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We investigate cosmological models in which dynamical dark energy consists of a scalar field whose
present-day value is controlled by a coupling to the neutrino sector. The behavior of the scalar field depends
on three functions: a kinetic function, the scalar field potential, and the scalar field-neutrino coupling
function. We present an analytic treatment of the background evolution during radiation and matter
domination for exponential and inverse power law potentials, and find a relaxation of constraints compared
to previous work on the amount of early dark energy in the exponential case. We then carry out a numerical
analysis of the background cosmology for both types of potential and various illustrative choices of the
kinetic and coupling functions. By applying bounds from Planck on the amount of early dark energy, we
are able to constrain the magnitude of the kinetic function at early times.
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I. INTRODUCTION

Since the acceleration of the expansion of the Universe
was discovered by the study of Type Ia supernovae [1,2],
uncovering the cause of this acceleration has become
one of the most important problems in cosmology. The so-
called concordance model of cosmology, or ΛCDM, is the
simplest cosmological model that gives a good fit to the
Type Ia supernovae data [3] as well as the cosmic micro-
wave background [4] and large-scale structure [5]. In
ΛCDM the late-time universal expansion is caused by a
cosmological constant denoted by Λ.
Despite its experimental successes, however, ΛCDM

suffers from a number of theoretical problems, notably the
coincidence problem [6], the fine-tuning problem [7], and
the difficulty of explaining what fundamentally gives rise to
the cosmological constant [8]. This has motivated the study
of a number of possible explanations of the observed late-
time expansion not involving a cosmological constant,
including modified gravity models [9] and dynamical dark
energy [10]. Quintessence is a simple form of dynamical
dark energy which consists of a single scalar field φ whose
evolution is slow enough to give rise to a negative pressure,

hence accelerated expansion and late-time domination of
the energy density [10,11].
One novel approach to solving the coincidence problem

is to give φ a nonstandard coupling to neutrinos such that
the neutrino mass is φ dependent. The scalar field evolves
according to a scaling solution [12,13] that ends as the
neutrinos become nonrelativistic and, through the scalar-
neutrino coupling, provide a force on φ that effectively
stops it from evolving. At this point φ is potential
dominated and acquires a negative equation of state,
giving rise to a period of dark energy domination. Such
models are known as “growing neutrino quintessence”
models [14,15], so called because the neutrino mass grows
as the scalar field evolves. Growing neutrino quintessence
models are closely related to “mass varying neutrino”
models, which also involve an interaction between dark
energy and the neutrino mass [16–23]. As well as
providing the right conditions for the scalar field to play
the role of dark energy, the neutrino-scalar coupling can
give rise to an attractive fifth force acting on the neutrinos
that is much stronger than gravity. This force gives rise to
nonlinear “neutrino lumps” on large scales, which have
been extensively studied using linear approximation
[24,25], N-body simulations [26–31], spherical collapse
[32], and other methods [33–35]. The effect these neutrino
lumps have on the cosmological history depends on the
masses of neutrinos. As found in Ref. [31], for large
neutrino masses the neutrino lumps can be stable and can
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lead to significant backreaction effects. For smaller neu-
trino masses, however, the neutrino lumps are unstable;
they form and dissociate periodically such that back-
reaction effects are small.
In this work we consider a number of growing neutrino

quintessence models, investigating the effects of changing
the scalar field kinetic and potential terms and the scalar-
neutrino coupling on the background evolution of the scalar
field. We study radiation and matter domination analyti-
cally, and numerically solve the full system of background
equations, in order to gain insight into the robustness of
growing neutrino quintessence to variations in the model
parameters.
This paper is organized as follows: In Sec. II we describe

a particular growing neutrino quintessence model proposed
by Wetterich in Ref. [36] and state the equations of motion;
in Sec. III we present approximate analytic solutions to the
model in Ref. [36] and a related model; in Sec. IV we
describe our numerical analysis, present the numerical
results, and discuss the constraints on model parameters;
finally we summarize in Sec. V.

II. THE MODEL

In Ref. [36], Wetterich proposed a unified model of
inflation and quintessence. The model consists of a cross-
over from a past, ultraviolet fixed point to a future, infrared
fixed point. Each of these regions is approximately scale
invariant and corresponds to inflation and dark energy
domination respectively. This is achieved by introducing a
scalar field, which in a particular choice of conformal frame
acts as a variable Planck mass. The scalar field is coupled to
the neutrinos in such a way as to produce growing neutrino
quintessence [14,15], with the transition to dark energy
domination being driven by the “trigger” event of the
neutrinos becoming nonrelativistic.
In this work we consider the crossover region, since it

can be constrained by presently available cosmological
data. According to the model in Ref. [36], radiation
domination, matter domination, and the present transition
to dark energy domination are all part of the crossover. In
this period the model effectively reduces to a scalar field
minimally coupled to both gravity and the matter sector,
with the only exception being the coupling to the neutrino
sector. For this reason it is convenient to work in the
Einstein frame, in which the model is described by the
following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

