have found normal motion on a releasing step over of the S. Napa fault (Floyd et al., 2016).
The probability outside of the ranges given for slip and rake is 0, so model parameters were only drawn from
within these ranges. We used a logarithmic prior for 𝛼 as discussed in section 2.3.

4.3. Napa von Karman Results
As discussed previously, the solution of a Bayesian inversion is a multidimensional PDF, which is difficult
to visualize, so we have included a video showing a selection of the saved results (supporting information
Video S29). To illustrate this with static images we have used statistical parameters estimated from the model
parameters’ PDFs. These are shown in Figure 7, for a Bayesian inversion with von Karman smoothing. The
“mode” for each patch is shown in 3-D to show fault geometry and, as for the synthetic tests, we calculate the
joint slip mode and rake mode for each patch by finding the value of the peak of the highest bar in the 2-D
histogram of slip against rake. The mode, mean, and median have not been drawn as trials, but by plotting
them all we hope to give an indication of where slip is most probable and the probable direction of rake. The
maximum a posteriori (MAP) solution is the multidimensional mode solution: the single saved solution that
maximizes the posterior probability density function (i.e., that maximizes both the prior and the likelihood).

These results show that the majority of slip occurred as strike-slip motion on the southwestern fault, near to
the surface. We found peak magnitude of slip of ∼1.2 m at about 2-km depth. This is similar in magnitude
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Figure 8. The InSAR data (a), model fit (b), and residuals (c) for the von Karman regularized MAP slip solution on selected patches for the Napa earthquake. Panel
d shows the closest GPS data (black) to the fault, with model vector (orange) and 95% confidence intervals. LOS = line of sight.

and location to InSAR and GPS studies by Guangcai et al. (2015), Wei et al. (2015), and Floyd et al. (2016) and the
strong motion study by Zhang, Wang, et al. (2015). Many studies also find a peak magnitude of 1.2 m, though
find slip deeper at ∼5 km (Barnhart et al., 2015; Dreger et al., 2015; Melgar et al., 2015). On the northeastern
fault there was a component of normal motion between 3 and 6 km depth, as also found by Wei et al. (2015)
and Floyd et al. (2016).

The MAP result gives a moment of 2.78×1018 Nm which is higher than the seismic moment of 1.33×1018 Nm
from the USGS event page. Part of this overestimation of the energy release may be due to the 7-day afterslip
included in the InSAR and GPS.

Figure 8 shows the fit of the MAP model to the InSAR and GPS data. The predicted InSAR displacements fit the
magnitude and wavelength of the signals in the data, but there are some areas of high residuals. The InSAR
misfit on the eastern side of the southwestern fault is in part due to displacements on a separate third fault,
which ruptured at the surface in this earthquake but which we have not modeled here (Hudnut et al., 2014).
The three GPS points nearest to the fault are not fit within the 95% error ellipses and show a very similar misfit
as found by Floyd et al. (2016) using the same data. The complexity of surface deformation in the north-east,
where two GPS points are poorly fit, is shown in the InSAR data (panel a of Figure 8). This could be due to an
unmodeled fault as suggested by Guangcai et al. (2015) or due to local surface effects and changes in elastic
properties in the north-east due to a change in lithology to Quaternary sediments. The modeling of these
complexities is beyond the scope of this paper.

5. Discussion
5.1. Comparison of VK and Laplacian Result for Napa
For comparison we also solved for slip in a Bayesian fashion using a Laplacian prior, in which we solved simul-
taneously for the model fit to the data and for the fit of the model to a Laplacian distribution as well as for
the Laplacian smoothing hyperparameter. The results of the mode solutions are shown in Figure 9 and fit to
the data for the Laplacian solution is shown in supporting information Figure S17. Both put more slip on the
southwestern fault (shown on the right in Figure 9) than the northeastern fault and find a peak slip of just
over 1 m; however, the Laplacian solution has a slightly higher peak slip and extends this slip further along
the southwestern fault. The standard deviation on the southwestern fault is significantly larger than for the
von Karman regularized inversion, showing the larger uncertainty for the Laplacian solution in this area. This
is not unexpected as the von Karman prior provides a tighter constraint than the Laplacian prior, but it is an
important result, as the tighter constraint is based upon observed features of fault slip. The von Karman solu-
tion puts a slightly lower magnitude of slip on the northeastern fault and fits the data better in this region
(supporting information Figure S17).

