
ARTICLE

Splitting and recombination of bright-
solitary-matter waves
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Atomic Bose–Einstein condensates confined in quasi-1D waveguides can support bright-

solitary-matter waves when interatomic interactions are sufficiently attractive to cancel

dispersion. Such solitary-matter waves are excellent candidates for highly sensitive inter-

ferometers, as their non-dispersive nature allows them to acquire phase shifts for longer

times than conventional matter-wave interferometers. In this work, we demonstrate

experimentally the splitting and recombination of a bright-solitary-matter wave on a narrow

repulsive barrier, realizing the fundamental components of an interferometer. We show that

for a sufficiently narrow barrier, interference-mediated recombination can dominate over

velocity-filtering effects. Our theoretical analysis shows that interference-mediated recom-

bination is extremely sensitive to the barrier position, predicting strong oscillations in the

interferometer output as the barrier position is adjusted over just a few micrometres. These

results highlight the potential of soliton interferometry, while putting tight constraints on the

barrier stability needed in future experimental implementations.
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Bright-solitary waves, referred to as solitons in this work, are
wavepackets that propagate in a quasi-one-dimensional
(1D) geometry without dispersion, owing to a self-focussing

nonlinearity. They are of fundamental interest in a broad range of
settings due to their ubiquity in nonlinear systems, which occur
prolifically in nature1,2. In Bose–Einstein condensates (BECs), the
nonlinearity is provided by interatomic interactions governed by
the s-wave scattering length, which can be tuned using a magnetic
Feshbach resonance3. To date, bright solitons in BECs of 7Li,
85Rb, 39K and 133Cs have been experimentally demonstrated4–10.
Understanding and probing the coherent phase carried by
matter-wave solitons is an area of particular relevance, both
because it is important in determining the stability of
soliton–soliton collisions10–14 and because there is a great interest
in using solitons for atom interferometry15–22.

Matter-wave interferometers have emerged as a means of
achieving unprecedented sensitivity in interferometric measure-
ments23–26. However, they have typically been limited by either
interatomic collisions or dispersion of the atomic wavepackets,
which cause dephasing and a reduced signal to noise, respec-
tively27. Previous works have successfully reduced the impact of
interatomic collisions through the control of interatomic
interactions28,29, or by generating squeezed states30,31. However,
dispersion remains a limitation. A soliton-based interferometer
has the potential to overcome dispersion, allowing for much
longer phase-accumulation times, albeit for an increased quan-
tum noise32. To date, only one experiment has demonstrated
interferometry with a soliton8, in which Bragg pulses were used
for splitting and recombination. However, interferometer times
were too low for the non-dispersive property of solitons to have a
significant impact.

Narrow repulsive barriers have been proposed as atomic beam
splitters for soliton-based interferometers15–22,33,34. Within the
framework of the Gross–Pitaevskii equation (GPE), a soliton
incident on such a barrier is split cleanly into transmitted and
reflected daughter solitons, provided the incident velocity is suf-
ficiently fast that the effects of interatomic interactions can be
neglected during the splitting35. When these daughter solitons are
subsequently made to spatio-temporally overlap at the barrier,
total or partial interference-mediated recombination occurs,
depending on their relative phase21. This phase-sensitive splitting
and recombination forms the basis of the interferometer.

In this work, we demonstrate the splitting and recombination
of a soliton on such a repulsive Gaussian barrier. We show that
for a barrier much wider than the soliton width, velocity-filtering
effects dominate, precluding applications to interferometry. In
this case, we observe that the majority of the population con-
sistently appears on the original left side of the barrier after the
second barrier interaction. However, for a barrier width
approaching the soliton length scale, interference becomes sig-
nificant, despite velocity-filtering effects still being present and
measurable. In this case, the majority of the population can
appear on either side of the barrier following recombination,
depending on the relative phase and spatio-temporal overlap of
the daughter solitons. We investigate, both experimentally and
theoretically, the sensitivity to the barrier position of the
interference-mediated recombination. Theoretically, we predict
strong oscillations in the interferometer output as the barrier
position is adjusted over just a few micrometres. Experimentally,
we observe large fluctuations in the interferometer output, con-
sistent with interference-mediated recombination in the presence
of known shot-to-shot fluctuations in the barrier position. These
results highlight the potential of soliton interferometry, while
putting tight constraints on the barrier stability needed in future
experimental implementations of soliton interferometry.

Results
Controllable splitting. We form a soliton of ~2500 85Rb atoms in
a quasi-1D waveguide with a radial trapping frequency of 40 Hz,
following procedures described elsewhere7,36–38. An additional
harmonic magnetic potential produces axial trapping frequencies
of up to 1.5 Hz along the waveguide. The soliton undergoes centre
of mass oscillations of controllable amplitude in this potential.
Measurements are taken using a destructive absorption imaging
technique (see Methods); throughout this paper, each image
shows the measured optical depth and represents an individual
run of the experiment. We have observed soliton lifetimes of
longer than 20 s in this potential.

To split a soliton, we use a repulsive Gaussian barrier formed
by a blue-detuned highly elliptical laser beam, which is focussed
down to bisect the waveguide. We investigate two barrier widths:
a “wide” barrier and a “narrow” barrier, with experimentally
determined waists (1/e2 radii) of 10:6 þ0:5

�0:1 μm and 3.6 ± 0.4 μm,
respectively (see Methods). Here, the width of the barrier should
be compared with the width of the sech-squared soliton
wavefunction, ℓs= ℏ/(2mωr∣as∣N), where ωr is the radial trap
frequency, as is the scattering length and N is the atom number.
Typically, ℓs ~ 1.1 μm in our experiments, corresponding to an
equivalent 1∕e2 Gaussian width of ~1.8 μm. Upon reaching the
barrier, the soliton is either reflected, transmitted, or split into
two daughter solitons (Fig. 1a). The barrier height and therefore
the transmission through the barrier is tuned experimentally by
varying the total barrier power (Fig. 1b, c). This enables us to
reliably achieve 50:50 splitting of the soliton (Fig. 1d).