PR −
1

2
k2ðφÞ∇μφ∇μφ − VðφÞ

�

þ Sm½Ψm; gμν� þ Sγ½Ψγ; gμν� þ Sν½Ψν; CðφÞ2gμν�; ð1Þ

where MP is the reduced Planck mass, k2ðφÞ, VðφÞ, and
CðφÞ are respectively the kinetial, potential, and neutrino-
scalar coupling function and must be specified in order to

choose a particular model. Ψm, Ψγ , and Ψν correspond
to the matter, radiation, and neutrino fields respectively.
The key feature of growing neutrino quintessence models is
the function CðφÞ which couples neutrinos to the scalar
field and effectively gives the neutrinos a time-dependent
mass given by

mνðφÞ ¼ m̄νCðφÞ; ð2Þ
where m̄ν is a mass scale. For simplicity we take all
neutrino masses to be equal. It is often convenient to work
in terms of the dimensionless function:

βðφÞ≡ −MP
d lnCðφÞ

dφ
: ð3Þ

By varying the action, Eq. (1), with respect to the metric
gμν one obtains the gravitational field equations

Gμν ¼
1

M2
P
Tμν þ

1

M2
P

�
k2ðφÞ∇μφ∇νφ −

1

2
k2ðφÞ∇ρφ∇ρφgμν

− VðφÞgμν
�
; ð4Þ

and varying with respect to the scalar field φ yields the
scalar field equation of motion:

−k2∇μ∇μφ −
1

2

dk2

dφ
∇μφ∇μφþ dV

dφ
þ β

TðνÞμ
μ

MP
¼ 0: ð5Þ

Here Tμν is the total stress-energy-momentum tensor of all

species apart from the scalar field and TðνÞ
μν is the stress-

energy-momentum tensor for the neutrinos.
If we assume a spatially flat Friedmann-Lemaître-

Robertson-Walker metric of the form

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð6Þ

and assume the scalar field is homogeneous, then Eqs. (4)
and (5) become

H2 ¼ ρ

3M2
P
; ð7Þ

_H ¼ −
ρþ p
2M2

P
; ð8Þ

and

φ̈þ 3H _φþ 1

2k2
dk2

dφ
_φ2 þ 1

k2
dV
dφ

−
β

MP
ðρν − 3pνÞ ¼ 0; ð9Þ

where H ≡ _a=a is the Hubble parameter, dots denote
differentiation with respect to time, and ρ ¼ ρm þ ρν þ
ργ þ ρφ and p ¼ pm þ pν þ pγ þ pφ are the energy den-
sity and pressure of all species. The energy density and
pressure of the homogeneous scalar field are defined as
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ρφ ¼ k2

2
_φ2 þ V; ð10Þ

pφ ¼ k2

2
_φ2 − V: ð11Þ

Matter and radiation obey the usual conservation equa-
tions: _ρm þ 3Hρm ¼ 0 and _ργ þ 4Hργ ¼ 0. However, the
neutrinos obey a modified conservation equation due to
their interaction with the scalar field:

_ρν þ 3Hðρν þ pνÞ ¼ −
β

MP
ðρν − 3pνÞ _φ; ð12Þ

_ρφ þ 3Hðρφ þ pφÞ ¼
β

MP
ðρν − 3pνÞ _φ: ð13Þ

For most of the Universe’s history, the neutrinos are
highly relativistic and ρν − 3pν ≈ 0 such that the scalar
field and the neutrinos are effectively uncoupled and the
scalar field energy density tracks that of the dominant
species. After the neutrinos become nonrelativistic the
coupling becomes important and, for large enough jβj,
effectively stops the evolution of the scalar field by
providing a force to counter that caused by the gradient
of the potential in Eq. (9). As a result, the scalar field’s
energy density and pressure are dominated by the potential
and the equation of state wφ ≡ pφ=ρφ approaches −1,
which is consistent with observations [4].

III. APPROXIMATE ANALYTIC SOLUTIONS

Under certain simplifying assumptions, it is possible to
solve the scalar field equation, Eq. (9), analytically. In this
section we consider the behavior of φ before the neutrinos
become nonrelativistic, both for an exponential and an
inverse power law potential. For the exponential case the
scalar field evolves linearly withN ¼ logðaÞ and there is an
approximately constant fraction of early dark energy
present. In the inverse power law case we find instead
that logðφÞ evolves linearly with N. For an analytic
treatment of a related but distinct model, see Ref. [37].