The moment of the MAP Laplacian solution is 2.87 ×1018 Nm, which is significantly larger than the USGS
moment of 1.33 × 1018 Nm, and slightly larger than the von Karman MAP moment of 2.78 × 1018 Nm.
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Figure 9. Results (mode) of a Bayesian inversion incorporating von Karman (left) and Laplacian (right) priors. Below,
the standard deviation of each fault patch. The results are broadly similar in magnitude but vary in location, as the
Laplacian extends slip along strike for the southwestern fault (shown on the right) and puts higher slip on the
northeastern fault. The uncertainties are much higher for the Laplacian solution, as is evident from the higher standard
deviations across the fault. For comparison the slip magnitude color bar is the same as Figure 7.

We find that the von Karman solution extends high slip right to the surface, in contrast with the Laplacian solu-
tion and many other geodetic studies for this earthquake (Barnhart et al., 2015; Floyd et al., 2016; Guangcai
et al., 2015; Melgar et al., 2015; Wei et al., 2015). Oversmoothing, as well as nonnegativity in the inversion and
lack of data near the fault have been found to result in a lack of slip at the surface and apparent shallow-slip
deficit (Xu et al., 2016). By solving for the degree of smoothing with the hyperparameter 𝛼2 we speculate that
the von Karman regularization could potentially resolve slip at the surface better in the Napa Valley earth-
quake. However, we note that it is hard to directly compare specifics of slip solutions between published
studies since different studies use different fault geometry, including one fault (Barnhart et al., 2015; Dreger
et al., 2015; Melgar et al., 2015; Zhang, Wang, et al., 2015), two straight faults (Wei et al., 2015; Ji et al., 2015),
or a more complicated curved fault geometry such as we used here (Floyd et al., 2016; Guangcai et al., 2015).

These two different results show the bias that a regularization technique can cause.

5.2. Trade-offs
We examined trade-offs between different model parameters for the von Karman solution. First we computed
the correlation coefficients between all the model parameters, using their full posterior PDFs (supporting
information Figure S18). This identified some interesting behavior which we explored further by examining
the individual histograms. We find strong positive trade-offs between the five patches with the largest mag-
nitude of slip. This is as expected because they are located close together, at distances smaller than the von
Karman correlation lengths (supporting information Figure S19). We also examined the spatial distribution of
slip and potential correlations. We found that there is no covariance between the patches with the highest
slip on the south-western fault and patches with the highest slip on the north-eastern fault as shown in the
supporting information Figure S20. We also found no covariance between the patches with maximum slip
on the southwestern fault and patches along-strike from them (supporting information Figure S21). There is
positive correlation between the magnitude of slip of patches downdip from each other on the northeastern
fault (supporting information Figure S22), though not on patches farthest away from each other, indicating
that this is largely due to the von Karman correlation.

The von Karman correlation acts on the magnitude of slip but it does not act upon the rake. We found that
normal faulting sense of motion was required on the northeastern fault to fit the InSAR in this area. In light
of this, we consider the trade-offs between the normal-faulting sense of motion rake on this fault. We found
that near the surface, the rake was well constrained to have normal faulting motion, up to the maximum of
the rake prior, 270∘ (supporting information Figure S23). At depth the rake is very poorly constrained and all
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of parameter space within the rake prior is almost equally searched. On the southwestern fault we observed
some oscillatory slip along-strike; the histograms in supporting information Figure S24 show that many
patches display either no correlation or negative correlation with the rake of a patch next to them but show
either no correlation or positive correlation with a patch two along. This indicates that patches next to each
other are anticorrelated, and so we observe an oscillation in rake along the fault.

From our trade-off analysis, the main influence on magnitude of slip magnitude for any given patch is that
of its nearest neighbors, as is to be expected from von Karman regularization. Rake shows some oscillatory
behavior, with the rake of a patch likely to be anticorrelated to the rake of its immediate neighbors along-strike
and positively correlated to the rake on those patches that are separated along-strike by a single patch.