Our experiment operates in the regime of fast collisions, such
that the total centre of mass kinetic energy of the soliton
dominates over the interaction energy of the soliton. In this
regime, splitting is possible and mean-field theory is relevant20.
This is different from the regime of slow collisions, where
splitting is suppressed and quantum superpositions of the entire
soliton are predicted39,40. For fast collisions, the nature of the
splitting mechanism depends critically on the barrier width. In
the limit of a δ-function barrier, quantum tunnelling dominates
and the area of the barrier potential determines the transmission
probability20. However, for barriers wider than the soliton width,
the transmission probability instead depends primarily on the
incident soliton’s centre of mass kinetic energy per atom relative
to the barrier height. In this case, the transmission probability is
well-approximated by the analytic result for a sech-squared
potential41 (see Methods), which becomes a step function in the
classical limit of an infinitely wide barrier.

We investigate the nature of the splitting by varying the
barrier power to determine the condition for 50 : 50 splitting and
then comparing the calculated height of the barrier with the
kinetic energy per atom in the incident soliton (see Fig. 1c). For
the wide barrier, quasi-1D GPE simulations yield a transmission
of 0.5 when the barrier height is only 1% higher than the kinetic
energy per atom of the soliton at the barrier, implying that the
splitting mechanism is particle-like, with almost no quantum
tunnelling. However, equivalent simulations for the narrow
barrier yield a barrier height that is 11% higher than the kinetic
energy per atom, indicating that quantum tunnelling plays a
small role in this case. Experimentally, we measure a transmis-
sion of 0.5 when the barrier height is 11 ± 2þ2

�5 % and 35 ± 3 ±
18% higher than the soliton kinetic energy per atom at the
barrier, for the wide and narrow barriers respectively. Here, the
first error is statistical and the second reflects the systematic
uncertainty in the barrier width. Our observations are broadly
consistent with the theoretical expectation, but a precise
comparison is precluded by the uncertainty in the barrier widths
(see Methods).
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Interestingly, the steep energy dependence of the measured
transmission functions produces a velocity-filtering effect,
whereby the transmitted soliton always has a higher centre of
mass kinetic energy than the reflected soliton18,22,33. As a result,
the transmitted soliton has a larger oscillation amplitude than the
reflected soliton, which we directly observe in the trajectories of
the daughter solitons (see Supplementary Fig. 1).

To quantify the reproducibility of the splitting, we take
repeated measurements of the final populations for barrier
powers calibrated to give an average transmission of 0.5 by
fitting to transmission curves similar to those shown in Fig. 1b.
The results for the narrow barrier are shown in the histogram in
Fig. 1d, which is compiled from datasets across a range of kinetic
energies and barrier powers. The observed SD of the histogram is
0.064. From the dependencies in Fig. 1b, c, the measured
fluctuations in the barrier power and barrier position are expected
to produce shot-to-shot variations in transmission of <0.005 and
0.02, respectively. We conclude that the observed variation is
dominated by noise in the absorption imaging measurement of
the atom number. This would correspond to ~12% (or ~150
atoms) noise for a typical soliton of 2500 atoms. We note that this
degree of uncertainty accords with observed inconsistencies
between number measurements of Rb and Cs atoms produced
from the dissociation of RbCs molecules where we know, a priori,
that the number of each species is exactly the same42.

Recombination. Interference-mediated recombination occurs
when the two daughter solitons return to the barrier and spatio-
temporally overlap. Following this second barrier interaction, the
resultant populations on each side of the barrier are determined
by the relative phase between the daughter solitons—the basis for
soliton interferometry (see Fig. 2). It is important to note that the
barrier is essential for interference-mediated recombination
through its breaking of the system’s integrability; in the absence

of the barrier, the two daughter solitons simply pass through one
another, because the system is close to integrable (see Supple-
mentary Fig. 2).

The splitting process imposes a phase difference between the
daughter solitons, which in general depends on the barrier width,
the nonlinearity and the soliton velocity. In the limit of a δ-
function barrier, theoretical studies21 indicate that this phase
difference tends to π/2, and in our quasi-1D GPE simulations, we
observe a phase difference close to this value. Under ideal

Fig. 2 Soliton interferometry using a repulsive Gaussian barrier as a
beam splitter. a The initial soliton (blue) propagates in a weak harmonic
potential and is split into two daughter solitons by the barrier (green). The
daughter solitons oscillate in the potential and return to the barrier, where
they interfere, with resultant population fractions on the left and right (NL

and NR, respectively) determined by their phase difference (ϕ).
b The experimental implementation of the soliton interferometry scheme,
showing a composite image of 85Rb solitons propagating along the weak
direction of a quasi-1D optical waveguide for seven different run times. The
solid blue lines show the trajectories of the solitons and the green line
shows the location of the barrier.