A. Exponential potential

First we consider a constant kinetic function k2ðφÞ ¼
k2c ¼ const and an exponential potential VðφÞ ¼
M4

P expð−αφ=MPÞ, where α is a dimensionless parameter
that determines the slope of the potential. Before the
neutrinos have become nonrelativistic, the model exhibits
a scaling solution whereby the energy density of the scalar
field tracks that of the dominant species (radiation or matter,
depending on the epoch) with the result that the energy
density fraction of the scalar field is constant. It is convenient
to introduce the energy density of the dominant species
as ρd, which is equal to ργ þ ρν in the radiation-dominated

epoch and ρm in the matter-dominated epoch. Here we are
considering only the epoch in which neutrinos are highly
relativistic, so the coupling between the neutrinos and the
scalar field is effectively zero and neutrinos can be treated
simply as radiation along with the photons.
Sufficiently far from matter-radiation equality one can

neglect whichever of matter and radiation is subdominant
and write

ρtot ¼ ρd þ ρφ; ð14Þ

where the energy density of the dominant species
evolves as

ρd ∝ expð−nNÞ; ð15Þ

where N ¼ 0 at the present time and n ¼ 4ð3Þ for radiation
(matter) domination. In the scaling solution,

ρφ ∝ expð−nNÞ; ð16Þ

and the (constant) energy density fraction of the scalar field
is given by

Ωφ ¼ nk2c
α2

: ð17Þ

The scalar field itself obeys the following particular
solution of Eq. (9)

φ ¼ MP
nN
α

þ φ̂; ð18Þ

where φ̂ is the value φ would take at N ¼ 0 (though note
that this bears no relation to realistic present-day values of
φ since at some point before N ¼ 0 the neutrinos become
important and the scaling solution becomes invalid).
For a slowly varying kinetic function k2ðφÞ we can

expect behavior that approximates this scaling solution.
The procedure for quantifying the deviation from the
scaling solution was demonstrated in Ref. [36], which in
turn is based on a calculation in Ref. [38]. When we carry
out this procedure we find disagreement with the results of
Ref. [36]. The details of our calculation are laid out in the
Appendix. Here we simply present the results.
We find that the energy density of the scalar field obeys

Ωφ ¼ nk2

α2
ð1 − ūÞ; ð19Þ

which deviates from the exact scaling solution by a small
quantity

ū ¼ MP

αð1 −ΩφÞ
d log k2

dφ
: ð20Þ
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This differs from the corresponding result in Ref. [36] by a
factor of Ωφ. As an example, we consider the particular
kinetic function used in Ref. [36]:

k21ðφÞ ¼
MPα

2κðφ − φ̄Þ ; ð21Þ

where κ is a dimensionless parameter which sets the scale
of the function k21ðφÞ. Substituting into Eq. (20), one
obtains

ū ¼ −
2κΩφ

nð1 −ΩφÞ
: ð22Þ

The corresponding result in Ref. [36] is given by

ū ¼ −
2κ

nð1 −ΩφÞ
; ð23Þ

from which it follows that κ must be small compared to 1,
in order to give a small ū and hence produce behavior close
to the scaling solution. However, since Ωφ is small, we find
no such constraint on κ; ū is small automatically
in Eq. (22).
This has implications for the prospects of constraining

the model. A larger value of κ gives smaller values of the
function k21ðφÞ and hence smaller values of Ωφ [36]. There
is a tight upper bound from the Planck experiment on the
value of Ωφ at early times. This can translate into a lower
bound on κ, which will be discussed in more detail in
Sec. IV. Based on Eq. (23) one would conclude that there
are both upper and lower bounds on κ, which could
potentially put a very tight constraint on the model.
However, based on our result for ū, which is small
irrespective of the magnitude of κ, one finds no upper
bound on κ. As will be shown in Sec. IV, we can consider
values of κ much larger than the upper bound found in
Ref. [36]. Our numerical results match closely our pre-
diction and there is no evidence of any approximation
breaking down for large κ.

B. Inverse power law potential

An approximate analytic solution can also be found for
models with inverse power law potentials of the form

VðφÞ ¼ M4
PṼðMP=φÞλ; ð24Þ

where Ṽ and λ are dimensionless constants.
While the neutrinos are relativistic, Eq. (9) becomes

φ̈þ 3H _φþ 1

2k2
dk2

dφ
_φ2 þ 1

k2
dV
dφ

¼ 0: ð25Þ

Using the same kinetic function as for the exponential
potential case, Eq. (21), but with α ¼ 1 and φ̄ ¼ 0 since

these parameters relate to the specific model presented in
Ref. [36], we have

k2ðφÞ ¼ MP

2κφ
: ð26Þ

For our choice of k2ðφÞ and VðφÞ, Eq. (25) becomes

φ̈þ 3H _φ −
_φ2

2φ
− 2λκM3þλ

P Ṽφ−λ ¼ 0: ð27Þ

In terms of e-foldings N as the time variable, we have

H2φ00 þHH0φ0 þ 3H2φ0 −
H2φ02

2φ
− 2λκM3þλ

P Ṽφ−λ ¼ 0;

ð28Þ

where φ0 ≡ dφ=dN. Finally introducing Φ via

φ ¼ MP expðΦ=MPÞ; ð29Þ

Eq. (28) becomes

Φ00 þ Φ02

2MP
þ
�
H0

H
þ 3

�
Φ0

− 2λκ
M3

PṼ
H2

expð−ðλþ 1ÞΦ=MPÞ ¼ 0: ð30Þ

In a radiation- (matter-) dominated universe, the Hubble
parameter evolves according to H2 ¼ H̃2 expð−nNÞ where
n ¼ 4ð3Þ and H̃ is a normalizing factor. Equation (30) then
becomes

