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SUMMARY

Cell wall appositions (CWAs) are produced reactively
by the plant immune system to arrest microbial inva-
sion through the local inversion of plant cell growth.
This process requires the controlled invagination of
the plasma membrane (PM) in coordination with the
export of barrier material to the volume between the
plantPMandcellwall. Plant actindynamicsareessen-
tial to this response, but it remains unclear howexocy-
tosis and thecytoskeletonare linked in spaceand time
to form functional CWAs. Here, we show that actin-
dependent trafficking to immune response sites of
Arabidopsis thaliana delivers membrane-integrated
FORMIN4, which in turn contributes to local cytoskel-
etal dynamics. Total internal reflection fluorescence
(TIRF) microscopy combined with controlled induc-
tion of FORMIN4-GFP expression reveals a dynamic
population of vesicular bodies that accumulate to
form clusters at the PM through an actin-dependent
process. Deactivation of FORMIN4 and its close ho-
mologs partially compromises subsequent defense
and alters filamentous actin (F-actin) distribution at
mature CWAs. The localization of FORMIN4 is stable
and segregated from the dynamic traffic of the
endosomal network. Moreover, the tessellation of
FORMIN4 at the PM with meso-domains of PEN3 re-
veals a fine spatial segregation of destinations for
actin-dependent immunity cargo. Together, our data
suggest a model where FORMIN4 is a spatial feed-
back element in a multi-layered, temporally defined
sequence of cytoskeletal response. This positional
feedbackmakesasignificantcontribution to thedistri-
bution of actin filaments at the dynamic CWA bound-
ary and to the outcomes of pre-invasion defense.

RESULTS AND DISCUSSION

The plant actin cytoskeleton is critical for immune responses to

fungi [1, 2] and bacteria [3] and is responsive to pathogenic oo-
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This is an open access article und
mycetes [4, 5]. The impact of actin-mediated trafficking is

apparent during hyphal invasion, where the rapid successful

assembly of a focused cell wall apposition (CWA) beneath the

microbial appressorium and between the plant PM and cell

wall prevents hyphal invasion and biotrophic haustorium forma-

tion [6]. Molecular, genetic, or chemical interference of actin dy-

namics during this process lowers penetration defense [1, 2, 7].

To gain mechanistic insight into sustained actin-mediated traf-

ficking in response to microbial interactions, we searched for

A. thaliana genes encoding known and predicted actin-binding

proteins (ABPs). We compared the frequency of transcriptional

upregulation (minimal log2 value of 1) across publicly available

transcriptomic experiments, measuring the impact of mi-

crobial infection. Of 93 candidates, the most frequently upregu-

lated gene responsive to prokaryote, oomycete, and fungal

stimuli (totaling 45 pathogen challenge experiments) encoded

FORMIN4 [8, 9]. We also found this gene was one of only three

ABP genes present within an established immunity expression

cluster [10] (Data S1). Formins are a diverse family of eukaryote

cytoskeletal-interacting proteins. Common to most character-

ized formins are the abilities to stimulate actin nucleation and

barbed-end capping through the combined activity of conserved

formin-homology 1 (FH1) and formin-homology 2 (FH2) domains

(recently reviewed by Shekhar et al. [11]). Many members of the

family have been found to have additional capabilities, including

actin filament side-binding activity [12], actin filament severing

activity [13], and affinity for microtubules [8]. A. thaliana

FORMIN4 is a member of a unique plant-specific phylogenetic

sub-family (plant group 1) that combines an N-terminal secretion

signal peptide and transmembrane domain with FH1-FH2 do-

mains within the C terminus [14, 15]. This domain combination

has the potential to act as an intimate link between trafficking

activity and the cytoskeleton, leading us to consider FORMIN4

a strong candidate for further study.

We confirmed phytopathogen-responsive transcriptional

behavior of the FORMIN4 gene by linking its promoter to

the uidA reporter gene and infecting stable transformant

A. thaliana with the powdery mildew Blumeria graminis f. sp.

hordei (Bgh) (Figure 1A). Bgh is adapted to barley and provokes

a non-host response in A. thaliana that is commonly used to

identify genes contributing to penetration resistance and pre-

invasion defense [16, 17]. Next, we made a translational fusion

of the complete FORMIN4 gene, under the control of its own
1–9, July 9, 2018 ª 2018 The Authors. Published by Elsevier Ltd. 1
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Figure 1. FORMIN4 Transcript Accumula-

tion Is Activated by Fungi and Localizes to

Sites of Fungal Contact

(A) Transcript accumulation of uidA-encoded beta-

glucuronidase under the control of the FORMIN4

promoter increases in leaf epidermal cells (as

shown by the production of blue precipitate) upon

contact with Blumeria graminis f. sp. hordei (Bgh)

germ tubes, 48 hr post-infection. Asterisk indicates

the Bgh spore (conidium), and the white arrow

indicates the site of the Bgh penetration peg

(appressorium). The scale bar represents 20 mm.

(B) A translational fusion of GFP to FORMIN4 lo-

calizes specifically to the site of interaction. White

line shows the boundary of the epidermal cell

contacted by Bgh (48 hr post-infection), and red

line shows the radial distance from the fungus

containing 80% of the GFP signal (the site of fungal

contact at the center of the red zone was deter-

mined using a transmission image). The scale bar

represents 20 mm. See also Figure S1.

(C) Graph showing proportion of fluorescence

versus radial distance (black line) and cell surface

area (blue line) from the point of hyphal contact for

the cell in (B).

(D) High-resolution imaging of the plant plasma

membrane at the contact site shows that GFP is

segregated into punctate domains of approximately

200 nm diameter. The red circle highlights an

examplepuncta. ‘‘CWA’’ indicates the locationof the

cell wall apposition. The scale bar represents 5 mm.

(E) Three-dimensional projections show that the

punctate pattern is maintained at the plasma mem-

brane (example puncta indicated by red circle) sur-

rounding theCWA.Seealso FigureS1andVideoS1.

(F–H) Bgh appressorial germ tube contact sites

(indicated by black arrow; F) can be identified with

the same punctate pattern (G and H) at 16 hr post-

infection, without penetration peg ingression. The

scale bar represents 1 mm.

Please cite this article in press as: Sassmann et al., An Immune-Responsive Cytoskeletal-Plasma Membrane Feedback Loop in Plants, Current Biology
(2018), https://doi.org/10.1016/j.cub.2018.05.014
promoter, to GFP and imaged stable A. thaliana transformants

infected with Bgh. GFP fluorescence was detected specifically

in epidermal cells in contact with fungal structures (Figure 1B),

further confirming the transcriptomic analysis and the reporter

gene experiments. Moreover, the fusion product was found

almost exclusively in the locality of CWAs formed in response

to the fungus (Figures 1B and 1C). Induced plasmolysis of in-

fected cells demonstrated that the GFP fluorescence was

associated with the host cell plasma membrane (PM) rather

than the fungus or the plant cell wall (Figures S1A and S1B).