Fig. 1 Controllable splitting of a soliton into two daughter solitons by a repulsive Gaussian barrier. a An example sequence of a soliton being split by the
narrow barrier into two solitons of approximately equal atom number. The blue shaded region in the upper panel shows the signal obtained by integrating
across the final image in the sequence. b The transmission of a soliton with a kinetic energy per atom of Ek/kB= 15.5 ± 0.3 nK (black) and Ek/kB= 41 ± 1 nK
(red) through the wide barrier, as the barrier power is varied. The error bars are estimated from the distribution of repeated transmission measurements
when the barrier is set to give equal splitting. The solid lines show the results of quasi-1D Gross–Pitaevskii equation (GPE) simulations using experimental
parameters but with the barrier width extracted from a fit to the data, yielding values wz= 11.28 ± 0.06 μm and wz= 12.51 ± 0.09 μm, respectively. The grey
shaded regions show quasi-1D GPE results with no fitted parameters and the extent of the region reflects the measured uncertainty in barrier width. c The
barrier power required to achieve a transmission of 0.5 for both the narrow (blue) and wide (red) barriers. The values and uncertainties for the powers and
kinetic energies are taken from fits to transmission curves (as in b) and trajectories of a soliton oscillating in the same harmonic potential without the
barrier respectively. The straight lines are least-squares fits to the experimental data constrained to pass through the origin. The histogram in d shows the
shot-to-shot variation in transmission for the narrow barrier, for a range of kinetic energies and barrier powers set to give an average transmission of 0.5.
This histogram has a SD of 0.064. An equivalent histogram for the wide barrier has a SD of 0.085, which is represented in b by the vertical error bars.
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conditions, this phase difference is maintained until recombina-
tion. For a δ-function barrier, we would then achieve completely
constructive (destructive) interference on the right (left) of the
barrier, resulting in a fully recombined soliton appearing on the
right. However, velocity filtering confounds this ideal outcome. If
we remove the effects of interference and consider velocity
filtering alone, the reflected (transmitted) daughter soliton is
always primarily reflected from (transmitted through) the barrier
at the second barrier interaction, resulting in a single wavepacket
appearing on the left. This should be considered a merging of the
two daughter solitons, rather than true recombination, as it is
mediated by velocity filtering and not interference.

To isolate and expose the effects of velocity filtering
experimentally, the barrier is offset from the centre of the
harmonic potential, preventing the daughter solitons from spatio-
temporally overlapping during the second barrier interaction.
This removes any possibility of interference. We observe that the
population appears almost entirely on the left after the second
barrier interaction for both the wide barrier (Fig. 3a, b) and the
narrow barrier (Fig. 3c, d). This is consistent with strong velocity
filtering. In reality, neither complete interference nor total
velocity filtering can be achieved, as it is impossible to realize a
δ-function barrier and interactions preclude total velocity filtering
(see Methods).

To study interference-mediated recombination, the barrier is
aligned with the centre of the harmonic potential to ensure
maximal spatio-temporal overlap of the daughter solitons with
the barrier. For the wide barrier, we observe that, despite a small
increase in population on the right compared with the offset case,
the majority of the population still appears on the left after the
second barrier interaction (Fig. 4a, b). This indicates that velocity
filtering dominates the recombination process for the wide
barrier. The outcome for the narrow barrier is markedly different,
as shown in Fig. 4c, d. In this case, we can clearly see that the
majority of the population is able to finish on the right, which can
only be explained by interference-mediated recombination. This

occurs despite the presence of measurable velocity filtering, as
highlighted in Fig. 3c, d (see also Supplementary Fig. 1). In
practice, the extreme sensitivity of interference-mediated recom-
bination to the experimental parameters leads to large shot-to-
shot fluctuations in the final populations on the left and right.
This can be seen across the final five images in Fig. 4c; the absence
of population on the right in the fourth image from the end of the
sequence is real. We show below that the large shot-to-shot
population fluctuations at the output of the interferometer can
result from small variations in the position of the axial harmonic
potential with respect to the barrier.

We explore the dependence of interference-mediated recombi-
nation on the offset of the narrow barrier in Fig. 5a. Theoretically,
we observe oscillations in the fraction of atoms on the right of the
barrier as the barrier offset is varied. Here, the barrier offset
introduces a position shift of the transmitted and reflected
wavepackets, which in turn leads to velocity-induced phase
gradients across the wavepackets when they recombine. This
results in the observed interference fringes. These fringes are
modulated by an envelope caused by the changing spatio-temporal
overlap between the wavepackets. An approximate analytic model
shows that the fringe spacing depends on the soliton velocity and
atomic mass m, and that the width of the envelope depends on the
soliton length (see Methods). Similar oscillatory behaviour is
expected when the transmission of the barrier is varied, as shown
in Supplementary Fig. 3. Experimentally, we observe an increased
shot-to-shot fluctuation when the barrier is close to the centre of
the harmonic potential within an envelope that is in good
qualitative agreement with those predicted by quasi-1D and three-
dimensional (3D) GPE simulations (see also Supplementary Figs. 4
and 5). In a series of independent measurements (see Methods),
we have established that there is a shot-to-shot root mean square
(RMS) variation of the axial harmonic potential relative to the
barrier position of 1.3 μm in our experiment, illustrated by the
green point and horizontal error bar in Fig. 5a. This is comparable
to the fringe spacing and means that we are unable to resolve the
predicted oscillatory behaviour. It is noteworthy that the theory
lines in Fig. 5a have no free fitting parameters and the
experimental values for the barrier offset are determined from
independent measurements of the trap and barrier positions.

To further elucidate the effects of interference-mediated
recombination, we compile histograms of the experimental data
in Fig. 5a. The results are shown in Fig. 5b, c for large (>5 μm)
and small (<1.3 μm) barrier offsets, respectively. Figure 5d, e show
equivalent histograms sampled stochastically from quasi-1D GPE
simulations, assuming the experimentally determined 1.3 μm
uncertainty in the barrier offset (see Methods). For the large-
offset data, we observe a distribution in the measurement of NR/
Ntot centred around 0.2 with a width comparable to that obtained
for the 50:50 splitting measurement (Fig. 1d). The equivalent
theory histogram is also centred on NR/Ntot= 0.2, with a
narrower width. We attribute the difference in widths to the
imaging noise discussed in context of Fig. 1d, which is not
included in the theory. In stark contrast, the histograms for the
small-offset data show much greater fluctuation in the popula-
tion. Again the experimental histogram is broadened due to
imaging noise. The increased fluctuation shown in the small-
offset histograms is a direct consequence of interference-mediated
recombination together with the known and independently
characterized shot-to-shot variation in the position of the axial
harmonic potential with respect to the barrier.