Φ00 þ Φ02

2MP
þ
�
3 −

n
2

�
Φ0

− 2λκ
M3

PṼ

H̃2
expðnN − ðλþ 1ÞΦ=MPÞ ¼ 0: ð31Þ

Motivated by results from numerical simulation (see
Sec. IV), which show linear solutions for Φ, we make
the following ansatz:

Φ ¼ qMPN þ Φ̂; ð32Þ
where q is a dimensionless constant and Φ̂ is the value Φ
would take if this solution were extrapolated to N ¼ 0.
Under this ansatz Eq. (31) becomes

1

2
q2MP þ

�
3 −

n
2

�
fMP − 2λκ

M3
PṼ

H̃2
expðnN − ðλþ 1ÞqN

− ðλþ 1ÞΦ̂=MPÞ ¼ 0: ð33Þ

Treating the N-dependent and N-independent parts of the
equation separately, we obtain
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q ¼ n
λþ 1

; ð34Þ

which, substituting into Eq. (33), gives

1

2

�
n

λþ 1

�
2

þ
�
3 −

n
2

�
n

λþ 1

− 2λκ
M2

PṼ

H̃2
expð−ðλþ 1ÞΦ̂=MPÞ ¼ 0: ð35Þ

Rearranging, we find Φ̂ as

Φ̂ ¼ −
MP

λþ 1
log

�
H̃2

2λκM2
PṼ

�
1

2

�
n

λþ 1

�
2

þ
�
3 −

n
2

�
n

λþ 1

��
: ð36Þ

Thus, in contrast to the previous section, we find that
inverse power law potentials admit solutions in which
logðφÞ evolves linearly with N as opposed to φ evolving
linearly as in the exponential potential case.
It is also instructive to find an expression for the dark

energy density fraction. Substituting our solution for φ
[Eqs. (29) and (32)] into Eq. (10) gives the energy fraction:

Ωφ ¼ q2

12κ
expðqN þ Φ̂=MPÞ

þM2
PṼ

3H̃2
expðnN − λqN − λΦ̂=MPÞ: ð37Þ

Recalling Eq. (34), we can write

Ωφ ¼
�
q2

12κ
expðΦ̂=MPÞ þ

M2
PṼ

3H̃2
expð−λΦ̂=MPÞ

�
expðqNÞ:

ð38Þ

Thus it turns out that Ωφ is proportional to φ:

Ωφ¼
�
q2

12κ
expð2Φ̂=MPÞþ

M2
PṼ

3H̃2
expðð−λþ1ÞΦ̂=MPÞ

�
φ

MP
;

ð39Þ

where q and Φ̂ are given by Eqs. (34) and (36). In contrast
to the exponential case, where there is an approximately
constant fraction of early dark energy, here the fact the dark
energy fraction has an exponential dependence on N
implies that at early times (i.e., large negative values of
N), it automatically makes a negligible contribution to the
energy density. These results are confirmed in Sec. IV, with
Figs. 5 and 6 showing logðφÞ and logðΩφÞ evolving linearly
with N with a gradient given by q.

IV. NUMERICAL EVOLUTION

In addition to the analytic approach laid out in Sec. III,
we numerically solved the equations of motion. This allows
us to confirm the results of Sec. III and to probe the late-
Universe cosmology that our analytic approach did not
capture.
To generate our results we modified the code used by

Barreira et al. in Ref. [39], which is based on the Code for
Anisotropies in the Microwave Background (CAMB) [40].
We modified the background part of Barreira et al.’s code
such that it solved the background equations of motion laid
out in Sec. II.
We consider the following choices for the kinetic,

potential, and coupling functions: Kinetic function:
(i) k2cðφÞ ¼ const,
(ii) k21ðφÞ ¼ MPα

2κðφ−φ̄Þ.
Coupling function:

(i) βcðφÞ ¼ const,
(ii) β1ðφÞ ¼ − MP

φc−φ
,

(iii) β2ðφÞ ¼ −ð MP
φc−φ

Þ2,
(iv) β3ðφÞ ¼ − γMP

φ .
Potential function:

(i) VexpðφÞ ¼ M4
P expð−αφ=MPÞ,

(ii) VIPLðφÞ ¼ ṼM4
PðMP=φÞλ.