High-resolution imaging revealed that the fluorescence was

compartmentalized into small puncta of 184 ± 24 nm in diam-

eter (measured using an Airyscan instrument; Figure 1D) that

were retained at the PM during plasmolysis induction (Figures

S1A and S1B). This dense punctate pattern continues across

the periphery of the CWA as the PM wraps around the material

deposited below the plant cell wall (Figure 1E; Video S1). Sam-

ples observed between 16 and 24 hr post-infection showed

examples of FORMIN4-GFP accumulation in response to Bgh

primary and appressorial germ tubes without differentiation or

ingression of a penetration peg (Figures 1F–1H). FORMIN4-

GFP accumulation can therefore occur without full CWA devel-
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opment (Figures 1F and 1G). This is a behavior shared by

other membrane-integrated proteins trafficked during immune

responses (such as PEN3) and suggests such trafficking can

be guided by molecules released at the site of pathogen

contact [18].

Recruitment of proteins to the local PM by pathogens can be

either part of a basal defense response or caused by the action of

a specific fungal infection mechanism. To differentiate between

these two possible scenarios, we infected FORMIN4-GFP stable

transformants with Magnaporthe oryzae, as this fungal phyto-

pathogen has a distinct infection strategy [19, 20] and does not

exploit the same host mechanisms required for Bgh infection

[21]. FORMIN4-GFP was observed to localize to the PM below

differentiated M. oryzae appressoria (Figure S1C). These data

suggest that FORMIN4-GFP transport occurs as a broad-spec-

trum fungal-response mechanism.

We next developed an assay to observe FORMIN4-GFP dy-

namics at early stages post-stimulation using total internal

reflection fluorescence (TIRF) microscopy. This would enable

probing of the mechanism of FORMIN4 delivery, as mature

CWAs imaged using confocal microscopy did not show quantifi-

able delivery dynamics (Figures S1D–S1F). Contacts between



Figure 2. FORMIN4 Transport and Delivery Require Actin, but Not Its Endogenous FH1-FH2 Domain

(A) Mosaics consisting of multiple confocal laser scanning microscope images combined to show wide areas of dark grown FORMIN4-GFP transformant

hypocotyls. Left: the corresponding transmission image to themock-treated sample. Right: FORMIN4-GFPsignal after 4 hr elicitation.Cells expressing FORMIN4-

GFP after elicitation showed an average number of 1.98 (±1.16) FORMIN4-GFP regions per GFP-positive cell (n = 64). The scale bars represent 100 mm.

(B) Aniline blue (magenta) staining shows that the majority of FORMIN4-GFP regions are associated with centralized callose regions (88.9% ± 8.6%). The scale

bar represents 10 mm.

(C) Typical TIRF microscopy image of regional FORMIN4-GFP accumulation after 4 hr of elicitation. The scale bar represents 10 mm.

(D) FORMIN4-GFP expression is induced and delivery achieved four hours after immune system stimulation. Kymographs (taken along the lengths of indicated

red boxes) show that FORMIN4-GFP-labeled vesicular bodies can be detected in the cytoplasmic stream. Latrunculin A and B treatment disrupts streaming, but

plasma membrane-associated FORMIN4-GFP remains in a stable pattern. Red boxes are 25 mm in length. See also Figure S2.

(E) Fluorescence recovery after photobleaching (FRAP) experiments performed using total internal reflection fluorescence (TIRF) microscopy demonstrate that

the site-specific delivery process is active four hours after stimulation. See also Figure S2. The scale bar represents 10 mm.

(F) The delivery process is interrupted by latrunculin B treatment asmeasured using pixel fluorescence recovery and recovery of object number. Asterisk indicates

a significant difference of p < 0.05. Error bars indicate the SE. See also Figure S2.

(G) Removal of the FORMIN4 cytosolic domain (that includes the FH1-FH2 domain) does not prevent FORMIN4 localization to the infection site either in wild-type

plants or in plants where all group 1e formins have been genetically disrupted. The scale bar represents 5 mm.
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hyphae and plant cells are asynchronous, and appressoria

obstruct PM imaging. To overcome these technical challenges,

we used an elicitor to approximate the molecular patterns of

fungal assault. This consisted of a dilute plant cell wall hydrolyz-

ing enzyme mix supplemented with chitin and endochitinase

to generate chitin oligomers. Increased GFP fluorescence was

observed after A. thaliana tissue was incubated for a minimal

period of four hours in the elicitation mix (Figure 2A). This further

confirms the FORMIN4 response is not species specific to Bgh

and can be induced in the absence of specific fungal–disease

promoting effectors. FORMIN4-GFP was concentrated at the
PM in bright, dense regions of varying diameter (9.5 ± 2.6 mm)

with multiple regions often found in a single cell (on average

2.0 ± 1.2 per cell). Transmission images of these regions

frequently suggested the presence of local cell wall aberrations.

We stained FORMIN4-GFP hypocotyl cells with aniline blue to

highlight deposits of callose, an injury and immune-responsive

cell wall polymer and a major component of CWAs. We found

that 88.9% (±8.6%) of FORMIN4-GFP regions coincided with

small callose deposits (Figure 2B). The localized regions of

FORMIN4-GFP are therefore associated with sites of cell wall

reinforcement.
Current Biology 28, 1–9, July 9, 2018 3
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At highermagnification and resolution, the FORMIN4-GFP dis-

tribution resembled the punctate pattern observed at the PM

surrounding CWAs in Bgh-infected tissue (Figure 2C). A popula-

tion of rapidly moving vesicular bodies could be detected in

areas of the cytoplasmic stream close to the PM with vesicular

structures visibly exchanged at stream-PM contact sites (Fig-

ure 2D). This movement is sensitive to chemical disruption of

the actin cytoskeleton (Figure 2D), but not the microtubule cyto-

skeleton (Figure S2A). Neither class of treatment caused disas-

sociation of FORMIN4-GFP puncta from the PM.

We used a fluorescence recovery after photobleaching (FRAP)

approach combinedwith TIRFmicroscopy to test the hypothesis

that actin-mediatedmotility plays a role in the arrival of FORMIN4

content. 25 mm2 areas of concentrated FORMIN4-GFP puncta

were bleached and fluorescence recovery monitored over the

subsequent 10 min, during which time the puncta content

increased (at a relative recovery rate of 14.4% ± 4.9% per min-

ute; Figures 2E, 2F, and S2B). FRAP experiments were also

performed after acute exposure to latrunculin B and mock treat-

ments. The mock treatment did not affect the rate of FORMIN4-

GFP content increase whereas latrunculin B significantly

reduced the rate to 34% of control levels (Figure 2F). This sug-

gested that the actin cytoskeleton is critical for the delivery pro-

cess. To validate these data in vivo, we pre-treated Bgh-infected

A. thaliana leaves stably transformed with FORMIN4-GFP with

cytochalasin E, a fungus-derived secondary metabolite that

compromises the plant actin cytoskeleton but does not affect

Bgh development [2]. FORMIN4-GFP distribution was severely

reduced and poorly targeted (Figures S2C and S2D). Together,

these data show that FORMIN4-GFP delivery to immune

response sites requires a functioning actin cytoskeleton.