Discussion
The experimental observations shown in Figs. 4c, d and 5a are
definitive signatures of interference-mediated recombination at

Fig. 3 Trajectories of a soliton with an offset barrier. The soliton
undergoes centre of mass oscillations and interacts twice with a barrier that
is offset 10 μm from the centre of the harmonic potential. a, b The results
for the wide barrier where the soliton kinetic energy per atom at the barrier
is Ek/kB= 19.0 ± 0.5 nK. a The experimental image sequence, with the
upper panel displaying the signal obtained by integrating across the final
image. b The results of quasi-1D Gross–Pitaevskii equation (GPE)
simulations, with the upper panel displaying the convolution of the final 1D
density and the resolution of the imaging system. The barrier is indicated by
the green line and the barrier power is held constant throughout each
sequence to give a transmission of 0.5 at the first barrier interaction.
c, d Similar results for the narrow barrier where the soliton kinetic energy
per atom at the barrier is Ek/kB= 2.5 ± 0.4 nK.
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the narrow barrier, as the strong increase in population on the
right of the barrier and the increase in population fluctuations can
only be explained by interference effects. Without interference,
there is no significance to the increased spatio-temporal overlap
of the daughter solitons when the barrier is centred, so the same
populations and fluctuations would be recovered for all offsets.
For the wide barrier, we observe that after the second barrier
interaction, although the population on the right increases to NR/
Ntot ~ 0.25, the majority of the population still appears on the left
with very little fluctuation (see Fig. 4a, b), consistent with the
picture that velocity filtering dominates the recombination pro-
cess. In stark contrast, the histograms in Fig. 5c, e reveal the effect
of interference-mediated recombination in the narrow barrier
case. We see an additional manifestation of interference in the

double-peak structure on the left of the narrow barrier following
the second barrier interaction in Fig. 4c, d, for both theory and
experiment; further theoretical simulations demonstrate that
introducing an additional phase difference between the daughter
solitons can merge the two peaks into one, leaving only a small
population on the right of the barrier. This phase dependence is
explored theoretically in Supplementary Fig. 6; changes in phase
difference between the daughter solitons result in small variations
in the final populations for the wide barrier, whereas they result
in far more significant variations for the narrow barrier. In
principle, if the daughter solitons remain phase coherent from
splitting through to recombination, this forms the basis of a
phase-sensitive interferometer. However, our independently
measured fluctuations in the barrier offset prevent us making

Fig. 4 Trajectories of a soliton with a centred barrier. The soliton undergoes centre of mass oscillations and interacts twice with a barrier centred in the
harmonic potential. a, b The results for the wide barrier where the soliton kinetic energy per atom at the barrier is Ek/kB= 16.0 ± 0.4 nK. a The experimental
image sequence, with the upper panel displaying the signal obtained by integrating across the final image. b The results of quasi-1D Gross–Pitaevskii
equation (GPE) simulations, with the upper panel displaying the convolution of the final 1D density and the resolution of the imaging system. The barrier is
indicated by the green line and the barrier power is held constant throughout each sequence to give a transmission of 0.5 at the first barrier interaction.
c, d Similar results for the narrow barrier where the soliton kinetic energy per atom at the barrier is Ek/kB= 2.2 ± 0.2 nK. The experimental images are
selected randomly from multiple repeats. For the narrow barrier we observe large shot-to-shot variation following the second barrier interaction.

Fig. 5 Sensitivity of the interferometer output to the barrier position. a The fraction of atoms on the right of the narrow barrier following the second
barrier interaction, as a function of barrier offset. The data points and error bars show the means and SDs across five to ten measurements taken at each
offset position. The blue shaded region displays the maximum and minimum values at each offset position. The single green point and horizontal error bar
indicate the independently measured shot-to-shot variation in the barrier position. The red oscillatory curve shows the result of a quasi-1D Gross–Pitaevskii
equation (GPE) simulation based on experimental parameters, with the thickness reflecting the experimentally determined uncertainty in the barrier width.
The kinetic energy of the soliton per atom at the barrier is Ek/kB= 2.4 ± 0.2 nK. b, c Histograms compiled from the experimental data in a, for offsets larger
than 5 μm and less than 1.3 μm, respectively. These histograms have SDs of 0.086 and 0.22, respectively. d, e Equivalent histograms sampled
stochastically from quasi-1D GPE simulations, assuming a 1.3 μm uncertainty in the barrier offset. They have SDs of 0.041 and 0.16, respectively.
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such an interferometer or definitively confirming the phase
coherence of the daughter solitons in the current experiment, as
explored in Supplementary Fig. 4.