The motivation for choosing these functions is as
follows. In Ref. [36], the functions k21ðφÞ and VexpðφÞ
are used, with βðφÞ unspecified. We use this as a starting
point, and we specify βðφÞ ¼ β1ðφÞ as employed in
Ref. [31]. We then widen the scope by choosing other
functions that could be expected to give rise to growing
neutrino quintessence behavior. Inverse power law poten-
tials have a qualitatively similar “decaying” form to
exponential potentials. The couplings βc, β1, β2, and β3
each correspond to a function CðφÞ via Eq. (3), or
equivalently:

CðφÞ ¼ exp

�
−

1

MP

Z
βðφ̃Þdφ̃

�
: ð40Þ

The four functions βðφÞ considered here all correspond to a
rapidly rising CðφÞ. Thus VðφÞ and CðφÞ give rise to an
effective potential for the scalar field that has a minimum,
which is a necessary condition for growing neutrino
quintessence.
In Sec. IVAwe focus on k21ðφÞ, β1ðφÞ, and VexpðφÞ. The

scaling solution discussed in Sec. III is verified and a
constraint is found on the parameter κ in k21ðφÞ due to its
effect on the amount of early dark energy. In Sec. IV B we
consider k21ðφÞ, β1ðφÞ, and VIPLðφÞ, which give rise to
qualitatively similar behavior for the scalar field φ but do
not produce early dark energy. We discuss the various
options for βðφÞ in Sec. IV C.

EARLY DARK ENERGY CONSTRAINTS ON GROWING NEUTRINO … PHYS. REV. D 100, 043525 (2019)

043525-5



A. Exponential potential

In this section we present the results of numerical
calculations using VexpðφÞ, k21ðφÞ, and β1ðφÞ. During
radiation and matter domination we find φ evolving
linearly with N ¼ logðaÞ according to the scaling solution
discussed in Sec. III. After the neutrinos become non-
relativistic, φ starts to oscillate around the minimum of the
effective potential formed by VðφÞ and βðφÞ and comes to a
halt to behave as an effective cosmological constant. This
behavior is illustrated in Fig. 1.
Figure 2 shows the evolution of the equation of state of

the scalar field. It can be seen that it mimics radiation with a
value of wφ ¼ 1=3 when the Universe is radiation domi-
nated, then approacheswφ ¼ 0, mimicking matter when the
Universe is matter dominated, and finally tends towards
wφ ¼ −1 after the neutrinos halt the evolution of the scalar
field and it mimics a cosmological constant. The first two
regimes illustrate the scaling solution, where the energy
density of the scalar field tracks that of the dominant
species as discussed in Sec. III. This is also illustrated in
Fig. 3, in which we have plotted the predictions of the
energy density fraction of the scalar field assuming the
scaling solution is exactly satisfied both for radiation and
matter domination. It can be seen that in the early Universe
the numerical result closely follows Ωφ ¼ 4k2ðφÞ=α2 and
at later times it follows Ωφ ¼ 3k2ðφÞ=α2, with a transition
in between, as expected.
Figure 4 shows the effect of varying the model parameter

κ in k21ðφÞ on the scalar field evolution and the energy
density fraction of the scalar field respectively. Note that
the larger the value of κ the smaller the amount of early dark
energy. This agrees with the scaling solution result, Eq. (17)

in Sec. III, since κ is effectively a constant that controls the
size of the kinetic function k21ðφÞ as can be seen in Eq. (21).
We find that our numerical results for the evolution of

dark energy are well approximated by the early dark energy
parametrization of Doran and Robbers [41], in which the
dark energy density fraction is parametrized as follows:

ΩDEðaÞ ¼
Ω0

DE −Ωeð1 − a−3w0Þ
Ω0

DE þΩ0
ma3w0

þ Ωeð1 − a−3w0Þ; ð41Þ

where Ωe (the fraction of early dark energy) and w0 (the
present-day equation of state) are parameters to be fitted

FIG. 1. The late-time evolution of the scalar field for an
exponential potential VexpðφÞ ¼ M4

P expð−αφ=MPÞ, kinetic
function k21ðφÞ ¼ MPα=ð2κðφ − φ̄ÞÞ, and coupling function
β1ðφÞ ¼ −MP=ðφc − φÞ with α ¼ 300, κ ¼ 1.8 φ̄ ¼ 0.0933,
and φc ¼ 0.933.

FIG. 2. The evolution of the equation of state of the scalar field,
wφ, for the same functions and parameters as in Fig. 1. The
dashed and dotted lines show the equation of state during
radiation and matter domination respectively.

FIG. 3. The evolution of the energy density fraction of the
scalar field, Ωφ during radiation and matter domination (solid
line) for the same functions and parameters as in Fig. 1. The
dashed and dotted lines respectively show the predicted evolution
of Ωφ under the assumption of a radiation-dominated and matter-
dominated universe where the scalar field obeys the scaling
solution discussed in Sec. III.
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and Ω0
DE and Ω0

m are the present-day dark energy and
matter fractions. For a given value of κ we carry out a least-
squares fitting of our numerical results to the Doran and
Robbers parametrization to give w0 and Ωe. The Planck
Collaboration [42] finds an upper bound on the parameter
Ωe of 0.0036. We find that the value of κ required to give
rise to this value of Ωe is κ ¼ 1.8, with larger values of κ
resulting in smaller values of Ωe and vice versa. We
therefore find a lower bound on κ of 1.8.
As discussed in Sec. III, Ref. [36] finds a requirement

that κ ≪ 1 in order to ensure that u, the deviation of Ωφ

from the scaling solution at early times, is small. If this
requirement were valid then the model of Ref. [36] would
have been ruled out by the constraints on early dark energy.
However, due to our finding in Sec. III that u is given by
Eq. (22) and not Eq. (23), we find that there is no
requirement for κ to be small and hence our constraint
that κ > 1.8 does not rule out the model.
Varying the parameter α in the potential merely results in

a rescaling of φ and does not have any effect on the physics.
We also studied the case of a constant kinetic function k2c
and found that it made almost no difference to the results.
This is as expected, because the varying kinetic function to
which we compare it varies very slowly over the relevant
part of the Universe’s history.