The dependence of FORMIN4-GFP vesicle transport on the

actin cytoskeleton raises the hypothesis that the FH1-FH2

domains of FORMIN4 are significantly contributing to vesicle-

filament interactions and acting in a cis fashion to drive the dis-

tribution of vesicles with FORMIN4 surface content. To address

this question, we generated a deletion construct that contained

only the secretion signal peptide, transmembrane domain, and

intervening sequence fused to GFP. This deletion mutant

(FORMIN4(DFH1-FH2)-GFP) did not contain the FH1 and FH2

domains (Figure 2G). When transformed into wild-type plants,

this minimal fragment was delivered to Bgh sites (Figure 2G).

We generated a triple T-DNA insertion mutant with a disrupted

allele of FORMIN4 and the two closest homologs of FORMIN4

(FORMIN7 and FORMIN8; constituting the complete phyloge-

netic group 1e; Figure S3A). Both FORMIN4-GFP (Figure S2E)

and FORMIN4(DFH1-FH2)-GFP (Figure 2D) fusion proteins

were delivered to Bgh sites in this genetic background. The

actin-interacting potential of FORMIN4 is therefore unlikely

to have an essential function in a cis capacity during vesicle

delivery.

The generation of the formin4/7/8 mutant provided an oppor-

tunity to screen for phytopathogen defense phenotypes and to

test the functionality of the FORMIN4-GFP construct. We scored

the frequency of different outcomes from Bgh-A. thaliana

interactions in wild-type, formin4/7/8, and formin4/7/8 plants

complemented with FORMIN4-GFP. At forty-eight hours post-

infection, individual outcomes of appressorial attack were

classified as intact CWAs associated with living cells (Figure 3A),
4 Current Biology 28, 1–9, July 9, 2018
intact CWAs combined with cell death (Figure 3B), and breached

CWAs with fungal haustorium development (Figure 3C). The

formin4/7/8 plants showed a significant increase in both the fre-

quency of cell death and a small but significant increase in the

frequency of haustoria development (Figure 3D). Expression of

FORMIN4-GFP reduced the presence of haustoria and almost

completely restored the normal frequency of cell death in the

absence of haustoria, reducing the frequency from 48.4%

(±6.8%) to 36.0% (±5.0%), close to the wild-type frequency of

29.5% (±6.1%). This demonstrates that FORMIN4-GFP retains

sufficient biological activity to complement the function of group

1e formins and that FORMIN4 contributes significantly to a de-

fense response against a fungus. No complementation of the

Bgh-response phenotype was detected in cells expressing

FORMIN4(DFH1-FH2)-GFP (Figure S3E).

To better classify the phenotype, we compared the formin tri-

ple mutant to a characterized resistance mutant, pen3-1. PEN3

is a membrane-integrated ABC transporter protein with a critical

role in defense that is enriched at the PM surrounding CWAs in a

process dependent upon the actin cytoskeleton [22, 23]. The

pen3-1mutant allele affects the profile of secondary metabolites

transported by PEN3 [24] and compromises defense responses

to a broad range of pathogens, including Bgh [16]. The pen3-1

mutant plants showed an elevated level of haustoria formation

beyond that of the formin triple mutant; however, the formin triple

mutant showed a greater proportion of cells entering cell death

after CWA formation (Figure S3E). We therefore conclude that

the formin triple mutant causes a subtly different Bgh pre-inva-

sion response phenotype to the pen3-1 exemplar of a penetra-

tion mutant.

The actin cytoskeleton is known to support CWA function

[1, 2, 25] (e.g., Figure S2C), and formins are known to modify

local actin dynamics. We imaged infected formin4/7/8 plants ex-

pressing GFP-Lifeact [26] to test the hypothesis that the actin

cytoskeleton had been compromised. This revealed an intact

actin cable network broadly comparable to wild-type plants (Fig-

ures 3E and 3F). In both genotypes, actin cables exhibited tran-

sient interactions with the periphery of the CWA that maintained

a local cytoplasmic stream. No equivalent enrichment of micro-

tubules was observed in either wild-type or mutant plants ex-

pressing an mCherry fusion to tubulin (mCherry-TUA5; Figures

S3F and S3G), an observation that contrasts the cereal interac-

tions with powdery mildew [27] but is in agreement with previ-

ously reported non-host responses to Bgh in A. thaliana [28].

Surprisingly, actin cable interactions with CWAs in the mutant

background appeared to be more direct with reduced peri-

CWA regions containing finer dispersed F-actin structures

(Figures 3G and 3H). In wild-type leaves, 80.4% (±17.4%) of

uncompromised CWAs in living cells were associated with a

radially symmetrical fringe network of F-actin whereas 16.8%

(±7.3%) of mutant CWAs retained similar networks. This pheno-

typic behavior suggests a contribution of FORMIN4 to the

cortical interactions and network properties of PM-associated

actin filaments, a role consistent with the biochemical behavior

of FORMIN4 [8, 9] and phenotypes of group 1 family members

[29, 30]. Together, these data suggest an actin-dependent traf-

ficking-driven mechanism for reinforcing cytoskeletal behavior.

We next asked whether the FORMIN4 transport route and

localization pattern was shared with PEN3. The key defense



Figure 3. FORMIN4 Contributes to Defense

and Actin Organization at the Site of

Immunity

(A) At 48 hr after infection, most wild-type

A. thaliana epidermal cells responding to Bgh

appressoria have formed a CWA (indicated by

arrowhead).

(B) A proportion of cells enter programmed

cell death, identified by absence of cytoplasmic

streaming, aggregation of the cytoplasm, and

pigmentation of the cell.

(C) A small minority of cells contain fungal haus-

toria. Asterisk in (A)–(C) indicates conidia.

(D) Comparison of the frequency of responses in

different genotypes. Compared to wild-type

(Col-0), formin4/7/8 plants show increased rates

of cell death and haustoria formation upon Bgh

challenge. Expression of FORMIN4-GFP in the

formin4/7/8 genetic background fully rescues

mutant susceptibility to haustoria formation and

reduces cell death rates near to wild-type levels.

Single asterisks indicate p values less than 0.05;

double asterisks indicate p values less than 0.01

(evaluated by pairwise comparison applying

Student’s t test). Error bars show SD of at least

three biological repeats (minimum of 22 leaves per

genotype). See also Figure S3.

(E) Wild-type cells expressing actin-binding GFP-

Lifeact show a cable network that interacts with

the region containing the CWA (labeled using a

white arrowhead; white lines mark the boundary of

the affected epidermal cell).

(F) The CWA (position indicated by white arrow-

head) maintains interactions with the actin cable

network in mutant formin4/7/8 plants expressing

GFP-Lifeact.

(G) GFP-Lifeact-labeled filaments (green) sur-

rounding wild-type CWAs (red autofluorescence

and white arrowhead). Black arrowhead indicates

coronal (peri-CWA) actin network.

(H) GFP-Lifeact labeling filamentous actin in the

area surrounding a mutant CWA.

The scale bars represent 10 mm.
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protein PEN3 also accumulates at CWAs and smaller deposi-

tions of callose (Figure S4A) in an actin-dependent process.

To approach the trafficking question, we used the uptake of

the fluorescent lipophilic dye FM4-64 to label the endosomal

network (EN) and quantify co-localization with FORMIN4-GFP

and PEN3-GFP. PEN3 is found in early endosomal compart-

ments [31] that are mobile on actin filaments, and the EN is

engaged in the trafficking of PM-derived multi-vesicular bodies

to the CWA interior [32, 33]. A ninety-minute incubation of in-

fected tissue with FM4-64 did not label the vacuole membrane
or endoplasmic reticulum but did high-

light mobile compartments that showed

pausing behavior in the region of

CWAs (Figure S4B). We used an ob-

ject-recognition and centroid-distance-

based approach (Figures 4A–4D) to

quantify the co-localization of these EN

compartments with GFP fusion proteins.