5.3. Slip at the Step Over
Our fault geometry includes a step over, with the rupture originating at the hypocenter at 11-km depth on
the southwestern fault and propagating to the northwest (Wei et al., 2015). Strike-slip earthquakes have often
been found to stop at such step overs (Wesnousky, 2006), and how earthquake rupture is able to propagate
through complicated geometry and across step overs like these is important in understanding why earth-
quake ruptures stop and subsequently for seismic hazard. We investigated the trade-offs at the overlap area
of the two faults. The faults overlap by over 5 km but are separated by approximately 1.5 km at the maxi-
mum separation, which is in keeping with observations of overlap and separation for echelon strike-slip faults,
which are themselves self-similar (Aydin & Schultz, 1990). We impose von Karman regularization separately
on the two faults, so any form of correlation is independent of regularization. We find that there is a negative
correlation between the two fault strands: where there is high slip on the southwestern fault, there is low slip
on the northeastern strand (supporting information Figure S25). There is also a change in rake, with the south-
western fault undergoing primarily right-lateral slip motion, whereas the northeastern fault displays largely
normal fault motion, which is required to fit the InSAR to the north-east of the surface rupture.

This negative correlation means that there is a sharp drop in slip from one fault to the other. Observations of
slip magnitude at step overs suggests that an abrupt decrease in slip magnitude at the step over makes the
rupture more likely to continue to rupture on the other side (Elliott et al., 2009), as does the proximity of two
faults (Wesnousky, 2006), both of which we observe in this study. This proximity also means that stress may
increase or decrease on one fault due to failure of the other, made more complicated by their overlap and
curved geometry of the southwestern fault. This interaction between the faults affects how fault systems grow
(Cowie, 1998) and simplify over time (Wesnousky, 1988). The significantly lower slip on the northeastern fault
may suggest that while the rupture was able to cross this geometrical complexity, the earthquake rupture
may have been impeded by it, as has frequently been documented and modeled at step overs (Harris & Day,
1993; Wesnousky, 1988).

We note that this interpretation is affected by our assumption to treat the two faults as independent and not
smooth between them. We have also assumed that they remain as separate faults at depth and do not merge.

5.4. Fault Parameterization—Fault Size
In contrast to the Laplacian smoothness constraint, the von Karman constraint penalizes regions of zero slip.
If the modeled fault plane is larger than the area that actually slipped, a Laplacian smoothed solution would
give a high probability to zero slip in regions that are not well resolved, whereas the von Karman correlation
would give greater probability to nonzero slip in these areas. This is because regions of zero slip have 100%
correlation at all distances, which is inconsistent with a VK distribution. This is particularly a problem at depth
or when lack of data mean resolution is poor elsewhere. Ideally, only areas that actually slipped should be
included in a von Karman constrained inversion.

Additionally, choice of fault dimensions in a von Karman slip inversion affects the correlation lengths (empir-
ical equations (4) and (5) include fault length and width). In the case of the Napa Valley earthquake we could
constrain the fault geometry due to an abundance of mapped surface ruptures (Hudnut et al., 2014), but if
a rupture does not break the surface then some constraint on length must be adopted, such as the distribu-
tion of aftershocks. Any vastly incorrect estimation of fault length and therefore correlation parameters at this
initial stage has the potential to bias the results of the inversion.

The correlation lengths themselves are empirical scaling relations with their own uncertainty for any partic-
ular fault size, and so ideally, these would be drawn from their prior distribution, as discussed in Mai and
Beroza (2002).
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Figure 10. The mode results of Bayesian inversions for the Napa earthquake using von Karman regularization and
moment regularization (left) or bigger slip patches (right). For direct comparison the scale bar is the same as Figure 7.
UTM = universal time meridian.

Solving for fault length and correlation parameters during the inversion would solve these issues. This would
mean that throughout an MCMC chain the size of the fault would increase or decrease in length and width
and correlation parameters would be drawn from a normal distribution, centered on the value for the cur-
rent length and width. This would require recalculating the correlation matrix, 𝚺s, which adds computational
expense, and solving for fault size this would transform the inversion into a transdimensional problem (e.g.,
Dettmer et al., 2014). We leave the implementation of this to future work.

5.5. Fault Parameterization—Number of Slip Patches
In this paper we have chosen the slip patches to be approximately 1 km × 1 km in size. In the literature there
is very little consistency in choosing the number or dimension of these patches, and they range from being
less than 1 km in length up to greater than 25 km, rectangular or triangular, with up to thousands of patches.
The choice of patch size should be based on model resolving power (e.g., Page et al., 2009) as determined by
the data and, particularly for Bayesian inversions, computational expense.