B. Inverse power law potential

In this section we present the results for models with
VIPLðφÞ, k21ðφÞ, and β1ðφÞ, with κ ¼ 1.8, α ¼ 1, and φ̄ ¼ 0.
We considered several different values of the power λ as
shown in Figs. 5 and 6. For each value of λ, an appropriate
value of Ṽ was chosen to produce the correct dark energy
density fraction at the present day. For ease of comparison,
the same present-day value of φ was chosen for each value
of λ, with φc being tuned in each case to achieve this.

The choice of κ ¼ 1.8 was made for ease of comparison
with the exponential potential, but has no special signifi-
cance in the inverse power law case. Larger values of κ
result in an upward shift in φ and a corresponding down-
ward shift in Ωφ.
Compared to the models with exponential potentials

already discussed, the behavior of models with inverse
power law potentials is not drastically different. During
radiation and matter domination we find that φ evolves
exponentially with N as opposed to linearly as it does for
models with VexpðφÞ. However, the qualitative behavior of
the field increasing as long as neutrinos are relativistic and
then effectively stopping once they become nonrelativistic
is still present. Figure 5 shows the evolution of the
logarithm of the scalar field against N for different inverse
power law potentials. Before the neutrinos become non-
relativistic, logðφÞ evolves approximately linearly with a
gradient of n=ðλþ 1Þ and an intercept of Φ̂ as predicted in
Eqs. (34) and (36).
The evolution of the energy density of the scalar field is

shown in Fig. 6. From this it is clear that these models do
not give rise to early dark energy; looking back in time, the
energy density of the scalar field continues to drop off
rapidly. The constraint on κ that we found for exponential
potentials therefore does not apply to models with inverse
power law potentials.

C. Coupling function

In addition to the coupling β1ðφÞ already considered, we
investigated βc, β2ðφÞ, and β3ðφÞ. None of these choices
led to behavior significantly different from the β1ðφÞ case,
provided jβj is sufficiently large at the time at which

FIG. 4. The evolution of the energy density fraction of the
scalar field for a range of values of κ and otherwise the same
functions and parameters as in Fig. 1. Also shown is the Planck
upper bound on Ωe < 0.0036.

FIG. 5. The evolution of the logarithm of the scalar field
for inverse power law potentials of the form VIPLðφÞ ¼
ṼM4

PðMP=φÞλ with kinetic function k21ðφÞ ¼ MP=ð2κφÞ and
coupling function β1ðφÞ ¼ −MP=ðφc − φÞ. We fix κ ¼ 1.8 and
the parameters Ṽ and φc take different values for different values
of λ (see text for details).
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neutrinos become nonrelativistic. This requirement is
automatically satisfied for β1ðφÞ and β2ðφÞ, since as φ
approaches φc, jβðφÞj tends to infinity. The scalar field is
never allowed to reach φc, however, because the neutrino
coupling term in the scalar field equation, Eq. (9), always
acts to decrease the value of φ. It can be seen that the value
of φc in β1ðφÞ and β2ðφÞ determines the present-day value
of φ, since the latter will approach ever closer to it but can
never exceed it. This is confirmed by our numerical
analysis.
For βc and β3ðφÞ one does not automatically obtain large

jβj but it must be set by an appropriate choice of
parameters. In the latter case this means choosing a large
value of γ. The requirement on the size of jβj is illustrated
by the following result from Ref. [43]:

Ωφ

Ων
≈ jβj: ð42Þ

If jβj is too small, the coupling term in Eq. (9) will not be
large enough to counteract the potential term and the value
of φ will continue to increase. This will result in both a
larger Ων and a smaller Ωφ. Our numerical results are
consistent with Eq. (42).

V. CONCLUSIONS

We have considered various growing neutrino quintes-
sence scenarios inspired by the model proposed by
Wetterich in Ref. [36]. We studied the early-Universe
background evolution analytically for both exponential
potentials and inverse power law potentials. In the former
case we followed the procedure in Ref. [36], finding some
disagreement with their results. In the latter case we found
an analytic result for the behavior of such models that we
were able to check numerically.
Using a modified version of CAMB, we found the

numerical solution to the background equations for several

different kinetic, potential, and neutrino-scalar coupling
functions. We verified our analytic predictions, investigated
the circumstances under which growing neutrino quintes-
sence behavior is obtained, and used early dark energy
constraints [42] to constrain the parameter κ that controls
the scale of the kinetic function k21ðφÞ.
The following conditions must be met to give rise to

growing neutrino quintessence:
(i) VðφÞmust have a negative gradient in order to cause

the value of the scalar field to increase with time.
This gradient must be sufficiently steep that φ
reaches large enough values in the late Universe
to act as dark energy. Note that growing neutrino
quintessence models such as the ones considered
here do not require that VðφÞ be flat in the late
Universe, as other quintessence models often re-
quire. The slow evolution of φ necessary for it to
mimic a cosmological constant is achieved by the
presence of the neutrino coupling term, not by
slow roll.