26.6% (±9.5%) of FM4-64-labeled com-
partments co-localized with PEN3-GFP objects whereas only

5.6% (±3.9%) of these compartments had locations within

200 nm of FORMIN4-GFP objects. Furthermore, the distribution

of paired distances supports the existence of a PEN3-GFP

peak sub-population co-localizing with FM4-64 but no equiva-

lent FORMIN4-GFP population (Figures 4B–4D). To address the

question of co-localization, we used a FORMIN4-tdTomato

fusion protein co-expressed with PEN3-GFP to test whether

the two proteins occupy the same zone of PM. Both

FORMIN4-tdTomato and PEN3-GFP were enriched at the
Current Biology 28, 1–9, July 9, 2018 5



Figure 4. FORMIN4 Transport and Meso-localization Are Distinct from PEN3

(A) Bright field image ofBgh appressorial germ tube contact site with CWA (indicated by asterisk) and endosomal network (EN) compartments (indicated by white

arrowhead) visualized by FM4-64 uptake (magenta). The scale bars represent 2 mm. See also Figure S4.

(B) Laplacian of Gaussian (LoG) filtered images of simultaneous detection of FM4-64-labeled EN compartments (magenta) and GFP expression (green) in wild-

type (Col-0), PEN3-GFP, FORMIN4-GFP, and mock-treated PEN3-GFP cells. Mock treatment of PEN3-GFP resulted in no visible EN vesicles in the FM4-64

detection wavelength, and FM4-64-treated wild-type samples showed no signal above background within the GFP excitation/emission channel. The scale bars

represent 2 mm.

(C) Distance-based quantification of co-localization between FM4-64-labeled compartments and GFP-labeled objects shows that a peak sub-population of

PEN3-GFP objects, but not FORMIN4-GFP objects, coincide at distances less than the diffraction limit of the microscope. Histogram represents centroid

distance of PEN3-GFP compartments to EN compartments (white bars and blue Gaussian kernel regression) and FORMIN4-GFP to EN compartments (black

bars and red Gaussian kernel regression). Grey areas show histogram overlap.

(D) PEN3-GFP co-labels 26.6% (±9.5%) of the EN objects, whereas only 5.6% (±3.9%) of the EN is within equivalent distances to FORMIN4-GFP objects. Asterisk

indicates a p value evaluated by pairwise comparison with Student’s t test of <0.001. Error bars show SD.

(E) Co-expressed FORMIN4-tdTomato (red) and PEN3-GFP (green) at the plasma membrane in the region of a CWA. See also Figure S4. The scale bar

represents 2 mm.

(F) Bandpass phase-frequency filtering highlights the local enrichment of FORMIN4-tdTomato and PEN3-GFP plasma membrane domains (area enlarged from

white box in D) showing tessellation of FORMIN4 and PEN3 enrichments. The scale bar represents 2 mm.

(legend continued on next page)
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PM, with FORMIN4-tdTomato showing the same extreme CWA

spatial restriction as FORMIN4-GFP (Figure S4C). Higher mag-

nifications suggested that both proteins were enriched in a

punctate pattern at the PM (Figure 4E). Phase-frequency

filtering of these data enhances the contrast between the two

patterns (Figure 4F), and an arc transect shows that peaks

and troughs of the two proteins do not coincide (Figure 4G).

We therefore conclude that, although PEN3 and FORMIN4 traf-

ficking are both actin dependent, they show little co-compart-

mentalization in either the EN or the PM at the meso-scale.

Actin-mediated immune-responsive trafficking can therefore

be sub-divided into different routes and subtly different desti-

nations. FORMIN4, and any potentially associated PM content,

is largely segregated from the endosomal transport network.

This could explain its long-term persistence at the PM and

the absence of a large mobile fluorescence fraction at fully

developed CWAs (Figures S1D–S1F).

Here, we have shown that plant cells respond to the chal-

lenge of pathogenic microbes by placing a stable molecular

flag at the destination of their secretion pathway. We propose

a model (Figure 4H) where pathogen contact stimulates tar-

geted exocytosis of marker cargo, including FORMIN4. This

initial activation is likely to occur through the detection of mi-

crobial and damage-associated molecular patterns (MAMPs

and DAMPs). This is supported by studies of targeted PEN3

transportation [18] and the activation of FORMIN4 delivery

through molecular patterns (Figure 2). Actin dynamics can be

stimulated by MAMP application [3], with compelling evidence

suggesting that this occurs, at least in part, through the actions

of ADF and capping protein [3, 34]. To date, the spatial speci-

ficity of these mechanisms has not been studied, but targeted

FORMIN4 delivery is actin dependent and it seems plausible

that transient modification of cytoskeletal dynamics local to

the microbial contact site supports any initial burst of traf-

ficking. Logically, alternative systems must be upstream in tem-

poral sequence from actin binding proteins, such as FORMIN4,

that are under tight expression control and embedded in

the cargo membrane. Long-term accumulation of FORMIN4

(and potentially other factors resistant to uptake into the EN)

further reinforces the local actin-filament distribution network.

Group 1 formins show little lateral diffusion within the PM (so

long as the PM remains in contact with the cell wall) [35, 36]

and are therefore highly adapted to the purpose of acting as

persistent markers of PM identity with a capability to support

local transport networks. The extended ‘‘new’’ surface of the

CWA supports stable cytoskeletal interactions (Figures S3F–

S3I; Video S2). The peri-CWA actin and microtubule networks

can facilitate a variety of activities, including local organelle

positioning, vesicular trafficking to and from the plasma

membrane, and greater perception of the microbial stimulus.
(G) Amplitude of transect taken from the dashed line in (E). Peaks of FORMIN4-t

(H) Model proposing a sequence of events leading to positional feedback during a

(green patches) and sub-cortical PEN3-containing EN compartments (green sphe

brown rods). Arrowheads indicate the unidirectional flow of the local cytoplasmic

to initiate. By four hours (ii) post-perception, FORMIN4-containing vesicles (magen

the nascent response zone of the PM in an actin-dependent process. By forty-eigh

has accumulated distinct PM content, including stable FORMIN4. The cytoskelet

the earlier actin-dependent deposition of PM proteins.
A. thaliana retains eleven genes encoding group 1 formin pro-

teins as well as numerous group 2 formins and the Arp2/3

complex. This provides considerable opportunity for functional

redundancy with parallel actin-nucleation pathways and is likely

to prevent catastrophic collapse of actin filament turnover.