From the theoretical modelling, it is clear that exceptional
stability in the relative position between the barrier and axial
harmonic potential is required to create a viable interferometer; to
resolve the oscillatory behaviour in Fig. 5a requires the barrier to
be stable and controllable at the level of ~0.1 μm with respect to
the harmonic potential. Currently, the axial potential in our
experiment is generated magnetically, making it susceptible to
uncontrolled stray magnetic fields. Remarkably, a shot-to-shot
variation in the ambient magnetic field of only 3 mG is sufficient
to fully account for the observed fluctuations, indirectly high-
lighting the exceptionally high potential sensitivity of a soliton
interferometer. This sensitivity to magnetic field could be
removed altogether using an all-optical potential generated by,
e.g., acousto-optic deflectors43,44 or a digital micromirror
device45. Optical methods are also experimentally attractive,
because the shot-to-shot stability of our current optical potentials
is ~0.3 μm and would probably be sufficient to observe the
oscillatory behaviour in Fig. 5a. Furthermore, these methods offer
the flexibility for more complicated geometries, such as a ring-
shaped trap for a soliton Sagnac interferometer19. Alternatively,
other atomic systems may prove to be more resilient to barrier
position. For instance, the lower mass of lithium would result in
broader fringes, leading to less-stringent requirements for the
relative position stability. The lower mass has the added benefit of
making the solitons themselves larger, so the barrier is com-
paratively narrower and velocity filtering is suppressed.

Our apparatus also lends itself to soliton–soliton collision
experiments. As the relative phase of the daughter solitons is
expected to be well-defined and controllable, the outcome of
soliton–soliton collisions could be controlled completely determi-
nistically, unlike in other reported experiments10,11. The ability to
manipulate the daughter solitons’ relative velocity and population
fractions also allows us to access a wide parameter range of
interest12,13. In this context, we highlight the collision between the
daughter solitons that occurs around 650ms for the offset barrier
trajectories shown in Fig. 3c, d. We have also observed the daughter
solitons to undergo many (>10) soliton–soliton collisions in the
absence of the barrier without any instances of mergers or collapse.
This is a strong experimental marker for long coherence times.

Our measurements are the first conclusive realization of
splitting and interference-mediated recombination of bright
matter-wave solitons on a repulsive barrier. We have demon-
strated the controlled splitting of a soliton into two daughter
solitons, in good agreement with GPE simulations. We have
shown that velocity filtering dominates interference during the
recombination process for wider barriers, resulting in a merging
of the daughter solitons. However, with a reduced barrier width,
interference overcomes velocity-filtering effects and interference-
mediated recombination is observed through an increased fluc-
tuation in the populations following the second barrier interac-
tion. Our theoretical analysis shows that interference-mediated
recombination is extremely sensitive to the barrier position,
predicting strong oscillations in the interferometer output as the
barrier position is adjusted over just a few micrometres. With this
new insight, we are able to attribute the observed population
fluctuations to independently measured shot-to-shot variations in
the barrier offset due to magnetic field noise. Although our results
are completely consistent with coherent splitting and phase-
sensitive recombination, a direct measurement of the population
oscillations as the barrier offset is varied would provide definitive
proof. Our results show that this will require the barrier to be
stable and controllable at the level of ~0.1 μm with respect to the
harmonic potential. This is within reach of future realizations of

the experiment using all-optical potentials that are immune to
small variations in the magnetic field, bringing high-sensitivity
soliton interferometry closer to reality.

Methods
Soliton production. We create solitons of ~2500 85Rb atoms using methods
described in previous publications7,36–38. Briefly, a BEC of up to 7000 85Rb atoms
with a condensate fraction > 80% and temperature < 0.6 Tc is formed in a hybrid
trap comprising a red-detuned crossed optical dipole trap and a magnetic potential
provided by quadupole and bias fields. The s-wave scattering length is set to
~220 a0 by tuning the magnetic field near the 165.75 G zero crossing of a broad
magnetic Feshbach resonance in the F= 2, mF=−2 state46–48. To form a soliton,
the scattering length is first ramped to zero over 100 ms before simultaneously
removing one dipole trapping beam and jumping the scattering length to a small
negative value. Stable solitons are formed in the resulting waveguide for scattering
lengths in the range of −13.5 a0≲ as≲−7 a0, with soliton production possible up
to approximately −20 a0 for a reduced number of atoms.

An additional pair of magnetic coils produces a harmonic confining potential in
the axial direction of the waveguide, with trapping frequencies of up to ωz/2π ~ 1.5
Hz, allowing us to observe axial centre of-mass oscillations of the soliton along the
waveguide. The centre of the harmonic potential is maneuvered along the axial
direction using a pair of “shim” coils, which, coupled with independent control
over the barrier position, provides control of the soliton velocity at the barrier. As
the harmonic potential is magnetic, the soliton experiences a changing magnetic
field as it oscillates. However, the field varies by <1mG across a typical centre of
mass oscillation. This has a negligible effect on the scattering length (<0.1 a0 at
as=−10a0) and so does not affect the stability of the soliton.

Soliton beam splitter. The light for the Gaussian barrier is produced by a 532 nm
laser. A cylindrical lens forms a highly elliptical beam, which is focussed onto the
waveguide such that the narrow axis is oriented along the axial direction of the
trap. The barrier potential height is controlled by changing the beam power and the
barrier position along the waveguide can be precisely adjusted via a piezo-actuated
mirror. The two barrier widths investigated in this work are generated using two
different objective lenses, with focal lengths of 100 mm and 30 mm for the wide
and narrow barriers, respectively.

To characterize the width of the narrow barrier, the beam is exposed onto an
elongated cloud of thermal atoms and the resultant dip in atomic density observed
in the images is fitted using a Gaussian profile (see Supplementary Fig. 7). Using
this technique, we measure a width along the waveguide axial direction of wz=
4.7 ± 0.3 μm, which, when corrected for the 3.0 ± 0.3 μm resolution limit of the
imaging system (see below), becomes 3.6 ± 0.4 μm. By translating the thermal cloud
across the barrier beam, we also determine the transverse width to be wx= 117 ±
9 μm in the plane of the atoms.