(ii) jβðφÞj must be sufficiently large when the neutrinos
become nonrelativistic that βðρν − 3pνÞ is able to act
as a strong enough restoring force to stop the
evolution of φ in Eq. (9).

For exponential potentials with slowly varying kinetic
functions we found the predicted scaling solution behavior
with an approximately constant early dark energy fraction.
Using existing constraints on early dark energy [42] we
were able to constrain the model parameter κ, which sets
the scale of the kinetic function, to be larger than 1.8,
forcing it into a region previously thought excluded [36].
However, we also found that there is no upper bound on κ
and so the model is not ruled out.
As well as the exponential potential considered in

Ref. [36], we also considered inverse power law potentials,
since these have a qualitatively similar form to exponential
potentials and so could provide the necessary conditions for
growing neutrino quintessence. We confirmed that such
models can give rise to growing neutrino quintessence and
we found that, unlike in the case of exponential potentials,
there is no early dark energy present. Planck bounds on
early dark energy therefore do not translate into constraints
on models with inverse power law potentials.
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FIG. 6. The evolution of the logarithm of the energy fraction of
the scalar field for the same functions and parameters as in Fig. 5.
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APPENDIX: DERIVING THE DEVIATION FROM
SCALING SOLUTION

In this appendix we present our derivation of the results
presented in Sec. III. The derivation follows that in
Ref. [36], but we find a few disagreements with their
results.
In the scaling solution, the energy density of the scalar

field is a constant fraction of that of the dominant species:

ρφ ¼ fρd: ðA1Þ

To find solutions close to the scaling solution we allow f to
vary as a function of φ,

ρφ ¼ fðφÞρd; ðA2Þ

and allow a small deviation δðNÞ from the scaling solution
result for φ [Eq. (18)]:

φ ¼ MP
nN
α

þ φ̂þMPδðNÞ: ðA3Þ

Differentiating Eq. (A2), we find

ðlog fÞ0 ¼ ðlog ρφÞ0 − ðlog ρdÞ0; ðA4Þ

where primes denote differentiation with respect to N. It
will be necessary to employ the ρφ conservation equation,
Eq. (13) (with pν ¼ ρν=3), as well as the definitions of ρφ
and pφ, Eqs. (10) and (11). Using N as the time variable,
these are given by

ρ0φ ¼ −3ðρφ þ pφÞ; ðA5Þ

ρφ ¼ k2H2

2
φ02 þ V; ðA6Þ

and

pφ ¼ k2H2

2
φ02 − V: ðA7Þ

It proves convenient to introduce the constant of propor-
tionality in Eq. (15) as follows:

ρd ¼ ρ̄M4
P expð−nN − αφ̂=MPÞ: ðA8Þ

Substituting Eqs. (A5)–(A8) into Eq. (A4) yields

ðlog fÞ0 ¼ −6
�
1 −

V
ρφ

�
þ n: ðA9Þ

Now, using Eqs. (A2), (A3), and (A8)

V
ρφ

¼ M4
P expð−αφ=MPÞ

fρ̄M4
P expð−nN − αφ̂=MPÞ

¼ 1

fρ̄
expð−αδÞ: ðA10Þ

Hence Eq. (A9) becomes

ðlog fÞ0 ¼ n − 6þ 6

fρ̄
expð−αδÞ: ðA11Þ

Differentiating Eq. (A3) gives

δ0 ¼ φ0

MP
−
n
α
: ðA12Þ

Rearranging Eq. (A6), we write φ0 in terms of ρφ and V:

φ0 ¼
�
2ρφ
k2H2

�
1 −

V
ρφ

��1
2

; ðA13Þ

and hence

φ0 ¼ MP

�
6Ωφ

k2

�
1 −

1

fρ̄
expð−αδÞ

��1
2

; ðA14Þ

where we have used Eq. (A10) again. Substituting into
Eq. (A12) yields

δ0 ¼ −
n
α
þ
�
6Ωφ

k2

�
1 −

1

fρ̄
expð−αδÞ

��1
2

: ðA15Þ

For constant k2 the scaling solution is recovered, with f ¼
const and δ ¼ 0. Equation (A11) then gives

1

f
¼

�
1 −

n
6

�
ρ̄: ðA16Þ

If, however, k2 varies smoothly we expect only a small
deviation from this solution. We introduce a function ζðNÞ
to quantify the deviation of f from the scaling solution
value given by Eq. (A16):