Drug-induced actin disruption in A. thaliana allows B. graminis

haustorium formation, but full disease progression is prevented

by programmed cell death pathways [25]. The formin4/7/8

mutant therefore accelerates this defense outcome associated

with actin filament deficiency without providing opportunity for

haustorium establishment. This could reflect direct monitoring

of peri-CWA actin dynamics by the plant immune system or a

‘‘tipping of the balance’’ toward programmed cell death in the

face of mildly inefficient CWA formation. Our observation of

PEN3/FORMIN4 meso-domain tessellation at this interface pro-

vides a potential strategy for achieving FORMIN4 stability while

simultaneously providing a site for high-volume delivery to the

apoplast. Understanding the molecular basis for these multiple

scales of organization will likely reveal new aspects of disease

virulence and promises the means to deliver bespoke anti-mi-

crobial cargoes with high precision.
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affects actin filament and microtubule dynamics in Arabidopsis thaliana.

J. Exp. Bot. 64, 585–597.

31. Drakakaki, G., van de Ven, W., Pan, S., Miao, Y., Wang, J., Keinath, N.F.,

Weatherly, B., Jiang, L., Schumacher, K., Hicks, G., and Raikhel, N. (2012).

Isolation and proteomic analysis of the SYP61 compartment reveal its role

in exocytic trafficking in Arabidopsis. Cell Res. 22, 413–424.

32. Meyer, D., Pajonk, S., Micali, C., O’Connell, R., and Schulze-Lefert, P.

(2009). Extracellular transport and integration of plant secretory proteins

into pathogen-induced cell wall compartments. Plant J. 57, 986–999.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Escherichia coli DH5a N/A N/A

Agrobacterium tumefaciens GV3101 N/A N/A

Chemicals, Peptides, and Recombinant Proteins

Murashige and Skoog (MS) basal medium with

Gamborg’s Vitamins

Sigma-Aldrich Cat#M0404

Nutrient Agar LabM Cat#LAB008

Levington F2 + Sand multipurpose compost JFC Munro Cat# LEV206

Vermiculite Medium JFC Munro Cat#VER016

Flutec PP-11 (Perfluoroperhydrophenanthrene) F2 Chemicals Ltd Cat#306-91-2

Aniline blue Sigma-Aldrich Cat#415049

X-GlcA (5-Bromo-4-chloro-3-indolyl-b-D-glucuronic

acid, cyclohexyl ammonium salt)

Melford Biolaboratories Ltd Cat#MB1021

Triton X-100 Sigma-Aldrich Cat#T8787

Potassium hexacyanoferrate(II) trihydrate Sigma-Aldrich Cat#P3289

Potassium hexacyanoferrate(III) Sigma-Aldrich Cat#244023

Glycerol Sigma-Aldrich Cat#G5516

RQ1 RNase-Free DNase Promega Cat#M6101

M-MLV reverse transcriptase Promega Cat#M5313

iTaq Universal SYBR Green Supermix Bio-Rad Laboratories Cat#1725120

Chitin from crab shells Sigma-Aldrich Cat#417955

Driselase from Basidiomycete sp. Sigma-Aldrich Cat#D8037

Chitinase from Trichoderma viride Sigma-Aldrich Cat#C8241

Borosilicate class coverslips D263M ThermoScientific Cat#BB02200500A033MNT0

MES Monohydrate [2-(N-Morpholino)-ethanesulfonic acid] Melford Cat#M22040

Caffeic acid Sigma-Aldrich Cat#C0625

Microscope slides Thermo Scientific Cat#AD00000102E00MNT10

Surgical tape, Micropore 3M VWR Cat#115-8172

Latrunculin A Sigma-Aldrich Cat#428020

Latrunculin B Sigma-Aldrich Cat#L5288

DMSO Sigma-Aldrich Cat#M81802

Oryzalin Sigma-Aldrich Cat#36182

Cytochalasin E Sigma-Aldrich Cat#C8273

D-Sorbitol Sigma-Aldrich Cat#S1876

FM4-64 Dye (N-(3-Triethylammoniumpropyl)-4-(6-(4-

(Diethylamino) Phenyl) Hexatrienyl) Pyridinium Dibromide)

ThermoFisher Scientific Cat#T13320

Critical Commercial Assays

RNeasy Plant Mini Kit QIAGEN Cat#74904

Qubit RNA IQ Assay Kit ThermoFisher Scientific Cat#Q33222

GeneJET Plasmid Miniprep Kit ThermoFisher Scientific Cat#K0503

Deposited Data

Genevestigator gene expression data Genevestigator ATH1 genome array data

Experimental Models: Organisms/Strains

Blumeria graminis f. sp. Hordei: UK isolate CC/133 NIAB N/A

Hordeum vulgare: Variety ‘‘Golden Promise’’ N/A N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Magnaporthe oryzae: Strain Guy-11 N/A N/A

Arabidopsis: Col-0 Lehle Seeds Cat#WT-02

Arabidopsis: Ws Lehle Seeds Cat#WT-8A

Arabidopsis: formin4-1 (At1g24150) [37] N/A

Arabidopsis: formin7-1 (At1g59910) [43] NASC NASC ID: N879635

Arabidopsis: formin8-1 (At1g70140) This study N/A

Arabidopsis: formin4/7/8 This study N/A

Arabidopsis: GFP-MAP4 [38] N/A

Arabidopsis: pen3-1: PEN3-GFP [16] NASC ID: N67802

Arabidopsis: GFP-Lifeact (Col-0) [26] N/A

Arabidopsis: GFP-Lifeact (formin4/7/8) This study N/A

Arabidopsis: mCherry-TUA5 (Col-0) Tijs Ketelaar, University

of Wageningen

N/A

Arabidopsis: mCherry-TUA5 (formin4/7/8) This study N/A

Arabidopsis: formin4/7/8: FORMIN4-GFP This study N/A

Arabidopsis: FORMIN4-GFP This study N/A

Arabidopsis: formin4/7/8: FORMIN4(DFH1-FH2)-GFP This study N/A

Arabidopsis: FORMIN4(DFH1-FH2)-GFP This study N/A

Arabidopsis: FORMIN4tdTomato/PEN3-GFP (pen3-1) This study N/A

Oligonucleotides

FH4GUSF: GGGGACAAGTTTGTACAAAAAAGCAGGCTTA

TCAATACAAGAAGTCAAGAAGAAGACGTG

This study N/A

FH4GUSR: GGGGACCACTTTGTACAAGAAAGCTGGGT

TGGAAGATTAACTCATTTGTTTAGAG

This study N/A

FH4RA: GGGGACCACTTTGTACAAGAAAGCTGGGTTCA

CATATCGGAATCTGATCCACCCG

This study N/A

QFH4FA: TTCAGGGGAAAGTTCAAATGGTCAG This study N/A

QFH4RA: TTTTATCACCGCCGTCGTCT This study N/A

QFH4FB: ACTCAGTTCCGTTATACACAG This study N/A

QFH4RB: TTTTATCACCGCCGTCGTCT This study N/A

PTB1F: TTCAGGGGAAAGTTCAAATGGTCAG This study N/A

PTB1R: TTTTATCACCGCCGTCGTCT This study N/A

FH4GENFA: TTGATGCAGCCATGGCCACCG This study N/A

FH4GENRA: AAAGAATCAGTCTTGACATGAGGAG This study N/A

FH4GENRB: GATATAACCTCGGAGATCGAACTGC This study N/A

FH7GENFA: AAGAACGGTAGTAGTTCACGGAGGAAG This study N/A

FH7GENRA: CCACCATAATCACTACCGGCACTTGT This study N/A

FH8GENFA: CTACAGAGTCAGAGAGAAAGAAGTG This study N/A

FH8GENRA: TTTCTCTTGCTCTTCTTTCGACATAAC This study N/A

TAG3: CTGATACCAGACGTTGCCCGCATAA This study N/A

LB3: TAGCATCTGAATTTCATAACCAATCTCGATACAC This study N/A

QFH7FA:ACTTCTCACAGTGTTATCCATAACGAAG This study N/A

QFH7RA:TGAAACGAAAACGCCTCTTCGATAG This study N/A

QFH8FA:ACTTCTCACAGTGTTATCCATAACGAAG This study N/A

QFH8RA:CTCTCCTCCACTTGCTCCTCT This study N/A

EF1F:CCCATTTGTGCCCATCTCT This study N/A

EF1R:CACCGTTCCAATACCACCAA This study N/A

Recombinant DNA

Plasmid: pFormin4::FORMIN4 This study N/A

Plasmid: pFormin4::FORMIN4(DFH1-FH2) This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Plasmid: pFormin4::uidA This study N/A