To determine the width of the wide barrier, the beam is profiled outside of the
vacuum chamber using a duplicate optical setup. Using this method, we measure
an axial waist of wz ¼ 10:6þ0:5

�0:1 μm and a transverse width at the axial waist
position of wx= 434 ± 5 μm. The asymmetry in uncertainty for wz accounts for
uncertainties in the position of the focus inside the vacuum chamber, which can
only lead to a larger barrier width.

Quasi-1D GPE theory is also fitted to splitting data with the barrier width in the
axial direction of the waveguide as the only free parameter (as in Fig. 1b) for both
the narrow and wide barriers. The transverse barrier widths are constrained by the
experimental values above. Using this technique, we determine barrier widths of
wz= 4.8 ± 0.2 μm and wz= 11.9 ± 0.3 μm for the narrow and wide barrier beams,
respectively. The uncertainty in each value is the standard error in the fitted widths
across several sets of splitting data, taken for various soliton velocities. Any
assumptions of the quasi-1D GPE model that are not fulfilled in the experiment
(e.g., in the transverse mode profiles) could contribute to the small discrepancy
with the measured values.

Imaging. We perform in-situ, high-field, high-intensity absorption imaging of the
solitons. Imaging at high field ensures that the soliton wavepackets are not per-
turbed by crossing the Feshbach resonance during trap turn-off, which broadens
their shape significantly. Intense, short probe pulses are used to minimize width
broadening as a result of photon recoil49,50.

At a magnetic field of ~165.85 G, where experiments are performed, there are
no closed optical transitions from the F= 2, mF=−2 ground state. This is
detrimental to imaging, as each atom can only scatter an average of 3.28 photons
before being lost to a dark state. We circumvent this by transferring atoms from
F= 2, mF=−2 to F= 3, mF=−3 via microwave adiabatic rapid passage (ARP),
from which a closed σ+ transition exists. A typical imaging sequence begins with a
100 μs, 300 kHz ARP sweep to transfer ~90% of the atoms to the imaging state,
followed by a 10 μs probe pulse with an intensity of ~10 Isat.

The resolution limit of the imaging system is expected to be of the order of the
soliton width for the 30 mm objective lens system. The observed soliton in the
image plane is the convolution of the soliton in the object plane with the point
spread function of the imaging system. As the width of a soliton doubles when the
atom number is halved, for a constant interaction strength, we can estimate the
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resolution limit of the imaging system by imaging the soliton before and after
splitting, with the barrier set to 50% transmission. In this case, we find that the
resolution limit r is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2N � k2N=2

3

s
; ð1Þ

where kN and kN/2 are the measured widths before and after splitting, respectively.
Over ten experimental runs each, we measure an average soliton width of 3.6 ±
0.2 μm and average width of the daughter solitons of 4.9 ± 0.3 μm, where the
quoted uncertainty represents the standard error across the runs. This implies a
resolution limit of 3.0 ± 0.3 μm, in good agreement with the diffraction-limited
value of 2.9 μm for our optical system. By removing the effects of the resolution
limit, we calculate the true observed soliton width to be 2.0 ± 0.5 μm, which is in
excellent agreement with the 1.8 μm predicted from GPE theory.

To account for the resolution limit in the GPE simulations, a 3 μm Gaussian
convolution is applied to the quasi-1D GPE density profiles in Figs. 3d and 4d. As
both the initial and daughter soliton widths are below the resolution limit for the
100 mm lens, it is impossible to accurately apply Eq. (1). Instead, the resolution
limit is extrapolated from the measured 30 mm lens resolution using the ratio of
the focal lengths of the two objective lenses. Therefore, a 10 μm Gaussian
convolution is applied to the quasi-1D GPE density profiles in Figs. 3b and 4b.

The change of objective lens also alters the camera’s field of view. Therefore, it
was necessary to reduce the centre of mass oscillation amplitude in Figs. 3c and 4c
(75 μm) from that in Figs. 3a and 4a (225 μm) to compensate.

Trap stability. We determine the RMS shot-to-shot fluctuation in the position of
the centre of the axial potential to set the offset uncertainty in Fig. 5a. This is found
by taking ten repeat measurements of the soliton position both immediately after
release and after half a trap period, finding shot-to-shot variations of 0.3 ± 0.1 μm
and 2.6 ± 0.6 μm, respectively. These variations imply fluctuations in the position of
the centre of the harmonic potential of 1.3 ± 0.3 μm. This is comparable to the
fringe period in Fig. 5a predicted by GPE simulations, meaning that the experiment
samples some region of the fringes on each run; hence, the increased variation
when the barrier is close to the centre of the harmonic potential. As the uncertainty
is dominated by position fluctuations after a half trapping period, we attribute it to
be dominated by magnetic potential instability. A stray field of only ~3.0 mG along
the axial direction would account for this shot-to-shot fluctuation. From another
set of ten sequences, we determine the barrier position to fluctuate from shot-to-
shot with an RMS of 0.3 ± 0.1 μm. This is small enough to resolve the fringes in
Fig. 5a, for a similarly stable harmonic potential.

Gross–Pitaevskii model. Assuming a mean-field description, the collective
wavefunction ψ (normalized to unity) obeys the GPE

i_
∂ψ

∂t
¼ �_2

2m
∇2 þm½ω2

zz
2 þ ω2

r ðx2 þ y2Þ�
2

þ Vðx; zÞ þ g3Djψj2
� �

ψ; ð2Þ

where m is the atomic mass, ωz is the axial trap frequency, ωr is the radial trap
frequency, g3D= 4πℏ2Nas/m where as is the s-wave scattering length and N is the
atom number. The optical barrier potential is modelled as Vðx; zÞ ¼ UðxÞVðzÞ,
with

UðxÞ ¼ exp
�2x2

w2
x

� �
; ð3Þ

VðzÞ ¼ αP
ϵ0cπwzwx

exp
�2ðz � zoff Þ2

w2
z

� �
; ð4Þ

where α is the relevant polarizability for 85Rb, zoff is the barrier offset from the
centre of the trap and P is the optical power in the beam.