1

f
¼

�
1 −

n
6

�
ρ̄ expð−αζÞ: ðA17Þ

Differentiating Eq. (A17) gives

ζ0 ¼ 1

α
ðlog fÞ0; ðA18Þ

which, using Eq. (A11), gives

ζ0 ¼ 1

α

�
n − 6þ 6

fρ̄
expð−αδÞ

�
: ðA19Þ

Equations (A15) and (A19) both contain the term
1=ðfρ̄Þ expð−αδÞ, which using Eq. (A17) can be written as

1

fρ̄
expð−αδÞ ¼

�
1 −

n
6

�
expð−αðδþ ζÞÞ: ðA20Þ
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Equations (A15) and (A19) can now be written as

δ0 ¼ −
n
α
þ
�
nΩφ

k2

�1
2

�
1þ

�
6

n
− 1

�
ð1 − exp½−αðδþ ζÞ�Þ

�1
2

;

ðA21Þ

and

ζ0 ¼ n − 6

α
½1 − expð−αðδþ ζÞÞ� ðA22Þ

respectively.
Now we recall Eq. (17), but introduce a small deviation

uðNÞ by

Ωφ ¼ nk2

α2
ð1 − uÞ; ðA23Þ

and group the small functions δ and ζ through the small
function Δ defined by

Δ ¼
�
6

n
− 1

�
ð1 − exp½−αðδþ ζÞ�Þ: ðA24Þ

Differentiating Eq. (A24), we find

Δ0 ¼ α

�
6

n
− 1

�
exp½−αðδþ ζÞ�ðδ0 þ ζ0Þ: ðA25Þ

We can make use of Eqs. (A23) and (A24) to simplify our
equations for δ0 and ζ0, Eqs. (A21) and (A22) as follows:

δ0 ¼ n
α
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − uÞð1þ ΔÞ

p
− 1Þ; ðA26Þ

ζ0 ¼ −
n
α
Δ: ðA27Þ

Substituting Eqs. (A24), (A26), and (A27) into Eq. (A25)
gives

Δ0 ¼ ½6 − nð1þ ΔÞ�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − uÞð1þ ΔÞ

p
− 1 − ΔÞ: ðA28Þ

The differential equation for u follows from differentiat-
ing Eq. (A23) and rearranging as

u0 ¼ ð1 − uÞ
�
d log k2

dφ
φ0 − ðlogΩφÞ0

�
; ðA29Þ

which in turn yields

u0 ¼ ð1 − uÞ
�
MP

d log k2

dφ

�
n
α
þ δ0

�
−

α

1þ f
ζ0
�
; ðA30Þ

where we have made use of Eqs. (A12) and (A22) and the
fact that Ωφ ¼ f=ð1þ fÞ. Equations (A28) and (A30) can
be compared to Eq. (108) in Ref. [36]. We find two
instances of the factor (1 − u) instead of (1þ u), and the

second term in Eq. (A30) differs by a factor of Ωφ. This
latter difference follows through to give an extra factor of
Ωφ in Eq. (22) compared to Ref. [36] which, as discussed in
Sec. III, has a crucial impact on the range of possible values
for the parameter κ.
We continue following the procedure of Ref. [36] but

with our versions of the Δ and u equations in order to find
an approximate form for u. Using Eqs. (A26) and (A27),
Eq. (A30) can be rewritten as

u0 ¼ ð1 − uÞ
�
MPn
α

d log k2

dφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − uÞð1þ ΔÞ

p
þ n
1þ f

Δ
�
:

ðA31Þ
Close to the scaling solutionΔ, u andMPd log k2=dφ are all
small. Expanding Eqs. (A28) and (A31) to linear order in
small quantities gives

Δ0 ¼ n − 6

2
ðΔþ uÞ;

u0 ¼ nMP

α

d log k2

dφ
þ nð1 − ΩφÞΔ: ðA32Þ

Setting Δ0 ¼ u0 ¼ 0, we see that this system of equations
admits a constant solution:

ū ¼ −Δ̄ ¼ MP

αð1 −ΩφÞ
d log k2

dφ
: ðA33Þ

One can then split u ¼ ūþ û and Δ ¼ Δ̄þ Δ̂ into their
N-independent and N-dependent components. The equa-
tions of motion for only the N-dependent parts are as
follows:

Δ̂0 ¼ n − 6

2
ðΔ̂þ ûÞ; ðA34Þ

û0 ¼ nð1 −ΩφÞΔ̂; ðA35Þ

which can be written in the following form,

�
Δ̂
û

�0
¼ A

�
Δ̂
û

�
; ðA36Þ

where

A ¼ n − 6

2

�
1 1

2nð1−ΩφÞ
n−6 0

�
: ðA37Þ

The real parts of the eigenvalues of the matrix A are both
negative, which implies that the N-dependent parts of Δ
and u decay with N. Thus the solution with u ¼ ū and
Δ ¼ Δ̄ is approached. Hence, it is appropriate to use ū in
Eq. (A23) which gives rise to Eqs. (19) and (20).
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