Plasmid: pDONR207 Invitrogen N/A

Plasmid: pBI101G Martin Kieffer and Brendan

Davies, University of Leeds

N/A

Plasmid: FORMIN4-tdTomato This study N/A

Plasmid: pB7FWGtdTomato Joeseph McKenna and

John Runions, Oxford

Brookes University

N/A

Plasmid: pH7FWG VIB, Gent N/A

Plasmid: GFP-Lifeact [26] N/A

Plasmid: mCherry-TUA5 Tijs Ketelaar, University

of Wageningen

N/A

Software and Algorithms

Beacon Designer 7 Premier Biosoft International,

Palo Alto, USA

http://www.premierbiosoft.com/

molecular_beacons/

ImageJ National Institute of

Health, USA

http://imagej.net

Fiji National Institute of

Health, USA

https://fiji.sc/

LAS-X software Leica https://www.leica-microsystems.com/

Photoshop CS6 Adobe Systems https://www.adobe.com

Illustrator CS4 Adobe Systems https://www.adobe.com

SPSS 23.0 SPSS https://www.ibm.com/

Inkscape 0.92 Inkscape Project https://inkscape.org/en/

VisiView Visitron Systems GmbH http://www.visitron.de/Products/

Software/VisiView/visiview.html

MATLAB 2016b The MathWorks, Natick,

MA, USA

https://www.mathworks.com

Excel Microsoft https://products.office.com/en-gb/excel

Word Microsoft https://products.office.com/en-gb/word

Genevestigator application Nebion https://genevestigator.com/gv/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mike

Deeks (m.deeks@exeter.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material
Arabidopsis thaliana (L. Hyhn) ecotype Columbia-0 (Col-0) was used as the background for recombinant lines. Stable A. thaliana

transformants were produced by floral dipping using Agrobacterium (GV3 101) with the method described by Clough and Bent

[39]. PEN3-GFP in a rescued pen3-1 mutant [16] was a gift of Shauna Somerville (UC Berkeley, USA). The GFP-Lifeact and Col-0

transformant line were described previously by Smertenko et al. [26]. The mCherry-TUA5 Col-0 line and plasmid were a gift from

Tijs Ketelaar and contains an alpha-tubulin 5 Gateway-compatible coding sequence [40] in an mCherry derivative of pMDC43

[41, 42]. The GFP-MAP4 line and construct has previously been described by Marc et al. [38] All transgenic lines were derived

from true-breeding T2 plants. Exceptions were lines ‘Comp. 20 and ‘Comp. 30 (Figure S3) where segregating T2 individuals were

screened for FORMIN4-GFP fluorescence. The formin4/7/8 mutant was assembled from T-DNA insert alleles formin4-1

(At1g24150, FLAG allele [37] gifted by Frederic Berger, Gregor Mendel Institute, Austria), formin7-1 (At1g59910, SAIL line 677E8

[43]) and formin8-1 (At1g70140, SAIL line 93D11). Homozygous T-DNA insertion lines were selected using PCR primers for details

see resources table and Table S1.
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Plant growth conditions
A. thaliana seeds were surface fume sterilized in a sealed container with 100 mL bleach supplemented by 3 mL of 37% HCl (to pro-

duce chlorine gas) for 4-5 h, then suspended in molecular biology grade water and stratified at 4�C for at least 4 days. For genetic

analysis and imaging of leaves plants were grown in 16 hours of light (150 mmol/m2/s) at 21�C, with an 8-hour dark period at 19�C.
After stratification A. thaliana seeds for dark grown elongated hypocotyls, were placed on 100 ml half-concentration Murashige and

Skoog (MS) basal medium with Gamborg’s Vitamins (Sigma-Aldrich, UK) containing 0.8% w/v agar (Lab M, UK). 500 ml PCR tubes

containing themedia were used as a supportive environment for the growing hypocotyls. These were placed within a humid chamber

and plants were grown in darkness at 21�C over a period of five days. This workflow was designed to ensure sterility and to minimize

mechanical disruption.

Pathogen growth conditions
Blumeria graminis f. sp. hordei (Bgh), UK isolate CC/133 (NIAB, Cambridge, UK) was cultivated on Hordeum vulgare L. variety

‘‘Golden Promise’’ (8 h photoperiod, 120 mmol/m2, at 17�C) by weekly infection of three-week old barley plants.

Powdery mildew infection assay – growth conditions
Seeds were stratified in darkness, on soil (Levington F2 + Sand multipurpose compost mixed 3:1 v/v with Vermiculite), at 4�C for

7 days. Plants were grown for 2 to 2 ½ weeks. After the cultivation period Bgh-spores were sprinkled on whole seedlings. Inoculated

plants were completely shaded and kept at 17�C for 48 h.

METHOD DETAILS

Powdery mildew infection assay
First true leaves with an evaluated spore density of 60 (±35) spores per mm2 were cut and mounted on slides in Flutec PP-11 (Per-

fluoroperhydrophenanthrene, F2 Chemicals, UK) immediately before observation. PP-11, a low surface tension solvent compatible

with live-cell imaging [44], enabled observation without any staining, clearing or vacuum infiltration. We compared aniline blue label-

ing of whole-cell callose encasement to transmission microscopy (with PP11 mounting solution) as methods for identifying leaf

epidermal cells undergoing lethal immune responses in the formin4/7/8 triple mutant. In the case of transmission microscopy these

were cells with aggregated cytoplasm, arrested cytoplasmic streaming and thickened cell walls. Of the investigated epidermal cells

(n = 54), 22 out of 23 encased cells identified using aniline blue were identified by transmission microscopy (one encased cell

remained active with indications of cytoplasmic streaming). No false-positive encased cells were detected using transmissionmicro-

scopy. We therefore chose to use transmission microscopy to identify dead cells as this required less preparation and risk of misin-

terpretation of excessive callose production for cell death. We defined four categories of response to Bgh based on our initial obser-

vations. These were ‘CWA response + no haustorium + cytoplasmic streaming’, ‘CWA response + no haustorium + cell death’,

‘haustorium + cytoplasmic streaming’ and ‘haustorium + cell death’. 20.2% of host cells with haustoria showed cytoplasmic stream-

ing and this proportion was not found to vary significantly (using Fisher’s exact test) between genotypes. Consequently we have

summed these two ‘haustoria’ categories in Figure 3 and Figure S3. The actin filament phenotype (Figure 3G,H) was scored using

three biological repeats, with a minimum of three leaves per genotype per repeat and 10 CWAs per leaf.