If a fault is divided into more patches than can be resolved by the data, this model will give an artificial
level of detail. But if too few patches are used on a fault, then the data will be poorly fit and the model
unrepresentative.

In order to correctly parameterize the model, methods include determining the size of the patches to reflect
the resolving power of surface displacements (Atzori & Antonioli, 2011; Barnhart & Lohman, 2010) before com-
mencing an inversion. Other methods include using self-adapting grids that change patch size and number
throughout the inversion (Dettmer et al., 2014).

As a simple test to compare the effect of the number of slip patches, we solved for the Napa earthquake
using exactly the same inversion parameters as the von Karman inversion above, but with each patch twice
as long and twice as wide. Figure 10 shows that the solution has a similar location of peak slip as the von
Karman inversion with smaller patches but the moment is 2.77 × 1018 Nm, which is also significantly bigger
than the USGS moment of 1.33× 1018 Nm but roughly the same as the von Karman regularized solution with
smaller patches.

We also solve for von Karman regularization across the entire fault with moment regularization, using a
Gaussian prior with a mean of the USGS moment of 1.33 × 1018 Nm and a standard deviation of 1.07 × 1017.
Here we found the MAP result gives a moment of 2.43 × 1018 Nm, which is still significantly larger than the
USGS moment of 1.33 × 1018 Nm, though closer to the USGS value than the von Karman regularization with
smaller slip patches. Other geodetic studies also found moments larger than the USGS moment; the study by
Guangcai et al. (2015) found a value of 2.07 × 1018, and the study by Floyd et al. (2016) found a value
of 1.67 × 1018. Some of this difference to the USGS moment may be due to the documented differences
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between geodetic and seismically derived moment (Weston et al., 2011), as well as to the 7 days of postseismic
deformation present in the InSAR and GPS data (e.g., Floyd et al., 2016).

5.6. Solving for Smoothing Parameters
The von Karman distribution is determined by three parameters: the Hurst parameter and along-strike and
downdip correlation coefficients. Here we have used the average value for strike slip faults determined by
Mai and Beroza (2002) rather than solving for them and for the synthetic tests have used the same correlation
lengths for generating the input slip distributions and for the inversion. An incorrect assumption of correla-
tion lengths is likely to bias model results, and in future work, to be as objective as possible, we propose to
solve for them as hyperparameters with priors constrained by the full distribution determined by Mai and
Beroza (2002).

There is evidence that faults become smoother with increasing slip (Brodsky et al., 2011; Sagy et al., 2007)
due to fault maturity. This can be characterized using the Hurst parameter, which has been carried out for
several exhumed fault surfaces (Bistacchi et al., 2011; Candela et al., 2011, 2012). Prior knowledge of the Hurst
parameter or the degree of maturity of a particular fault could therefore help constrain the Hurst parameter
in slip inversions better. Alternatively, solving for correlation coefficients and the Hurst parameter within the
slip inversion could be used to estimate the smoothness of active faults are and consequently their maturity.
This could be tested on faults of known age.

6. Conclusion

In light of all the evidence that earthquake slip shows fractal properties we suggest that von Karman regu-
larization should be the default for slip inversions in the future. Our tests show that even if the underlying
slip were not fractal, von Karman regularization does at least as well as the commonly used Laplacian reg-
ularization. We have developed a method to solve for earthquake slip inversion in a Bayesian sense, with
the capability of incorporating von Karman, Laplacian, or no smoothing and with the potential to add other
spatial constraints in the future. MCMC models are more computationally expensive than some other inver-
sion algorithms but enable us to fully capture the plethora of model solutions that fit the prior and data and
characterize the uncertainties and trade-offs between parameters. We have made the search more efficient
by using two steps in the MCMC chain and adapting parameter step size as the inversion proceeds. We find
that a Laplacian-smoothed inversion places slip in different locations to von Karman regularization for the
Napa Valley earthquake, and the von Karman solution gives much tighter confidence bounds on slip. We
argue that this tighter confidence represents an important improvement on the solution, since the tighter
constraint arises from the self-affine prior we are imposing, which is based on observational evidence. We
therefore suggest that von Karman regularization is a better constraint since it is capable of capturing the
self-affine properties of coseismic slip.
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