As ωr≫ ωz, we also investigate a simpler quasi-1D model by assuming the
atoms to be frozen in the ground state of the radial oscillator potential, resulting in
effective quasi-1D GPE

i_
∂ψ

∂t
¼ �_2

2m
∂2

∂z2
þmω2

zz
2

2
þ VðzÞ þ g1Djψj2

� �
ψ; ð5Þ

with effective interaction strength

g1D ¼ 2_ωrasN: ð6Þ
In all simulations, we take as=−10 a0 (where a0 is the Bohr radius), ωr= 2π ×

40 Hz and ωz= 2π × 1.4 Hz. We generally take wx= 117 μm, although simulations
for the wide barrier (Figs. 1b, 3b and 4b) have wx= 434 μm. We take N= 2500 in
quasi-1D (N= 2000 in 3D). We assume the initial condition to be a soliton in its
ground state with respect to the waveguide potential, displaced to position −z0. The
parameters wz, zoff and z0 are varied as described elsewhere. Our numerical
simulations all use Fourier pseudospectral methods and a fourth- to fifth-order
adaptive Runge-Kutta scheme to obtain the real-time evolution. Our 3D
simulations run on graphics processing units and obtain ground states using
imaginary time evolution. Our quasi-1D simulations obtain ground states using an
iterative biconjugate gradient scheme.

Stochastic sampling of the quasi-1D Gross–Pitaevskii results. We produce the
theoretical histograms shown in Fig. 5d, e and curves shown in Supplementary
Fig. 4 by a stochastic sampling method. We first simulate the splitting and
recombination process using the quasi-1D GPE as described above, with wz=
3.6 μm, for a range of 961 equally spaced barrier offsets −12 μm ≤ zoff ≤ 12 μm. We
repeat these simulations with an artificially imposed phase shift ϕ of one of the
daughter solitons following splitting, but prior to recombination, for 50 equally
spaced phase shifts 0 ≤ ϕ < 2π. These simulations yield 48,050 samples of the
transmitted fraction NR/Ntot≡ A as a function of zoff and ϕ, from which we con-
struct a bivariate cubic spline interpolant of the function A(zoff, ϕ).

To construct the histograms in Fig. 5d, e, we assume the actual barrier offsets
zoff for every experimental run contributing to the data shown in Fig. 5a can be
expected to vary as a Gaussian distribution about the experimentally measured
value zoff with SD equal to the measured 1.3 μm barrier offset uncertainty. For each
experimental run, we sample 104 values of zoff from this distribution and use the
interpolant described above to find A(zoff, 0) in each case. Figure 5d, e show,
respectively, the normalized histograms of the A(zoff, 0) values obtained if we select
only data from experimental runs with experimentally measured zoff > 5 μm and
zoff < 1.3 μm. The same technique is used to construct the mean and SD of the
distribution of A(zoff, 0) as a function of the experimentally measured barrier offset
zoff shown in Supplementary Fig. 4.

We also explore the distribution of sampled values of A(zoff, ϕ) if zoff is held
fixed and a phase shift ϕ chosen randomly between 0 and 2π is imposed on one of
the daughter solitons before recombination (again, A is sampled from the
interpolant described above). The effects of adding this phase noise are shown in
Supplementary Fig. 4.

Finally, we have performed some simulations to estimate possible thermal
effects beyond the GPE description. This is complicated by the fact that in the
experiment solitons are produced and released into the waveguide in a non-
equilibrium, three-dimensional process; modelling this directly with a 3D beyond-
mean-field description is not feasible. We obtain a rough worst-case estimate using
a quasi-1D classical field approach. First, we assume a condensate thermalized at
20 nK in the crossed dipole trap (assumed to have isotropic trap frequency 40 Hz)
at as= 0. In addition to a condensate of 2500 atoms in the oscillator ground state,
we populate the excited oscillator modes with complex Gaussian stochastic noise
such that the average occupation of each mode matches a Bose–Einstein
distribution at 20 nK. To obtain a quasi-1D description, we sum the amplitudes
over all modes in the x and y directions, obtaining an ensemble of quasi-1D
wavefunctions with on average ≈4000 atoms that can be evolved in the quasi-1D
GPE. We evolve an ensemble of 200 such stochastic wavefunctions through the
collision process for the narrow barrier with z0= 75 μm, zoff= 0, and with a barrier
power chosen to obtain average transmission ≈0.5. Extending these ensemble
simulations to other barrier offsets produces a distribution qualitatively similar to
the distribution obtained when adding phase noise as described above and shown
in Supplementary Fig. 4. However, we find the SD of the initial splitting computed
over the ensemble with zoff= 0 to be 0.047. The experimentally measured SD of
this quantity for the narrow barrier in Fig. 1a is 0.064, which, as described in the
study, we expect to contain a significant contribution from imaging noise. That we
do not measure a higher SD in the experiment suggests that these simulations
overestimate thermal effects. However, improved barrier stability would be needed
to accurately measure the actual thermal effects in the experiment.