Magnaporthe oryzae infection
Strain Guy-11 of M. oryzae was maintained and prepared for infection as described [45]. In order to infect A. thaliana dark-grown

hypocotyl cells it was necessary to apply conidia from suspension using a clean cotton bud. Samples were imaged 16 hours

post-infection.

Plasmids
The pFormin4::uidA transcriptional fusion of the uidA gene for the FORMIN4 promoter was produced by amplifying a 1,512 bp frag-

ment containing the promoter and 5-prime UTR of FORMIN4 (At1g24150) from A. thaliana Col-0 genomic DNA with primers

FH4GUSF and FH4GUSR. These primers include attB sequences compatible with the Gateway recombination system (Invitrogen).

The fragment was recombined into entry vector pDONR207 (Invitrogen), sequenced and recombined into destination vector

pBI101G containing the uidA gene (a Gateway conversion of pBI101; provided by Martin Kieffer, University of Leeds UK). The

pFormin4::FORMIN4 and pFormin4::FORMIN4(DFH1-FH2) were amplified from genomic DNA using reverse primers FH4RA and

FH4RB respectively, combined with forward primer FH4GUSF. Both were cloned into entry vector pDON207. Translational fusions

to GFP were achieved by recombining into pH7FWG (VIB, Gent, Belgium) and FORMIN4-tdTomato was produced by recombining

into a tdTomato conversion of pB7FWG (provided by Joe McKenna and John Runions, Oxford Brookes University, UK).

GUS Analysis
Beta-glucuronidase (GUS) activity was detected using the method described in [46]. Briefly, leaves were incubated in 0.1 M sodium

phosphate buffer, pH 7 with 500 mg/ml X-GlcA (5-Bromo-4-chloro-3-indolyl-b-D-glucuronic acid, cyclohexyl ammonium salt,

Melford, UK) and 0.1% Triton X-100. 1 mM potassium ferrocyanide and 1 mM potassium ferricyanide were included in the buffer
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as catalysts. Submerged tissue was vacuum infiltrated and incubated overnight at 37�C. Chlorophyll was removed from the samples

using an ethanol series before the tissue was rehydrated. Whole-mounting was performed in 40% v/v glycerol.

RNA purification and reverse transcriptase
Whole RNA was isolated from single infected seedlings two days after infection using the RNeasy Plant Mini Kit (QIAGEN, Manches-

ter, UK) according to themanufacturer’s guidelines. After determining the total amount of RNA using theQubit 4 Fluorometer (Thermo

Fisher Scientific, Waltham, MA, USA) 300 ng total RNA of each sample were treated with RQ1 RNase-Free DNase (Promega, South-

ampton, UK) and cDNA was synthesized using random hexamers and M-MLV reverse transcriptase (Promega, UK).

RT-qPCR
Relative transcript concentration of FORMIN4 was determined by quantitative real-time PCR (RT-qPCR). Primers for the house-

keeping gene (ptb1; AT3G01150) were designed using the Beacon Designer 7 software (Premier Biosoft International, Palo Alto,

USA), primers for elongation factor one alpha (AT5G60390) and primers for FORMIN4 were designed manually, using full length

cDNA and genomic sequences (http://www.arabidopsis.org). For the quantitative experiments shown in Figure S3, panels B and

C, the annealing temperature for each primer pair was optimized by running a temperature gradient program followed by amelt curve

analysis to verify primer specificity. To determine the detection range, as well as linearity and RT-qPCR amplification efficiency of the

primer pairs, assays were run in triplicates on serial dilutions; for the house-keeping gene 10-fold and for FORMIN4 twofold on sam-

ple cDNA. A standard curve (mean threshold cycle (Ct) versus log cDNA dilution) gives the slope, which can be translated into high

efficiency E (E = 10(�1/slope)) [47] [48]. The linear correlation (R2) of the mean Ct and the log cDNA dilution over the detection range

was > 0.99, with a slope of 3.892 for QFH4FB/RB and 3.428 for the house-keeping gene.

For the RT-qPCR cDNA samples were diluted 1:3 and the reaction was performed with a CFX Connect Real-time PCR detection

system (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Each sample was amplified in triplicates in a 15 ml reaction using 1 ml cDNA in

1x iTaq Universal SYBRGreen Supermix (Bio-Rad Laboratories, Inc., Hercules, CA, USA) running 30 cycles, followed by amelt curve

analysis to validate one specific PCR product.

The relative gene expression (RE) was calculated according to [49] as RE = (Eref)
Ct / (Etarget)

Ct.

Hypocotyl elicitation and imaging
To trigger an immune response in A. thaliana elongated hypocotyls we exposed seedlings to an elicitor solution. This elicitor was

chitin granules (100 mg/ml) from crab shells (Sigma Aldrich, UK), 0.004%w/v driselase (crude extract from basidiomycetes sp; Sigma

Aldrich, UK) and 0.3 units endochitinase /ml from a stock solution containing endochitinase from Trichoderma viride (Sigma

Aldrich, UK) dissolved in 100 mM sodium phosphate buffer at pH 6.1 and 50% v/v glycerol. A mock stock buffer that excluded

the endochitinase was produced for control treatments. After addition of the endochitinase solution the mix was incubated for 20 mi-

nutes at room temperature with regular inversion. Elicitor was applied four hours before observation by filling growth tubes with the

solution.

Whole hypocotyls were mounted onto 32x50 mm D263M borosilicate class coverslips with 0.08-0.12 mm thickness (Menzel-

Gl€aser, ThermoScientific, UK) and embedded in mounting media (MM) consisting of 10 mM MES buffer at pH 7.5 (KOH/HCl),

1 mg/L caffeic acid and molecular pattern elicitor mix (1:10 v/v). When applicable, drug concentration was kept constant in the

MM. Coverslips were mounted on microscope slides 76 3 26 mm with 90� ground edges (Menzel-Gl€aser, Thermo Scientific, UK),

and gently fastened with micro pore tape (3M, UK) to ensure close contact of the hypocotyl with the coverslip.

Imaging was performed on a variable angle inverted TIRF microscope Olympus IX81 using a PlanApo 100x TIRF Oil objective lens

with a numerical aperture of 1.45. Angles of incidence of the solid state laser (Coherent, USA) at peak emission of 488 nm (10%of CW:

50mW) were optimized for each sample to maximize contrast. The differentiation of GFP signal from possible auto fluorescence was

achieved by a dual beam splitter Photometrics�DV2 (Photometrics, USA) which enabled us to simultaneously image the fluorescence

from 505-545 nm (eGFP filter set, Chroma Technology Corporation, USA) and 610-645 nm (TxREDHC-filter set, Chroma Technology

Corporation, USA) and record both fluorescent channels by a CoolSNAP HQ2 CCD camera. (Visitron systems, Germany).