Approximate analytic quasi-1D model. To understand the nature of recombi-
nation, particularly the appearance of interference fringes as zoff is varied, we
outline a simple approximate analytic model for the fraction of the atoms found on
the “right” of the barrier (z > zoff) following the second barrier interaction. For
convenience, we denote this quantity A≡NR/Ntot and our analytic estimate of it
Aest. It is convenient to develop the following in dimensionless “soliton” units
defined by length ℓs= ℏ/(2mωr∣as∣N), time ts ¼ _=ð4mω2

r jasj2N2Þ and energy
Es ¼ 4mω2

r jasj2N2. In these units, the quasi-1D GPE becomes

i
∂~ψ
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where ~‘ ¼ wz=‘s and

~q ¼ αP

2
ffiffiffiffiffi
2π

p
_ϵ0cwxωrjasjN

: ð8Þ

Dimensionless velocities are given by

~v ¼ v
2ωrjasjN

: ð9Þ
Ignoring the relative phase of the solitons, the timing of the various barrier

interactions, the interatomic interactions and assuming the waveguide potential to
be constant over the width of the barrier, Aest can be approximated by using the
known result for scattering from a sech-squared potential41. Specifically,
approximating the optical barrier potential by

VðzÞ ¼ ~q
~‘

ffiffiffi
2
π

r
exp

�2ð~z � ~zoff Þ2
~‘
2

� �
� ~q

~‘

ffiffiffi
2
π

r
sech2

πð~z � ~zoff Þ
κ~‘

� �
; ð10Þ
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where κ= (π/2)3/2, we obtain the approximate transmission probability for a single
barrier interaction

Tð~vÞ ¼ sinh2ðκ~‘~vÞ
sinh2ðκ~‘~vÞ þ cosh2 π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ~q~‘=π � 1

q� � : ð11Þ

We assume that the atoms impact the barrier at the first interaction in the form
of an ideal soliton with dimensionless velocity ~vin ¼ z0ωz=ð2ωrjasjNÞ, chosen such
that in the quasi-1D numerics the transmitted fraction is 1∕2. The velocity ~vhalf at
which Tð~vhalf Þ ¼ 1=2 is typically very close to this. After the first barrier
interaction, the amplitudes of the outgoing wavepackets in momentum space are
approximately

j~ψz>zoff
ð~vÞj � tð~v � ~vin þ ~vhalf Þsech½πð~v � ~vinÞ�

ffiffiffiffiffiffiffiffi
π=2

p
; ð12Þ

j~ψz<zoff
ð~vÞj � rð~v � ~vin þ ~vhalf Þsech½πð~v � ~vinÞ�

ffiffiffiffiffiffiffiffi
π=2

p
; ð13Þ

where tð~vÞ ¼ Tð~vÞ1=2 and rð~vÞ ¼ ½1� Tð~vÞ�1=2. Between the first and second
barrier interactions the wavepackets undergo nonlinear evolution. We empirically
approximate this by assuming that the wavepackets re-form into solitons with half
of the initial amplitude, preserving the location in momentum space of the peak of
the transmitted or reflected amplitude, as obtained from Eqs. (12)–(13). This gives
wavepackets incoming to the second barrier interaction

~ψ0
z>zoff

ð~vÞ � sech½2πð~v � ~vt;peakÞ�
ffiffiffiffiffiffiffiffi
π=2

p
; ð14Þ

~ψ0
z<zoff

ð~vÞ � sech½2πð~v � ~vr;peakÞ�
ffiffiffiffiffiffiffiffi
π=2

p
; ð15Þ

where ~vt;peak and ~vr;peak denote the numerically determined locations of the peaks
described. Finally, the fraction of the total population to the right is approximated by

Að0Þ
est ¼

Z
tð~v � ~vin þ ~vhalf Þ~ψ0

z < zoff
ð~vÞ þ rð~v � ~vin þ ~vhalf Þ~ψ0

z > zoff
ð~vÞ

���
���2d~v: ð16Þ

The estimate above will be modulated by interference between the solitons. We
model this using the approach for δ-function barriers described in ref. 21. This is
expected to be a good approximation for narrow barriers when the dimensionless soliton
velocity at the barrier ~vin ≳ 1. Assuming z0≫ zoff the dimensionless velocity of all
solitons is ~±~vin when they are in the neighbourhood of the barrier. In this
approximation, the two solitons to the right of the barrier are separated by 4zoff. Thus,
the wavefunction to the right (z > zoff) immediately after recombination can be written as

~ψrightð~zÞ �
ffiffiffiffiffiffiffiffi
Að0Þ
est

q
4

ei~vin~zsech
~z � ~vin~t

4

� �
þ ei~vinð~z�4~zoff Þsech

~z � 4~zoff � ~vin~t
4
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;

ð17Þ
where we have assumed equal-amplitude solitons. It is noteworthy that we have omitted
numerous irrelevant phase factors compared to the expressions in ref. 21 for simplicity,
and the phase shift of π/2 gained by the soliton transmitted at the second barrier
interaction simply cancels the phase that the soliton reflected at the second barrier
interaction previously acquired by being transmitted at the first barrier interaction.
Integrating j~ψrightð~zÞj2, we obtain

Aest ¼ Að0Þ
est 1þ cos 4~v~zoffð Þ ~zoff

sinh ~zoffð Þ
� �

¼ Að0Þ
est 1þ cos

4z0zoff
‘20

� �
zoff=‘s

sinh zoff=‘sð Þ
� �

;

ð18Þ
where the final expression is in real units, the velocity vin has been replaced with z0ωz,

and ‘0 ¼ ð_=mωzÞ1=2 is the axial harmonic oscillator length.
As shown in the Supplementary Figs. 8 and 9, the analytic approximation gives

a good qualitative picture of the behaviour across a wide regime of parameters and
provides a quantitatively accurate value for the fringe spacing across a considerable
fraction of this. In particular, we find it can give useful results for barrier
interactions with ~vin ≲ 1. However, it does break down for wider barriers and
slower barrier interactions.
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