For fluorescence recovery investigations an area of 64x64 pixel (17.04 mm) was bleached using a 2D-VisiFRAP Realtime Scanner

(Visitron Systems, Germany) by a diode pumped green crystal laser (CrystaLaser, USA) at 405 nm (70% of CW: 120 mW) over a total

period of 8.45 s (50 ms/pixel). To minimize any damaging effects of the bleach laser its intensity was kept to a minimum which still

achieved a total bleach of the region of interest (ROI).

Sites were imaged for 4 s periods consisting of 40 images (100 ms exposure time each). Time series up to 10 minutes were re-

corded with an interval every minute including one before and one immediately after the photo bleach. Total observation time for

each sample under themicroscope was limited to amaximum of 30minutes. Mock induction of the immune response without elicitor

mix showed no accumulation of FORMIN4-GFP after 4 h.

Drug treatments
Actin polymerization within A. thaliana hypocotyl cells was inhibited by application of 10 mM Latrunculin (A or B as specified; Sigma-

Aldrich, UK) from 10 mM stock (in DMSO) for 30 min in the molecular pattern mix. To control for effects of DMSO a mock drug treat-

ment with the respective amount of DMSO in the elicitation solution andMMwas performed over the same treatment and observation

period. Oryzalin stocks were made in DMSO at a concentration of 100 mM and used at a working concentration of 100 mM.
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Cytochalasin E drug treatment of leaves was based on the protocol of Kobayashi et al. [1]. Cytochalasin E stocks were dissolved in

DMSO at 5 mg ml-1 and diluted to a working concentration of 5 mg ml-1. The solution was vacuum infiltrated into leaves of plants

2.5 weeks after germination. Infiltrations were also performed of amock solution with an equivalent dilution of DMSO. After infiltration

the leaves were immediately infected with Bgh.

Leaf plasmolysis
Leaves from FORMIN4-GFP transformants were infected with Bgh for 48 hours and then vacuum infiltrated with a solution of 5 M

D-sorbitol [32]. The samples were mounted immediately in 5 M D-sorbitol and observed using confocal microscopy.

Aniline blue staining of callose deposits
Staining of hypocotyls was performed immediately before imaging to ensure elongated hypocotyl epidermal cells remained vital dur-

ing imaging. Hypocotyls were mounted in aniline blue stain (0.1%w/v aniline blue in 150mMK2HPO4 pH to 9.5). For leaf staining two

days afterBgh infection, leaves were syringe infiltrated with aniline blue fiveminutes prior to imaging. Samples were only viewed for a

maximum of 30 minutes to prevent additional cell death and aniline blue penetration into the cytoplasm. Images were acquired using

sequential line scan between GFP settings (488 nm excitation and 505 to 530 nm emission) and aniline blue settings with 405 nm

excitation combined with an emission window of 430 to 500 nm. Transmission, GFP and red channels (648 to 694 nm) were refer-

enced to exclude any debris from the hypocotyl analysis (5 hypocotyls totalling 161 FORMIN4-GFP regions).

Infected leaf FM4-64 uptake
Plants lines were grown, stratified, and infected in the same conditions as for the powdery mildew assay. Prior to the experiment

leaves were cut and attached to filter paper using micropore tape. After infection with Bgh-spores, leaves were kept shaded in a hu-

mid atmosphere at 17�C for 48 h.

Leaves were immersed in 1 mM FM4-64 (Molecular Probes, Eugene, USA) dye, freshly prepared in molecular biology grade water

from a 1 mM Stock (in DMSO) for 90 minutes. Leaves were washed three times to remove any residual dye and mounted in water.

Samples were imaged using an inverted Leica TCS SP8 confocal laser scanning microscope using a HCOL APO CS2 63x, NA 1.4 oil

immersion lens. Samples were exited with an Argon AR+ML laser at 488 nm for simultaneous detection of GFP (detection window of

500-525 nm) and FM4-64 (630-700 nm) containing cellular compartments.

FRAP analysis
Experiments were performed in three biological repeats with a total sample size of elicitated and bleached regions of n > 10 for each

treatment. Fluorescence images from TIRF and confocal microscopes were analyzed using the open source software FIJI, an image

processing package distribution of ImageJ, (FIJI version 2.0.0-rc-44/1.5e / Java 1.8.0_66 [64bit] [50]. Further image and data pro-

cessing was performed using the commercial software package MATLAB (R2016a_64bit, The Mathworks Inc., Natick, MA, 2016)

To analyze FRAP data, a square of 12.1 mm2 was defined just within the border of each bleach zone to measure fluorescence re-

covery. Photo bleaching caused by the imaging laser wasmeasured using neighboring zones that had not been affected by the initial

bleach. After this correction was performed the signal intensity was normalized according to the values of the pre-bleach (100%) and

first post-bleach (0%) time point to calculate a ‘percentage of recovery’ value. Recovery intensity in the first 5 minutes after bleach

showed a linear behavior and was measured by linear regression using MATLAB.

We used a second method to measure recovery which we named SPRAP (spot recovery after photobleaching). Individual puncta

were counted by recognizing local peaks of fluorescence using ‘regionprops’ in MATLAB. Images were pre-filtered for objects of

appropriate size using a Laplacian of Gaussian (LoG) filter. SPRAP values were normalized to the spot numbers present in recovery

zones immediately pre and post bleach.

Analysis of publicly available microarray data
Publicly available data generated using the Affymetrix ATH1 A. thaliana microarray (Affymetrix, Inc., Santa Clara, USA) [51] was

analyzed using the Genevestigator application (Nebion, Switzerland) [52]. ‘Perturbation’ analyses were performed comparing 93

genes encoding members of well-characterized families of actin binding proteins. The impact of two classes of perturbations

were measured; ‘biotic stimuli’ and ‘elicitors’. The output was filtered to remove comparisons that were not 1/ infections versus

mock infections, 2/ elicitor versus mock elicitor, or 3/ time course measurements compared to either equivalent time points of

mock treatments or to time zero. This resulted in 127 and 66 comparisons respectively for the two classes of perturbations. The

93 genes were scored on the basis of their frequency of upregulation or downregulation (defined as changes greater than a log2 value

of 1; see Data S1).

Co-localization analysis
We analyzed three biological repeats of the FM4-64 uptake experiment with a minimum of 7 fungal interaction sites per repeat (each

containing more than 15 images per site). An exception was the negative control showing only PEN3-GFP expression (this was per-

formed three times). GFP and FM4-64 objects and their centroid positions were identified using the samemethod as SPRAP. Objects

in each channel were paired using a Hungarian matching-algorithm [53, 54]. We defined that positive co-localization had occurred

when the paired centroid distance was less than 200 nm, a value below the predicted Abbe limit. The amount of co-localization is
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reported as the percentage of the total recognized FM4-64-labeled objects. Trend lines were added to histograms using a Gaussian

kernel using the MATLAB ‘hisfit’ procedure with a ‘kernel’ setting and sigma value of 10.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of images was performed using FIJI, ImageJ and MATLAB. All statistical analysis and data plotting was performed

using SPSS and MATLAB. For reasons of clarity the definition, number of N and used statistical test are stated at the appropriate

methods section or figure caption. If not stated otherwise, data are presented as mean ± standard deviation (SD). The significant

difference is defined as: * < 0.05; ** < 0.01; *** < 0.001 and is indicated by asterisks or different letters above the histogram bars.
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